

Comptes Rendus Mathématique

Hamid Mousavi

Finite groups with Quaternion Sylow subgroup

Volume 358, issue 9-10 (2020), p. 1097-1099

Published online: 5 January 2021

https://doi.org/10.5802/crmath.131

This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN: 1778-3569

Comptes Rendus Mathématique

2020, 358, nº 9-10, p. 1097-1099 https://doi.org/10.5802/crmath.131

Group Theory / Théorie des groupes

Finite groups with Quaternion Sylow subgroup

Hamid Mousavia

 $^{\it a}$ Department of Mathematical Sciences, University of Tabriz, P.O.Box 51666-16471, Tabriz, Iran

E-mail: hmousavi@tabrizu.ac.ir

Abstract. In this paper we show that a finite group G with Quaternion Sylow 2-subgroup is 2-nilpotent if, either $3 \nmid |G|$ or G is solvable and the order of its Sylow 2-subgroup is strictly greater than 16.

Mathematical subject classification (2010). 20D99, 20E45.

Manuscript received 7th October 2020, revised 11th October 2020 and 13th October 2020, accepted 13th October 2020

1. Introduction

A 2-group of order 2^n , with a cyclic maximal subgroup is isomorphic to one of the following group:

- (i) Cyclic group \mathbb{Z}_{2^n} and abelian group $\mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_2$.
- (ii) Dihedral group D_{2^n} .
- (iii) Semi-dihedral group SD_{2^n} .
- (iv) Modular group $M(2^n)$.
- (v) Quaternion group Q_{2^n} .

Let G be a group with a Sylow 2-subgroup S of type (i). Then G is 2-nilpotent, since $\operatorname{Aut}(S)$ is a 2-group and so $\mathcal{N}_G(S) = \mathcal{C}_G(S)$. In [5], D. Gorenstein and J. Walter gave the characterization of finite groups with dihedral Sylow 2-subgroups. They proved that, a finite group G with a dihedral Sylow 2-subgroup is 2-nilpotent if G contains a normal subgroup of index 4 (see [5, Lemma 2.1(iii)]). In [8, 9], W. Wong obtained the structure of finite groups whose Sylow 2-subgroups are semi-dihedral or modular 2-group. In the latter case G has a normal 2-complement (see [8, Theorem 1]), so a modular 2-group can not be a Sylow 2-subgroup of a non-solvable group. In the semi-dihedral case, G is 2-nilpotent if $\operatorname{foc}(S) = S'$, where S denotes a Sylow 2-subgroup of G and $\operatorname{foc}(S)$, the focal subgroup of S [8, Theorem 2(I)].

In [1], R. Brauer and M. Suzuki proved that any group with a Quaternion Sylow 2-subgroup is not simple.

1098 Hamid Mousavi

Now this question seems to be natural: when a group *G* with a Quaternion Sylow 2-subgroup is 2-nilpotent?

In this paper we obtain sufficient conditions for a group G with a Quaternion (ordinary or generalized) Sylow 2-subgroup to be 2-nilpotent.

Our notations are standard and can be found in [6].

Main Theorem. Let G be a finite group with a Quaternion (ordinary or generalized) Sylow 2-subgroup. Then G is 2-nilpotent if:

- (i) either $3 \nmid |G|$;
- (ii) or G is solvable with a Sylow 2-subgroup of order strictly greater than 16.

Proof. Assume that $Q \cong Q_{2^n}$ is a Sylow 2-subgroup of G. If $Q \unlhd G$ then G = QN, where N is a complement of Q. Now N acts trivially on Q, since $\operatorname{Aut}(Q_{2^n})$ is a 2-group unless for n = 3, in the latter case $\operatorname{Aut}(Q_8) \cong S_4$ and $3 \nmid |G|$, again N acts trivially on Q. Hence $N \unlhd G$ and $G \cong Q \times N$. Therefore we can assume that $Q \not \circlearrowleft G$.

(i). By [1], G is not simple. Assume that G is a minimal counterexample and M is a maximal normal subgroup of G. If |M| is odd, then G/M is a simple group with a Quaternion Sylow subgroup which is a contradiction, so $2 \mid |M|$. By assumption $M \neq Q$. Suppose that $M \leqslant Q$, as G/M is a non-abelian simple group and $3 \nmid |G/M|$, as the Suzuki groups are the only non-abelian simple groups which 3 does not divides its order [4], then G/M is a Suzuki group with Q/M as its Sylow 2-subgroup, which is a contradiction for Q/M is either cyclic or dihedral but a Sylow 2-subgroup of a Suzuki group is of exponent 4 and order greater than or equal 64, (see [7, Lemma 1.6 (4)] and [2, Lemma 1 & Proposition 3]).

Therefore either $Q \leq M$, then M has a normal 2-complement, for |M| < |G|, or $M \cap Q$ is a proper subgroup of Q which is cyclic or $Q_{2^{n-1}}$, again M has a normal 2-complement. Thus in either case M has a normal 2-complement M_1 which is normal in G. Now G/M_1 has a Quaternion Sylow 2-subgroup. By the choice of G, $G \neq QM_1$ so G/M_1 has a normal 2-complement N/M_1 . Hence G = NQ which is a contradiction. Therefore G is 2-nilpotent.

(ii). Proof by induction on |G|. Assume that G is solvable and $n \ge 5$. Obviously $Q \ne G'$. If $Q \leqslant G'$, as $Q \nleq G'$, then by induction G' is 2-nilpotent with a normal 2-complement M which is normal in G. Now G/M has a normal Sylow 2-subgroup so is 2-nilpotent with a normal 2-complement N/M. Obviously N is normal a 2-complement of G. So assume that $G' \cap Q$ is a proper subgroup of Q, then either $G' \cap Q$ is cyclic which again implies that G' is 2-nilpotent and we are done, or $G' \cap Q \cong Q_{2^{n-1}}$ and in this case G' is 2-nilpotent unless n = 5, $3 \mid |G'|$ and $G' \cap Q$ is non-cyclic and a non-normal subgroup of G'. In the latter case, $Q_1 = G' \cap Q \cong Q_{16}$ and $G^{(\ell)} \ne Q_1$, for all $\ell \ge 2$. By solvability for some ℓ , $G^{(\ell)} \cap Q_1$ is a proper subgroup of Q_1 . We can assume that ℓ is the smallest number such that $G^{(\ell)} \cap Q_1 \ne Q_1$, hence $G^{(\ell)} \cap Q_1$ is cyclic, since $G^{(\ell)} \cap Q_1 \trianglelefteq Q$. If $G^{(\ell)} \leqslant Q_1$, then $G^{(\ell-1)}/G^{(\ell)}$ is abelian with a normal 2-complement $M/G^{(\ell)}$, thus $MG^{(\ell)} \unlhd G^{(\ell-1)}$ and so $M \unlhd G^{(\ell-1)}$, for $G^{(\ell-1)} = MQ_1$. This implies that $M \unlhd G$ and so G/M is 2-nilpotent by induction. Therefore G is 2-nilpotent. Otherwise $G^{(\ell)}$ is 2-nilpotent with a normal 2-complement M which is normal in G, again G/M is 2-nilpotent by induction and we are done.

Corollary 1. Let G be a finite group with Quaternion (ordinary or generalized) Sylow 2-subgroup. If a Sylow 3-subgroup of G is normal, then G is 2-nilpotent.

Proof. Assume that *P* is the Sylow 3-subgroup of *G*. As $3 \nmid |G/P|$, G/P is 2-nilpotent by the main Theorem. So *G* is 2-nilpotent.

Corollary 2. Let G be a finite group with Quaternion (ordinary or generalized) Sylow 2-subgroup such that $3 \nmid |G|$, then G is solvable.

Hamid Mousavi 1099

Remark 3. In the above lemma for n=3 and 4 where $3 \mid |G|$, there exist many examples for which G is not 2-nilpotent. The smallest order of such groups is a group of order 48. Assume that G := SmallGroup(48,28) the small group of GAP library [3], in this group $G' \cong \text{SL}(2,3)$ and a Sylow 2-subgroup of G is non-normal, obviously $G/G' \cong \mathbb{Z}_2$. For another example we consider $G \cong \mathbb{Z}_5 \times \text{SL}(2,3)$. In this case $G' \cong Q_8$ and $G \cong (\mathbb{Z}_7 \times \mathbb{Z}_7) \rtimes \text{SL}(2,3)$, where Q_8 acts irreducibly on $\mathbb{Z}_7 \times \mathbb{Z}_7$, in this case $G' \cong (\mathbb{Z}_7 \times \mathbb{Z}_7) \rtimes Q_8$. For non-solvable case let G := SmallGroup(672, 1045), in this group $G' \cong \text{SL}(2,7)$ and a Sylow 2-subgroup of G is a Quaternion group of order 32.

Acknowledgment

The author would like to thank professor Stefan Kohl for providing useful information about simple groups, especially the Suzuki groups.

References

- [1] R. Brauer, M. Suzuki, "On finite groups of even order whose 2-Sylow group is a Quaternion group", *Proc. Natl. Acad. Sci. USA* **45** (1959), p. 1757-1759.
- [2] M. J. Collins, "The characterisation of the Suzuki groups by their Sylow 2-subgroups", Math. Z. 123 (1971), p. 32-48.
- [3] The GAP Group, "GAP Groups, Algorithms, and Programming, Version 4.11.0", 2020, http://www.gap-system.org.
- [4] G. Glauberman, *Factorizations in local subgroups of finite groups*, Regional Conference Series in Mathematics, vol. 33, American Mathematical Society, 1977.
- [5] D. Gorenstein, J. H. Walter, "The characterization of finite groups with dihedral Sylow 2-subgroups I., II., III", *J. Algebra* **2** (1965), p. 85-151; 218-270; 334-393.
- [6] I. M. Isaacs, Finite group theory, Graduate Studies in Mathematics, vol. 92, American Mathematical Society, 2008.
- [7] S. Kohl, "Counting the orbits on finite simple groups under the action of the automorphism group Suzuki groups vs. linear groups", *Commun. Algebra* **30** (2002), no. 7, p. 3515-3532.
- [8] W. J. Wong, "On finite groups whose 2-Sylow subgroups have cyclic subgroups of index 2", *J. Aust. Math. Soc.* 4 (1964), p. 90-112.
- [9] ______, "On Finite Groups with Semi-Dihedral Sylow 2-Subgroups", J. Algebra 4 (1966), p. 52-63.