
Comptes Rendus

Mathématique

Bruno Després and Matthieu Ancellin

A functional equation with polynomial solutions and application to
Neural Networks

Volume 358, issue 9-10 (2020), p. 1059-1072

Published online: 5 January 2021

https://doi.org/10.5802/crmath.124

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.124
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org

Comptes Rendus
Mathématique
2020, 358, n 9-10, p. 1059-1072
https://doi.org/10.5802/crmath.124

Numerical Analysis / Analyse numérique

A functional equation with polynomial

solutions and application to Neural Networks

Bruno Després∗, a andMatthieu Ancellinb

a Laboratoire Jacques-Louis Lions, Sorbonne Université, 4 place Jussieu, 75005 Paris,
France and Institut Universitaire de France, France

b Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-91190
Gif-sur-Yvette, France

E-mails: despres@ann.jussieu.fr (B. Després), matthieu.ancellin@ens-paris-saclay.fr
(M. Ancellin)

Abstract. We construct and discuss a functional equation with contraction property. The solutions are real
univariate polynomials. The series solving the natural fixed point iterations have immediate interpretation in
terms of Neural Networks with recursive properties and controlled accuracy.

2020 Mathematics Subject Classification. 65Q20,65Y99,78M32.

Funding. The authors thank CEA for support.

Manuscript received 10th July 2020, revised and accepted 28th September 2020.

Version française abrégée

Pour tout polynôme réel défini sur l’intervalle de référence I = [0,1], nous construisons une
équation fonctionnelle avec trois propriétés principales : a) le Théorème principal de cette Note
montre le caractère bien posé de la construction; b) l’équation fonctionnelle peut s’écrire comme
un point fixe contractant ; c) les itérations de point fixe fournissent des solutions de référence
implémentables dans un réseau de neurones du type « Feedforward Deep Networks » avec
fonction d’activation de type ReLU [8, Chapitre 6], tout en contrôlant explicitement la précision.

Cette approche, dont la preuve s’appuie sur des outils classiques en analyse numérique, gé-
néralise directement à tous les polynômes la série [5,6,13,17] qui résout l’équation fonctionnelle
pour le polynôme quadratique x 7→ x2. Cela permet une discussion raisonnée de certaines fa-
milles de réseaux de neurones. Des tests de précision obtenus en language Julia illustrent la dis-
cussion générale et montrent un gain en stabilité de la phase d’apprentissage par rapport aux
expérimentations numériques récentes [6].

∗Corresponding author.

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.124
mailto:despres@ann.jussieu.fr
mailto:matthieu.ancellin@ens-paris-saclay.fr
https://comptes-rendus.academie-sciences.fr/mathematique/

1060 Bruno Després and Matthieu Ancellin

1. Introduction

It has been observed recently in [5, 17] that a certain generalization of the Takagi function [10] to
the square function x 7→ x2 has an interesting interpretation in terms of simple Neural Networks
with the ReLU function R(x) = max(0, x) as an activation function. In [17], this generalization is
the basis of a general theorem of approximation of functions by Neural Network architectures,
see also [13]. In this Note, we generalize the principle of the functional equation [9] to any real
univariate polynomial x 7→ H(x), by using techniques which are standard in numerical analysis.
In terms of the design and discussion of Neural Network architectures [8], the new formulas gain
broader generality.

By considering the literature [8] on the current understanding of the mathematical structure
of Neural Networks, the most original output of the construction is the novel functional equation
with three main properties:

(a) it has general polynomial solutions under the conditions of the main Theorem,
(b) it is contractive, so is easily solved by any kind of standard fixed point procedure and,
(c) the converging fixed point iterations can be implemented as reference solutions in Feed-

forward Deep Networks with ReLU activation function [8, Chapter 6], with controlled ac-
curacy.

In other words, our construction associates a well posed functional equation and its solution to
some simple Neural Networks. The proof that the equation has polynomial solutions is easy. It
is possible that a similar construction has already been considered in the immense literature on
polynomials but to our knowledge, never in combination with the discussion of Neural Networks
architectures.

2. A contractive functional equation

The normalized closed interval is I = [0,1]. The set of continuous functions C 0(I) over I is
equipped with the maximal norm ‖ f ‖L∞(I) = maxi ∈ I | f (x)|.

Consider a subdivision in m ≥ 1 subintervals [x j , x j+1] where 0 = x0 < x1 < ·· · < x j < ·· · <
xm = 1, x j = j h and h = 1/m. Set P n = {p real polynomial of degree ≤ n}. The set of continuous
piecewise linear functions is

Vh =
{

u ∈C 0(I), u|(x j , x j+1
) ∈ P 1 for all 0 ≤ j ≤ m −1

}
.

Similarly with the classical Finite Element setting [3], some basis functions are chosen in a subset
of Vh , even if they are not basis functions in the classical Finite Element sense. In the proposed
construction, they are taken in subset Eh ⊂Vh

Eh = {
u ∈Vh : u(I) ⊂ I , u is non constant on exactly one subinterval

}
.

The assumption u(I) ⊂ I is critical to get the contraction property under the form of Lemma 8.
Our interest in this set is because functions in Eh and Vh are easily assembled or implemented in
Neural Networks with the ReLU function R(x) = max(0, x), see [5–8, 13, 17].

For the simplicity of the presentation, we start with a given real polynomial function H ∈ P n .
More general functions are discussed in the last section. We consider the problem below.

Problem 1. Find
(
e0,e1, . . . , er ,β1, . . . , βr

) ∈Vh × (Eh)r ×Rr such that the identity below holds

H(x) = e0(x)+
r∑

i=1
βi H(ei (x)), x ∈ I , (1)

with the contraction condition

K < 1, K =
r∑

i=1

∣∣βi
∣∣ . (2)

C. R. Mathématique, 2020, 358, n 9-10, 1059-1072

Bruno Després and Matthieu Ancellin 1061

Because of the external composition by H in the last sum, the ei ’s are not basis functions in
the sense of the Finite Element Method [3]. Once the

(
e0,e1, . . . , er ,β1, . . . , βr

) ∈ Vh × (Eh)r ×Rr

are determined, equation (1) can be seen as a functional equation with H as a solution.
A first classical example is based on H1(x) = x(1−x) which satisfies [5, 10, 17]

H1(x) = 1

4
g (x)+ 1

4
H1(g (x)) (3)

where g is the hat function (normalized finite element function): g (x) = 2x for 0 ≤ x ≤ 1
2 and

g (x) = 2(1− x) for 1
2 ≤ x ≤ 1. Set e1(x) = min(2x,1) and e2(x) = min(2(1− x),1) with e1,e2 ∈ Eh for

h = 1/2. One obtains

H1(x) = e0(x)+ 1

4
H1(e1(x))+ 1

4
H1(e2(x)), e0(x) = 1

4
(g (x)−1) (4)

where the contraction property (2) is satisfied with a constant
∑ |βi | = 1

4 + 1
4 = 1

2 . Our second
example concerns the function H2(x) = x3. Set e3(x) = 1−e2(x). One can check the formula

H2(x) = e0(x)+ 1

8
H2(e1(x))+ 1

8
H2(e2(x))+ 1

4
H2(e3(x)) with e0(x) = 3

4
e3(x)− 1

8
.

The condition of contraction is satisfied with the constant 1/2.
Consider the case m = 1, that is just one subinterval, and take a polynomial H with deg(H) ≥ 2.

For H(x) = xn+ low order terms, then by equating the coefficients of xn on both sides, one gets
1 = ∑

βiµ
n
i with µi = e ′i (x) ∈ R. Because ei (I) ⊂ I , then |µi | ≤ 1. So 1 ≤ ∑ |βi ||µi |n ≤ ∑ |βi |. It

means the contraction condition (2) is not satisfied and Problem 1 has only trivial solutions for
m = 1. Since the contraction property is crucial in the construction, we will not consider the case
m = 1 anymore. The main result of the Note is below.

Theorem 2. Let H ∈ P n . There exists a threshold value m∗(H) ≥ 2 such that the functional
equation (1) has a solution with the contraction property (2) for all m ≥ m∗(H) ⇐⇒ h ≤ 1/m∗(H).

Writing the basis functions as ei (x) = ai + bi−ai
h (x − x j) in the subinterval where they are non

constant, the parameters (ai ,bi) can be taken as in Lemma 6 in the general case. They can also be
taken as in Lemma 5 if H(x) = xn is a monomial.

For n ≥ 2, the number of basis functions which are non constant in a given subinterval is n −1,
the basis functions are duplicated by translation from o subinterval to the other and so the total
number of basis functions is r = m(n −1).

The proof is based on decoupled and simpler problems posed in subintervals [x j , x j+1]. Let
us note the second derivative of H as p = H ′′ ∈ P n−2. The collection of reduced problems for all
subinterval [x j , x j+1] writes as follows.

Problem 3. For all subintervals 0 ≤ j ≤ m−1, find triples (ai ,bi ,γi) ∈ I × I ×R (1 ≤ i ≤ s) such that
bi −ai 6= 0 for all i and

p(x j +hy) =
s∑

i=1
γi p

(
ai + (bi −ai)y

)
, y ∈ I . (5)

Lemma 4. The equation (1) is equivalent to the equation (5).

Proof. The proof is in two parts.
(1) ⇒ (5): on the interval [x j , x j+1], one can write ei (x) = ai + bi−ai

h (x − x j). By differentiation, a
solution to (1) gives

p (x) =
r∑

i=1
βi

(
bi −ai

h

)2

p(ei (x)) for x j < x < x j+1.

Retaining in the sum only the indices i such that bi − ai 6= 0, one gets (5) where x = x j +hy and
ei (x) = ai + (bi −ai)y .

C. R. Mathématique, 2020, 358, n 9-10, 1059-1072

1062 Bruno Després and Matthieu Ancellin

(5) ⇒ (1): rewrite the discrete quantities in (5) with another lower index j which refers to the
interval in which this equation is considered. It defines ai , j , bi , j and γi , j . Define

ei , j (x) =


ai , j for 0 ≤ x ≤ x j ,

ai , j + bi , j −ai , j

h (x −x j) for x j ≤ x ≤ x j+1 = x j +h,

bi , j for x j+1 ≤ x ≤ 1.

Define also

βi , j = h2(
bi , j −ai , j

)2 γi , j , where bi , j −ai , j 6= 0. (6)

Consider the function
e0(x) = H(x)−∑

j

∑
i
βi , j H

(
ei , j (x)

)
. (7)

By construction e0 is continuous and its second derivative is zero in all open subintervals
(x j , x j+1). Therefore e0 ∈Vh which ends the proof of Lemma 4. �

If the polynomials y 7→ p(ai , j + (bi , j − ai , j)y), 1 ≤ i ≤ s, generate a complete system in P n−2,
then the equation (5) has a solution. That is why we will consider from now on that

s = dim
(
P n−2)= n −1. (8)

Next, by differentiation, the equation (5) in [x j , x j+1] is equivalent to the square linear system

M j X j = b j , 0 ≤ j ≤ m −1. (9)

The square matrix is

M j =


p(a1, j) p(a2, j) . . . p(an−1, j)

c1, j p ′(a1, j) c2, j p ′(a2, j) . . . cn−1, j p ′(an−1, j)

.

cn−2
1, j p(n−2)(a1, j) cn−2

2, j p(n−2)(a2, j) . . . cn−2
n−1, j p(n−2)(an−1, j)

 ∈Mn−1(R) (10)

where we note ci , j = bi , j −ai , j . The unknown of the linear system is

X j =
(
γ1, j ,γ2, j , . . . ,γn−1, j

)T ∈Rn−1.

The right hand side of the linear system is

b j =
(
p(x j),hp ′(x j), . . . , hn−1p(n−1)(x j)

)T ∈Rn−1

which is bounded ‖b j ‖∞ ≤C uniformly with respect to the subinterval index j .
One remarks that: a) the matrix M j is close to a Vandermonde matrix, so natural invertibility

conditions arise; b) provided the real numbers ai , j ,bi , j ∈ [0,1] are chosen independently of the
subinterval (it will be written ai , j = ai and bi , j = bi), then M j = M is independent of the index j .
Two cases of invertibility and one case of non invertibility are considered below.

Lemma 5. Take p(x) = xn−2 with n − 2 ≥ 0. Assume the real numbers ai , j = ai ∈ [0,1] and
bi , j = bi ∈ [0,1] are chosen independently of the subinterval (so M j = M is independent of the
index j) and bi − ai 6= 0 for all i . Then M is non singular if and only if ai bk − ak bi 6= 0 for all
1 ≤ i 6= k ≤ n −2.

Proof. The matrix is

M =
(

n!

(n − t)!
(bi −ai)t an−t

i

)
1≤t+1, i ≤n−1

.

By assumption bi −ai 6= 0 for all i , so M is similar to

N =
((

ai

(bi −ai)

)n−t)
1≤ t+1, i ≤n−1

.

C. R. Mathématique, 2020, 358, n 9-10, 1059-1072

Bruno Després and Matthieu Ancellin 1063

It is a Vandermonde matrix, invertible if and only if ai
bi−ai

6= ak
bk−ak

for i 6= k. The latter condition
is equivalent to ai bk −ak bi 6= 0. �

Lemma 6. Take p ∈ P n−2 with deg(p) = n −2 ≥ 0. Assume the real numbers ai , j = ai ∈ [0,1] and
bi , j = bi ∈ [0,1] are chosen independently of the subinterval. Assume ai 6= ak and bi −ai = bk−ak 6=
0 for all 1 ≤ i 6= k ≤ n −2. Then the matrix M is non singular.

Proof. The matrix M is similar to the matrix N = (
p(t)(ai)

)
1≤ t+1, i ≤n−1 which is a reducible to a

non singular Vandermonde matrix. �

Lemma 7. Take p(x) = u + x, e1(x) = a1 + (b1 −a1)x and e2(x) = a2 + (b2 −a2)x. Then the matrix
M is singular if and only if u(b2 −a2 −b1 +a1)+a1b2 −a2b1 = 0.

Proof. Indeed p(e1(x)) = u +a1 + (b1 −a1)x and p(e2(x)) = u +a2 + (b2 −a2)x. The condition of
linear independence of these two linear polynomials reduces to the claim. �

Proof of Theorem 2. If n = 0 or n = 1 the result is trivial, so we consider n −2 ≥ 0. If H(x) = xn is
a monomial function, one can takes the first set of basis functions given by Lemma 5 because the
matrices are non singular. Unfortunately, this simple choice is not always possible as shown by
Lemma 7. So to cover the case of general polynomials H ∈ P n , we continue with basis functions
satisfying Lemma 6.

One notes µ = 1
2(n−1) . In a generic subinterval, we construct functions ei for 1 ≤ i ≤ n − 1

by taking ai = iµ and bi = (i + 1)µ. By construction bi − ai = bk − ak = µ > 0, 0 ≤ ai ≤ 1,
0 ≤ bi ≤ n

2(n−1) ≤ 1 (because n ≥ 2) and ai 6= ak for i 6= k.
The matrix M j = M being non singular, then the system (9) has a solution X j = (γ1, j , . . . , γn−1, j)

such that ‖X j ‖∞ ≤ ‖M−1‖∞‖b j ‖∞ ≤ C uniformly with respect to the index of the subinterval j .
So the representation (7) of H holds for x ∈ I .

The constant is

K =
m−1∑
j=0

n−1∑
i=1

∣∣βi , j
∣∣≤ m−1∑

j=0

n−1∑
i=1

h2
∣∣γi , j

∣∣
(bi −ai)2 ≤

m−1∑
j=0

n−1∑
i=1

h2C

µ2 ≤ m(n −1)
h2C

µ2 = (n −1)C

µ2m
.

Take m∗(H) > (n−1)C
µ2 . So the contraction property is satisfied for m ≥ m∗(H). �

Lemma 8. Under the contraction condition (2), one has the bounds

‖H‖L∞(I) ≤ 1

1−K
‖e0‖L∞(I) and

∥∥∥∥∥ ∑
i ≥1

βi H ◦ei

∥∥∥∥∥
L∞(I)

≤ K

1−K
‖e0‖L∞(I).

Proof. It is evident but we detail it because the key condition ei (I) ⊂ I is used. Consider the linear
operator

H :L∞(I) −→L∞(I)

G 7−→ ∑
i ≥1

βi G ◦ei . (11)

Then ‖H ‖L (L∞(I)) ≤ K < 1, that is H is a strictly contractive operator. The functional equation
rewrites H = e0 +H (H) from which the inequalities are deduced. �

3. Application to Neural Networks

In this section, we detail some algorithms which have a natural interpretation in the language
of Neural Networks with the ReLU function as an activation function [5, 8, 17]. These algorithms
provide reference solutions based on the standard fixed point method where the iteration index
is k = 0,1, . . . {

H0 = 0,

Hk+1 = e0 +∑
1≤ i ≤r βi Hk ◦ei .

(12)

C. R. Mathématique, 2020, 358, n 9-10, 1059-1072

1064 Bruno Després and Matthieu Ancellin

The first terms of the series are H1 = e0, H2 = e0+∑
i βi e0 ◦ei , H3 = e0+∑

i βi e0 ◦ei +∑
i , j βiβ j e0 ◦

ei ◦e j and more generally

Hk = e0 +
k−1∑
p=1

(∑
1≤ i1, ..., ip ≤r

(
βi1 . . . βip

)
e0 ◦ei1 ◦ . . . ◦eip

)
, k ≥ 1. (13)

Lemma 8 and the contractive operator (11) yield a standard convergence property with exponen-
tial rate in L∞(I)

‖Hk −H‖L∞(I) ≤ K k ‖H‖L∞(I) , K = ∑
1≤ i ≤r

|βi | < 1. (14)

3.1. A first Neural Network implementation

To explain how the function Hk can be implemented in a Neural Network, we need more
notations. The ReLU function is denoted as R(x) = max(0, x). The ReLU function T with threshold
is denoted as 1

T (x) = max(0,min(x,1)), with T (x) = min(R(x),1) = R(x)−R(x −1). (15)

In the language of Neural Networks [8], functions R and T are called activation functions. The
function T is clearly well adapted to encode the functions in Eh , that is why we describe in details
some implementations features with this function. Using (15), these implementations can be
performed without any difficulty with the ReLU function R.

It is convenient for the rest of the discussion to define a set E more general than Eh which is
included in the new set E

E =



e ∈C 0(I) : there exists 0 ≤α<β≤ 1 and 0 ≤ a ≤ b ≤ 1 such that

e(x) = a for 0 ≤ x ≤α,

e(x) = a + (b −a)
x −α

β−α
for α≤ x ≤β,

e(x) = b for β≤ x ≤ 1


. (16)

We will also use the standard notation Lx = a +bx for affine functions where a,b ∈ R. Same
notations hold for L1x = a1+b1x, and so on. We immediately remark that the composition of two
affine functions is also an affine function, that is with natural notations L1 ◦L2 = L3.

Lemma 9. All functions e ∈ E are computable with a composition of, first of all an affine function,
next the activation function T and finally an affine function (that is e = L1 ◦T ◦L2).

Proof. Indeed, with the notation of (16), e(x) = a + (b −a)T
(
(x −α)/(β−α)

)
. �

Lemma 10. The series (13) can be implemented by linear combination of functions which are the
result of at most k activation function T composed with at most k +1 affine functions.

Proof. The basic operations in a Neural Network are composition and linear combination of
functions, as sketched in Figure 3.1. These operations are already sufficient to implement the
iterations (12).

Now consider (13). Since e0 ∈ Vh , then it is also a affine combination of function in Eh .
Therefore e0◦ei1◦· · ·◦eik can be assembled by linear combination of composition of the activation
functions T and affine functions, with at most k activation functions T and at most k +1 affine
functions (each of them obtained by the composition of at most 2 affine functions). �

1This function is a variant of the function hard-tanh [8]. See also the documentation https://www.tensorflow.org/
api_docs/python/tf/keras/activations/relu.

C. R. Mathématique, 2020, 358, n 9-10, 1059-1072

https://www.tensorflow.org/api_docs/python/tf/keras/activations/relu
https://www.tensorflow.org/api_docs/python/tf/keras/activations/relu

Bruno Després and Matthieu Ancellin 1065

Figure 1. Sketch in a Neural Network of the composition h◦g and of the linear combination
λg +µh of 2 functions g and h already implemented as Neural Networks. Empty bullets
correspond either to the input or to pure linear combination. Black bullets show that an
activation function R, T or another one is used.

So the structure described by the Lemma 10 can be implemented in a Neural Network with
activation T (or R). It generalizes to any polynomial the algorithm presented in [5] or used in [6].
The depth of the network is the number of composition of activation functions, so the depth is
k. This implementation is a Neural Network generalization to all polynomials H of the series
in [5, 8, 17] for the polynomial x 7→ x −x2.

3.2. Accuracy

Considering (14), two ways to obtain a better accuracy are either to increase m, that is to increase
the number of neurons in the first layer, or to increase k, that is to increase the number of layers.

The series (13) truncated at k = 0 recovers the polynomial H with an accuracy which arbitrarily
small because K = O(h): the number of neurons is r = ms = s/h = O(h−1). Since polynomial
functions are dense in the space C 0(I) in the maximum norm, it can be rephrased as a new
constructive proof in dimension one of the Cybenko Theorem [4]. Using the language of Neural
Networks, one hidden layer of an arbitrary large number of neurons can approximate any
function in C 0(I).

Another strategy is to increase the number of layers k = 2,3, . . . in the series (13). The structure
of the direct implementation of such a Neural Network is non standard with respect to the
literature [8] because the width of the layers has a dependance with respect to k proportional
to r k which is the numbers of terms in the series (13): due to additional overhead, the cost of
the implementation or the run is more O((r + c)k); the approximation of the function e0 brings
another cost. However the accuracy is also a power of k, see (14), so there is a balance between
the cost and the accuracy.

3.3. Damping the width

It is possible to circumvent the exponential growth of the width of the layers by two techniques
which are explained below. This is what we call damping the growth of the width, or damping the
width.

C. R. Mathématique, 2020, 358, n 9-10, 1059-1072

1066 Bruno Després and Matthieu Ancellin

3.3.1. Splitting strategy

Here we use a time interpretation of the fixed procedure coupled with a splitting procedure. It
is based on the ordinary differential equation for the function G(t) ∈ L∞(I)G(t) = 0,

G ′(t) = e0 +
∑

1≤ i ≤r
βi G(t)◦ei −G(t). (17)

One has the bound ‖G(t)−H‖L∞(I) ≤ e−(1−K)t‖H‖L∞(I). A possible splitting technique is based on
decreasing time steps ∆t1 ≥ ·· · ≥∆tk ≥∆tk+1 such that the time step tends to 0 (∆tk → 0) and the
total time tends to infinity (

tk =
k∑

l=1
∆tl →∞

)
.

Next within one time step tk ≤ t ≤ tk+1 = tk +∆tk+1, one may consider the series of ODEsG ′
0(t) = e0 −

(
1−

r∑
i=1

∣∣βi
∣∣)G(t),0 ≤ t ≤∆tk

G ′
i (t) =βi Gi (t)◦ei −

∣∣βi
∣∣Gi (t),0 ≤ t ≤∆tk , for i = 1, . . . , r,

where G0(0) =G(tk), Gi+1(0) =Gi (∆tk) for 0 ≤ i ≤ r −1 and finally G(tk+1) =Gr (∆tk).
A fully discrete version of the method takes the form

Gk+1/r −Gk
∆tk

= e0 −
(

1−
r∑

i=1

∣∣βi
∣∣)Gk ,

Gk+(i+1)/r −Gk+i /r
∆tk

=βi Gk+i /r ◦e1 −
∣∣βi

∣∣Gk+i /r for i = 1, . . . , r.

At each step of the algorithm, all functions can be updated with the two operations, composition
and linear combination, described in Figure 3.1. Natural bounds can be written to estimate
‖Gk − H‖L∞(I). This method damps the exponential growth of the width, because the steps
generate a series similar to the general one (13) but with less terms in the right hand side.
Nevertheless this gain is mitigated by the number of additional fractional steps.

3.3.2. Reconfiguration of the Network

Independently of the method by splitting explained just above, there is the possibility to use
the main Theorem of [5] which explains that a function f which is piecewise linear in [0,1] can
be implemented in a Neural Network with the ReLU function R with a depth (the number of
layers) proportional to the number of breakpoints of f and an arbitrary constant width (the
number of neurons per layer) W ≥ 4: it can be called a reconfiguration of the Network because
the operations needed to describe a piecewise function f with a certain number of breakpoints
consists in an explicit rearrangement of the order with which the calculations are done.

In what follows we briefly give a new proof of this result for the function that corresponds
to Hk in (13) and to the activation function T . It yields reconfiguration of the Neural Network
and damps the width of the layers. This proof has its own interest because the width of the new
resulting Network W = 3 is smaller than the one made explicite in [5] which is W ≥ 4.

One starts with a preliminary Lemma 11 which shows that the composition of T , next an affine
function and finally T can be expressed as the composition of an affine function, next T and
finally an affine function.

Lemma 11. Take two parameters λ,µ ∈R. One has the identity

T (λT (x)+µ) = T (µ)+λ(M −m)T
(x −m

M −m

)
, x ∈ I ,

C. R. Mathématique, 2020, 358, n 9-10, 1059-1072

Bruno Després and Matthieu Ancellin 1067

where

m = min

(
T

(
1−µ

λ

)
,T

(−µ
λ

))
and M = max

(
T

(
1−µ

λ

)
,T

(−µ
λ

))
.

Proof. In the calculations below, all functions are continuous with respect to variables (x,λ,µ)
and have a derivative almost everywhere with respect to the variable x.

One has d
d x T (λT (x)+µ) =λT ′(x)T ′(λT (x)+µ). So the derivative is non zero if and only if

λ 6= 0, 0 < x < 1, 0 <λT (x)+µ< 1 ⇔λ 6= 0, 0 < x < 1, 0 <λx +µ< 1.

Assume λ> 0. The last inequality is

−µ

λ
< x < 1−µ

λ
.

One gets

0 < x < 1 with − µ

λ
< x < 1−µ

λ
⇔ T

(−µ
λ

)
< x < T

(
1−µ

λ

)
.

For λ< 0, the bounds are reversed, one finds the condition

T

(
1−µ

λ

)
< x < T

(−µ
λ

)
.

In summary the function x 7→ T (λT (x) +µ) has a zero derivative almost everywhere except if
m < x < M . For x in this interval, the derivative is equal to λ.

Consider the function defined by G(x) =λ(M−m)T (x−m
M−m). In the case M−m > 0, the function

G has a zero derivative almost everywhere except if m < x < M , and then its derivative is equal to
λ by a direct calculation. Therefore the difference T (λT (x)+µ)−G(x) =C (λ,µ) is constant with
respect to x. In the case M −m = 0, one checks directly that the difference is also constant with
respect to x.

It remains to identify the constant. Take M −m > 0 and let x → −∞. One gets the identity
T (µ)−0 =C (λ,µ). In the case M −m = 0, the result is the same, and the proof is ended. �

Proposition 12. One has E ◦E = E .

Proof. Take two general functions e1,e2 ∈ E . Let us write e1 = L1 ◦T ◦L2 and e2 = L3T L4 where
L1,2,3,4 are affine functions. Since the composition of affine functions is an affine function, one
can write

e1 ◦e2 = L1 ◦T ◦ (L2 ◦L3)◦ToL4 = L1 ◦ (ToL5 ◦T)◦L4.

Lemma 11 shows there exists two affine functions L6 and L7 such that T ◦L5 ◦T = L6 ◦T ◦L7. We
note if M −m = 0 (resp. λ = 0) in Lemma 11, then the singularity 1

M−m (resp. 1
λ) is meaningless

because of the exterior multiplication by M−m = 0 (resp. λ= 0). So in this case these singularities
are artificial and L7 can be chosen arbitrarily. One gets

e1 ◦e2 = L1 ◦L6 ◦T ◦L7 ◦L4 = L8 ◦T ◦L9.

This function has the generic form of functions in E because it is the composition of an affine
function, next T , and finally an affine function. It shows that e1 ◦e2 ∈ E . So E ◦E ⊂ E .

Finally take e2(x) = x. Then e1 = e1 ◦ e2 so E ⊂ E ◦ E . Therefore the equality of the claim
holds. �

Consider the function Hk in (13). Expansion of e0 as a linear combination of functions in Eh

and repeated application of Proposition 12 show that the sum (13) can be reorganized as

Hk =
D∑

d=1
L+

d ◦T ◦L−
d (18)

C. R. Mathématique, 2020, 358, n 9-10, 1059-1072

1068 Bruno Després and Matthieu Ancellin

where L±
d are affine functions and D is taken large enough, equal to the total number of terms

in (13). In virtue of the contraction condition, the series is convergent
D∑

d=1

∥∥L+
d ◦T ◦L−

d

∥∥
L∞(I) <∞.

Theorem 13. The series (18) can be implemented within a Neural Network with the ReLU function
with threshold T as activation function, with a width W = 3 and with a depth D.

Proof. The proof is based on two ideas. The first idea is an iterative calculation of the result.
The second idea comes from [5] and the implementation uses a source channel and a collation
channel. Preliminary to describing the implementation, we rewrite the series (18) as

Hk =C

(
1

2
+ 1

C

D∑
d=1

L+
d ◦T ◦L−

d

)
− C

2

where

C ≥ 2
D∑

d=1

∥∥L+
d ◦T ◦L−

d

∥∥
L∞(I)

is taken sufficiently large.

Figure 2. Structure of the Neural Network associated to the formula (18) and to the itera-
tions (19). The top line reproduces x, it is called a source channel. The bottom line is the
collection channel realizes the addition in (19), it is called a collation channel. The interme-
diate lines correspond to the calculation of the different affine functions. The black bullets
are the Neurons, they represent the application of the ReLU function with threshold T . The
Neurons leave unchanged terms in the source channel and in the collation channel. The
three empty bullets at the input and at the output signal that no ReLU is applied.

Then partial series

hr = 1

2
+ 1

C

r∑
d=1

L+
d ◦T ◦L−

d (for 1 ≤ r ≤ D)

take values between 0 and 1 (for x ∈ I), that is hr (I) ⊂ I and Tohr = hr . One notes the recurrence
relation

h0 = 1

2
, hr+1 = hr + 1

C
L+

r+1 ◦T ◦L−
r+1 1 ≤ r ≤ D −1. (19)

The final result is obtained which a last affine function Hk =C hD − C
2 = L f ◦hD . This recurrence

is easily implemented in accordance with the diagram described in Figure 3.3.2, using a source
channel and a collation channel as it is explained in [5]. The maximal number of Neurons per
layer is W = 3.

The depth is the number of hidden layers between the input layer and the output layer. In the
Figure 3.3.2 it is equal to D+1. However it is possible to concatenate the last step with the previous
one because only affine functions are involved and the composition of two affine functions can

C. R. Mathématique, 2020, 358, n 9-10, 1059-1072

Bruno Després and Matthieu Ancellin 1069

be implemented as just one affine function. It saves one hidden layer, so the depth can be made
equal to D . �

In summary the function Hk can be calculated either from the formula (13) which yields k +1
layers with an increasing number of neurons per layers, or with the Network that comes from
Theorem 13 which has a large number of layers and 3 number of neurons per layer. One can also
implement (18) directly with exactly one hidden layer and with one input layer and one output
layer. Many other intermediate Networks, in terms of the number of layers and neurons per layer,
are possible.

3.3.3. Recursive and recurrent Neural Networks

It will be valuable in a near future to compare with the structure of some Neural Networks
which have an iterative nature. In recursive Neural Networks, similar weights are used in
consecutive layers [8]. In recurrent Neural Networks [2, 8] which are widely used for time signals
analysis, some level of recursivity is also introduced but in a different way in order to propose an
efficient treatment of time series.

3.4. Numerical examples

It is possible to calculate analytically all coefficients βi and γi by solving the linear system (9),
and to compare numerically the numerical error with the theoretical rate of convergence (14), as
done in Table 4. Since it is elementary, we complement with another more interesting approach,
which is to evaluate the efficiency of the training of the coefficients for a certain depth k and a
certain collection of basis functions ei for 1 ≤ i ≤ r , with r conveniently chosen. We formulate
training as the problem of finding the best coefficients βi for 1 ≤ i ≤ r and e0 ∈Vh by minimizing
the L2 cost function

W = (
e0,β1, . . . , βr

) 7→ J (W) = ‖Hk (W)−H‖L2(I) , (20)

where the integral (in the L2 norm) is evaluated by quadrature and the basis functions ei for i ≥ 1
are chosen in advance. This procedure provides insights in the convergence properties of the
training stage which is a major algorithmic issue [8] for Neural Networks. For exemple, tn [6],
various tests for x 7→ x2 implemented within a dense Neural Network of width 3 and arbitrary
depth k completely failed to recover the accuracy O(4−k). In the tests below which are based on
the structure explained in this Note, the asymptotic accuracy is much better captured.

Elementary tests were implemented 2 in Julia (see https://julialang.org) using an automatic
differentiation library [16] and an optimization library [14]. The integral in (20) being evaluated
by quadrature with uniform discretization, it is equivalent to say that the dataset for training is

D = {
(xi , H(xi)) , i = 1,2, . . . , N

}
where 0 ≤ xi = i−1

N−1 ≤ 1. Since we take N = 1000 in our tests, the dataset is oversampled. We used
various standard optimizers, such as the Newton–Raphson method, the LBFGS quasi-Newton
method or a simple Gradient Descent method with line research. Tests with the Gradient Descent
showed that the optimum is unchanged but the rate of convergence is much slower. We expect
that with Stochastic Gradient Descent [8], the convergence will be even slower.

So to display results with good accuracy obtained in a reasonnable time, we present the results
obtained with the Newton or quasi-Newton method. We record the accuracy in function of the
depth k. For increasing values of k, we report the numerical L2(I) error E(k) = J (Wk) where the

2Source code is available at https://doi.org/10.5281/zenodo.3936433. It implements the iterations (12) with the two
operations described in Figure 3.1.

C. R. Mathématique, 2020, 358, n 9-10, 1059-1072

https://julialang.org
https://doi.org/10.5281/zenodo.3936433

1070 Bruno Després and Matthieu Ancellin

optimal value Wk has been obtained at the end of the training and K (k) which is the value of the
constant K evaluated in function of Wk . A value K (k) < 1 is an indication of the stability of the
method and can be compared with the theoretical value (see Table 4).

For the tests in Tables 1 and 2, the basis functions are e1(x) = min(2x,1), e2(x) = max(1−2x,0),
e3(x) = max(0,2x −1) and e4(x) = min(1,2−2x). By comparison with the tests shown in [6], the
gain in accuracy as a function of k (and of stability) is spectacular, even if these new tests need
much more neurons per layers for large k. These first two examples show the scaling E(k) =O(αk)
with α≈ 1

4 < min2≤k ≤8 K (k), that is the convergence is at a better rate than what is predicted by
the evaluation of K (k). This is confirmed by the other examples below.

Next we perform similar tests but with m = 3 subintervals. The accuracy is better than
for m = 2 subintervals. The factor per layer is ≈ 1/9 (it comes probably from the formula
x2 = e0(x)+ 1

9 g (x)2 which is easy to check). The numerical value of K (k) is close to 1/3.

Table 1. The polynomial is H(x) = x − x2. One observes E(k) = O(4−k) in accordance with
the theoretical prediction issued from (3).

k 1 2 3 4 5 6 7 8

E(k) 1.8e-2 4.6e-3 1.2e-3 2.9e-4 7.3e-5 1.8e-5 4.6e-6 1.1e-6
K (k) 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 2. The polynomial H(x) = x −x2/2−x3/2. One also observes E(k) =O(4−k).

k 1 2 3 4 5 6 7 8

E(k) 2.5e-2 6.2e-3 1.5e-3 3.9e-4 9.6e-5 2.4e-5 6.0e-6 1.5e-6
K (k) 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 3. The polynomial is H(x) = x − x2. One observes E(k) ≈ O(9−k) in accordance with
the best theoretical prediction.

k 1 2 3 4

E(k) 3.3e-2 3.4e-3 3.8e-4 4.2e-5
K (k) 0 0.94 0.38 0.36

In the last test, we take H(x) = x2 + x3 + x4, m = 3 subintervals and 9 basis functions in total.
The three basis functions e1(x) = min(3x,1), e2(x) = max(1− 3x,0) and e3(x) = min(1/3+ 2x,1)
are duplicated by translation in the three subintervals. The results are in Table 4, where we also
provide the accuracy with the Neural Network with the exact coefficients (obtained by solving the
linear systems (9)) and the exact constant K . One observes convergence of the training at a better
rate than the theoretical prediction.

Other tests have been made. Two difficulties were observed: the constant K (k) can be
greater than one as in Table 4, which makes the results more difficult to interpret; or the
time of training with a large number of basis functions (≥ 10) becomes important with our
current implementation. Learning the basis function (ei)i ≥1 could be investigated to see if some
improvements are possible.

C. R. Mathématique, 2020, 358, n 9-10, 1059-1072

Bruno Després and Matthieu Ancellin 1071

Table 4. The function is H(x) = x2 + x3 + x4 and the number of subintervals is m = 3. One
observes good initial convergence, and low gain of accuracy from k = 3 to k = 4 layers. It
is correlated to large value of K (4). The trained solution is better than the exact solution:
E(k) ≤ Eex(k).

k 1 2 3 4

E(k) 4.4e-2 4.5e-3 6.0e-4 2.7e-4
K (k) 0 3.53 0.39 0.46

Eex(k) 8.4e-1 6.3e-1 4.6e-1 3.3e-1
Kex(k) 0.94 0.94 0.94

4. Last remarks

Firstly we think it is worthwhile to replace the set Eh by the set

Fh = {
u ∈Vh : u(I) ⊂ I

}
.

Considering (3), we conjecture that the contraction constant
∑ |βi | will be better with Fh instead

of Eh : indeed the contraction constant is 1/4 in (3), better than 1/2 in (4) (with this respect, the
set Eh is non optimal). Instead of matrices like (10) local to the subintervals, one will get a global
matrix coupling all subintervals. The analysis of the global matrix is still to be done.

Secondly an interesting issue would be to replace the polynomial H by piecewise polynomial
continuous functions. It would make strong connections with high order finite elements [3, 11,
12, 15].

Thirdly, new questions arise for multivariate versions of Problem 1 because the theory of
multivariate polynomials is more involved than univariate polynomials and, if one follows a
similar strategy as the one presented in this Note, the matrices will necessarily be global.

Fourthly, the exact solutions obtained from (13) can be used for evaluation (benchmarking) of
various Neural Networks implementations with ReLU activation functions.

Fifthly, it is possible to use our approach to modify a key step in modern proofs of conver-
gence [5, 13, 17] of Deep Neural Networks with ReLU functions. This is left for further research.

Last, we point out the recent work [1] where a fixed point equation is also introduced in
relation with a Neural Network architecture, but for a different purpose.

References

[1] A. Bensoussan, Y. Li, D. P. C. Nguyen, M.-B. Tran, S. C. P. Yam, X. Zhou, “Machine Learning and Control Theory”,
https://arxiv.org/abs/2006.05604.

[2] M. Bodén, “A Guide to Recurrent Neural Networks and Backpropagation”, 2001, published in Dallas project, SICS
technical report.

[3] P. G. Ciarlet, Linear and nonlinear functional analysis with applications, Other Titles in Applied Mathematics, vol.
130, Society for Industrial and Applied Mathematics, (SIAM), 2013.

[4] G. Cybenko, “Approximation by superpositions of a sigmoidal function”, Math. Control Signals Systems 2 (1989),
no. 4, p. 303-314.

[5] I. C. Daubechies, R. A. DeVore, S. Foucart, B. L. Hanin, G. Petrova, “Nonlinear Approximation and (Deep) ReLU
Networks”, https://arxiv.org/abs/1905.02199v1.

[6] B. Després, “Machine Learning, adaptive numerical approximation and VOF methods”, 2020, colloquium
LJLL/Sorbonne university, https://www.youtube.com/watch?v=OPKFYe01hH4.

[7] B. Després, H. Jourdren, “Machine learning design of volume of fluid schemes for compressible flows”, J. Comput.
Phys. 408 (2020), article ID 109275.

[8] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, Adaptive Computation and Machine Learning, MIT Press, 2016.
[9] M. Hata, M. Yamaguti, “Weierstrass’s function and chaos”, Hokkaido Math. J. 12 (1983), no. 3, p. 333-342.

[10] ——— , “The Takagi Function and Its Generalization”, Japan J. Appl. Math. 1 (1984), no. 1, p. 183-199.

C. R. Mathématique, 2020, 358, n 9-10, 1059-1072

https://arxiv.org/abs/2006.05604
https://arxiv.org/abs/1905.02199v1
https://www.youtube.com/watch?v=OPKFYe01hH4

1072 Bruno Després and Matthieu Ancellin

[11] J. He, L. Li, J. Xu, C. Zheng, “ReLU Deep Neural Networks and Linear Finite Elements”, J. Comput. Math. 38 (2020),
no. 3, p. 502-527.

[12] B. Li, S. Tang, H. Yu, “Better Approximations of High Dimensional Smooth Functions by Deep Neural Networks with
Rectified Power Units”, Commun. Comput. Phys. 27 (2019), no. 2, p. 379-411.

[13] J. Lu, Z. Shen, H. Yang, S. Zhang, “Deep Network Approximation for Smooth Functions”, 2020, https://blog.nus.edu.
sg/matzuows/publications/.

[14] P. K. Mogensen, A. N. Riseth, “Optim: A mathematical optimization package for Julia”, J. Open Source Softw. 3 (2018),
no. 24, article ID 615.

[15] J. A. A. Opschoor, P. C. Petersen, C. Schwab, “Deep ReLU networks and high-order finite element methods”, Anal.
Appl. (Singap.) 18 (2020), no. 5, p. 715-770.

[16] J. Revels, M. Lubin, T. Papamarkou, “Forward-Mode Automatic Differentiation in Julia”, https://arxiv.org/abs/1607.
07892, 2016.

[17] D. Yarotsky, “Error bounds for approximations with deep ReLU networks”, Neural Netw. 97 (2017), p. 103-114.

C. R. Mathématique, 2020, 358, n 9-10, 1059-1072

https://blog.nus.edu.sg/matzuows/publications/
https://blog.nus.edu.sg/matzuows/publications/
https://arxiv.org/abs/1607.07892
https://arxiv.org/abs/1607.07892

	Version française abrégée
	1. Introduction
	2. A contractive functional equation
	3. Application to Neural Networks
	3.1. A first Neural Network implementation
	3.2. Accuracy
	3.3. Damping the width
	3.3.1. Splitting strategy
	3.3.2. Reconfiguration of the Network
	3.3.3. Recursive and recurrent Neural Networks

	3.4. Numerical examples

	4. Last remarks
	References

