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THE DRINFELD-GRINBERG-KAZHDAN THEOREM FOR
FORMAL SCHEMES AND SINGULARITY THEORY

DAVID BOURQUI AND JULIEN SEBAG

Abstract. Let k be a field. In this article, we provide an extended version of the
Drinfeld-Grinberg-Kazhdan Theorem in the context of formal geometry. We prove that, for
every formal scheme V topologically of finite type over Spf(k[[T1]]), for every non-singular arc
v € Zoo(V)(k), there exists an affine noetherian adic formal k-scheme .# and an isomorphism
of formal k-schemes
Zoo(V)y 2.7 x4 SPE(E[[(T7)ien]])-

‘We emphasize the fact that the proof is constructive and, when V is the completion of an
affine algebraic k-variety, effectively implementable. Besides, we derive some properties of
such an isomorphism in the direction of singularity theory.

1. INTRODUCTION

1.1. In [11, Theorem 0.1], V. Drinfeld proved the following statement (which was
conjectured, under a weaker form, by V. Drinfeld himself in private communication;
see [17, Introduction]):

THEOREM 1.1. — Let k be a field. Let V' be a k-variety, with no connected
component isomorphic to Spec(k). Let v € £ (V) (k) be a rational point of the
associated arc scheme, not contained in Zoo (Viing). If Lo (V') denotes the formal
neighborhood of the k-scheme £, (V') at the point -y, there exists an affine k-scheme
S of finite type, with s € S(k), and an isomorphism of formal k-schemes:

gm(v)v = Se x4 SPE(K[[(T3)ien]])- (1.1)

This statement generalizes to every field k a previous version, due to M. Grinberg
and D. Kazhdan, only proved for subfields of C (see [17]). See also [8] for an
interesting point of view on this question and related problems. Very recently, this
statement has been used in various directions, see [7, 6].

1.2.  In this article we prove the following version of Theorem 1.1 (see Theorems
4.1 and 4.2 for a more precise statement):

THEOREM 1.2. — Let k be a field and R € {k,k[[T]]}. Let V be either an
R-scheme of finite type, or a formal k[[T]]-scheme topologically of finite type. Let
v € Zx(V)(k) not contained in Lo (Vsing)(k). There exist an affine noetherian
adic formal k-scheme . and an isomorphism of formal k-schemes:

0,(V): Lo (V)y = 7 xp SPE(E[[(T})ien]])- (1.2)

Moreover, when V is an R-scheme of finite type, there exist an affine k-scheme of
finite type S and s € S(k) such that the formal k-scheme . is isomorphic to Ss.
The isomorphism 6y (V') has the following properties:

Math. classification: 14E18,14B05.
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1) For every separable field extension K of k, it is compatible with base change
to K.

2) For every integer n € N, if 12°: Lo (V) — £,(V) is the truncation mor-
phism of level n, then the induced morphism of formal k-schemes

7?20: foo(V)fy — gn(v)ﬂ?f('y)
factorizes through Sy X Spf(k[[To, . .., Tn]])-

Our proof of the first assertion of Theorem 1.2 follows the original strategy of
V. Drinfeld’s preprint, but the arguments we use are suited to our general context;
they elaborate those used in [11] (see §3 and §4, in particular §4.5). This refinement
allows us to complete the original statement by properties 1) and 2) of Theorem
1.2. Besides, when V' is a k-scheme of finite type, our proof shows that the above
procedure can be implemented as an effective algorithm taking as its input a suitable
truncation of the arc v and producing as its output a pointed affine k-scheme (.5, s)
such that . = S, realizes isomorphism (1.2). A SAGE code of this algorithm can
be found in [4] (unpublished). In §6, we provide various computations obtained
thanks to this algorithmic approach.

1.3. Different works have proved that the arc scheme 2., (V) carries a part of
the information on the singularities of the variety V. From our point of view, an
important and natural question is to understand what amount of the information
on singularities is contained in isomorphism (1.1). Motivated by this idea, we
derive some results which provide the basic elements for an exegesis with respect
to singularity theory of the Drinfeld-Grinberg-Kazhdan Theorem.

o If .4 is the nilradical of the ring O:-Z(?)m Proposition 8.1 implies that there
exists a smallest integer m such that .#™ = 0, that we denote by m. (V). We
introduce the absolute nilpotency index of (V,v) by the formula:

Mabs(V,v) :=inf(m,(V)) € N,

where the infimum is taken over the set of the arcs on V', with base-point v, which
are not contained in %, (Vsing) (see §8). Proposition 8.4 shows that this integer is a
formal invariant of the singularity (V,v). Besides, it seems to us very plausible that
this integer can be linked to “classical” numerical invariants of singularity theory.

o Thanks to O. Gabber’s Cancellation Theorem (see §7, Theorem 7.1), which
is, to the best of our knowledge, new, we show, in corollary 7.4, that the minimal
part of the formal k-schemes .7 is independent (up to isomorphism) of the possible
choice of isomorphism (1.2). We will call this minimal part the minimal (finite
dimensional) formal model of the pair (L (V),7).

1.4. 1In the end, this work addresses natural questions in the field. We prove
that isomorphism (1.2) depends in general on the choice of the involved arc + (see
§6). We examinate whether isomorphism (1.2) may factorize through the formal
neighborhood of a truncation of the involved arc (see remark 4.8). Besides, we
use the general ideas of the proof of Theorem 1.2 to state a formal analog of the
Denef-Loeser Fibration Theorem (see §5.1, Proposition 5.1), and a global version
of Theorem 1.2 (see §5.2, Proposition 5.4).
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1.5. Conventions, notation. o In this article, k is a field of arbitrary character-
istic (unless explicitly stated otherwise); k[[T]] is the ring of power series over the
field k. For the simplicity of the presentation, we use the notation R € {k, k[[T]]}
to say R =k or R = k[[T]]. For every integer n € N, we set R,, := k[T]/(T"+!).

o If A, B are local k-algebras, the set of local morphisms from A to B is de-
noted by Hom[>°(4, B). If A, B are two admissible local k-algebras (i.e., linearly
topologized local rings which are separated and complete, and endowed with a
structure of k-algebra), a morphism from A to B is defined as a morphism of local
k-algebras supposed to be continuous for the involved topologies (see [18, 0/§7] for
details). The set of morphisms between the admissible k-algebras A, B is denoted
by Hom[°°*(A, B). An element of Hom{°°*(A, B) is called an admissible morphism.
A test-ring A is a local k-algebra, with nilpotent maximal ideal 94 and residue
field k-isomorphic to k. A test-ring is in particular an admissible k-algebras, and the
morphisms between test-rings are admissible morphisms. These data form a cate-
gory that we denote by Tes. One says that a local noetherian complete k-algebra
A is cancellable (as such a k-algebra) if there exists a local noetherian complete k-
algebra B such that A is isomorphic to B[[T]] (as such k-algebras). Thus, with every
local noetherian complete k-algebra A, whose residue field is k-isomorphic to &, one
can associate a local noetherian complete k-algebra Ay, which is non-cancellable,
unique (up to isomorphism) by Theorem 7.1, and satisfies A & Anin[[T1, - .-, Tn]]
for some integer n € N.

o An R-variety is a scheme of finite type over Spec(R). A formal tft k[[T])-
scheme is a formal scheme topologically of finite type over Spf(k[[T]]). For the
simplicity of the presentation, we adopt the following convention in order to formally
unify the treatment of various geometric contexts. We say that V is a R-space
if V is either a R-variety (recall that R = k or R = E[[T]]] according to the
context) or a formal tft k[[T]]-scheme. If V is a R-variety, let us note that V :=
lim V xg Spec(R,,) is a formal tft k[[T]]-scheme (recall that R, := k[T]/{(T"1));
it is a formal tft k[[T"]]-scheme called the formal neighborhood of V along its special
fiber. We denote by A% the R-space defined by A%, = Spec(R[Xq,...,X,]) in the
algebraic case and Aj ., = Spf(K[[T)]{X1,...,Xn}) in the formal case. If V =

Spec(R[X1, ..., X,]/I), then we observe that V = Spf(k[T)]{X1,...,Xn}/I). In
this article, we shall only consider those R-spaces having no connected components
with relative dimension zero.

o If V is a R-space, we denote by .%,(V) the restriction 4 la Weil of the R,-
scheme V' x g Spec(R,,) with respect to the morphism of k-algebras k < R,,. This
object exists, under this assumption, in the category of k-schemes; it is a k-scheme
of finite type which we call the n-jet scheme of V. We introduce now the arc scheme
associated with V' by Z (V) := Jim (Z,(V)) which exists in the category of k-
schemes. In the end, let us note that, if V' is a R-variety, we have an isomorphism of
k-varieties Lo (V) = Zso(V). (See for example [29] for a unified treatment of the
question in the context of algebraic and formal geometry). We always assume that
Z(V)(k) # @. For every integer n € N, the canonical morphism of k-schemes
T Lo (V) = Zp(V) is called the truncation morphism of level n. Let A be a

k-algebra. If A is assumed to be local, or the R-space V is assumed to be affine,
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there exists a natural bijection
Homy, (Spec(4), % (V)) = Homp(Spec(A[[T]]), V). (1.3)

A point v € Z(V) is called an arc on the variety V. We denote by .22 (V) the
open subscheme of .2 (V) defined to be L (V) \ Lo (Viing)-

o Following the terminology introduced in [7], we call a finite dimensional formal
model of the pair (L (V),7), with v € Z2(V)(k), every affine noetherian adic
formal k-scheme realizing isomorphism (4.1).

o If Ais aring and d is a non-negative integer, we denote by A[T]<q4 the set of
polynomials in the indeterminate T with coefficients in A and with degree less than
or equal to d.

2. GENERAL RESULTS

In this section, we establish some general results on formal neighborhoods of arc
schemes.

2.1. Functor of points. We denote by Lacp the category whose objects are the
admissible local k-algebras, with residue field k-isomorphic to k£, and which are
isomorphic to 9M-adic completion of local k-algebras, and whose morphisms are
admissible morphisms. We observe that the category Tes also is a full subcategory
of the category Lacp, since, for every test-ring (A, M 4), we have A = @n(A/imZ)
Let us state a seemingly standard observation.

Let O be an object of the category Lacp. If Tes is the category of pre-cosheaves
on the category Tes (i.e., covariant functors from the category Tes to the category
of sets), we construct a functor

F:Sacp—)‘fe\s

by
O+ Fg :=Homp* (0, ).

By the Yoneda Lemma, the functor HomlOCt(O -) defined on the category Lacp
determines the ring O in Lacp. Let us emphasize that, here, F 5 is the restriction
of the latter functor to the category Tes.

Let (A,9t4) be a test-ring (see definition in §1.5). By definition, the ring A
is a M y-adically complete local k-algebra. For every local k-algebra O such that
D = Jim | O/M, then we deduce:

Hom®(0,A) =~ Homl*(0, A). (2.1)

Then, Fg = Hom[°°(©,-) on the category Tes. Furthermore, for every B =
@n B /sm" € Lacp, we have by definition:

Hom{*'(O, B) Hom[>°(O, B)

Jim Hom (O, B/MY,). (2.2)

11l

Let us note that, for every integer n € N*, the local k-algebra B/9} is a test-ring.
It follows from the Yoneda Lemma that the functor F' is fully faithful. In the context
of the present work, we will use this remark under the following formulation:
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Observation 2.1. — Let O = Jim O/ME and 0 = Jim O'/9M7, be two admis-
sible local k-algebras in the category Lacp. Then, we have the following property:
(1) A morphism of functors Fg, — Fj gives rise to a unique morphism of

admissible local k-algebras O — (5;

(2) If 0 : O’ — O is a morphism of admissible local k-algebras, then the induced
morphism of functors Fg — Fgis an isomorphism if and only if 8 is an
isomorphism.

2.2. An important identification. Let V be a R-space. Let v € L (V)(k).
Let us denote by 9, the maximal ideal of the local k-algebra O¢_(v),. Then,
in the sense of observation 2.1, the formal k-scheme £, (V). is uniquely deter-
mined by the functor F,, — . Let A be a test-ring. Let y4 € F, — (A) =

Loo (V) v O (v,

Hom?°(O 2. (v),y» A). It corresponds to a commutative diagram of morphisms of

et
local k-algebras:
O (vyy —> /j (2.3)
k _—— k

Let U be an affine open subspace of V' which contains v(0). Then, diagram (2.3)
corresponds to a commutative diagram of morphisms of R-algebras:

OlU) A A[iT]} (2.4)
K[[T]] == k[[T]],

(where p: A[[T]] — E[[T]] is the unique continuous morphism which extends the
projection A — A/M4 = k) or equivalently, to a commutative diagram of mor-
phisms of R-schemes:

SPQCTHTH) >V or Spfﬁ[m]) —>V
Spec(k[[T])) ——=V Spf(k[[T]]) ——V

with respect to the algebraic or formal nature of the R-space V.

DEFINITION 2.2. — Every morphism 4 involved in the above commutative
diagrams is called an A-deformation of .

Remark 2.3. — The following remark clarifies an important point in the Drin-
feld-Grinberg-Kazhdan Theorem. For simplicity we specify it in case V. = A].
Then, the k-scheme .Z (V) is isomorphic to Spec(k[(T;)ien]). So, for every (con-
stant or non-constant) k-rational arc 7y, we conclude that there exists a continuous
isomorphism of admissible local k-algebras:

Oz (v),y = El[(To)ien]).
But, it is very important to keep in mind that this isomorphism of topological
complete rings is not an isomorphism for the adic topologies. The topology on the
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admissible local k-algebra k[[(T};);en]] is the inverse limit topology induced by the
isomorphism

kI[(Th)ien]] = lim k[(T;)ien]/(Ti)ien) ™

In constrast with the classical case of a power series in a finite number of indeter-
minate, the adic topology on k[[(T})ien]] does not coincide with the inverse limit
topology; in fact k[[(T})ien]] is not even complete for its adic topology; see [34,
Example 1.8]) (we thank A. Bouthier for pointing out this reference to us), [9]
or [20].

2.3. Reduction to branches. Let k& be a field. The following remark implies that
the formal neighborhood of a given arc carries a part of the information on the
mere singularities of the branch of the involved k-variety which contains this arc.

LEMMA 2.4. — Let V be an integral k-variety. Let v € Z.(V)(k) be a non-
constant arc on V. We assume that there exists a unique minimal prime ideal p of
the ring Oy (o) such that the induced morphism of admissible local k-algebras
v (9/‘/77\(0) — E[[T]] factorizes through m) — (D/V,'y\(()) /p.  Then, for every
test-ring (A,Ma), for every A-deformation ya € Lo (V)(A) of ~y, the induced
morphism of admissible local k-algebras ya: Oy, ) — A[[T]] factorizes through
m) — (9/‘47\(())/‘3' Besides, the ideal p is the only minimal prime ideal with this
property.

In other words, if the arc  is contained in a unique formal irreducible component

at (0), then every A-deformation of 7 is contained in the same component (and
only in this component).

Proof. — Let (A,9M4) be a test-ring and y4 € Z(V),(A). By subsection 2.2,
the datum of v4 corresponds to that of a diagram of morphisms of complete local
k-algebras:

Ov o) —2> A[[T]] (2.5)

N
KI[T]).

Then, we have ker(y) = v, (9a[[T]]). Let p,qi,...,q, be the minimal prime

ideals of the ring m). We may assume that that ker(v) contains p and does not
contain the q; for every i € {1,...,n}. Let us prove that p C ker(y4). Let x € p.
Since the ring m) is reduced, we have p N (N, q;) = (0). By assumption, for
every integer i € {1,...,n}, there exists an element y; € q; such that y; & ker(y).
Then, we deduce that zy; ...y, = 0 and that

Ya(xyr ... Yn) - 0
ya(@) - yalyr) ... valyn) = 0. (2.6)

Since, by construction, y; & v, (Ma[[T]]) for every integer i € {1,...,n}, we
conclude that the element 4 (y;) does not reduce to zero modulo M4 [[T]]. Then,
by the Weierstrass Preparation Theorem, the element v4(y;) is not a zero divisor
in the ring A[[T]] (see §3.2); hence, by equation (2.6), we have y4(z) = 0, i.e.,
x € Ker(ya).
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In the end, if there exists i € {1,...,n} such that q; C 7,'(0), then we have
4 C v (MA[[T]]) = Ker(y), which contradicts our assumption. It concludes the
proof of our statement. O

Remark 2.5. — If one does not assume that the arc v belongs to a unique formal
irreducible component at v(0), the result does not hold anymore when dim(V') > 2.
Let us consider the example of the affiine k-variety V = Spec(k[X,Y, Z]/(Y?— X3~
X)). It is an integral k-variety and 6‘/\0 ~ Ek[[U,V,W]]/{UV), where we denote
by o the origin of A}. Let A = k[S]/(S?) and s := S. Via this identification, we
observe that the arc v(T') = (0,0,T) admits the A-deformation v4(T) = (s,s,T),
which is not contained in any formal irreducible component of the formal germ
(V,0).

COROLLARY 2.6. — Let € be an integral k-curve. Let v € £ (€)(k) be a non-
constant arc on €. Then, for every test-ring (A, 4), for every A-deformation y4 €
L (€)~(A) of v, the A-deformation v4 belongs to the unique formal irreducible
component of the formal germ (V,~(0)) which contains .

2.4. Invariance by étale morphisms. We show that formal neighborhoods in
arc scheme are invariant by étale morphisms.

PROPOSITION 2.7. — Let k be a field. Let V,V’ be two R-varieties. Let v €
Zwo(V)(k) and v € Lo (V')(k). Let f: V! — V be an étale morphism such that
2o (f)(v) =~. The induced morphism of formal k-schemes

LoV Za(V),
is an isomorphism.
Proof. — By observation 2.1, it is enough to check that the natural map
Lo (V') (A) = HomP (O (v1) v, A) = HomP (O (1), A) = Zoo (V)5 (A)

is bijective for every test-ring A. Let (A, 4) be a test-ring. Let v4 € £ (V)4 (A4).
By subsection 2.1, we know that the datum of 4 corresponds to that of a commu-
tative diagram of morphisms of R-schemes:

g

Spec(A[[T]) ==V (2.7)
|
Spec(k[[T]]) - = = V"

We fix the structure of V-scheme on Spec(A[[T]]) by considering 4 and the nilpo-
tent closed immersion ¢ : Spec(k[[T]]) — Spec(A[[T]]) in diagram (2.7) (which is
nilpotent since the k-algebra A is a test-ring). From the definition of formal étale-
ness (see [19, 17.1.1]) applied to 7, we deduce that there exists a unique element

7va € Homy (Spec(A[[T]]), V')

such that 1o~y =4/, and f o~y = ~v4 because of the choice of the structure of V-
scheme on Spec(A[[T]]). Hence, 7/, is the unique preimage of v4 in Z (V') (A).
That concludes the proof. O
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2.5. Behaviour under arc reparametrization. In this subsection, we describe
the behaviour of formal neighborhoods under the operation to reparametrize arc.

PROPOSITION 2.8. — Let V be a k-variety. Let 7,7 € Zs(V)(k). Assume
that there exists a morphism of formal k-schemes p : Spf(k[[T]]) — Spf(k[[T]]) such
that v' = v o p. Then, there exists a unique morphism of formal k-schemes

07+ Lo(V)y = Loo (V)

which sends, for every test-ring A, the element y4 € £ (V) (A) toy :=~vaop €
Lo (V) (A). If p # 0, this morphism is a closed immersion. Moreover, if p is an
automorphism, then the morphism 9:}/ is an isomorphism. The converse holds true
when the field k is assumed to be of characteristic 0.

Proof. — o By assumption, there exists p € T k[[T]] such that v/ = yop. We
denote the common value of 7(0) and 4/(0) by v. By subsection 2.1, to prove
the first part of the theorem, it suffices to observe that, for every test-ring A and
every 74 € Z(V)4(A), there exists a commutative diagram of morphism of local
R-algebras:

(2.8)

o Let us prove that the morphism is a closed immersion when p # 0. Since the
assertion is local, we may assume that the variety V is embedded in A{CV , say

V = Spec(k[ X1, ..., XnN]/I).

and that v := v(0) is the origin of AY. Let B be a k-algebra and (¢;)ien € BY.
In order to fix notations, let us consider the formal relation:

PO eT) =Y i (p(T) =Y Gil(¢;);<)T

i>0 i>0 i>0
where the G; are linear forms uniquely determined by the datum of p. In particular,
we observe that Go(po) = @o. Besides, writing p(T) = oT™(1 + Tq(T)) with
a € k* and n > 1, for every integer i € N*, there exists a unique linear form
G € k[Y1,...,Y;_1] which satisfies the following relation:

Gri((9))j<ni) = api + Gi((#))j<i-1)- (2.9)
Then, for every integer ¢ € {1,..., N}, and every integer j € N, the associated
morphism of k-algebras (9:*//)ﬁ is defined by X;; — G;((Xi¢)e<j—1). Thanks to
formulas (2.9), we conclude that it is surjective.

o Let us show the last part of the statement. If p is an automorphism (equiva-
lently, if p € T (k[[T]])*) the first part of the theorem applied to p~! provides an
inverse to 93/, and shows that 9,}/ is an isomorphism.

o Assume now that p is not an automorphism. We will show that there exist a
test-ring A and an A-deformation 4/, of y4 wich can not be written as 4 op, where
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~va is an A-deformation of A. Let us begin with the following remark : if A is a
test-ring and a € M4, then there exists a unique local morphism of local k-algebra
0o : k[[T]] — A[[T]] such that 6,(T) = T + a, since a is nilpotent. Moreover the
composition of v : Oy, — k[[T]] with 6, is an A-deformation of ~.

First assume that p # 0 (equivalently, there exists an integer n > 2 such that
p € T™(E[[T]])*) and ~y is non constant. Then, for every A-deformation y4 of
and every x € M, the coefficients of T,...,T" 1 in (y4 o p)(x) vanish. Moreover,
since ~ is non-constant, there exist a positive integer N > n and x € 9, such that
v (x) € TN (K[[T]])*. Now let A = Kk[S]/(SN~"*2), with s := S in the ring A.
Consider the A-deformation of 4" given by +/y =4’ 0 65. Then one has

Yalx) € <n]1f 1> Nl pn=l L T A([T]).
Thus, there is no A-deformation 4 of v such that v/, = v4 op.

Now assume that p = 0 (in particular 4/ is the constant arc with 4/(0) = v).
Then for every A-deformation v4 of v one has (y4 o p)(9,) C A. Thus it suffices
to show that there exist a test-ring A and an A-deformation +/, of 4/ such that
Y4(M,) € A. Recall than an A-deformation of the constant arc 4’ is a local
morphism v/, : Oy, — A[[T]] such that v, (9M,) C MA[[T]]. Let A = k[S]/(S?)
with s := S in the ring A. Let zy,...,7, be a k-basis of 90,/9M2. Then there
exists a unique local morphism of k-algebra Oy, /M2 — A[[T]] sending z; to sT.
Composing with Oy, = Oy.,,/9M?2 one obtains an A-deformation 7’4 of 7’ such that
4 (M) contains non constant power series.

Finally, assume that v (hence 7’) is constant and that p # 0. Then there exists
an integer n > 2 such that for every test-ring A , every A-deformation v4 of v and
every x € M, the coefficients of T',...,T" ! in (y4 op)(x) vanish. Using the same
A-deformation of +' as in the previous case, we conclude the proof.

O

COROLLARY 2.9. — Let V.V’ be two k-varieties. Let v € Z(V)(k), 7 €
Lo(V)(Kk), v = ¥(0) and v' = «/(0). Assume that there exists isomorphisms
f 1 Ovy — Oy and p : E[[T]] — K[[T]] such that po~y =+ o f. Then, there
exists an isomorphism of formal k-schemes Lo (V) = Lo (V).

Proof. — By Proposition 2.8, one may assume v = 7’ o f. Then, for every test-
ring A, the composition by f induces the following diagram of maps, functorial in
A:

cp /o Of ¢ —_—
Homy® (Ov.y, A[[T]]) —<= Homy® (Ov v, A[[T]))

]

Zoo(V)5(4) Zoo(V)y(4)

where the map Z(V)(4) = Zw(V')4(A), obtained by restriction, is also a
bijection. Hence, the formal k-schemes £ (V') and £ (V). are isomorphic. [J

2.6. The kernel of the completion. The following statement mimicks, for non-
singular arcs, [27, Theorem 3.13] which is obtained in loc. cit. for stable points of
arc schemes. We would like to thank A. Reguera for pointing out this reference to
us.
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PROPOSITION 2.10. — Let k be a field of charcateristic zero. Let V be an
integral hypersurface of A . Let v € Vyng(k) and v € £ (V)(k), with v(0) = v.

Then the canonical morphism of local k-algebras O ¢_ vy, = Oz (v),.q,y induces

an isomorphism of complete local k-algebras O»_ (v — Oz (V),eay-

Remark 2.11. — The nilpotent elements of the completion szc(\V),'y should
carry interesting informations about the singularity at the origin of the arc ~y(0)
(see section 8 and [3]). It is interesting to note that Proposition 2.10 shows that
such informations may not be visible at the level of the local ring O _(v) -

The proof of Proposition 2.10 is based on the following result:

LEMMA 2.12 ([27, Lemma 2.7]). — Let k be a field of characteristic zero. Let
F € k[X4,...,XnN] be an irreducible polynomial. Then, for every partial derivative
O(F) of F', we have

{F} = VIF] = ([F]: 9(F)™).

This statement can be interpreted as a simple formulation, in the hypersurface
case, of the Rosenfeld Lemma ([22, IV/§9/Lemma 2]). Let us recall that, under
notation of Lemma 2.12, and if we set

V = Spec(k[X1, ..., Xn]|/(F)),

then we have 2 (V) = Spec(k[(X; ;)i jen]/[F]) and that [F] is the differential
ideal of (k[(X; ;)i jen],A) generated by F, where A is the k-derivation of the
ring k[(X; ;)i jen] defined by the relations A(X; ;) = X, j+1 for every integer i €
{1,..., N} and every integer j € N.

Proof of prop 2.10. —

The surjective canonical morphism of local k-algebras

Oz.(v)y = O (V))reary

has a kernel equal to {F'}/[F]. Then, it induces a surjective morphism of complete
local k-algebras:

—

Ozet)r 7 O (VD) reary
whose kernel is the 9t.,-completion of the differential ideal {F'}/[F], i.e.,

Ker(Oz. 1)y = Oz (V))ueary) = N (2 + {F}) /(O + [F))).

n

(See [25, Theorem 8.1].) We have to prove that this kernel equals 0.
We show the following formula:

{F} C Nnen- (O] + [F]) (2.10)
in the local ring O (v, Let P € {F}. By Lemma 2.12, there exists an integer
a € N* such that

o(F)*-PelF]. (2.11)
Let us note that [F] C 9, and {F} C M,. We claim that there exist a partial

derivative O(F') and a smallest integer i such that A()(9(F)) ¢ M.,. Indeed, let us
assume that A (9(F)) € [F] for every integer i € N and every 9(F). In that case,
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the image of 9(F') by the morphism of k-algebras O(%(V)) — k, corresponding
to the datum of M, would equal 0; hence, by adjunction,

AF)(1(T)) =0

in the ring k[[T]]. That contradicts our assumption on the arc v, since F' is assumed
to be irreducible.
Then, the integer aig is the smallest integer such that:

AL (J(F)Y) & M,,. (2.12)
By deriving aig times equation (2.11), we conclude that
aio .
A G(F)) - P+ Y (“?0)A“io—”((a(F)w)A(“(P) €l (213)
i
i=1
So,
P e + [F)

in the local ring O &_(v,. Note that we have shown the inclusion {F'} C 92 +[F].
In particular, for every integer n € N*, one has

A (P) e M2 + [FJ;
hence, by equation (2.13),
P eM +[F).
By iterating this process, we prove formula (2.10) and conclude the proof. (]

Remark 2.13. — Let k be a field of characteristic 0. In [12] or [23, 32, 30],
it is shown in particular that the integral plane k-curve X is smooth if and only
Zoo(X) is reduced. Let v € Z(X)(k) be a primitive k-parametrization. Thus,
the morphism of k-algebras:

O(ZLe(X)) = Oz x) (2.14)

is injective if and only if the k-curve X is smooth. Indeed, Proposition 2.10 and
[23, 30] obviously imply that, if X is not smooth, morphism (2.14) is not injective.
Conversely, if X is smooth over k, there is an open subscheme U = Spec(A) of X,
which contains 7(0), endowed with an étale morphism U — A}. So, we deduce
that L (U) = Spec(A[(T};)i>1]). Now, morphism (2.14) factorizes through the
morphism
A[(T3)iz1] = K[[TO])[[(T3)iz1]],

which is given by A — k[[Tp]] (the completion morphism) and T; — T; for every
integer ¢ € N*. Since the morphism O(Z (X)) — O(Zx(U)) is injective, we
conclude that morphism (2.14) also is injective.

3. PRELIMINARIES TO THE PROOF OF THEOREM 4.1

To state our generalization of the Drinfeld-Grinberg-Kazhdan Theorem, we need
to fix the notation which will be used in its proof. In this section, we also recall
some classical results and state different technical statements. Let k be a field.
Recall that R = k or R = k[[T]].
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3.1. One of the crucial ingredients in the following presentation is the Taylor
expansion for polynomials or restricted power series. So we recall this formula
under a form appropriate for our purposes: let NV and M be positive integers,
X = (X1,...,Xn) and Y = (Y1,...,Yn) be unknows and F' be an element of
R[X,Y] (or more generally, in case R = Kk[[T]], of R{X,Y}). Then, if U =
(U1,...,UNy4m), there exist polynomials G, € R[X,Y,U] (or restricted power
series G, € R{X,Y,U}) such that the element F(X; + Uy,..., Xy + Un, Y1 +
UNt1,---, Ym + Ungamr) equals:

F(X’ Y) + Ez]il UiaXi (F)(X7 Y) + Zz]\il UiJrNaYi(F)(X’ Y)
+ 2 ket Ny UiUnGin(X, Y, U).

We refer to [1, Chapitre II1/§4/5] for details in the formal context.

(3.1)

3.2.  For every complete local ring A and non-negative integer d, an element ¢(T') €
A[T] with degree d is said to be a Weierstrass (or distinguished) polynomial if ¢(T')
is monic and ¢(T) — T? € MA[T]. We denote by # (A, d) the set of Weierstrass
polynomials of degree d with coefficients in A. By uniqueness in the Weierstrass
Division Theorem ([24, Theorem 9.1]), a Weierstrass polynomial is not a zero divisor
in A[[T]]. More generally, any r4(T") € A[[T]] whose reduction modulo M 4[[T]] is a
non zero element of k[[T7]] is not a zero divisor in A[[T]]; indeed, by the Weierstrass
Preparation Theorem (see [24, Theorem 9.2]), one may write r4(T") = qa(T)ua(T)
where g4 (T) is a Weierstrass polynomial and u 4 (7T') is invertible, and is in particular
not a zero divisor. Besides, if r4(T) = qa(T)ua(T) is the Weierstrass decomposition
of r4(T) and if f: A — A’ is a morphism of local rings, the uniqueness also implies
that fr(ga(T)) is the Weierstrass polynomial in the Weierstrass decomposition
of fr(ra(T)). Here, we denote by fr : A[[T]] — A’[[T]] the morphism of local
k-algebras induced by the action of f on coefficients.

3.3. Let us note an important fact.

LEMMA 3.1. — Let d > 1 and N > 0 be integers, and let X = (Xo,...,X4-1),
Y = (Y1,...,Yn) be tuples of indeterminates. Let p = Y, n pi(Y)T" be an element
of k[Y][[T]]. For every integer i € {0,...,d — 1}, there exist power series Dy N p; €
k[[X,Y]], such that the following property holds: for every complete local k-algebra
(A, M ,4), for every pair (a,b) € 93?;1{"]\’, the polynomial T + Zztol a; T divides
> ien Pi(b)T" in R[[T] if and only if, for every integer i € {0,...,d — 1}, we have

@d,N,p,i(a, b) = 0.

Proof. — Let M = (X,Y) be the maximal ideal of the complete local ring
E[[X,Y]]. Set ¢(T) := T9 + Z?;OI X;T?". Let n € N. Since for every integer
m > 1, one has

d—1
T = (=Y X;T")™ mod (¢(T)),
i=0
we deduce that

ST = > pi(Y)T" mod (N, q(T)).

ieN i<nd—1
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This remark implies the existence of power series @i(") € k[[X,Y]], for every integer
i €{0,...,n — 1}, such that

d—1
S pW)T =32 (X, Y)T mod (N, q(T)),

1€EN =0

where we observe that Z?;()l @i(n) (X,Y)T?" mod M"[[T]] is the remainder of the Wei-
erstrass division in (K[[X, Y]]/9M™)[[T]] of p(T) mod N"[[T]] by ¢(T) mod N"[[T]].
By the uniqueness of the Weierstrass division, we deduce that, for every integer
1€40,...,d—1},

75X, Y) = 2"(X,Y) mod N

The datum of the family (@f”))n gives rise to an element Zg N, € k[[X,Y]] with
the required properties. O

Let e > 1 be an integer and Z = (Z3,...,Z.) be a tuple of indeterminates.
If p(T) € k[Y][[T]] and ¢(T) is an element of T% + (k[Z])[T]<a—1 whose reduction
modulo (Z) is T?, we denote by Za n.i(q(T),p(T)) the element of k[[Y, Z]] obtained
by substituting the coeflicients of ¢ to the X;’s in Dy n p.i-

3.4. When p € k[Y, T)] is a polynomial, Lemma 3.1 can be specialized and precised.
Following the previous ideas, it is easy to see that there exist polynomials Dy n,p.: €
kE[X,Y] fori € {0,...,d—1} satisfying the following property: for every ring A, for
every (a,b) € AN we have Dy v ,.(a,b) = 0 for every integer i € {0,...,d—1} if
and only if the polynomial 7% + Z?;()l a;T* divides p(b,T) in the ring A[T]. In the
same way, we adopt the notation Dy n,:(¢(T),p(T)) € k[Y, Z] for the specialization
of Dy N p at the coefficients of ¢(T).

4. THE DRINFELD-GRINBERG-KAZHDAN THEOREM FOR FORMAL SCHEMES

This section is the core of the article. It is devoted to the statement and the
proof of our main result. The last subsections present different important remarks
deduced from Theorem 4.1 and (global) generalizations.

4.1. Statements and remarks. Let &k be a field. Recall that we denote by R = k
or R = k[[T]]. If K is a field extension of the field k, then we set Rx := K if R =k,
and Ry := K|[[T]] if R = k[[T]]. Let V be a R-space, i.e., either an R-scheme of
finite type, or, in case R = k[[T]], a formal tft R-scheme. Let us denote by £ (V)
the open subscheme of .Z (V') defined by Z2 (V) = Lo (V) \ Lo (Veing). If K is
a field extension of the field k, we set Vix = V' x g Spec(Rg) if V' is an R-scheme of
finite type and Vix =V xr Spf(Rk) if R = k[[T]] and V is a formal tft R-scheme.

THEOREM 4.1. — Let V be a R-space. Let v € £2(V)(k). There exists an
affine noetherian formal k-scheme . and an isomorphism of formal k-schemes:

0,(V): Lo (V)y = 7 xp SPE(E[[(T})ien]])- (4.1)

Moreover, in case V' is an R-scheme of finite type, there exist an affine k-scheme of
finite type S and s € S(k) such that . is isomorphic to Ss.

The isomorphism 6 (V') also have the following properties:
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THEOREM 4.2. — With the notation as in Theorem 4.1, we have the following
properties:
(1) The isomorphism 6y(V') constructed in this way satisfies the following as-
sertions:
(a) For every separable field extension K of k, we have the following com-
mutative diagram of maps:

Loa(Vie)y — ) 7 s SpE(K[[(T)ien])

| |

Lo (V)y (V) Ss %y SpE(K[[(T})ien]])-

(b) For every integer n € N, there exists a morphism of formal k-schemes
S xx Spt(k[[Tv, - -, Th]]) = Z0(V)reo(y) making the following dia-
gram of morphisms of formal k- schemes commute:

~ 0O
n

og/poo(v)'y (V)TF?LC(’Y)
A
9k(V)\L [
|
& x5 SpE(K[[(T3)ien]]) —— " x& SpE(K[[T0, . .., T1]]),

where 73° 1 Lo (V) — £, (V) is the truncation morphism of level n.

(2) Once having chosen an affine neighborhood of v(0) in V and an embed-
ding of this affine neighborhood in an explicit complete intersection in an
affine space, there exists a uniquely determined and completely explicit
procedure allowing to construct a suitable formal scheme . and a suitable
isomorphism 0y,(V).

(3) When V is a k-scheme of finite type, the above procedure can be imple-
mented as an effective algorithm taking as its input a suitable truncation
of the arc v and producing as its output a pointed affine k-scheme (S, s)
such that . = S, realizes isomorphism (4.1).

Remark 4.3. — If there is no confusion, we omit to write V in the notation
0 (V).
Remark 4.4. — The statement of Theorem 4.1 in particular extends Theorem

1.1 to the case of a family of varieties parametrized by Spec(k[[T]]) and to the case
of formal schemes topologically of finite type over Spf(k[[T]]). Our proof follows
the strategy of Drinfeld’s original proof in the preprint [11], but adapts the crucial
arguments in our general setting. We give in particular a detailed account of these
arguments. Assertion (b) of the statement of Theorem 4.2 had been stated in the
first available version of the preprint [7] (in the framework of algebraic varieties
over a field and without any proof).

Remark 4.5. — 1In [4], we provide a SAGE code which, following the algorithm
alluded to in the statement of Theorem 4.1, computes a presentation of a pointed k-
scheme (S, s) realizing isomorphism (1.1) in case V is an affine plane curve. We note
that the algorithm is not computationally very efficient. It seems to us an interest-
ing algorithmic question to find a modified or an alternative version of Drinfeld’s
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arguments providing a more computationally effective way to obtain a presentation
of a pointed k-scheme (5, s) realizing isomorphism (1.1).

Remark 4.6. — Theorem 4.1 and results such as Greenberg’s Theorem [16] and
Denef-Loeser’s Fibration Theorem ([10, Lemma 4.1]) deeply differ in nature. In
particular, Theorem 4.1 establishes the existence of an isomorphism in the category
of formal schemes, which is a priori not a completion of an algebraic morphism (this
point is crucial, see remark 2.3).

Remark 4.7. — As it will clearly transpire from the explicit description of 0 (V')
given below, being given an arc v € £ (V), there exists an integer n such that for
every n € Z3 (V) such that 73°(y) = 72°(n) one has Z (V) = Lo (V),. More

precisely the dependance in «y of the constructed formal scheme .# is only through
o0

o (7)-

Remark 4.8. — Let V be a R-scheme of finite type. Let v € Z2(V)(k). A
DGK-isomorphism for the arc v is a triple (S, s,6) where S is an affine k-scheme
of finite type, s € S(k), and 6 is an isormophism of formal k-schemes

0: ZLoo(V)y = Ss x5 SPE(K[[(T;)ien]])-

We say that such a DG K-isomorphism factorizes through a finite level if there ex-
ists an integer n such that the morphism .Z.,(V), — S, obtained by composing 6
with the projection onto Sy factors through the morphism £ (V) — Z5(V)ze(+)
induced by the truncation morphism 79°. It is not hard to prove that the DGK-
isomorphism 65 (V) constructed in the proof of Theorem 4.1 does not factorize
through a finite level. Let us briefly indicate how this is done; see the notation of
subsection 4.2. Assume that 0;(V) factorizes at level n — 1. Let N € N, A be
the test ring k[S]/(SN) and s := S be the image of S in A. Now consider the
two A-deformations v(T + s) and (T + s(1 +71™)). From the explicit descrip-
tion of the morphism 6y (see in particular equations (4.2) and (4.3)) and the fact
that 0, (V) factors at level n — 1, we easily deduce that det(_#v)(v(T + s)) and
det(_#v)(y(T 4+ s(1 +T™))) have the same Weierstrass polynomial in their Weier-
strass decomposition, say g4 (7). Now using equation (4.4) to estimate g4 (7)) in
both cases, we find that (T+s)? must divide (T'+s(1+7™))% in A[[T]]. Specializing
in T = —s gives a contradiction for N > (n+ 1)d + 1.

As a matter of fact, the existence of DGK-isomorphisms which do not factorize
through a finite level is not very surprising, since one easily sees that it holds even
for arcs y with a smooth origin. In [3], the authors prove the following stronger fact:
in general, it may happen for a given arc v that no DGK-isomorphism factorizes
through a finite level.

Remark 4.9. — A natural question is to ask whether the finite dimensional
models have an interpretation in terms of the geometry of the involved R-space.
We strongly believe that this interpretation is linked to singularity theory. To
justify this affirmation let us mention the following statement due to the authors
(see [5]): Let k be a field, V be a k-variety and v € Z2(V)(k). Assume that
the k-variety V is unibranch at v(0). Then, there exists an isomorphism of formal
k-schemes Z. (V') = Spf(k[[(T3)ien]]) if and only if the point v(0) is a smooth
point of V.
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4.2. Reduction to the case of a complete intersection. By considering an
affine neighborhood of v(0) in V, one reduces immediatly the proof of Theorems
4.1 and 4.2 to the case where V is affine.

o Assume that V is an affine scheme of finite type over Spec(R), defined by the
datum of an ideal I, of the polynomial ring R[Xy,..., Xy]|. Then we denote by
Jy the ideal generated by the elements hd € R[ X7, ..., Xy], where § is a minor of
the Jacobian matrix of a r-tuple (Fi,..., F,) of elements of Iy, for some integer
r € N, and h € ((Fy,...,F,.) : Iy). Using the Jacobian criterion, one may show
(see [14, §0.2],[33, §4]) that the singular locus Ving of V, i.e., the reduced closed
subscheme associated with the non-smooth locus, can be described as the support
of the closed subscheme of V' associated with the datum of the ideal Iy, + Jy .

o Similarly, when R = k[[T]] and V is a formal affine tft R-scheme, defined by
the datum of an ideal Iy, of the ring of restricted power series R{X1,..., Xn}, one
defines Jy as in the previous case and one shows that the reduced formal R-scheme
Viing is associated with the support of the closed formal R-subscheme of V' defined
by Iy + Jy (see [29, Lemme 2.3.10]).

Using the above description of the non-smooth locus, we will now reduce the
proof of Theorem 4.1 to the case of a complete intersection. This kind of reduction
is a classical “trick” in the construction of motivic measures (see [10] or, e.g., [29]).
We thank O. Gabber for pointing out to us that adapting such an idea to the
context of Theorem 4.1 and arc deformations needs some extra argument.

LEMMA 4.10. — Let V be an affine R-space and v € 22 (V)(k). Then, there
exists an R-space V' defined in the affine R-space AngM by M elements F1(X,Y) €
OARNTM) | Fy(X,Y) € O(ART™) where we denote by X = (Xi,...,Xn),
Y = (Y1,...,Yy) the coordinates on AngM, and a closed immersion V — V',
such that the determinant of the matrix (Jy,(Fi(X,Y))):; does not vanish at -y.
Besides, the induced morphism of formal k-schemes £ (V)y = Lo(V')y is an
isomorphism.

Proof. — Since v € Z2(V)(k), up to shrinking V, we may assume that V is
embedded in Ag"’M defined by the ideal Iy, and that there exist a minor of the
Jacobian matrix of the M-tuple F = (Fy,...,Fy) € I} and h € ((Fy,...,Fuy) -
Iy) which do not vanish at v thanks to the above description of the non-smooth
locus. Let V' be the R-space defined by the datum of F'. The last property of the
statement is then a consequence of Lemma 4.11 below. O

LEMMA 4.11. — Let V' be an affine R-space, V be a closed R-subspace of V'
and h € (0: Iy) € O(V'). Let v € Zx(V)(k) be such that h(y) # 0. Then,
still denoting by ~ the image of v in V', the natural morphism of formal schemes
Loo(V)y = ZLs(V'), is an isomorphism of formal k-schemes.

Proof. — It suffices to show that the induced map Zo(V),(4) = Lo (V') (4)
is bijective for every test-ring A. Injectivity is clear; so let us show surjectivity.
We pick out y4 € Z(V')4(A) and G € Iyy. We have to show that G(ya) = 0.
By hypothesis, one has h(v4)G(y4) = 0. Since h(y) # 0, the reduction of h(ya)
modulo M 4 is not zero. By §3, one infers that G(y4) = 0. O

With the notation X = (X1,...,Xy)and Y = (Y1,..., Yy ), Lemma 4.10 allows
us to assume from now on that:
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(1) The involved R-space V is either of the form Spec(R[X,Y]/{(F;i)i<i<a))
or Spf(R{X,Y}/{(Fi)1<i<m))-

(2) If #v denotes the Jacobian matrix [Jy, Fili<i j<, the k-rational arc -y
satisfies the relation det(_#v )(v(T)) # 0.

We set d := ordr [det(_#v)(7)]. We shall also designate by F' the column vector
Y(Fy...Fy)and by ad(_#v) the adjugate of the square matrix _#y, which is defined
to be the transpose of the cofactor matrix of _#y .

4.3. A candidate for the formal k-scheme .# in isomorphism (4.1). Set

D) = O g T h<isniamr,  Yig € ke

j=0
Let U = (U,L',j) 1<i<N, V= (V&j) 1<e<M, 5 and W = (Wr)Oérgd—l be indetermi-
0<j<2d—1 0<j<d—1
nates. We define the following elements of k[U, V, W, T:
(T) = Z?io_l(Ui,j +5i)T7, ie{l,...,N},
(1) = (%(T% o 2n(T)),
~ —1 ;
yz(T) == Zj:(](w,j +’Y€+N,j)Tja EE {17"'7M}7
oT) = T4 35 WTV.

For every polynomial P € k[U, V, W, T, for every k-algebra C, and for every element
c= ((uij), (ve,;), (wy)) € C2AN+AIM+d "we denote by P.(T) € C[T)] the evaluation
of P at c.

o First case: we assume that V is an R-scheme of finite type. Let Z be the ideal
of k[U,V, W] generated by the polynomials, for every integer o € {0,...,d — 1},

Dasan+dm,a(q(T),det( Zv)(@(T),5(T)))
and, for every integer « € {0,...,2d — 1},

Dayapan+ama(a(T)? [ad( fv) - E](Z(T),5(T))).
We set
S := Spec(k[U,V,W]/I).
Thus, by the construction of the involved polynomials and subsection 3.4, for every
k-algebra C, an element ¢ € C?24N+dM+d Jieg in §(C) if and only if the polynomial
qc(T) divides the polynomial det(_#v)(Z.(T),J.(T))) and the polynomial g.(T')?
divides the polynomial [ad(_#v) - F](&.(T), §.(T)).

Remark 4.12. — Let o € AN T4N+4() be the origin. Note that
YT) € (&o(T) + T*K[[T]), §o(T) + T K[[T])).
Thus, using the Taylor expansion, one has
det(_7v)(y(T)) = det( Fv)(Zo(T), 5o(T)) mod (T7).

As d = ordy [det(_#v)(v(T))], clearly T? = q,(T) divides det(_#v)(Zo(T), §o(T)).
Moreover since F;(y(T')) = 0 for every integer ¢ € {1,..., M}, using again the
Taylor expansion, one has

E(i'o(T)7go(T)) S Td/V(i'o(T)7ga(T))t(rl(T)7 cees TM(T))k[[T]]
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where 71 (T), dots,rp (T) are elements of k[[T]].Multiplying the previous relation
by ad(_#v)(Zo(T),3.(T)) and using the previous observation, one sees that that
T2 = ¢,(T)? divides [ad(_#v) - F|(&o(T), §0(T)).

Thanks to this remark, the point o defines an element of S(k) which we will de-
note by s. We set . := S,. Thus, for every complete local k-algebra (C, M), there
is a natural bijection from .#(C) onto the set of elements ¢ = ((u; ), (ve,j), wr) €
MZANFTEM+d gych that g.(T) divides the polynomial det(_#v)(i.(T),J.(T)) and
the polynomial g.(7')? divides the polynomial [ad(_#v) - F|(Z(T),§.(T)).

o Second case: we assume that R = k[[T]] and V is a tft formal R-scheme.
Let Z be the ideal of k[[U, V, W]] generated by the power series, for every integer
a€ef{0,...,d—1},

Da2daN+dm,a(q(T),det( 2v)(Z(T),5(T)))
and, for every integer « € {0,...,2d — 1},
Prazantama(q(T)? [ad( fv) - F)(Z(T),§(T))).
Arguing as in remark 4.12; one sees that Z is contained in the maximal ideal of
k[[U,V,W]]. Thus, one may set
7 1= Spl(K[[U, V. W)/).

Thus, for every complete local k-algebra (C,9¢), there is a natural bijection from
7 (C) onto the set of elements ¢ = ((u;;), (ve;), w,) € MEENTIMFD quch that the
polynomial ¢.(7") divides the formal series det(_#v)(Z.(T),3.(T)) and the polyno-
mial ¢.(T)? divides the formal series [ad(_#v ) - F](&.(T), §e(T)).

4.4. Notation. Let us begin by introducing the notation which will be used until
the end of this section. Let us write v(T") = (2(T),y(T)), where 2(T) € k[[T]]" and
y(T) € k[[T)]M. We also write x(T) = T?%2(T) +(T) where &(T) € (k[T]<2a-1)"
and z(T) € k[[T]]V. Then, for every test-ring (A4,94) and every integer n > 0, we
define:

o the set A(A) := Z(V),(A) whose elements
(za(T),ya(T)) € A[ITY < A[[T]]M
satisfy the following equations:
(a(T),ya(T)) = v(T) mod MA[[T]] and  Fy(xa(T),ya(T)) =0, 1
o the set A, (A4) := Z£,(V),, (A) whose elements
(@a(T),ya(T)) € (A[T]T" )N x (A[T)/{T" )M

N
N
=

satisfy the following equations:
(@a(T),ya(T)) = (T) mod (T"F!, M)
and  Fij(zA(T),ya(T)) =0 mod (T™), 1<i< M;
o the set B(A) whose elements are of the form

(24(T),24(T), §a(T), qa(T)) € A[T]]V x A[T)Z54_y x A[T)Zy 1 x W (A, d)
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and satisfy the relations:

zA(T) z(T) mod M4 [[T]];
Za(T) = 2(T) mod (T%4,9My);
yA( )=y(T) mod (T%,Ma);
4a(T) divides det(_#y)(@4(T), ja(T));
qa(T)? divides ad(_7v) - F(24(T), §a(T))

(We recall that ad(_#y) designates the adjugate of the square matrix _#v,
and F =4F,...Fy).);
o the set B, (A) whose elements are of the form

(24(T),24(T), §a(T), qa(T)) € (A[T]/(T" )N x A[T] gy X A[T)Lq_1 X # (A, d)
and satisfy the relations:

24(T) = 2(T) mod (T, M y);
ZA(T) = Z(T) mod (T?%4 Ma);
§a(T) = y(T) mod (T4, M4);
qa(T) divides det(_#v)(Za(T),§a(T));
qa(T)? divides ad(_#v) - F(a(T), §a(T))
B(A

Remark 4.13. — The definitions of A(A4), A, (4), ) and B, (A) are mean-
ingful for every local k-algebra (A, 9Mt4).

4.5. Proof of Theorems 4.1 and 4.2. We now show that the formal k-scheme
% described in subsection 4.3 realizes isomorphism (4.1). By subsection 2.1, we
know that it is sufficient to construct a suitable natural bijection at the level of the
A-points for every test-ring A, functorial in A.

The obvious map A(A) — A, (A) corresponds to the morphism of formal schemes
T Loo(V)y = ZLn(V) oo () deduced from the truncation morphism 7;° at level

n. Furthermore,we deduce from the very definitions, that, if . is the affine formal
k-scheme constructed in subsection 4.3, there is a natural bijective map

B(A) — (& x4 Spt(k[[(T3)ien]])) (A).

The key point of the proof is to construct a natural map 64 : A(A) — B(A).
We describe it from now on. For every (z4(T),ya(T)) € A(A), by the Weierstrass
Preparation Theorem, there is a unique decomposition

det( v )(@a(T),ya(T)) = qa(T)ua(T), qa(T) € #(A,d), ua(T) € A[[T]](X- |
4.2
Let us write

24(T) = 24(T) qa(T)*+74(T), where #4(T) € A[T ]<2d L and z4(T) € A[TN
and
ya(T) =ra(T) qa(T) + §a(T), where ga(T) € A[T]E,_; and ra(T) € A[[T]Y

o Claim 1. The tuple (z4(T),Za(T),94(T),qa(T)) belongs to B(A). The first
three relations follow from the very definitions and the fact that g4 (T) € #(A,d).
The first divisibility condition comes directly from equation (4.2) and the Taylor
formula (see §3.1). As for the second divisibility condition, applying the Taylor
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formula to each of the F;’s yields the relation

0 Fi(za(T),ya(T))
0 Fr(za(T),ya(T))
Fi(2a(T),5a(T)) r1,4(T)
= : +qa(T) v (Za(T), §a(T)) : mod (ga(T)?).
Frn(2a(T),9a(T)) rar,a(T)
Multiplying by ad(_#v)(Za(T),§a(T)), we obtain modulo (ga(T)?):
F r1,4(T)
ad(v) | ¢ | (@a(T),94(T)) = —qa(T)-det( Av)(@a(T), §a(T)) -
Fur divisible by ¢4 (T) rar,a(T)

Let us note that the same kind of argument also shows that the two divisibility
conditions in the definition of B(A) only depends on the classes in A[[T]] of Z4(T)
modulo q4(T)? and §4(T) modulo q4(T).

o Definition of 6. Then, we set
04((za(T),ya(T))) = (2a(T),2a(T),§a(T), qa(T)). (4.3)

This definition is functorial in A in an obvious way, since for every test-ring A’ and
every local morphism f: A — A’ between test-rings, the relation

det(_2v)(fr(za(T)), fr(ya(T))) = fr(qa(T))fr(ua(T))

is the Weierstrass decomposition of det(_#v)(fr(za(T)), fr(ya(T))), as we have
seen in §3. Here, we denote by fr : A[[T]] — A’[[T]] the morphism of local k-
algebras induced by the action of f on coefficients. Then, by the Yoneda Lemma,
the datum of (64)4 for A running over the collection of test-rings corresponds to
the datum of a morphism of formal k-schemes:

Ok(V): Zoo(V)y = 71 SPE(K[[(T3)ienl])-

Remark 4.14. — The construction of 64 still makes sense if A is only assumed
to be a complete local k-algebra.

o Claim 2. The morphism 6, := 6, (V) is an isomorphism. By observation 2.1, we
have to prove that, for every test-ring A, the map 04 : A(A) — B(A) is bijective.
Let u(T) € E[[T]]* such that
det( #v)(@(T),y(T)) = T u(T). (4.4)
We write
y(T) =w(T) T+ §(T), §(T) € (k[T)<a-1)™, w(T) € k[[T]™.

Let (24(T),ZA(T),54(T),qa(T)) € B(A). We set 24(T) = #a(T) + qa(T)?24(T)
and Ja(T') = §a(T) + qa(T)w(T).

o Let us show that there exists a unique wa(T) € MA[[T]]M such that, for every
integer i € {1,..., M},

Fi(@a(T),§a(T) + wa(T)qa(T)) = 0.
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First note that the latter requirement is equivalent to the condition

Fi(za(T),9a(T) +wa(T) qa(T)) 0

ad(_#v)(za(T),9a(T)) X =1:

Fr(za(T),9a(T) + wa(T) qa(T)) 0

Indeed, if the latter is satisfied, multiplying by #v(xa(T),354(T)), we obtain
det( v )(@a(T),§a(T)) Fi(za(T),§a(T) + wa(T) qa(T)) =0

for every integer i € {1,..., M}. But, det(_Zv)(xa(T),Ja(T)) is not a zero divisor
in A[[T]], since its reduction modulo M4[[T]] is det(_#Zv)(z(T),y(T)) # O (see

§3.2).
o There exists ua(T) € A[[T]]* such that

det(Fv)(za(T),§a(T)) = qa(T) ua(T) (4.5)
and vA(T) € MA[[T)]M such that

Fy

ad(_#v)- | | (@a(T),94(T)) = qa(T)* va(T). (4.6)
Fyr

By the Taylor formula (see §3.1), there exist polynomials or restricted power series
{Hi,j,k}lgi,j,kgM such that

B
b | @a(T),9a(T) + wa(T) qa(T))
Fuy
F wa,1(T)
=1 | @a(T),9a(T)) + qa(T) - Av(za(T),5a(T)) :
Fu wa,m(T)

Hy j(wa(T))
+qa(T)? Y wa (T)wax(T) : (4.7)

1SaksM Hapjk(wa(T))
Note that the {H; ; 1} depend only on the F;’s, xa(T), §4(T) and ga(T'), and not

on wa(T). Indeed, using the notation of §3.1, for every 7,5,k € {1,..., M}3, one
has

Hi jr(wa(T)) = Gijr(za(T),§a(T), qa(T)wa(T))
and the {G; ; 1} depend only on the F;’s.
Multiplying the above relation by ad(_#v)(za(T'),§4(T)), we obtain that
I

ad( Zv)(@a(T), ga(T)) - | ¢ | (@a(T),9a(T) +wa(T) qa(T)) (4.8)
Fy
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equals, up to modifying the H; ; 1,

’LUAJ(T) Hl,jyk(wA(T))
qa(T)? |va(T) + ua(T) : + > wa(T)war(T) :
wa,p(T)) 1SHESM Hypjr(wa(T))

Thus, thanks to the first remark and §3.2, we are reduced to prove that there exists
a unique tuple (wa ;(T)) € M[[T]]M such that

va(T) +ua(D)wai(D)+ Y waj(Twar(T)Hjn(wa(T)) =0  (4.9)
1<5,k<M
for every integer ¢ € {1,..., M}. This assertion directly follows from Lemma 4.15.
Thus we have proved Claim 2 and the first assertion of the theorem.

LEMMA 4.15. — Let A be a test-ring. Let M be a positive integer, us(T) €
A[[T])* and (vai(T))iequ,..,.my € MA[[TN)M. Let {H; i} 1<ijk<m be polynomials
or (restricted) power series in M variables with coefficients in A[[T]]. Then, there
exists a unique M-tuple (wa(T))ieq1,...,. vy € Ma[[T]|M which satisfies, for every
integer i € {1,..., M}, the equations

vai(T) +ua(TMwas(T) + Y wa(Twar(T)H;jk(wa(T)) =0.
1<),k<M
Remark 4.16. — Lemma 4.15 still holds if A is only assumed to be a local

henselian k-algebra. Indeed, by [26, 28], one knows that the ring A[[T7]] is henselian,
and we may solve the equation by standard characterizations of henselian rings.

Proof of Lemma 4.15. — Multiplying by us(T)~!, we may assume u(T) = 1.
We show the existence and uniqueness of the element (w4 ;(T)) by induction on
the smallest integer v such that 9% = 0. If v = 1, the assertion is obvious. Let
v 2 2. The assertion then holds for the test-ring A/ 9)?271 by induction hypothesis.
Thus, we may assume that there exists (wa;(T)) € MA[[T]]*, unique up to the
addition of an element of M~ '[[T]]M, such that, for every integer i € {1,..., M},
we have:

v4,i(T) +wa(T) + Z wa j(T)wak(T)Hi jk(wa(T)) =: 94,:(T)
1< k<M

in MY [[T]]. We have to show that there exists a unique (wa ;) € M5 ' [TM
such that, for every integer i € {1,..., M}, the expression:

VA, (T) + wAJ»(T) + ’LDAJ'(T)
+ Y (wa(T) +1wa (1)) (war(T) + bar(T)Hiju(wa(T) + wa(T))
1<, k<M

(4.10)

vanishes. But, since for every integer ¢ € {1,..., M} we have wa ;(T) € Ma[[T]]
and 104 ;(T) € MY [[T]], relations (4.10) may be rewritten in the following form:

ﬁA,i(T) + @A}i(T) =0
for every integer i € {1,..., M}, since 9" = 0. That concludes the proof. ]
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Remark 4.17. — By remark 4.16, the above arguments show in fact that, for
every local admissible k-algebra A, the map 6 4 is a bijection. Moreover, by the same
remark, they show the existence of a family of functorial maps ¢4 : B(A) — A(A)
for A running over the collection of local henselian k-algebras; if A is admissible,
¢4 is a bijection and gbzl =04.

o Claim 3. The datum of the morphism 6y, is functorial in k. Let K be a field
extension of the field k. Recall that we set Vix = V X g Spec(Rk) if V is an R-
scheme of finite type and Vi = V x g Spec(Rg) if R = K[[T]] and V is a formal
tft R-scheme. It follows from the very definitions and scalar extension that the
K-scheme %2, (Vi) is canonically isomorphic to £ (V) X Spec(K). In particular,
if the extension K of k is separable, it corresponds to v € £2 (V') a unique element
of £2 (Vi) which also is denoted by . Let A be a test-ring over K. Then, again
by scalar extention,

Zoo(V)5(A) = Zoo (V)4 (4)

is a natural bijection. Thus, Z(V),xi Spec(K) = Z(Vk)y. From this, we
easily conclude that 0k (Vi) = 0(V) X, Spec(K) by construction. That concludes
the proof of Claim 3.

o Claim 4. For every integer n > 0, the morphism of formal k-schemes 72°
factorizes through . x, Spf(k[[To, ..., T,]]). By observation 2.1, it is equivalent to
prove, that for every integer n > 0, the natural map A(A) — A, (A) factorizes
through B,,(A). Let us begin by showing the following lemma:

LEMMA 4.18. — Let A be a test-ring and M be a positive integer. Suppose
ua(T),ua(T) € A[[T]] and (vai(T)), (04,:(T)) € Ma[[TNM. Let {Hi,jk}b1<ijh<m
and {H, j;}1<ijr<m be polynomials or (restricted) power series in M variables
with coefficients in A[[T]]. Let n > 0 be an integer such that, for every integer
i,j,k € {1,..., M}, the following equalities hold:

vAi(T) = va,4(T) mod (771
ua(T) = ua(T) mod (771
H; = H;;k mod (T™F1).

Let (wa,i(T)) (respectively (wa;(T))) be the unique element of M4[[T]|M satisfy-
ing, for every integer i € {1,..., M}, the equations:

vai(T) +ua(Mwai(T)+ > wa(Twar(T)Hi jr(wa(T)) =0

1<), k<M
respectively
Das(T) +aa(T)@ai(T)+ Y way(T)@ak(T)Hijp(@a(T)) =0
1<, k<M

(which exists by Lemma 4.15). Then, for every integer i € {1,..., M} we have:
wai(T) = wa(T) mod (T").

Proof. — We prove this by induction on the smallest integer v such that 9t = 0.
If v = 1, the assertion is obvious. Let v > 2. By Lemma 4.15 and the induction
hypothesis, there exists (wa;,—1(T)), (Wai,—1(T)) € MA[[T]]M such that, for
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every integer i € {1,..., M}, the elements 94 ;(T) and v 4 ;(T), respectively defined
by:

VA (T) +ua(T)waiw—1(T) + Z wAjv—1(T)waky—1(T)H; jrx(wa—1(T))
1< k<M

Va4(T) +ua(T)wa,,—1(T) + Z WA jy—1(T)0 Ak p—1(T)H; j k(W ,—1(T)),
1<, k<M
(4.11)
belong to € MY ' [[T]] and, for every integer i € {1,..., M},
WA p—1(T) = W4 4,-1(T) mod (MY [[T7], T™ ).
By adding to the w4 ; ,—1(T) suitable elements of 9" ! [[T]], we may assume that,
for every integer i € {1,..., M},
WAip—1(T) =Wa,—1(T) mod (T"1),
and (4.11) still holds. Then, by the assumptions of the lemma, for every integer
1€{l,...,M}, we have

944(T) =044(T)  mod (T™F). (4.12)
Moreover, for every integer ¢ € {1,..., M}, thanks to the uniqueness of the involved
objects, we have
wai(T) = wasw1(T)— UA(T)fl?ZA,z‘(T), (4.13)
wA,i(T) = @A’i,,,,l(T) — ﬂA(T)_lf)A’i(T). ’

Hence, by the assumptions of the lemma, we deduce, from equations (4.12) and
(4.13), that
wA,i(T) = u_)A,i(T) mod <Tn+1>.
O
Then, Proposition 4.19 directly implies Claim 4.

PROPOSITION 4.19. — Let A be a test-ring. Let (xa(T),ya(T)) € A(A) and
set 0a(xa(T),ya(T)) := (za(T),2a(T),54(T),qa(T)). Let n > 0 be an integer
and z4(T) € A[[T)]N such that z4(T) = z4(T) mod (T™1). Let

(@a(T), §a(T)) = 03" (2a(T), 2a(T), §a(T), aa(T))).
Then, we have the following relations:
{ TA(T) = xza(T) mod (T™F1)
ga(T) = ya(T) mod (T™F1).

Proof. — Let us recall some notation used in the proof of Claim 2: let y(T) =

w(T) T 4 §(T) be the division of y(T) by T?, and §4(T) = §a(T) + qA( ) ().
By the description of the map 64, we also have xA(T) = Za(T) + qa(T)?za(T)
and ZA(T) = #4(T) +qa(T)?z24(T). Since, by assumption, one has z4(T) = zA(T)
mod (T™1)] we obtain in particular that

2A(T) = 24(T) mod (T, (4.14)

Recall from equations (4.5) and (4.6) the definitions of u4(T) and va(T'), and let
us write

det(_#v)(Za(T),94(T)) = qa(T) ua(T)
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and
Fy

ad(fv) - | | (@a(D),94(T)) = qa(T)* va(T).
Fun
By the Taylor formula (see §3.1) and the assumptions of the proposition, we see that
ua(T) and the components of v4(T) are polynomials (or restricted power series)
with coefficients in A[[T]] (depending only on the F;’s, ZA(T), §a(T), qa(T) and
w(T')) in the components of zZ4(T"). We deduce that

{uA(T) = wus(T) mod (T™F1)
5A(T) = wA(T) mod (T+1).

Moreover, we have by the proof of Claim 2
ya(T) = §a(T) + wa(T)qa(T),

where w4 (T) is the unique element of M A[[T]]M satisfying, for every integer i €
{1,..., M},

04,i(T) +ua(T)wai(T) + Z WA, (T)iwak(T)H; j i (0a(T)) =0,
1< k<M

for suitable polynomials (or restricted power series) H; j . Moreover, it transpires
from the proof of Claim 2 that equation (4.14) implies the relations

Hi,j,k = Hi,j,k mod <Tn+1>

for every integer 4, j,k € {1,..., M}. From Lemma 4.18, we deduce that w4 (T) =
wa(T) mod (I, Since ya(T) = §a(T)+wa(T)qa(T), we have §a(T) = ya(T)
mod (T"+1). O

5. FURTHER RESULTS

In this section, we complete the analysis of Theorem 4.1, in the direction of its
relations with the Denef-Loeser Fibration Theorem, and formulate a global version
of this statement. The proofs use arguments strongly similar to those used in the
previous section and are sketched or omitted.

5.1. Analogue of the Denef-Loeser Fibration Theorem. We explain how a
formal analogue of the Denef-Loeser Fibration Theorem can be obtained by follow-
ing the spirit of Theorem 4.1.

PROPOSITION 5.1. — Let k be a field and R € {k,k[[T]]}. Let V be a R-
space. Let v € 22 (V) (k). Let n be a nonnegative integer and set Ls,(V)(1) :=
(7)1 (m2°(y)). Then there exists an affine noetherian adic formal k-scheme ¥
and an isomorphism of formal k-schemes:

0 (V): Lo (V) 5 75, SpE(R[[(T)iend])- (5.1)

Remark 5.2. — For n large enough, one has %o (V)™ 2= Spf(k[[(T))ien]]).
This may be shown using arguments very similar to those needed in the proof of
the Denef-Loeser Fibration Theorem (see [10, Lemma 4.1] and [29, Lemme 4.5.4]
in the formal case).
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Proof (sketch). — Owing to §4.2, we reduce to the case where the R-space V
is defined by M equations Fi,...,Fy in the variables Xi,..., Xy, Y1,..., Y,
and v € Z(V)(k) has the property that det(_#y) does not vanish at 7, where
jV - [6Y ]1<z,]<M

Let d := ordy [det(_Zv)(v)]. Write v(T') = (x(T),y(T)), where z(T) € k[[T]]V¥
and y(T) € k[[T)]™. Let n be an nonnegative integer. Let us write

2(T) = & (T) + T"2(T) and y(T) = yO(T) + Ty (D),

where z(O(T),y°N(T) € k[T)<,. We also write () (T) = T2%2(T) + #(T), where

#(T) € k[T)234-1 and 2(T) € K[[T]]V
Then, for every test-ring A, we define:

o the set A(A) := % (V)™ (4) whose elements

(wa(T),ya(T)) € AT x A[[T)™

satisfy the following equations:

(za(T),ya(T)) = («(T),y(T)) mod M[[T])] and

Fi(zO(T) + T o (T), y O (T) + T ya(T) =0, 1<i< M;

)

o the set B(A) whose elements are of the form
(24(T),24(T), §a(T), qa(T)) € ATV x A[T)Z5qy x A[T)Ey 1 x W (A, d)

and satisfy the relations:

za(T) =2(T)  mod Ma[[TT]];
ZA(T) =2(T) mod (T4 9 4);
gA(T):yl)( ) mod (T M 4);
T) | det(fv)(x(°> (T) + T”+1~A(T%y(0’(T> + T ga(T));
Tn+1 2 | ad /V (0) T)+T"+1J~3A(T),y(o)(T) +T"+1ﬂA(T)).

Now one has to construct a natural bijection from A(A4) to B(A), functorial in A.
One does this with essentially the same kind of arguments as in §4.5, still using as
a crucial ingredient the Weierstrass Preparation Theorem. One replaces the use of
Lemma 4.15 by that of the more elementary version given by Lemma 5.3 below [

LEMMA 5.3. — Let A be a k-algebra and let M be a positive integer. Suppose
(wa,i(T))ieqr,...any € AT, ua(T) € A[[T)]* and (va,i(T))ieq1,....ary € AT
For every integer i € {1,...,M} let H; be a polynomial or a (restricted) power
series in M variables with coefficients in A[[T]]. Then there exists a unique element
(wAi(T))ieqr,...my € A[[T)|M which satisfies, for every integer i € {1,..., M}, the
equations:

vai(T) +ua(T)wa(T)+ T Hi(wa(T)) =0. (5.2)

The proof of Lemma 5.3 easily follows from coefficient identification.
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5.2. A global version of Theorem 4.1. Lemma 5.3 also allows to establish more
global versions of Theorem 4.1. Let us now describe a result which may be obtained
in this way. This is a somewhat expanded version of a result appearing in [6]. Let
d be a nonnegative integer. Let .Z (A')=¢ be the locally closed subscheme of
Lo (A1) defined, for every k-algebra A, by

ZLoo(A)TUA) = {y € A[[T)], 70 = =74-1=0, 72 € A}

We consider an R-scheme of finite type V and v € Z2 (V)(k) such that locally
aroung 7y one may write

Lo (V) = Loo(Spec(R[X1, ..., X, Vi, ..., Yarl /(FL, ... Far)))

where Fi,...,Fy € R[l, X] and det(/\/)(’}/(T)) 7é 0, where /\/ = [3Y1Fi]1<i,j<M-
This property holds for example in case V is locally a complete intersection.

Let us consider the morphism 0: % (V) = Lo (A') mapping v to det(_#v ) (7).
For every non-negative integer d, we set %5 (V)=¢ to be the locally closed sub-
scheme of .Z,, (V) defined by 67 !(Z(AY)=?). Similarly, we define the locally
closed subscheme .Z, (V)= of %, (V).

Let r and d be positive integers. We define the locally closed subscheme Y =%"
of (Agﬂ)d)N x (ATM as follows: for every k-algebra A, let Y=%7(A) be the set
of elements

(Za(T),§a(T)) € AITE 1) -1 X ATV a1

such that det(_Zv)(&4(T),§a(T)) = Tua(T) with ua(T) € A[[T]]* (in other
words u4(0) € A*) and
Fy
ordy [ad(fv)- | | (#a(T),5a(T)) | = (r+1)d.
Fy

If ' > r, we note using the Taylor formula (see §3.1) and the very definitions that
maping (Z(T),(T)) to

7 rt)d P i )
(#T) mod TC+V G(T) mod T", m(x(:r) —(#T) mod TU+D)))

defines a morphism ¢/ : Y=4"" - y=dr (Al(crfrl)d)N.

Now consider 7 > 2 and n such that d < n < rd — 1. Then if (E4(T),74(T)) €
Y=%7(A) we have ordr(F;(Za(T),54(T))) = rd for every integer i € {1,..., M}.
This shows that maping (Z(T),§(T)) to (Z(T) mod T™, §(T) mod T™*!) defines
a morphism

a=br . y=dr fn(V):d.

n

PROPOSITION 5.4. — Let d > 0. For every r’ > r > 2, L:/ is an isomorphism.
Moreover, for every r > 2, there is an isomorphism of schemes

0= L Y= Lo (AY) S Lo (V)T

with the following properties:
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(1) for every ' > r > 2, we have a commutative diagram

y=dr' » 2 (AN) "

o xldi

Y=dr 5 (AN < 2 (AY)

|

Y= x L (AN)

Loo(V)™1

where the lower vertical arrow is induced by the isomorphism
AT X 2 (AL) S Zoo(AL) given by (p(T), (1)) - p(T) + TC' =T,
(2) for every r > 2 and any d < n < n’ < rd— 1, the diagram

oo /
’

Lo (V)= e 2 (V)= T 2, (V)

—d.r =d,r
g—dn \L an/ ’ T e
a ™

Y=4r 5 £, (AY) y=dr

pry
is commutative ; moreover, ;%" is a piecewise trival fibration with fiber

A;:H)(d_") over its image (see [13, §4] for a precise definition).

6. EXAMPLES

Though the procedure described previously to construct a formal scheme .¥
realizing isomorphism (4.1) is completely explicit, obtaining a sensible and useful
description of . seems to remain a difficult problem, both from the computational
and theoretical point of view. We give below some examples where a simple descrip-
tion may be achieved. Example 6.3 shows in particular that the finite dimensional
models, in general, depend on the choice of the involved arc.

6.1. Example. Let k£ be a field whose characteristic does not divide 2 or 3. Let
% be the affine plane k-curve defined by the polynomial X3 — Y2 € k[X,Y] and
let v(T) = (T%,T3). Applying the algorithm described in section 4 shows that
equations for a formal k-scheme realizing isomorphism (4.1) may be derived from
the relations

qa(T) divides §a(T), qa(T)? divides #4(T)* = §a(T)*

where A is a test-ring, ga(T') is a Weierstrass polynomial of degree 3, Z4(T) (resp.
7a(T)) is a polynomial of degree < 5 (resp. < 2); note that in particular one must
have §4(T) = 0. Subsequent easy simplifications show that

7 = Spf(k[[Xo]] /(X))

realizes isomorphism (4.1). Note that .7 is clearly the minimal formal model. In
[3], the authors generalize this result to the case of the plane curve singularity A,
for every even integer n > 1.
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6.2. Example. We describe a family of examples generalizing slightly explicit ex-
amples presented in [17, 11]. Let n,d > 1 be integers, and F be a polynomial with
n indeterminates. We consider the hypersurface V. : Y X,, 11 + F(X3,...,X,,) =0
and the arc y(T) = (0,...,0,7%,0).

Let A be a test-ring and

(@i, a(T))1<isn+1,ya(T)) € Lo (V)4 (A).

Let @p41,4(T) = qa(T)ua(T), with ga(T) € #(A,d) and ua(T) € 1 + Ma[[T]],
be the Weierstrass factorization of x,,4+1 4(T). For every integer ¢ € {1,...,n}, let
Z;,4(T) be the remainder of the euclidean division of ; 4(T") by qa(T).

Using the Taylor expansion and the uniqueness and functoriality of the Weies-
trass factorization, one obtains that the equations of a pointed k-scheme (.5, s)
realizing isomorphism (1.1) for (V,~) are determined by the relation

qA(T) divides F(ji,A(T))lgién- (61)

When d = 1, the elements &; 4(T') = &; 4 are constant polynomials and (6.1) is
equivalent to F(Z; 4)1<i<n = 0. This is the example given in [11], of which [17,
Examples 1 and 2] are particular cases. See also [8].

When d = 2 and deg(F) = 2, writing #; 4 = x(jx + x(l)T and g4(T) = qf) +
qS)T + T2 and considering the involved degrees, we see that (6.1) is equivalent to

qa(T) F(3'))1<icn = FEC) + 30 Ti<icn

Identifying coefficients, we find that the latter equation is equivalent to the two
relations

qff) F(fﬁi)lgz@m = F@E?)&)KKTL
(W FE ) 1cicn = Ticjen B0 0x,F) (@) 1<icn:

When F =37, ;,, X7, we recover [17, Example 3].

6.3. Example. Let k be a field whose characteristic is not 2 and V' be the affine
k-surface defined by the polynomial Y Z + X2 € k[X,Y, Z] in A3.

Let v(T) = (0,0,7). By example 6.2, one has an isomorphism Z(V), =
" % Spf(k[[(T})ien]]) where .7 = Spf(k[[X0]]/(XZ)); hence, the nilpotency index
m~ (V') = 2 (see section 8.1 for a definition of this integer).

Now let n(T) = (0,0,7?). Again by example 6.2 one has an isomorphism
LoV} 2.7 %1 SpE(K[[(T:)sen])) where

& = Spf(k[[Xo, X1, Qo, Q1]]/(Qo X7 — X5, Q1.XT — 2.X1 Xo)).

We will show that m,(V) > 3; thus the finite dimensional models associated
with v and 7 are different.

One checks easily (with SAGE or by direct computation) that (X; Q1 — 2 Xg)?
lies in the ideal of k[X¢, X1, Qo, Q1] generated by Qo X7 — X2 and Q1 X7 —2 X; Xo.
Thus to prove m,, (V) > 3 it suffices to show that (X; Q1 —2 X)? is not in the ideal
I of k[[Xo, X1, Qo, Q1]] generated by Qo X7 — X& and Q1 X7 — 2 X7 Xo. One has

(X1Q1-2X0)* = X{ QI +4 X2 -4 X0 X1Q1 = X; QI +4QoX7—2Q3X}  mod I,
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hence (X1 Q1 —2X0)? = (4Qo — Q1) X?  mod I. Now assume that there exist
A, B € k[[Xo, X1, Qo, @1]] such that

(4Qo0 — Q1) X7 = (Qo X7 — X§) A+ (@1 X7 — 2X1 Xo) B.
Then X; must divide A and, replacing A by X; A, we are led to the relation
(4Qo = Q1) X1 = (Qo X7 = X§) A+ QX1 — 2X0) B.
Identifying homogeneous components, we see that one must have B(0) = 0 and
(4Qo — Q1) X1 = —X§ A(0) — 2 X, By.

where B is the linear component of B. Thus we have a contradiction.

7. GABBER’S CANCELLATION THEOREM AND MINIMAL FORMAL MODELS

The aim of this appendix is to present Theorem 7.1, which is a cancellation
theorem in the context of formal geometry (in arbitrary dimension). As indicated
in introduction, it is, in particular, an important piece in the interpretation of
Theorem 4.1 with respect to singularity theory. This result is, to the best of our
knowledge, new, and its statement, as well as its proof, were kindly communicated
to us by O. Gabber. We would like to thank him for allowing us to reproduce them
in the present article.

Let us fix some notation used in this section. Let us consider the category L£ncp,
formed by the complete local noetherian k-algebras with residue field k-isomorphic
to k and continuous (local) morphisms. One says that a k-algebra A € Lncp is
cancellable (in £ncp) if there exists a k-algebra B € £ncp such that A is isomorphic
to B[[T]]. Let us note that, obviously, for every k-algebra A € £ncp, there exists
N € N and a non-cancellable k-algebra B € £ncp such that A is isomorphic to
B[[Ty,...,Tx]].

7.1. Gabber’s Theorem. We state this important result.

THEOREM 7.1 (O. Gabber [15]). — Let k be a field. Let A, B € £ncp, and let
I,J be sets (possibly infinite). Assume that the admissible k-algebras A[[(T;)ic1]]
and BI[[(U;);es]] are isomorphic. Then, up to exchanging A and B, there exists
a finite subset I' C I such that A[[(T});er]] and B are isomorphic (in £ncp). In
particular, if both A and B are non-cancellable, then they are isomorphic.

A slighty weaker statement of this theorem appears in [7]. We would like to thank
A. Bouthier for interesting discussions on this topic. Theorem 7.1 also generalizes
an older version valid in case the sets I, J are finite, see [21, Theorem 4].

Remark 7.2. — Let A € £ncp and [ be an infinite set. Before engaging into the
proof, a word of explanation is in order regarding the definition of the admissible
k-algebra A’ = A[[(T;)icr]]- We endow the k-algebra k[[(T;);cs]] defined to be
im K[(T})ier]/{(T})ier)™N, with the inverse limit topology, for which it is complete.
Recall that this topology on the local k-algebra k[[(T;):cr]] does not coincide with
its adic topology (see remark 2.3). Then A’ may be defined as the completed tensor
product AQkk[[(T})ier]]. In particular, if 94/ is the maximal ideal of A’, MY, is
not closed for this topology and its closure 9%, coincides with the kernel of the

projection A[[(T;)ier]] = A[(T2)ier]/(Ma, (Ty)ier)?.
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7.2. Proof of Gabber’s Theorem. Let A, B € L£enp. Let M4 (resp. M) be
the maximal ideal of A (resp. B). Clearly, we may assume that A, B are non-
cancellable. We set A’ := A[[(T})icr]], B := B[[(Uj)ies]], and let ¢ : A" — B’ be
an isomorphism.

We have a natural injective morphism ¢4 : A — A’ admitting a retraction p4
given by T; — 0. We define analogously ¢p and pp.

Let My (resp. Mp/) be the maximal ideal of A’ (resp. B’) and IM?%, (resp.
9M%,) be the closure of 9M?%, (resp. M%,).

Identifying, via 14, M4/M?% with a subvector space of M4/ /M?,, we have a
decomposition

Mar /M2, = M4 /M P Bkt (7.1)

(where we denote by t; the class of T; modulo 90t%,) and a similar decomposition
for B'.
Now the crucial point of the proof is the following fact:

LEMMA 7.3. — Identifying, via ¢, M4 /IM%, and Mp /M%,, the images of
MA/M% by ta and Mp/M% by vp coincide.

The proof of Lemma 7.3 is given below. Using the lemma we obtain that the
composition

. ©
h:A%A =B 8B
induces an isomorphism 904 /9MM% = Mp/M%. By this and a straightforward in-

duction, we infer that, for every integer n € N, the morphism A induces a surjection
of finite dimensional k-vector spaces :

B = O /NG — O /M
Thus, one has dim (0 /MEH) < dim (97 /M%), Exchanging the roles of A in
B, we get the opposite inequalities, hence the equality of the dimensions for all
n. Thus, the morphism h,, is an isomorphism for every integer n € N; hence, the
morphism h is an isomorphism.

Proof of Lemma 7.3. — Assume that there exists an element f € 94 such that
the class of the element ¢(f) in Mp//9M%, does not belong to Mp/M%. Thus,
there exists jo € J such that dy, ¢(f) is invertible, thanks to decomposition (7.1).

Now, let us define the morphism ¢ : B’ — B’[[T]] by

(I = Idp
Y(U;) = U, for every element j # jo
P(Uj) = Ujp+T.

In particular, we observe that the formula dr¢ = ¢y, holds true.
Let us denote by evy : A[[T]]—A the evaluation morphism given by T — 0.
Composing with pa o=t : B’ — A, we get the following morphism
g A AR A BT 5 AT
which has the following properties:

{ evaopu = Idg
or(u(f)) (A[[T]])*.

m
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Let us denote by eva,pa : (A/fA)[[T]]—A/fA the evaluation morphism given by
T +— 0. Then, composing the morphism p with A[[T]] — (A4/fA)[[T]], one gets a
new morphism:
poe A= (A/FA)T]]

such that the morphism evy,r4 o i’ coincides with the quotient morphism A —
AJfA, and ¢/ (f) = Tuw(T) with w(T) € (A/fA)[[T]] satisfying u(0) € (A/fA)*.

Let us show that g is an isomorphism, which will contradict the fact that A
is non-cancellable; hence, it will prove the lemma. In order to do so, we consider
the f-adic filtration on A and the T-adic filtration on (A/fA)[[T]]. By [18, 0/§7,
Proposition 7.2.4], A and (A/fA)[[T]] are separated and complete for the topolo-
gies induced by these filtrations. Hence, since u’ respects these filtrations, we are
reduced to show that i/ induces an isomorphism on the level of the homogeneous
parts of the associated graded rings. But, for every integer n € N, we may identify
canonically T"(A/fA)[[T]]/T"(A/fA)[[T]] with A/fA. Then, via this identifi-
cation, the morphism induced by p’ on the homogeneous parts of degree n reads
as:

frA/fMttA — AJfA
[f"a] — u(0)"[d]

whose inverse is defined by [b] — [f"u(0)~"b], since «(0) is invertible. O

7.3. A remark. Keep the notation of the previous section. If the k-algebra A
happens to be the completion of a local k-algebra A, the element f € 94 in the
proof of Lemma 7.3 may be assumed to belong to 914, since every element of

f + 92 will have the required properties. Since one has fl/ffl =~ A/fA, it shows
that if A and B are assumed to be completions of local k-algebras essentially of
finite type, the last assertion in the statement of Theorem 7.1 still holds true under
the weaker hypothesis that A and B are non-cancellable in the full subcategory of
Lncp consisting of elements which are completion of local k-algebras essentially of
finite type.

7.4. Stable invariance of finite dimensional formal models. With every lo-
cal noetherian complete k-algebra A, whose residue field is k-isomorphic to k, one
can associate such a k-algebra A,,;,, which is non-cancellable, unique (up to iso-
morphism) by Theorem 7.1, and satisfies A = Apin[[T1,-..,Ty]] for some integer
n € N. This remark in particular shows that there exist a way to define finite
dimensional formal models canonically. Precisely, a direct application of Theorem
7.1 provides the following important corollary:

COROLLARY 7.4. — Let V be a R-space. If .¥,." are two formal affine noe-
therian adic k-scheme which realize isomorphism (4.1). Then, the complete local
noetherian k-algebras O( )min, O(' )min are isomorphic (as admissible local k-
algebras). In particular, there exists two integers m,m’ € N and an isomorphism
of formal k-schemes . X, Spf(k[[T1, ..., Tw]]) = " xx Spt(K[[Th, .- ., Twm]])-

8. A NUMERICAL INVARIANT IN SINGULARITY THEORY

In this section, we study consequences of Theorem 4.1 in the direction of singu-
larity theory. This construction can be seen as the starting point of an exegesis of
the Drinfeld-Grinberg-Kazhdan Theorem with respect to singularity theory.
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8.1. Nilpotence index. If A is a ring whose nilradical .#"(A) is nilpotent, then the
nilpotency index of A is the smallest positive integer m such that .4 (A)™ = {0}.

PROPOSITION 8.1. — Let V' be a R-space, and let v € 22 (V)(k). Then the
nilradical of the ring £ (V) is finitely generated, and in particular nilpotent.
Moreover, the nilpotency index of the ring O _ (v, equals the nilpotency index

of O(F) (or (O(F))min), for every formal k-scheme . which realizes isomorphism
(4.1).

Proof. — Let . be a formal k-scheme which realizes isomorphism (4.1). One
has an isomorphism of k-formal schemes . = Spf(A/I) where A is a power series
ring in a finite number of variables over k and I is a proper ideal of A, which is, by
noetherianity, finitely generated. Then isomorphism (4.1) induces an isomorphism
of formal k-schemes

ZLoo(V)y = SPE(A[[(T)ien]]/T[[(T)ien]])-
Indeed, since the ideal I is finitely generated, we observe that I - A[[(T}):ien]] =
I[[(T;)ien]]- Let us set B = A[[(T;)ien]]- By Lemma 8.2, one has VT - B = (V1)-B,
which shows that /I - B is finitely generated. Let m be the nilpotency index of
A/I. Then one has (vI-B)™ = (V/I)™- B C I-B. On the other hand, if n is a
positive integer satisfying (v/1-B)™ C I- B, one has (vI)"-BNA CI-BnNA;
hence, (vI)" C I. That concludes the proof. O

LEMMA 8.2. — Let A be ring and I be a finitely generated ideal of A such that
VT is finitely generated.
(1) Let n > 1 and B = A[Th,...,T,]. ThenT-B = (\/I)- B.
(2) Let B = A[[(T})ien]]. Then VI-B = (VI)-B.

Proof. — For both assertions, let us note that we obviously have /T - B > (VI)-
B. Let us prove the first assertion. By induction on the integer n, we reduce
immediately to the case n = 1. Let F =Y f4T{ € /I- B. We have to show that
all the coefficients of F' lie in v/I. Assume that this is not the case and let D be
the smallest degree for which fp ¢ VT ; then, for an integer N big enough, one has
(F =Y g<p_1 faT?)N € I- B = I[T1], but this implies (identifying the coefficients)
that f5 € 1.

Let us prove the second assertion. Recall that, since the ideals I and /I are
finitely generated, one has

I-B=1I[(T))ien]] and VT-B=/D)[(T)ien])-

Let F € /I-B. Again, we have to show that all the coefficients of F' lie in
VI. For d > 0, let F; be the d-homogeneous component of F. First we show
that all the Fy’s lie in /I - B. Assume that this is not the case and let D be
the smallest degree such that Fp ¢ +/I- B ; then, for an integer N big enough,
one has (F — Y,y Fa)N € I - B, which implies (identifying the homogeneous
components) that F5 € I - B. Now, let us note that, thanks to the very definition
of the ring B, for every integer d > 0, there exists an integer n(d) such that
Fq € ATy, ..., Tyl It follows that Fy € \/I-A[Tl,...,Tn(d)}. Using the first
assertion, we see that Fy € (VI)- A[Ty,... , Tr(a)]- That concludes the proof. [
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Let V be a k-variety, and let v € Z2(V)(k). We define m,(V) to be the
nilpotency index of Zo (V).

8.2. Absolute nilpotency index. If v € V(k), we denote by .Z2 (V,v) the subset
of £ (V)(k) formed by the rational arcs v on V with base-point v(0) = v. This
definition suggests to introduce the following invariant:

DEFINITION 8.3. — Let k be a field. Let V be a k-variety, with v € V(k). The
absolute nilpotency index of the pair (V,v) is the integer
abs V7 = i f V .
Mans(V; ) ve,éﬁ(v,v)(m”( )
The absolute nilpotency index of (V,v) only depends on the pointed k-variety
(V,v) by construction. Besides, there exists an arc vyups € 22 (V) (k) such that
mabs(‘/? 'U) = m’Yabs(V)'

PROPOSITION 8.4. — Let k be a field. Let V be a k-variety, with v € V (k).
Then, the absolute nilpotency index mans(V,v) is a formal invariant of the singu-
larity (V,v).

Proof. — Let (V',v") be a pointed k-variety endowed with an isomorphism of
complete local k-algebras: f : (9/‘/-/\1}/ = 6‘/\1, Let v, € Zx(V)(k) be an arc such
that m,, (V) = mans(V,v) and v, € Zoo(€”’)(k) its image by f, i.e., yor =Y 0 f.
By corollary 2.9, the formal k-schemes £ (%),, and £, (%¢),,, are isomorphic.
By this way, we deduce that maps(V,v) = maps(V’,v’). We conclude, by symmetry,
by applying the same arguments to f~!. O

8.3. Further comments. Various questions arise from the previous remarks.

o We do not know, in general, whether such arcs v,ps € .Z2 (V) (k) are, up to
isomorphism, unique or not.

o The computation and interpretation of such nilpotency indexes seem to be
non-trivial problems even in the case of plane curves. See [3] for some related
results.

o The situation for singular (constant or non-constant) arcs seems to be very
different from that of non-singular arcs. See [2, 31] for some related results.

o Let k be a field. Let V be a k-variety, with v € V(k). If v is smooth, then
one easily observes that mups(V,v) = 1. The example of the arc (T,7,T,T) on
the variety Spec(k[Xo, X1, X2, X3]/(X0X1 — X2X3)), whose minimal formal model
may be computed as Spf(k[[U, V]]/(UV)), shows that the converse is false.

o If V is a k-curve and -y is a primitive parametrization at a unibranch singular
point v € V(k), does the nilpotency index (or the absolute nilpotency index) asso-
ciated with the ring O;o(\vm equal the singularity degree 6(V,v) plus one? (The
first positive elements of answer in this direction can be found in [3].)
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