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DIFFUSIVE LIMITS FOR A BAROTROPIC MODEL
OF RADIATIVE FLOW

RAPHAËL DANCHIN AND BERNARD DUCOMET

Abstract. We aim at justifying rigorously different types of physically relevant diffusive
limits for radiative flows. For simplicity, we consider the barotropic situation, and adopt
the so-called P1-approximation of the radiative transfer equation. In the critical functional
framework, we establish the existence of global-in-time strong solutions corresponding to
small enough data, and exhibit uniform estimates with respect to the coefficients of the sys-
tem. Combining with standard compactness arguments, this enables us to justify rigorously
the convergence of the solutions to the expected limit systems.

Our results hold true in the whole space Rn as well as in a periodic box Tn with n > 2.

1. Introduction

We consider the barotropic version of a model of radiation hydrodynamics. Our
main goal is to provide the rigorous justification of asymptotics that have been
investigated formally and numerically by Lowrie, Morel and Hittinger [15], and
mathematically by the second author and Š. Nečasová in [10, 11, 12] in the finite
energy weak solutions framework.

The fluid is described by standard classical fluid mechanics for the mass density
% and the velocity field ~u as functions of the time t ∈ R+ and of the (Eulerian)
spatial coordinate x ∈ Ω where Ω is either the whole space Rn or some periodic
box Tn with n > 2.

Radiation acts through some radiative momentum source ~SF which is given by

~SF = 1
c

∫ ∞
0

∫
Sn−1

~ωS d~ω dν,

where c is the light speed.
The radiative source S = S(t, x, ~ω, ν) depends on the direction vector ~ω ∈ Sn−1

(where Sn−1 denotes the unit sphere of Rn), and on the frequency ν > 0 of the
photons, and is given by

S = σa
(
B(ν, %)− I

)
+ σs

(
Ĩ − I

)
where Ĩ := 1

|Sn−1|

∫
Sn−1

I d~ω.

The radiative intensity I obeys the transfer equation
1
c
∂tI + ~ω · ∇xI = S in (0, T )× Ω× Sn−1 × (0,∞). (1.1)

In the present paper, as in [7, 8], we make the following simplifying assumptions
(1) Isotropy : the transport coefficients σa and σs are independent of ~ω;
(2) ‘Gray’ hypothesis : σa and σs are independent of ν;
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32 R. Danchin & B. Ducomet

(3) ‘P1 hypothesis’ : the averaged radiative intensity I :=
∫∞

0 I dν is given by
the ansatz

I = I0 + ~ω · ~I1, (1.2)
where I0 and ~I1 are independent of ~ω and ν.

Plugging (1.2) in (1.1), and computing the 0th and 1st order momentum with
respect to ~ω, we find out the following evolution equations for I0 and I1 (keeping
the same notation B for the distribution function averaged in ν)

1
c
∂tI0 + 1

n
divx~I1 = σa(%)(B(%)− I0), (1.3)

1
c
∂t~I1 +∇xI0 = −(σa(%) + σs(%))~I1. (1.4)

Besides, the radiative force is now given by

~SF = −
(
σa(%) + σs(%)

n

)
~I1. (1.5)

In order to identify the most relevant asymptotic regimes, we rewrite the equa-
tions in dimensionless form. To this end, introduce some reference hydrodynamical
quantities (length, time, velocity, density, pressure): L̄, T̄ , Ū , %̄, p̄, and reference
radiative quantities (radiative intensity, absorption and scattering coefficients and
equilibrium function): Ī , σ̄a, σ̄s and B̄.

Let Sr := L̄/T̄ Ū , Ma := Ū/
√
p̄/%̄ and Re := Ū %̄L̄/µ̄ be the Strouhal, Mach

and Reynolds numbers corresponding to hydrodynamics. Let us also define C :=
c/Ū , L := L̄σ̄a, Ls := σ̄s/σ̄a, various dimensionless numbers corresponding to
radiation. In all that follows, we assume our flow to be strongly under-relativistic
so that C is large.

Choosing B̄ = Ī , we discover that the evolution of the dimensionless unknowns
(still denoted in the same way) is governed by the following system of equations

Sr ∂t%+ div (%~u) = 0,

Sr ∂t(%~u) + div (%~u⊗ ~u) + 1
Ma2∇p− 1

Re (div (µ∇~u+t∇~u)+∇(λdiv ~u))
= L

(
σa+Lsσs

n

)
~I1,

Sr
C ∂tI0 + 1

n div~I1 = Lσa (B − I0) ,
Sr
C ∂t

~I1 +∇I0 = −L (σa + Lsσs) ~I1,
where % = %(t, x) ∈ R+ and ~u = ~u(t, x) stand for the density and pressure, respec-
tively, p = P (ρ) is the pressure, λ = λ(ρ) and µ = µ(ρ) are the viscosity coefficients.
The given functions P, λ and µ are supposed sufficiently smooth, and we make the
following strict ellipticity assumption

ν := λ+ 2µ > 0 and µ > 0.
In our recent work [8], we gave a mathematical justification of the low Mach num-
ber asymptotics. In the present paper, we investigate another physically relevant
asymptotic regimes, which are of diffusive type. They correspond to the case where
C is large and all the other dimensionless numbers, but L and Ls, are of order 1.
To make it more concrete, take

Ma = Sr = Re = 1, C = ε−1, %̄ = P ′(%̄) = B′(%̄) = σa(%̄) = σs(%̄) = 1,
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where ε is a small positive number, bound to tend to 0.

Because we shall focus on small perturbations of the reference density %̄ = 1,
it is convenient to introduce the new unknown b := B(%) − B(1). In this context,
all the functions of % may be written in terms of b. Setting j0 := I0 − B(1) and
~j1 := ~I1, and using exponents to emphasize the dependency with respect to ε, we
eventually get the following system

∂tb
ε+~uε · ∇bε + (1 + k1(bε))div ~uε = 0,

∂t~u
ε+~uε · ∇~uε − (1+k2(bε))A~uε+(1+k3(bε))∇bε = L(1+Ls)

n (1+k4(bε))~jε1
ε∂tj

ε
0 + 1

n div~jε1 = L(bε − jε0),

ε∂t~j
ε
1 +∇jε0 = −L(1 + Ls)~jε1 ,

(1.6)

with A := µ∆+(λ+µ)∇div and where k1, k2, k3, k4 are smooth functions vanishing
at 0.

2. Formal asymptotics

Let us first present some formal computations so as to exhibit the limit equations
we can get from (1.6) in different types of diffusive asymptotic regimes. We restrict
to the case where the following necessary and sufficient linear stability condition
(derived in [7]) is fulfilled

nνL > ε

(
2 + Ls
1 + Ls

)
· (2.1)

Note that (2.1) implies that lim inf Lε−1 > 0 for ε going to 0.

In all that follows, it is assumed that (bε, ~uε, jε0 ,~jε1) converges to (b, ~u, j0,~j1) in
some suitable space with enough regularity to pass to the limit in the nonlinear
terms.

• Case L ≈ ε and Ls → +∞.
Denoting by P the L2 orthogonal projector on divergence free vector fields, we

get
P~jε1(t) = e−

L
ε (1+Ls)t P~jε1(0). (2.2)

Hence P~jε1 tends to ~0 for ε→ 0.

— Subcase L2Ls → 0. Setting Q := Id−P, we see that the equation for jε0 entails
that Q~jε1 = O(ε). Next, the equation for Q~jε1 implies that ∇jε0 goes to ~0, too,
because ε2Ls → 0. Assuming that j0 decays to 0 at infinity, this yields j0 = 0.

From the equation for ~jε1 , we also get

− L(1 + Ls)~jε1 = ∇jε0 +O(ε). (2.3)

Hence ε(1 + Ls)~jε1 goes to ~0 and (b, ~u) thus satisfies the barotropic Navier-Stokes
equations. In other words, the radiative effect becomes negligible in the asymptotic
L ≈ ε and ε2Ls → 0 with Ls → +∞
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— Subcase limε→0 L2Ls ∈ (0,+∞). This is the so-called nonequilibrium diffusion
regime. The analysis of the previous paragraph shows that~jε1 = O(ε) (hence~j1 = ~0)
and that (2.3) holds true. The new fact is that the equation for jε0 combined with
(2.3) implies that

∂tj
ε
0 + L

ε

(
jε0 − bε

)
− 1
n

L
ε

1
L2Ls

∆jε0 = O(ε). (2.4)

Now, if we assume that

L
ε
→ κ

nν
and L2Ls →

m

ν2 ,

for some m ∈ (0,+∞) and κ > 1 (see (2.1)), then (b, ~u) satisfies the following
compressible Navier-Stokes equations coupled with a parabolic equation

∂tb+ ~u · ∇b+ (1 + k1(b))div ~u = 0,
∂t~u+ ~u · ∇~u− (1 + k2(b))A~u+ (1 + k3(b))∇b+ 1

n (1 + k4(b))∇j0 = ~0,

∂tj0 + κ
nν

(
j0 − b− ν2

nm∆j0
)

= 0.

(2.5)

— Subcase L2Ls → +∞. We still have ~jε1 = O(ε), (2.3) and thus (2.4) holds true.
Now, as L2Ls → +∞ and L ≈ ε, the r.h.s. of (2.4) tends to 0. Therefore, if we
assume as before that L/ε → κ/(nν) then we find out that (b, ~u, j0) satisfies the
following degenerate nonequilibrium diffusion system

∂tb+ ~u · ∇b+ (1 + k1(b))div ~u = 0,
∂t~u+ ~u · ∇~u− (1 + k2(b))A~u+ (1 + k3(b))∇b+ 1

n (1 + k4(b))∇j0 = ~0,
∂tj0 + κ

nν (j0 − b) = 0.
(2.6)

• Case ε� L � 1.
Recall that we have (2.3) while the equation for jε0 implies that

div~jε1 = nL(bε − jε0) +O(ε). (2.7)

Hence Q~j1 = 0 (as L → 0), and

∆jε0 + nL2(1 + Ls)(bε − jε0) = O(ε) +O(εL(1 + Ls)). (2.8)

— Subcase L2Ls → 0. Then (2.8) implies that ∆j0 = 0 and thus j0 ≡ 0 (if one
assumes that j0 → 0 at ∞). Consequently, (2.3) implies that the radiative force in
the velocity equation tends to 0 when ε goes to 0. Therefore (b, ~u) just satisfies the
classical compressible Navier-Stokes equation.

— Subcase ν2L2Ls → m ∈ (0,+∞). We have ~j1 = ~0, and Relations (2.3), (2.8)
imply that (b, ~u, j0) fulfills the following Navier-Stokes-Poisson system

∂tb+ ~u · ∇b+ (1 + k1(b))div ~u = 0,
∂t~u+ ~u · ∇~u− (1 + k2(b))A~u+ (1 + k3(b))∇b+ 1

n (1 + k4(b))∇j0 = ~0,
−ν2∆j0 +mn(j0 − b) = 0.

(2.9)
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— Subcase L2Ls → +∞. Then (2.8) implies that j0 = b. Combining with (2.3), we
thus find out that (b, ~u) fulfills the following compressible Navier-Stokes equation
with modified pressure law{

∂tb+ ~u · ∇b+ (1 + k1(b))div ~u = 0,
∂t~u+ ~u · ∇~u− (1 + k2(b))A~u+

(
1 + 1

n + k3(b) + 1
nk4(b)

)
∇b = ~0.

(2.10)

• Case νL → ` ∈ (0,+∞).

— Subcase ν2L2Ls → m ∈ [0,+∞). Passing to the limit in (2.8) gives
− ν2∆j0 + n(`2 +m)(j0 − b) = 0. (2.11)

So we get System (2.9) for (b, j0, ~u) with the last equation replaced by (2.11).

— Subcase Ls → +∞. Exactly as in the case L → 0, we get j0 = b, ~j1 = ~0, and
(b, ~u) satisfies (2.10).
• Case L → +∞.

Relation (2.3) implies that ~j1 = 0, and thus, according to (2.7), we have j0 = b.
Therefore (2.3) implies that

L(1 + Ls)~jε1 → ∇b,
and (b, ~u) thus satisfies (2.10).

To make a long story short, the above formal computations pointed out five
types of asymptotic regimes. They are governed by

(1) The ordinary compressible Navier-Stokes equations with null radiation (if
L → 0 and L2Ls → 0);

(2) The compressible Navier-Stokes equation with an extra pressure term see
(2.10) (equilibrium diffusion regime corresponding to ε � L and L2Ls →
+∞, or L → +∞);

(3) The Navier-Stokes-Poisson equations (2.9) (or (2.11)) (case ε� L . 1 and
ν2L2Ls → m ∈ (0,+∞));

(4) The compressible Navier-Stokes equations coupled with a parabolic equa-
tion (2.5) (nonequilibrium diffusion regime L ≈ ε and ν2LsL2 → m ∈
(0,+∞));

(5) The compressible Navier-Stokes equations coupled with a damped equation
(2.6) (degenerate nonequilibrium diffusion regime L ≈ ε and LsL2 → +∞).

The rest of the paper is devoted to justifying rigorously the last four asymptotics
globally in time in the framework of small solutions with critical regularity.

In the next section, we introduce a few notations that will be needed to define
our functional framework, and give an overview of the strategy. Section 4 is de-
voted to a fine analysis of the linearized equations (1.6) about (0,~0, 0,~0), which
turns out to be essentially the key to proving global results and justifying the dif-
fusive asymptotics we have in mind. The next three sections are devoted to the
rigorous justification of the nonequilibrium diffusion regime L ≈ ε and LsL2 & 1,
the equilibrium diffusion regime L → +∞ and of the Poisson type diffusion regime
(ε � L . 1 and ν2L2Ls → m ∈ (0,+∞)). In all of those sections, we establish
a global-in-time existence result for the expected limit system, and uniform esti-
mates for (1.6) (in the case of coefficients L and Ls satisfying the assumptions of
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the studied regime), and eventually show the convergence of the solutions of (1.6)
to those of the expected limit system. Some estimates, of independent interest, for
the solutions to a class of linear ODEs corresponding to the linearized equations of
(1.6) in the Fourier space are postponed in the appendix.

3. Functional framework and overview of the method

The functional framework we shall work in is modeled on the linearized equa-
tions corresponding to (1.6), and is thus the same as in our first paper [7] devoted
to the global well-posedness issue in critical regularity spaces for small perturba-
tions of a stable constant state. The key to proving asymptotic results however,
is to prescribe norms depending on the parameters ε, L and Ls, so as to get op-
timal uniform estimates, enabling our justifying rigorously the different diffusive
asymptotics exhibited above.

Let us first very briefly recall the definition of homogeneous Besov spaces Ḃs2,1
(the reader is referred to [1], Chap. 2 for more details). For simplicity, we focus on
the Rn case (adapting the construction to the torus being quite straightforward).
Fix some smooth radial bump function χ : Rn → [0, 1] with χ ≡ 1 on B(0, 1/2)
and χ ≡ 0 outside B(0, 1), nonincreasing with respect to the radial variable. Let
ϕ(ξ) := χ(ξ/2) − χ(ξ). The elementary spectral cut-off operator entering in the
Littlewood-Paley decomposition is defined by

∆̇ju := ϕ(2−jD)u = F−1(ϕ(2−jD)Fu), j ∈ Z

where we denote by F the standard Fourier transform in Rn.

For any s ∈ R, the homogeneous Besov space Ḃs2,1 is the set of tempered distri-
butions u so that

‖u‖Ḃs2,1 :=
∑
j∈Z

2js‖∆̇ju‖L2 <∞,

and
lim

λ→+∞
χ(λD)u = 0 in L∞. (3.1)

As pointed out in [7], scaling considerations that neglect low order terms of
System (1.6) suggest that critical regularity is Ḃ

n
2−1
2,1 for ~u0, j0,0 and ~j1,0, and

Ḃ
n
2
2,1 for b0. However, to handle lower order terms, one has to make additional

assumptions for the low frequencies. To this end, it is convenient to introduce the
following notation (where η stands for a positive parameter)

‖u‖`,η
Ḃs2,1

:=
∑

2k62η

2ks‖∆̇ku‖L2 and ‖u‖h,η
Ḃs2,1

:=
∑

2k>η/2

2ks‖∆̇ku‖L2 ,

and also
u`,η :=

∑
2k6η

∆̇ku and uh,η :=
∑

2k>η

∆̇ku.

Note that ‖u`,η‖Ḃs2,1 6 C‖u‖`,η
Ḃs2,1

and ‖uh,η‖Ḃs2,1 6 C‖u‖h,η
Ḃs2,1

. As the Littlewood-
Paley decomposition is not quite orthogonal, it is important to allow for a small
overlap in the above definition of semi-norms.
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In some places, we will have to specify in addition the behavior for the middle
frequencies, and we thus set for some given 0 < η < η′,

‖u‖m,η,η
′

Ḃs2,1
:=

∑
η62k6η′

2ks‖∆̇ku‖L2 .

Broadly speaking, our strategy to justify the different types of diffusive limits is as
follows:

• Step 1: We prove ‘uniform estimates’ for the global solutions to (1.6),
uniform meaning that we want a bound independent of ε, but the norm
itself may depend ‘in a nice way’ of the parameters ε, L and Ls.

• Step 2: We show that the limit system is globally well-posed in the small
data case.

• Step 3: We take advantage of estimates of Step 1 to exhibit weak com-
pactness properties. Combining with the uniqueness result of Step 2, this
allows to conclude to the convergence of the whole family of solutions of
(1.6) to those of the limit system.

The most technical part is step 1, as it requires a fine analysis of the linearized equa-
tions of (1.6) about 0 that keeps track of the coefficients L, Ls and ε. Schemat-
ically, in the Fourier space, one has to resort to different types of estimates for
low, medium and high frequencies. The low frequency analysis is carried out by
considering approximate eigenmodes of the system, that are constructed by a per-
turbative method from the (explicit) eigenmodes corresponding to null frequency.
A part of the difficulty is that the ‘fluid modes’ are of parabolic type, hence the
corresponding eigenvalues tend quadratically to 0 when the frequency size tends to
0 while the radiative modes are expected to be exponentially damped. The high
frequency analysis is inspired by the corresponding one for the barotropic Navier-
Stokes equations, after noticing that coupling between radiative and fluid unknowns
occurs only through 0 order terms, and thus tend to be negligible for very high fre-
quencies. Last but not least, medium frequency regime has to be looked at with
the greatest care, as the low and high frequency regimes need not overlap. We do
not propose any general strategy for handling them, apart from ‘guessing’ suitable
approximate eigenmodes.

4. Uniform estimates for the linearized equations

To reduce the study to the case where the total viscosity ν := λ + 2µ is 1, and
to get a symmetric first order system for the radiative unknowns, let us set(

b, ~u, j0, ~j1
)
(t, x) := (bε, ~uε,

√
n jε0 ,~j

ε
1)(νt, νx). (4.1)

Then (bε, ~uε, jε0 ,~jε1) satisfies (1.6) if and only if (b, ~u, j0,~j1) satisfies

∂tb+ ~u · ∇b+ (1 + k1(b))div ~u = 0,

∂t~u+ ~u · ∇~u− (1 + k2(b))Ã~u+ (1 + k3(b))∇b = L̃M
n (1 + k4(b))~j1,

ε∂tj0 + 1√
n

div~j1 = L̃(b−
√
n j0),

ε∂t~j1 + 1√
n
∇j0 = −L̃M~j1,

(4.2)



38 R. Danchin & B. Ducomet

with
M := 1 + Ls, L̃ := νL and Ã := ν−1A. (4.3)

The corresponding linearized system reads

∂tb+ div ~u = f,

∂t~u− Ã~u+∇b− L̃Mn ~j1 = ~g,

ε∂tj0 + 1√
n

div~j1 + L̃(j0 −
√
n b) = 0,

ε∂t~j1 + 1√
n
∇j0 + L̃M~j1 = ~0.

(4.4)

The coupling between the incompressible part of ~u and ~j1 that is P~u and P~j1 where
P stands for the projector on divergence-free vector-fields is obvious as

∂tP~u−
µ

ν
∆P~u = L̃M

n
P~j1, (4.5)

and

P~j1(t) = e−
L̃Mt
ε P~j1(0),

hence in any functional space X we have

L̃M‖P~j1‖L1(X) 6 ε‖P~j1(0)‖X . (4.6)

The coupling between b, d := Λ−1div ~u, j0 and j1 := Λ−1div~j1 (where Λs :=
(−∆)s/2) is quite complicated: in Fourier variables, we have

d

dt


b̂

d̂

ĵ0
ĵ1

+


0 ρ 0 0
−ρ ρ2 0 − L̃Mn
−
√
nL̃
ε 0 L̃

ε
ρ

ε
√
n

0 0 − ρ
ε
√
n

L̃M
ε




b̂

d̂

ĵ0
ĵ1

 =


0
0
0
0

 · (4.7)

The analysis that has been performed in [7] pointed out the following necessary
and sufficient stability condition

L̃ > ε

n
(1 +M−1). (4.8)

So we shall make this assumption in all that follows. Of course one also has to keep
in mind thatM > 1, a consequence ofM := 1 + Ls. For notational simplicity, we
shall simply denote L̃ by L in the following computations.

4.1. Estimates for small frequencies. In order to prove estimates in the case
0 6 ρ 6 C1 (with C1 >

√
1 + n−1), we shall use that (4.7) enters in the class of

ODEs that has been considered in the Appendix. Indeed, it corresponds to (A.3)
with

ς = L̃M
n

, η =
√
nL̃
ε

, β = L̃
ε
, α = 1

ε
√
n
, γ = L̃M

ε
· (4.9)
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4.1.1. The case L & 1 and LεM & 1. We shall follow the first approach proposed
in Appendix A with matrices A0, A1, A2 and B1 as follows:

A0 =


0 0 0 0
0 0 0 0
0 0 L

ε 0
0 0 0 LM

ε

 , A1 =


0 1 0 0

−1− 1
n 0 0 0

0 0 0 1+ε2
√
n ε

0 0 − 1√
n ε

0

 ,

B1 = −


0 0 0 ε

n
0 0 1

n3/2 0
0
√
n 0 0

1
ε 0 0 0

 and A2 =


0 0 0 0
0 1 0 − ε

n
0 0 0 0
0 0 0 0

 ·
Therefore we set

P :=


0 0 0 ε2

nLM
0 0 ε

n3/2L 0
0 − ε

√
n
L 0 0

− 1
LM 0 0 0

 , (4.10)

which corresponds to the change of unknowns
b̂

d̂

ĵ0
ĵ1

 :=


1 0 0 ε2

nLMρ
− ε
nLρ 1 ε

n3/2Lρ
ε
n

−
√
n −

√
n ε
L ρ 1 − ε2

√
nLρ

− 1
LMρ 0 0 1




b̂

d̂

ĵ0
ĵ1

 · (4.11)

According to (A.8), working with (â, d̂, ĵ0, ĵ1) or (b̂, d̂, ĵ0, ĵ1) is equivalent whenever
ρ . Lmin(ε−1,M). (4.12)

Let us compute the matrices PB1, [P,A1] and A3 appearing in (A.2). We have

PB1 = ε

nL


−M−1 0 0 0

0 −1 0 0
0 0 1 0
0 0 0 M−1

 ,

[P,A1] = 1
L


0 0 − ε(1+M−1)

n3/2 0
0 0 0 1+ε2(1+M−1(n+1))

n2
1+ε2(1+M(1+n))

ε
√
nM 0 0 0
0 −1−M−1 0 0

 ,

A3 =


− ε
nLM 0 ε

n3/2L 0
0 1− ε

nL 0 ε2

nLM (1 + 1
n )− ε

n
1+ε2

ε
√
nLM 0 0 0
0 − 1

L 0 0

 ·
If εLM & 1 and L & 1 then |A3| . ε

L and |P | . ε. Hence, up to a O(ερ3) term,
the system for (b̂, d̂) reads

d

dt

(
b̂

d̂

)
+ ρ

(
0 1

−1− n−1 0

)(
b̂

d̂

)
+ ρ2

(
− ε
nLM 0
0 1− ε

nL

)(
b̂

d̂

)
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= ρ2

(
ε(1+M−1)
n3/2L 0

0 ε
n −

1+ε2(1+M−1(n+1))
n2L

)(
ĵ0
ĵ1

)
·

In order to estimate (b̂, d̂), we just follow the method of Appendix B, which requires
Condition (4.8) and

ρ 6

√
1 + n−1

1− (1−M−1)ε
nL

· (4.13)

Keeping (4.12) in mind and noticing that

ν̃ = 1− ε

nL
(1 +M−1),

is of order 1 for small ε, we thus conclude that if

ρ 6
√

1 + n−1 and ρ . Lmin(ε−1,M) (4.14)

then

|(b̂, d̂)(t)|+ ρ2
∫ t

0
|(b̂, d̂)| dτ . |(b̂, d̂)(0)|

+ ρ2
∫ t

0

(
ε

L
|̂j0|+

(
ε+ 1
L

)
|̂j1|
)
dτ + ερ3

∫ t

0
|(b̂, d̂, ĵ0, ĵ1)| dτ. (4.15)

Next, we see that the equations for (̂j0, ĵ1) read (omitting the O(ερ3) term)

d

dt

(
ĵ0
ĵ1

)
+
(
L
ε + ερ2

nL 0
0 LM

ε + ερ2

nLM

)(
ĵ0
ĵ1

)
+ ρ√

n ε

(
0 1 + ε2

−1 0

)(
ĵ0
ĵ1

)

= ρ2

(
− 1+ε2(1+M(1+n))

ε
√
nLM 0
0 1+M−1

L

)(
b̂

d̂

)
· (4.16)

Therefore, computing
d

dt

(
|̂j0|2 + (1 + ε2)|̂j1|2

)
, (4.17)

so as to eliminate the term in ρ, we end up with

|(̂j0, ĵ1)(t)|+ L
ε

∫ t

0
|̂j0, ĵ1| dτ . |(̂j0, ĵ1)(0)|

+ ρ2
∫ t

0

(( 1
εLM

+ ε

L

)
|b̂|+ 1

L
|d̂|
)
dτ + ερ3

∫ t

0
|(b̂, d̂, ĵ0, ĵ1)| dτ. (4.18)

Now, adding up (4.15) and (4.18), we easily conclude that if ε is small enough and

Lmin(1, εM) & 1, (4.19)

then we have

|(b̂, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|(b̂, d̂)| dτ + L

ε

∫ t

0
|(̂j0, ĵ1)| dτ . |(b̂, d̂, ĵ0, ĵ1)(0)|, (4.20)

whenever 0 6 ρ 6
√

1 + n−1.
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Now, resuming to the ĵ1 equation in (4.16), and evaluating the first order term
according to (4.20), we deduce that, in addition

LM
ε

∫ t

0
|̂j1| dτ . |(b̂, d̂, ĵ0, ĵ1)(0)|. (4.21)

4.1.2. The case ε� L . 1 with εL2L2
s � 1 and L2Ls � 1. If L � 1 then plugging

(4.15) in (4.18) does not allow to get (4.20) any longer. In order to overcome
this, we shall follow the second approach proposed in Appendix A with coefficients
defined as in (4.9): we set

P =


0 0 0 ε2

nLM
0 0 ε

n3/2L 0
0 − ε

√
n
L 0 1+ε2

√
n(1−M)L

− 1
LM 0 1√

n (1−M)L 0

 ,

and we thus have, remembering thatM− 1 = Ls

V =


b̂

d̂

ĵ0
ĵ1

 :=


1 0 0 ε2

nLMρ
− ε
nLρ 1 ε

n3/2Lρ
ε
n

−
√
n −

√
n ε
L ρ 1 − 1+ε2M√

nLLs
ρ

ρ
LMLs 0 − ρ√

nLsL
1




b̂

d̂

ĵ0
ĵ1

 · (4.22)

The determinant of the above matrix is(
1 + ε2

nL2 ρ
2
)(

1 + ε2

nL2M2 ρ
2
)
− 1 + ε2

nL2L2
s

ρ2,

Hence working with (̂b, d̂, ĵ0, ĵ1) or (b̂, d̂, ĵ0, ĵ1) is equivalent whenever

ρ .
L
ε

and ρ 6
√
nLLs. (4.23)

Then following the computations of Appendix A, second approach, and setting
A3 := (PA0 −A1)P +A2 leads to

d

dt
V + ρ


0 1 0 0

−1− 1
n 0 0 0

0 0 0 0
0 0 0 0

V

+


− ε
nLMρ2 0 0 0

0
(
1− ε

nL
)
ρ2 0 0

0 0 L
ε +

(
ε+ 1+ε2

εLs

)
ρ2

nL 0
0 0 0 LM

ε +
(

ε
nLM−

1+ε2

nεLLs

)
ρ2

V

= ρ2


0 0 (1+M−1)ε

n3/2L 0
0 0 0 ε

n −
1+ε2

n2L −
ε2(1+n)
n2LM

− 1+ε2

ε
√
nLsL

− (n+1)ε√
nL 0 0 0

0 − 1
LLsM 0 0

V

+ ρ3[A3, P ](I + ρP )−1V. (4.24)
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Just writing that |[A3, P ]| 6 |P |(|P |2 |A0|+ |P ||A1|+ |A2|) using the explicit values
of A0, A1 and A2 and

|P | . 1
L

max
(
ε,

1
Ls

)
, (4.25)

does not provide an accurate enough bound for [A3, P ]. Now, we have

PA0P
2 = 1
L2


0 ε2

nLs 0 ε
n2

( 1+ε2

L2
s
− ε2

M2

)
1+ε2

n2MLs 0 1
n5/2

( 1+ε2

L2
s
− ε2) 0

0 − (1+ε2)M√
nL2

s
0 (1+ε2)M

n3/2Ls

(
ε
M2 − ε−1+ε

L2
s

)
− ε(1+ε2)

nML2
s

0 ε
n3/2Ls

(
ε2 − 1+ε2

L2
s

)
0



P 2A0P = 1
L2


0 ε2

nLsM 0 ε+ε3

n2L2
sM

1+ε2

n2Ls 0 (1+ε2)M
n5/2L2

s
0

0 ε2
√
n

+ 1+ε2
√
nL2

s
0 (1+ε2)

n3/2Ls

(
ε− ε−1+ε

L2
s

)
ε

nM2 + ε−1+ε
nL2

s
0 ε

n3/2LsM
− (ε−1+ε)M√

nL3
s

0



A1P
2 = 1
L2


0 − ε

2

n 0 − ε(1+ε2)
nLs

(1+n−1)ε2

nM2 0 (1+n−1)ε2

n3/2LsM
0

0 0 0 0
0 0 0 0

 ,

PA1P = 1
L2


0 0 0 0
0 0 0 0
0 0 0 (1 + 1

n ) ε
3
√
n

0 0 − ε
n3/2M 0



A2P =


0 0 0 0
ε

nLM 0 ε
n3/2L 0

0 0 0 0
0 0 0 0

 and PA2 =


0 0 0 0
0 0 0 0
0 − ε

√
n
L 0 ε2

L
√
n

0 0 0 0

 ·
Hence, given that ε � L . 1 and that Ls ≈ M in the regime that we are consid-
ering, one may conclude that

|[A3, P ]| . max
(
ε

L
,

1
L2Ls

,
1

εL2L2
s

)
· (4.26)

Note that we still have ν̃ → 1 for ε→ 0. Hence applying the method of the appendix
to handle (b̂, d̂), we find out that if (4.8), (4.13) and (4.23) are fulfilled then

|(b̂, d̂)(t)|+ ρ2
∫ t

0
|(b̂, d̂)| dτ . |(b̂, d̂)(0)|+ ρ2

∫ t

0

(
ε

L
|̂j0|+

1
L
|̂j1|
)
dτ

+ρ3 max
(
ε

L
,

1
L2Ls

,
1

εL2L2
s

)∫ t

0
|V | dτ.
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As regards the radiative modes, we have

|̂j0(t)|+
(
L
ε

+
(
ε+ 1 + ε2

εLs

) ρ2

nL

)∫ t

0
|̂j0| dτ 6 |̂j0(0)|+ Cρ2

∫ t

0

(
1

εLLs
+ ε

L

)
|b̂| dτ

+Cρ3 max
(
ε

L
,

1
L2Ls

,
1

εL2L2
s

)∫ t

0
|V | dτ,

|̂j1(t)|+
(
LM
ε

+
( ε

nLM
− 1 + ε2

nεLLs

)
ρ2
)∫ t

0
|̂j1| dτ 6 |̂j1(0)|+ C

ρ2

LLsM

∫ t

0
|d̂| dτ

+Cρ3 max
(
ε

L
,

1
L2Ls

,
1

εL2L2
s

)∫ t

0
|V | dτ.

From the above three inequalities, we get for any A ∈ (0, 1]

|(b̂, d̂)(t)|+A|̂j0(t)|+ |̂j1(t)|+ ρ2
∫ t

0
|(b̂, d̂)| dτ +A

L
ε

∫ t

0
|̂j0| dτ + LLs

ε

∫ t

0
|̂j1| dτ

. |(b̂, d̂)(0)|+A|̂j0(0)|+|̂j1(0)|+ρ2
∫ t

0

(
ε

L
|̂j0|+

1
L
|̂j1|
)
dτ+Aρ2

∫ t

0

(
1

εLLs
+ ε

L

)
|b̂| dτ

+ ρ2

LL2
s

∫ t

0
|d̂| dτ + ρ3 max

(
ε

L
,

1
L2Ls

,
1

εL2L2
s

)∫ t

0
|V | dτ.

Now, we notice that taking A = c0 min(1, εLLs) for a sufficiently small constant c0
allows to absorb all the terms of the r.h.s. (but the data) by the l.h.s. provided we
have 0 6 ρ 6

√
1 + n−1

ε� L . 1, εL2L2
s � 1 and L2Ls � 1. (4.27)

We thus conclude that for all 0 6 ρ 6
√

1 + n−1, we have

|(b̂, d̂,min(1, εLLs)̂j0, ĵ1)(t)|+ ρ2
∫ t

0
|(b̂, d̂)| dτ + L

ε
min(1, εLLs)

∫ t

0
|̂j0| dτ

+ LM
ε

∫ t

0
|̂j1| dτ 6 C|(b̂, d̂,min(1, εLLs)̂j0, ĵ1)(0)|. (4.28)

Let us point out that in the case where L2Ls ≈ 1 (even if L ≈ ε in fact) then the
same computation will lead to (4.28), but only for 0 6 ρ 6 c, with c a small enough
constant.

4.1.3. The case ε� L . ε1/2 and L2Ls ≈ 1. As the value
√

1 + n−1 will not play
any particular role, we fix some C1 > c in the following computations. We want to
get (4.28) for ρ ∈ [c, C1]. To this end, we introduce ζ0 and ζ1 such that

ζ̂0 := ĵ0 −
√
n

1 + ρ2

nL2M

b̂ and ζ̂1 := ĵ1 −
ρ√

nLM
ĵ0.
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Then we discover that (̂b, d̂, ζ̂0, ζ̂1) fulfills

∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρ

(
1 + 1

n
(
1 + ρ2

nL2M
))b̂ = ρ

n3/2 ζ̂0 + LM
n

ζ̂1,

∂tζ̂0 + L
ε
ζ̂0 = − ρ

ε
√
n
ζ̂1 −

√
n

ρ

1 + ρ2

nL2M

d̂,

∂tζ̂1 + L
ε

(
M− ρ2

nL2M

)
ζ̂1 = ρ√

n εM

(
1 + ρ2

nL2M

)
ζ̂0.

Let ρ be in [c, C1]. For the first two equations, performing the standard barotropic
estimates (which rely on the use of Uρ defined in (4.43)) leads to

|(̂b, d̂)(t)|+
∫ t

0
|(̂b, d̂)| dτ . |(̂b, d̂)(0)|+

∫ t

0
|ζ̂0| dτ + LLs

∫ t

0
|ζ̂1| dτ. (4.29)

For ζ̂0, it is obvious that

|ζ̂0(t)|+ L
ε

∫ t

0
|ζ̂0| dτ 6 |ζ̂0(0)|+ ρ

ε
√
n

∫ t

0
|ζ̂1| dτ + ρ

√
n

∫ t

0
|d̂| dτ, (4.30)

and, as our conditions on L and Ls guarantee that ρ 6
√
n/2LM for small enough

ε, we also have

|ζ̂1(t)|+ LM2ε

∫ t

0
|ζ̂1| dτ 6 |ζ̂1(0)|+ ρ√

n εM

(
1 + ρ2

nL2M

)∫ t

0
|d̂| dτ. (4.31)

Putting together those three inequalities, we readily get for all A,B > 0, observing
that ρ2 ≈ L2M≈ 1

|(̂b, d̂)(t)|+A
ε

L
|ζ̂0(t)|+Bε|ζ̂1(t)|+

∫ t

0
|(̂b, d̂)| dτ +A

∫ t

0
|ζ̂0| dτ +BLM

∫ t

0
|ζ̂1| dτ

. |(̂b, d̂)(0)|+A
ε

L
|ζ̂0(0)|+Bε|ζ̂1(0)|+ LM

∫ t

0
|ζ̂1| dτ

+
∫ t

0
|ζ̂0| dτ + A

L

∫ t

0
|ζ̂1| dτ +A

ε

L

∫ t

0
|d̂| dτ + B

M

∫ t

0
|ζ̂0| dτ.

It is now clear that if one takes first A large enough (independently of ε) and B
much larger, all the integrals of the r.h.s. may be absorbed by the left-hand side,
asM−1 � ρ, and we thus get for all ρ ∈ [c, C1]

|(̂b, d̂)(t)|+ ε

L
|ζ̂0(t)|+ ε|ζ̂1(t)|+

∫ t

0
|(̂b, d̂)| dτ

+
∫ t

0
|ζ̂0| dτ + LM

∫ t

0
|ζ̂1| dτ . |(̂b, d̂)(0)|+ ε

L
|ζ̂0(0)|+ ε|ζ̂1(0)|. (4.32)

Plugging this new inequality in (4.31), we easily deduce that

|ζ̂1(t)|+ LM
ε

∫ t

0
|ζ̂1| dτ . |ζ̂1(0)|+ L|ζ̂0(0)|+ 1

εM
|(̂b, d̂)(0)|,
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then inserting this information and (4.32) in (4.30), we discover that

|ζ̂0(0)|+ L
ε

∫ t

0
|ζ̂0| dτ . |ζ̂0(0)|+ L|ζ̂1(0)|+

(
1 + 1

εLM2

)
|(̂b, d̂)(0)|.

Therefore, putting (4.32) and the above two inequalities together, using that

|(̂b, d̂, ζ̂0, ζ̂1)| ≈ |(̂b, d̂, ĵ0, ĵ1)|

and assuming in addition that L . ε1/2, we conclude that

|(̂b, d̂, ε
L
ĵ0, ĵ1)(t)|+

∫ t

0
|(̂b, d̂)| dτ + L

ε

∫ t

0
|ζ̂0| dτ + LLs

ε

∫ t

0
|ζ̂1| dτ

. |(̂b, d̂, ε
L
ĵ0, ĵ1)(0)| for all c 6 ρ 6 C1. (4.33)

Note that due to the expression of ζ̂1, one may replace ζ̂1 with ĵ1 of ĵ1 in the
integral.

Still in the case L . ε1/2, we claim that we have the following inequality

|ρĵ0(t)|+ L
ε

∫ t

0
|ρζ̂0| dτ . |(̂b, d̂, ρĵ0,

ε

L
ĵ0, ĵ1)(0)| for all 0 6 ρ 6 C1, (4.34)

which turns out to be crucial in the justification of the asymptotics toward (2.9).

Indeed, inequality (4.30) does not require any assumption on ρ and thus implies
that

|ρζ̂0(t)|+ L
ε

∫ t

0
|ρζ̂0| dτ 6 |ρζ̂0(0)|+ ρ2

ε
√
n

∫ t

0
|ζ̂1| dτ + ρ2√n

∫ t

0
|d̂| dτ.

For 0 6 ρ 6 c (resp. c 6 ρ 6 C1), the last term may be bounded according to
(4.28) (resp. (4.33)). Regarding the term with ζ̂1, we notice that

ζ̂1 = ĵ1 + ρ

LLsM

(
ĵ0√
n

+ b̂

)
,

hence (4.28) and the fact that L2Ls ≈ 1 guarantee that for 0 6 ρ 6 c

ρ2

ε
√
n

∫ t

0
|ζ̂1| dτ . L

(
LM
ε

∫ t

0
|̂j1| dτ + L

2

ε

∫ t

0
ρ2 |̂j0 +

√
nb̂| dτ

)
. L(1 + L2

ε )|(̂b, d̂, εLLsĵ0, ĵ1)(0)|.

In the case L . ε1/2, it is obvious that Inequality (4.33) implies that the above
inequality is also true in the range c 6 ρ 6 C1, which completes the proof of (4.34).

4.1.4. The case L ≈ ε and Lsε2 & 1. We saw that if (4.8) is fulfilled then (4.28)
holds true on some small interval [0, c]. So we have to fill in the gap between c and√

1 + n−1. As the value
√

1 + n−1 does not play any particular role, we fix some
C1 > c and look for estimates if ρ ∈ [c, C1]. For simplicity, take L = κε/n (with
κ > 1 owing to (4.8)).
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Setting ζ̂1 := ĵ1 − 1√
nLMρĵ0 = ĵ1 −

√
n

κεMρĵ0 as before, we observe that

∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρb̂ = ρ
n3/2 ĵ0 + κεM

n2 ζ̂1,

∂tĵ0 +
(
κ
n + ρ2

κε2M
)
ĵ0 + ρ√

nε
ζ̂1 = κ√

n
b̂,

∂tζ̂1 +
(
κM
n −

ρ2

κε2M
)
ζ̂1 = ρ√

n εM

(
1 + ρ2n

κ2ε2M
)
ĵ0 − ρ

εM b̂.

(4.35)

Let us focus on the subsystem corresponding to the first three equations, namely
∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρb̂− ρ
n3/2 ĵ0 = f̂ ,

∂tĵ0 +
(
κ
n + ρ2

κε2M
)
ĵ0 − κ√

n
b̂ = ĝ.

(4.36)

If we have the stronger condition ε2M → ∞ then we rewrite System (4.36) as
follows

d

dt

 b̂

d̂

ĵ0

+

 0 ρ 0
−ρ ρ2 − ρ

n3/2

− κ√
n

0 κ
n


 b̂

d̂

ĵ0

 =

 0
f̂

− ρ2

κε2M ĵ0 + ĝ

 · (4.37)

The eigenvalues of the matrix Mρ in the left-hand side are the roots of the polyno-
mial −X3 + a1(ρ)X2 − a2(ρ)X + a3(ρ) with

a1(ρ) = κ

n
+ ρ2, a2(ρ) =

(
1 + κ

n

)
ρ2, a3(ρ) =

(
1 + 1

n

)ρ2κ

n
·

According to Routh-Hurwitz criterion, those roots have positive real part if and
only if

a1(ρ) > 0,
∣∣∣∣ a1(ρ) 1
a3(ρ) a2(ρ)

∣∣∣∣ > 0 and

∣∣∣∣∣∣
a1(ρ) 1 0
a3(ρ) a2(ρ) a1(ρ)

0 0 a3(ρ)

∣∣∣∣∣∣ > 0.

As a1(ρ) and a3(ρ) are positive, it suffices to check the second condition, that is

a1(ρ)a2(ρ)− a3(ρ) =
(

1 + κ

n

)
ρ4 + ρ2κ

n2 (κ− 1) > 0,

and this is indeed the case for all ρ > 0, as κ > 1.

In particular, all the eigenvalues of the matrix Mρ have positive real part if we
assume ρ to belong to the compact set [c, C1]. Therefore (see [7]) there exist two
positive constants c2 and C2 depending only on c and C1, so that the matrix Mρ

satisfies ∣∣e−tMρ
∣∣ 6 C2e

−c2t for all t > 0 and ρ ∈ [c, C1].

By taking advantage of Duhamel’s formula, we thus deduce that

|(̂b, d̂, ĵ0)(t)|+
∫ t

0
|(â, d̂, ĵ0)| dτ . |(̂b, d̂, ĵ0)(0)|+

∫ t

0
|(f̂ , ĝ)| dτ + 1

ε2M

∫ t

0
|̂j0| dτ.
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Of course, owing to the assumption ε2M→∞, the last term of the r.h.s. may be
absorbed by the l.h.s., for ε going to 0. So we get

|(̂b, d̂, ĵ0)(t)|+
∫ t

0
|(̂b, d̂, ĵ0)| dτ . |(̂b, d̂, ĵ0)(0)|+

∫ t

0
|(f̂ , ĝ)| dτ. (4.38)

In the case where ε2M does not go to∞ then we have to proceed slightly differently.
If we assume (for simplicity) that ε2M tends to some m > 0, then the matrix Mρ

in (4.37) has to be changed in

Nρ =

 0 ρ 0
−ρ ρ2 − ρ

n3/2

− κ√
n

0 κ
n + ρ2

κm

 ·
The above analysis based on Routh-Hurwitz theorem still holds as the additional
term has ‘the good sign’, and one may conclude, as before, that (4.38) is satisfied
for all ρ ∈ [c, C1].

In every case ε2M & 1, resuming to (4.35), Inequality (4.38) allows us to get for
all ρ ∈ [c, C1]

|(̂b, d̂, ĵ0)(t)|+
∫ t

0
|(̂b, d̂, ĵ0)| dτ . |(̂b, d̂, ĵ0)(0)|+ εM

∫ t

0
|ζ̂1| dτ. (4.39)

Next, from the equation of ζ̂1, we readily get

|ζ̂1(t)|+M
∫ t

0
|ζ̂1| dτ . |ζ̂1(0)|+ (εM)−1

∫ t

0
|(̂b, ĵ0)| dτ.

Hence, adding up to Inequality (4.39), we conclude that (4.28) is also true for
all ρ ∈ [c, C1]. This completes the proof of estimates in the low frequency regime
ρ ∈ [0, C1].

4.2. Estimates for middle frequencies.

The case lim infM = +∞. As in the previous paragraph, introduce ζ̂1 := ĵ1 −
ρ√
nLM ĵ0. The system fulfilled by (̂b, d̂, ĵ0, ζ̂1) reads

∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρb̂ = ρ
n3/2 ĵ0 + LM

n ζ̂1,

∂tĵ0 + 1
ε

(
L+ ρ2

nLM
)
ĵ0 + ρ√

n ε
ζ̂1 =

√
nLε b̂,

∂tζ̂1 +
(LM

ε −
ρ2

nεLM
)
ζ̂1 = ρ√

nLMε

(
L+ ρ2

nLM
)
ĵ0 − ρ

εM b̂.

(4.40)

The subsystem corresponding to the first three equations is
∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρb̂− ρ
n3/2 ĵ0 = f̂ ,

∂tĵ0 + L
ε

(
1 + ρ2

nL2M
)
ĵ0 −

√
nLε b̂ = ĝ,

(4.41)

with
f̂ = LM

n
ζ̂1 and ĝ = − ρ√

n ε
ζ̂1. (4.42)
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Assume that (f̂ , ĝ) ≡ (0, 0) for a while and set

U2
ρ := 2|(̂b, d̂)|2 − 2ρRe (̂b d̂) + |ρb̂|2. (4.43)

On one hand, we have

1
2
d

dt
U2
ρ + ρ2 |̂b|2 + ρ2|d̂|2 = ρ

n3/2 Re
(
(2d̂− ρb̂) ĵ0

)
, (4.44)

and on the other hand,

1
2
d

dt
|̂j0|2 + L

ε

(
1 + ρ2

nL2M

)
|̂j0|2 =

√
n
L
ε

Re (̂b ĵ0).

Therefore
1
2
d

dt

(
U2
ρ + ε

n2L
|ρĵ0|2

)
+ ρ2|(̂b, d̂)|2 + ρ2

n2

(
1 + ρ2

nL2M

)
|̂j0|2 = 2 ρ

n3/2 Re (d̂ ĵ0).

Now, by using the fact that

2 ρ

n3/2 Re (d̂ ĵ0) 6 1
An
|d̂|2 + Aρ2

n2 |̂j0|
2,

and by taking A = 3/4, we conclude that for ρ2 > 16n
3(4n2−1) , we have

d

dt

(
U2
ρ + ε

n2L
|ρĵ0|2

)
+ ρ2

2n2 |(̂b, d̂, ĵ0)|2 6 0,

whence, because 16n
3(4n2−1) 6 1 + 1

n , we get for some universal positive constants c0
and C

|(ρb̂, d̂)(t)|+
√
ε

L
|ρĵ0(t)| 6 Ce−c0t

(
|(ρb̂, d̂)(0)|+

√
ε

L
|ρĵ0(0)|

)
for ρ >

√
1 + n−1·

Resuming to the equation fulfilled by ĵ0 in (4.41), the above inequality implies (still
assuming that f̂ = ĝ = 0) that

L
ε

(
1+ ρ2

nL2M

)∫ t

0
|ρĵ0| dτ 6 |ρĵ0(0)|+

√
nL
ε

∫ t

0
|ρb| dτ .

√
L
ε
|ρĵ0(0)|+L

ε
|(d̂, ρb̂)(0)|,

then plugging this inequality in the equation for d̂, we get in addition

ρ2
∫ t

0
|d̂| dτ . |d̂(0)|+ |ρb̂(0)|+

√
ε

L
|ρĵ0(0)|.

Repeating the above computations in the case of general source terms f̂ and ĝ,
we conclude that the solution (b, d, j0) to (4.41) satisfies for all ρ >

√
1 + n−1,

assuming only that L & ε

|(ρb̂, d̂)(t)|+
√
ε

L
|ρĵ0(t)|+

∫ t

0
|(ρb̂, ρ2d̂)| dτ + L

ε

(
1 + ρ2

nL2M

)∫ t

0
|ρĵ0| dτ

6 C

(
|(ρb̂, d̂)(0)|+

√
ε

L
|ρĵ0(0)|+

∫ t

0

(
|f̂ |+

√
ε

L
|ρĝ|

)
dτ

)
·
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Resuming to the value of f̂ and ĝ in (4.42), we thus get for ρ >
√

1 + n−1 and
L & ε

|(ρb̂, d̂)(t)|+
√
ε

L
|ρĵ0(t)|+

∫ t

0
|(ρb̂, ρ2d̂)| dτ + L

ε

(
1 + ρ2

nL2M

)∫ t

0
|ρĵ0| dτ

6 C

(
|(ρb̂, d̂)(0)|+

√
ε

L
|ρĵ0(0)|+

(
LM+ ρ2

√
Lε

)∫ t

0
|ζ̂1| dτ

)
· (4.45)

Next, it is clear that the equation for ζ̂1 implies that whenever ρ 6
√

n
2 LM

|ζ̂1(t)|+LM2ε

∫ t

0
|ζ̂1| dτ 6 |ζ̂1(0)|+ 1√

nεM

(
1+ ρ2

nL2M

)∫ t

0
|ρĵ0| dτ+ 1

εM

∫ t

0
|ρb̂| dτ.

Hence, we get ifM is large enough and ρ2 � L3/2M2ε1/2

|ζ̂1(t)|+ LM
ε

∫ t

0
|ζ̂1| dτ 6 C

(
|ζ̂1(0)|+ 1

εM

(
|(ρb̂, d̂)(0)|+

√
ε

L
|ρĵ0(0)|

))
· (4.46)

Then plugging that inequality in (4.45) implies that

|(ρb̂, d̂)(t)|+
√
ε

L
|ρĵ0(t)|+ ρ2

∫ t

0
|d̂| dτ +

∫ t

0
|ρb̂| dτ + L

ε

(
1 + ρ2

nL2M

)∫ t

0
|ρĵ0| dτ

6 C

(
|(ρb̂, d̂)(0)|+

√
ε

L
|ρĵ0(0)|+

(
ε+ ε1/2ρ2

ML3/2

)
|ζ̂1(0)|

)
, (4.47)

whenever 1 + 1/n 6 ρ2 � L3/2M2ε1/2.

Here is another method that gives decay estimates in the range L
√
M � ρ �

LM ifM is large enough. From the first two equations of (4.40), we have

|(ρb̂, d̂)(t)|+ ρ2
∫ t

0
|d̂| dτ +

∫ t

0
|ρb̂| dτ

. |(ρb̂, d̂)(0)|+ ρ

n3/2

∫ t

0
|̂j0| dτ + LM

n

∫ t

0
|ζ̂1| dτ. (4.48)

The equations for ĵ0 and ζ̂1 give, if ρ 6
√

n
2 LM

|̂j0(t)|+ 1
ε

(
L+ ρ2

nLM

)∫ t

0
|̂j0| dτ 6 |̂j0(0)|+ ρ√

n ε

∫ t

0
|ζ̂1| dτ + L

√
n

ε

∫ t

0
|̂b| dτ, (4.49)

|ζ̂1(t)|+LM2ε

∫ t

0
|ζ̂1| dτ

6 |ζ̂1(0)|+ ρ√
nLMε

(
L+ ρ2

nLM

)∫ t

0
|̂j0| dτ+ ρ

εM

∫ t

0
|̂b| dτ. (4.50)

Plugging (4.49) in (4.50), we discover if ρ� LM that

|ζ̂1(t)|+ LM4ε

∫ t

0
|ζ̂1| dτ 6 |ζ̂1(0)|+ ρ

LM
|̂j0(0)|+ 1

εM

∫ t

0
ρ|̂b| dτ. (4.51)
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Inserting that inequality in (4.48), we see that the last term of (4.48) may be
absorbed by the l.h.s. ifM is large enough. Now, Inequality (4.49) ensures that

ρ

n3/2

∫ t

0
|̂j0| dτ 6

1√
n

(
ρεLM

nL2M+ ρ2

)
|̂j0(0)|

+
(

ρ2LM
n2L2M+ ρ2n

)∫ t

0
|ζ̂1| dτ +

(
L2M

nL2M+ ρ2

)∫ t

0
ρ|̂b| dτ.

Again, resuming to (4.48), we see that the second term in the r.h.s. may be absorbed
by the l.h.s. This is also the case of the last one if ρ2 � L2M. If all those conditions
are fulfilled then we end up if L

√
M� ρ 6

√
n
2 LM with

|(ρb̂, d̂)(t)|+ ρ2
∫ t

0
|d̂| dτ + ρ

∫ t

0
|̂b| dτ + ρ

∫ t

0
|̂j0| dτ

+ LM
∫ t

0
|ζ̂1| dτ . |(ρb̂, d̂)(0)|+ εLM

ρ
|̂j0(0)|+ ε|ζ̂1(0)|. (4.52)

Resuming to (4.49) and (4.51), we thus easily deduce first that

|ζ̂1(t)|+ LM
ε

∫ t

0
|ζ̂1| dτ . |ζ̂1(0)|+ |̂j0(0)|+ 1

εM
|(ρb̂, d̂)(0)|,

and next that

|̂j0(t)|+ 1
ε

(
L+ ρ2

LM

)∫ t

0
|̂j0| dτ . |̂j0(0)|+ ρ

LM
|ζ̂1(0)|+ L

ερ |(ρb̂, d̂)(0)|.

Our estimates and the definition of ζ1 allow us to change ζ1 to j1 in (4.52). So
finally, in the case εM & 1 we get for some large enough C1 and small enough c
independent of ε

|(ρb̂, d̂, (1+ εLM
ρ )ĵ0, ĵ1)(t)|+

∫ t

0
|ρb̂| dτ + ρ2

∫ t

0
|d̂| dτ + ρ

εLM (1+ εLM
ρ )

∫ t

0
|ρĵ0| dτ

+ LM
ε

∫ t

0
|ζ̂1| dτ . |(ρb̂, d̂, (1+ εLM

ρ )ĵ0, ĵ1)(0)|, (4.53)

whenever C1L
√
M 6 ρ 6 cLM.

The case ε2M 6 1/2 and L � ε. Let ζ0 := j0 −
√
n b. We start from

∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρb̂ = LM
n ĵ1,

∂tζ̂0 + L
ε ζ̂0 + ρ√

n ε
ĵ1 −

√
nρd̂ = 0,

∂tĵ1 + LM
ε ĵ1 − ρ√

n ε
ζ̂0 − ρ

ε b̂ = 0.

In order to show the exponential decay, we set

U2
ρ := 2|̂b|2 + 2|d̂|2 + |ρb̂|2 − 2ρRe (̂bd̂) and J 2

ρ := |ζ̂0|2 + |̂j1|2. (4.54)
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We easily get for all K > 0,

1
2
d

dt

(
U2
ρ +KJ 2

ρ

)
+ ρ2|(̂b, d̂)|2 +K

L
ε

(
|ζ̂0|2 +M|̂j1|2

)
= 2LM

n
Re (ĵ1 d̂) + ρ

(
K

ε
− LM

n

)
Re (ĵ1 b̂) +K

√
nRe (ρd̂ ζ̂0). (4.55)

It is thus natural to take K = ε
nLM to cancel out the second term of the r.h.s. For

the first and the last terms, we write that

K
√
nRe

(
ρd̂ ζ̂0

)
6 1

4ρ
2|d̂|2 + nK2 |̂j0 −

√
n b̂|2,

2LM
n Re (ĵ1 d̂) = 2K

ε Re (ĵ1 d̂) 6 2
3ρ

2|d̂|2 + 3K2

2ε2ρ2 |̂j1|2.

Note that the last terms above may be absorbed by the l.h.s. of (4.55) if, say

nK 6
L
2ε and 2K

ε
6 LMρ2.

Given the value of K, the first condition is equivalent to ε2M 6 1/2, whereas the
second one means that ρ2n > 2. Under this latter condition, we thus end up with

d

dt

(
U2
ρ + εLM

n
J 2
ρ

)
+ 1

6ρ
2|(̂b, d̂)|2 + L

2M
n

(
|ζ̂0|2 + 1

6M|̂j1|
2
)
6 0, (4.56)

which implies, according to (4.8), the following exponential decay estimate for some
small enough κ > 0

U2
ρ (t) + εLMJ 2

ρ (t) 6 e−κt
(
U2
ρ (0) + εLM

n
J 2
ρ (0)

)
if ρ >

√
2/n. (4.57)

To exhibit the parabolic decay for d, we introduce ζ̂1 := ĵ1 − (
√
nLM)−1ρĵ0, and

get 

∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρ
(
1 + 1

n

)
b̂ = LM

n ζ̂1 + ρ
n3/2 ζ̂0,

∂tζ̂0 + 1
ε

(
L+ ρ2

nLM
)
ζ̂0 + ρ√

n ε
ζ̂1 =

√
nρd̂− ρ2

√
n εLM b̂,

∂tζ̂1 +
(LM

ε −
ρ2

nεLM
)
ζ̂1 = ρ√

nLMε

(
L+ ρ2

nLM
)
ζ̂0 + ρ3

nεL2M2 b̂.

We thus have for
√

2/n 6 ρ 6
√
n/2LM∫ t

0
|ρb̂| dτ + ρ2

∫ t

0
|d̂| dτ . |(ρb̂, d̂)(0)|+ LM

n

∫ t

0
|ζ̂1| dτ + ρ

n

∫ t

0
|ζ̂0| dτ,

1
ε

(
L+ ρ2

nLM

)∫ t

0
|ζ̂0| dτ 6 |ζ̂0(0)|

+ ρ√
n ε

∫ t

0
|ζ̂1| dτ +

√
nρ

∫ t

0
|d̂| dτ + ρ√

n εLM

∫ t

0
|ρb̂| dτ,

LM
2ε

∫ t

0
|ζ̂1| dτ 6 |ζ̂1(0)|+ ρ√

n εLM

(
L+ ρ2

nLM

)∫ t

0
|ζ̂0| dτ + ρ2

nεL2M2

∫ t

0
|ρb̂| dτ.
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Combining the inequalities for ζ̂0 and ζ̂1, we easily get if ρ 6 cLM with c small
enough

LM
∫ t

0
|ζ̂1| dτ . ε|ζ̂1(0)|+ ρ

LM

(
ε|ζ̂0(0)|+ ρε

∫ t

0
|d̂| dτ + ρ

LM

∫ t

0
|ρb̂| dτ

)
,(

L+ ρ2

LM

)∫ t

0
|ζ̂0| dτ . ε|ζ̂0(0)|+ ρε

LM
|ζ̂1(0)|+ ρε

∫ t

0
|d̂| dτ + ρ

LM

∫ t

0
|ρb̂| dτ.

Now, the exponential decay pointed out in (4.57) allows to bound the last terms
above, and we get

LM
∫ t

0
|ζ̂1| dτ . Uρ(0) +

√
εLMJρ(0) + ε

LM

∫ t

0
|ρ2d̂| dτ, (4.58)(

L+ ρ2

LM

)∫ t

0
|ζ̂0| dτ . ε|(ζ̂0, ζ̂1)(0)|+ ρ

LM
(
Uρ(0)+

√
εLMJρ(0)

)
+ρε

∫ t

0
|d̂| dτ (4.59)

whereas using U2
ρ allows to get directly

ρ2
∫ t

0
|d̂| dτ . |(ρb̂, d̂)(0)|+ LM

∫ t

0
|̂j1| dτ.

Using the definition of ĵ1 and, again, Inequality (4.57), we may replace ĵ1 with ζ̂1
as follows

ρ2
∫ t

0
|d̂| dτ . Uρ(0) +

√
εLMJρ(0) + LM

∫ t

0
|ζ̂1| dτ +

∫ t

0
|ρζ̂0| dτ. (4.60)

Then plugging (4.58) and (4.59) in (4.60) and observing that ε� LM, we get

ρ2
∫ t

0
|d̂| dτ . Uρ(0) +

√
εLMJρ(0)

+ ρLM
L2M+ ρ2

(
ε|(ζ̂0, ζ̂1)(0)|+ ρ

LM
(
Uρ(0) +

√
εLMJρ(0)

)
+ ρε

∫ t

0
|d̂| dτ

)
·

Because we assumed that L � ε, the last term may be absorbed by the l.h.s. Using
in addition that ε2M . 1, we end up with

ρ2
∫ t

0
|d̂| dτ . Uρ(0) +

√
εLMJρ(0).

Then resuming to (4.58), (4.59), we obtain

ρ

∫ t

0
|ζ̂0| dτ + LM

∫ t

0
|ζ̂1| dτ . Uρ(0). (4.61)

Obviously, this inequality implies that

LM
∫ t

0
|̂j1| dτ . Uρ(0) +

√
εLMJρ(0) + ε|(ζ̂0, ζ̂1)(0)|. (4.62)

Of course, we get the same inequality if replacing ζ0 and ζ1 with j0 and j1. So one
can conclude that for

√
2/n 6 ρ 6 cLM, we have (4.57) and

ρ2
∫ t

0
|d̂| dτ+LM

∫ t

0
|̂j1| dτ+ρ

∫ t

0
|̂j0| dτ . |(ρb̂, d̂)(0)|+

√
εLM|(ĵ0, ĵ1)(0)|. (4.63)



DIFFUSIVE LIMITS FOR A BAROTROPIC MODEL OF RADIATIVE FLOW 53

4.3. High frequencies. We eventually come to the proof of decay estimates for
ρ > cLM, where c is some given positive constant. We shall use that fact that
the systems satisfied by (b, d) and by (j0, j1), respectively, tend to be uncoupled for
ρ→ +∞. As regards (b, d), the classical approach for the barotropic Navier-Stokes
equation, based on the study of

U2
ρ := 2|(̂b, d̂)|2 − 2ρRe (̂b d̂) + |ρb̂|2,

guarantees, if ρ > c, that

|(ρb̂, d̂)(t)|+ ρ2
∫ t

0
|d̂| dτ +

∫ t

0
ρ|̂b| dτ . |(ρb̂, d̂)(0)|+ LM

n

∫ t

0
|̂j1| dτ. (4.64)

Next, from the system fulfilled by (ĵ0, ĵ1), we get
1
2
d

dt

(
|̂j0|2 + |̂j1|2

)
+ L
ε
|̂j0|2 + LM

ε
|̂j1|2 =

√
n
L
ε

Re (̂b ĵ0),

d

dt
Re (ĵ0 ĵ1) + L

ε
(1 +M)Re (ĵ0 ĵ1) + ρ

ε
√
n
|̂j1|2 −

ρ

ε
√
n
|̂j0|2 =

√
n
L
ε

Re (̂b ĵ1).

Therefore, for any κ > 0
1
2
d

dt

(
|̂j0|2 + |̂j1|2 −

2κLM
ρ

Re (ĵ0 ĵ1)
)

+
(

1 + κ√
n
M
)L
ε
|̂j0|2 + LM

ε

(
1− κ√

n

)
|̂j1|2

= κL2M
ρε

(1 +M)Re (ĵ0 ĵ1) +
√
n
L
ε

Re
(
b̂
(
ĵ0 −

κLM
ρ

ĵ1

))
·

For ρ > cLM, it is clear that our choosing κ small enough implies that
• the first term of the r.h.s. may be absorbed by the second and third ones
of the l.h.s.,

• we have |̂j0|2 + |̂j1|2 − 2κLM
ρ Re (ĵ0 ĵ1) ≈ |̂j0|2 + |̂j1|2,

• we have
(
1 + κ√

n
M
)L
ε |̂j0|

2 +
(
1− κ√

n

)LM
ε |̂j1|

2 > κ
2
LM√
n ε

(|̂j0|2 + |̂j1|2).

Therefore, we end up with the following inequality

ε|(ĵ0, ĵ1)(t)|+ LM
∫ t

0
|(ĵ0, ĵ1)| dτ . ε|(ĵ0, ĵ1)(0)|+ L

∫ t

0
|̂b| dτ. (4.65)

Combining with (4.64), we conclude that if
ρ > cmax(1,LM) and ρ > CL, (4.66)

for a large enough constant C then

|(ρb̂, d̂)(t)|+ ρ2
∫ t

0
|d̂| dτ +

∫ t

0
ρ|̂b| dτ . |(ρb̂, d̂, εĵ0, εĵ1)(0)|, (4.67)

|(ĵ0, ĵ1)(t)|+ LM
ε

∫ t

0
|(ĵ0, ĵ1)| dτ . L

ρε
|(ρb̂, d̂)(0)|+ |(ĵ0, ĵ1)(0)|, (4.68)

whence

|(ρb̂, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|d̂| dτ +

∫ t

0
ρ|̂b| dτ

+ LM
ε

∫ t

0
|(ĵ0, ĵ1)| dτ . |(ρb̂, d̂, ĵ0, ĵ1)(0)|. (4.69)
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The only case where the condition ρ > CL may be stronger than ρ > cLM is
whenM is bounded. From our study for small ρ’s, we must assume that LM & ε−1,

and thus cLM is still much larger than
√

2/n. Therefore, one may take advantage
of (4.57) to bound the r.h.s. of (4.65), and combining with (4.64), we get for ρ ≈ L

|(ρb̂, d̂,
√
εLĵ0,

√
εLĵ1)(t)|+ ρ2

∫ t

0
|d̂| dτ +

∫ t

0
ρ|̂b| dτ

+ L
∫ t

0
|(ĵ0, ĵ1)| dτ . |(ρb̂, d̂,

√
εLĵ0,

√
εLĵ1)(0)|. (4.70)

5. The non-equilibrium diffusion regime

This section is devoted to the study of the so-called non-equilibrium diffusion
asymptotics. Assuming that for some κ > 1 and m > 0, we have

L
ε
→ κ

nν
and L2Ls →

m

ν2 , (5.1)

we want to prove the convergence of the solutions of (1.6) to those of (2.5) or (2.6)
if m < +∞ or m = +∞, respectively, when ε goes to 0.

The first subsection concerns the proof of global existence with ‘uniform’ esti-
mates for the radiative Navier-Stokes equations (1.6) in the asymptotic (5.1), in the
small data case with critical regularity. Next, still for small critical data, we estab-
lish the global existence for the limit systems (2.5) and (2.6). In the last part of the
present section, we combine the uniform estimates with compactness arguments in
order to justify the convergence of (1.6) to (2.5) or (2.6).

5.1. Global existence and uniform estimates. In order to get a global-in-
time existence statement for (1.6) in the non-equilibrium diffusion regime, we first
put together the estimates that we obtained in the previous section, in the case
L ≈ ε and L2Ls & 1. Even though localizing the linearized equations by means
of Littlewood-Paley operators allows to get essentially optimal estimates for the
linearized equations of (1.6), it is not enough for our purpose, owing to the con-
vection term ~u · ∇b that may cause a loss of one derivative. The difficulty may be
overcome by paralinearizing the whole system, as explained below. After that, it is
easy to prove global in time estimates for the solutions to (1.6) just by combining
the estimates for the paralinearized system, and standard product laws in Besov
spaces to handle the other nonlinear terms.

5.1.1. Linear estimates. Performing the change of variables (4.1) reduces the study
to that of the linear system (4.4).

Low frequencies estimates. Using (4.28), the comment that follows, (4.39) and the
fact that |(̂b, d̂, ĵ0, ĵ1)| ≈ |(b̂, d̂, ĵ0, ĵ1)|, we get for the solution (̂b, d̂, ĵ0, ĵ1) to (4.7),

|(̂b, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|(̂b, d̂, ĵ0, ĵ1)| dτ +

∫ t

0
|̂j0| dτ +M

∫ t

0
|̂j1| dτ

6 C|(̂b, d̂, ĵ0, ĵ1)(0)| for all 0 6 ρ 6 C1, (5.2)
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with1 ĵ0 := ĵ0 −
√
n b̂−

√
n ε

L̃
ρd̂ and ĵ1 := ĵ1 − ρ

√
n L̃M

ĵ0 + ρ̂b

L̃LsM
·

Middle frequencies estimates. If L̃2Ls ≈ 1 then using (4.53), and the definition of
ζ̂1 versus that of ĵ1, we get

|(ρb̂, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|(d̂, ĵ0)| dτ + ρ

∫ t

0
|̂b| dτ +M

∫ t

0
|̂j1| dτ

6 C|(ρb̂, d̂, ĵ0, ĵ1)(0)| for all C1 6 ρ 6 cL̃M. (5.3)

If L̃2Ls → +∞ then (4.46) and (4.47) ensure that

|(ρb̂, d̂, ρĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|d̂| dτ + ρ

∫ t

0
|(̂b, ĵ0)| dτ +M

∫ t

0
|̂j1| dτ

6 C|(ρb̂, d̂, ρĵ0, ĵ1)(0)| for all
√

1 + n−1 6 ρ 6 εν
√
M, (5.4)

and, according to (4.53), if C1εν
√
M 6 ρ 6 cενM,

|(ρb̂, d̂, (1+ ε2νM
ρ )ĵ0, ĵ1)(t)|+

∫ t

0
|ρb̂| dτ + ρ2

∫ t

0
|d̂| dτ

+ (1+ ρ
ε2νM )

∫ t

0
|ρĵ0| dτ +M

∫ t

0
|̂j1| dτ . |(ρb̂, d̂, (1+ ε2νM

ρ )ĵ0, ĵ1)(0)|, (5.5)

Hence

|(ρb̂, d̂,max(1,min(ρ, ρ−1ε2νM))ĵ0, ĵ1)(t)|+ ρ

∫ t

0
|(̂b,min(1, ρ2

ε2νM )ĵ0)| dτ

+ ρ2
∫ t

0
|d̂| dτ +M

∫ t

0
|̂j1| dτ

6 C|(ρb̂, d̂,max(1,min(ρ, ρ−1ε2νM))ĵ0, ĵ1)(0)|. (5.6)

High frequencies estimates. Using (4.69), we have for ρ > cL̃M,

|(ρb̂, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|d̂| dτ + ρ

∫ t

0
|̂b| dτ +M

∫ t

0
|(ĵ0, ĵ1)| dτ

6 C|(ρb̂, d̂, ĵ0, ĵ1)(0)|. (5.7)

Optimal estimates in Besov spaces. For notational simplicity, we shall slightly abu-
sively change c and C1 to 1 in all the following computations.

If L̃2Ls ≈ 1 then localizing (4.4) with nonzero source terms f and ~g according to
Littlewood-Paley operator ∆̇k, using (4.5) and following the computations leading
to (5.2), (5.3) and (5.7) (combined with Fourier-Plancherel theorem) we end up for

1Note that the last term of j0 given by (4.22) is negligible for ρ . 1 and may thus be omitted.
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all s ∈ R with2

‖(~u, j0,~j1)(t)‖Ḃs2,1 + ‖b(t)‖`,1
Ḃs2,1

+ ‖b(t)‖h,1
Ḃs+1

2,1
+
∫ t

0
‖~u‖Ḃs+2

2,1
dτ

+
∫ t

0
‖(b, j0,~j1)‖`,1

Ḃs+2
2,1

dτ +
∫ t

0
‖b‖h,1

Ḃs+1
2,1

dτ +
∫ t

0
‖j0‖`,1Ḃs2,1 dτ

+M
∫ t

0
‖~j1‖`,L̃MḂs2,1

dτ +
∫ t

0
‖j0‖m,1,L̃MḂs+2

2,1
dτ +M

∫ t

0
‖(j0,~j1)‖h,L̃M

Ḃs2,1
dτ

. ‖(~u, j0,~j1)(0)‖Ḃs2,1 + ‖b(0)‖`,1
Ḃs2,1

+ ‖b(0)‖h,1
Ḃs+1

2,1

+
∫ t

0

(
‖f‖`,1

Ḃs2,1
+ ‖f‖h,1

Ḃs+1
2,1

+ ‖~g‖Ḃs2,1
)
dτ, (5.8)

with

j0 := j0 −
√
n b−

√
n
ε

L̃
div ~u and ~j1 := ~j1 + 1

√
n L̃M

∇j0 −
1

L̃LsM
∇b. (5.9)

According to our previous work in [7], the critical regularity framework corresponds
to s = n/2− 1. Therefore, the following quantities will play an important role

‖(b, ~u, j0,~j1)‖X := ‖b‖`,1
Ḃ
n
2 −1

2,1

+ ‖b‖h,1
Ḃ
n
2

2,1

+ ‖(~u, j0,~j1)‖
Ḃ
n
2 −1

2,1
,

and

‖(b, ~u, j0,~j1)‖Y := sup
t>0
‖(b, ~u, j0,~j1)(t)‖X +

∫
R+

(
‖b‖`,1

Ḃ
n
2 +1

2,1

+ ‖b‖h,1
Ḃ
n
2

2,1

+ ‖~u‖
Ḃ
n
2 +1

2,1

)
dτ

+
∫
R+

(
M‖~j1‖`,ενM

Ḃ
n
2 −1

2,1

+ ‖j0‖`,1
Ḃ
n
2 −1

2,1

+ ‖j0‖m,1,ενM
Ḃ
n
2 +1

2,1

+M‖(j0,~j1)‖h,ενM
Ḃ
n
2 −1

2,1

)
dτ.

We denote by X and Y the corresponding functional spaces (where time continu-
ity is imposed rather than just boundedness) and agree that Y (t) stands for the
restriction of Y to the interval [0, t].

In the case ε2Ls → +∞, we have to change slightly the definition of the norms
‖ · ‖X and ‖ · ‖Y as the middle frequencies obey (5.6). Consequently, we set

‖(b, ~u, j0,~j1)‖X∞ := ‖b‖`,1
Ḃ
n
2 −1

2,1

+ ‖b‖h,1
Ḃ
n
2

2,1

+ ‖(~u,~j1)‖
Ḃ
n
2 −1

2,1

+‖j0‖`,1
Ḃ
n
2 −1

2,1

+ ‖j0‖h,ενM
Ḃ
n
2 −1

2,1

,+
∑

162k6εM

2k n2 max(1, 2k,min(2−kε2νM))‖∆̇kj0‖L2

and

‖(b, ~u, j0,~j1)‖Y∞ := sup
t>0
‖(b, ~u, j0,~j1)(t)‖X∞+

∫
R+

(
‖b‖`,1

Ḃ
n
2 +1

2,1

+‖b‖h,1
Ḃ
n
2

2,1

+‖~u‖
Ḃ
n
2 +1

2,1

)
dτ

+
∫
R+

(
M‖~j1‖`,ενM

Ḃ
n
2 −1

2,1

+ ‖j0‖`,1
Ḃ
n
2 −1

2,1

+M‖(j0,~j1)‖h,ενM
Ḃ
n
2 −1

2,1

)
dτ

+
∫
R+

∑
162k6εM

2k n2 min(1, 22kε−2ν−1M−1)‖∆̇kj0‖L2 dτ.

2Further explanations on the method will be supplied to the reader in the next paragraph.
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To prove global estimates for the nonlinear system (1.6), the natural next step
would be to take advantage of (5.8) with s = n/2−1 and all the nonlinear terms in
the r.h.s. Unfortunately, this does not work for the convection term ~u · ∇b causes
a loss of one derivative (indeed, if b is in Ḃ

n
2
2,1 then ~u · ∇b cannot be smoother than

Ḃ
n
2−1
2,1 ). A nowadays standard way to overcome the difficulty is to paralinearize

(1.6), that is to add to (4.4) the principal parts of the convection terms. This is
the aim of the next paragraph.

5.1.2. The paralinearized system. Before introducing the paralinearized system as-
sociated to (1.6), let us shortly recall the definition of the paraproduct, according to
the pioneering paper [2] by J.-M. Bony. The (homogeneous) paraproduct between
two tempered distributions U and V satisfying (3.1) is given by

TUV :=
∑
k

Ṡk−1U∆̇kV with Ṡk−1 := χ(2k−1D).

We also introduce

T ′V U :=
∑
k

Ṡk+2V ∆̇kU,

and, observe that, at least formally

UV = TUV + T ′V U.

To some extent, if U is smooth enough then TUV may be seen as the principal part
of the product UV. This motivates our considering the following system

∂tb+ T~v · ∇b+ div ~u = F,

∂t~u+ T~v · ∇~u− Ã~u+∇b− L̃Mn ~j1 = ~G,

∂tj0 + 1
ε
√
n

div~j1 + L̃
ε (j0 −

√
n b) = 0,

∂t~j1 + 1
ε
√
n
∇j0 + L̃M

ε
~j1 = ~0,

(5.10)

where A = µ∆ + (λ + µ)∇div , M := 1 + Ls, ~v and ~G are given time dependent
vector-fields, and F is a given real valued function.

Proposition 5.1. — For any smooth solution (b, ~u, j0,~j1) we have the following
a priori estimate if 0 < m < +∞

‖(b, ~u, j0,~j1)‖Y (t) 6 C

(
‖(b, ~u, j0,~j1)(0)‖X +

∫ t

0
‖∇~v‖L∞‖(b, ~u, j0,~j1)‖X dτ

+
∫ t

0
‖(∇F, ~G)‖h,1

Ḃ
n
2 −1

2,1

dτ +
∫ t

0
‖(F − T~v · ∇b, ~G− T~v · ∇~u)‖`,1

Ḃ
n
2 −1

2,1

dτ

)
·

A similar inequality holds if m = +∞, with X∞(t) and Y∞(t) instead of X(t) and
Y (t).
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Proof. — Localizing System (5.10) by means of ∆̇k yields

∂t∆̇kb+ ∆̇k(T~v · ∇b) + div ∆̇k~u = ∆̇kF,

∂t∆̇k~u+ ∆̇k(T~v · ∇~u)− Ã∆̇k~u+∇∆̇kb− L̃Mn ∆̇k
~j1 = ∆̇k

~G,

∂t∆̇kj0 + 1
ε
√
n
div ∆̇k

~j1 + L̃
ε (∆̇kj0 −

√
n∆̇kb) = 0,

∂t∆̇k
~j1 + 1

ε
√
n
∇∆̇kj0 + L̃M

ε ∆̇k
~j1 = ~0.

(5.11)

The important point is that in order to obtain all the estimates corresponding to
ρ > C1, one only has to resort to combinations between fluid unknowns on one
side, and radiative unknowns, on the other side. This will enable us to use exactly
the same energy method for (5.10) as for (4.4), in the middle and high frequency
regimes, without introducing unwanted parts of convection terms in the inequalities.
1. Low frequencies: 2k 6 C1.

Including the para-convection terms in the source terms of (5.11) and repeating
the computations leading to (5.2), we get after taking L2 norms and using Fourier-
Plancherel theorem

‖∆̇k(b, ~u, j0,~j1)(t)‖L2 + 22k
∫ t

0
‖∆̇k(b, ~u)‖L2 dτ +

∫ t

0
‖∆̇kj0‖L2 dτ

+ νLs
∫ t

0
‖∆̇k

~j1‖L2 dτ . ‖∆̇k(b, ~u, j0,~j1)(0)‖L2

+
∫ t

0
‖∆̇k(F − T~u · ∇b)‖L2 dτ +

∫ t

0
‖∆̇k(~G− T~u · ∇~u)‖L2 dτ. (5.12)

2. Medium frequencies: C1 6 2k 6 cL̃Ls.
Keeping in mind the proof of (5.3), we see that it is suitable to introduce

~ζ1 := ~j1 + 1
√
n L̃M

∇j0.

Now, because we have{
∂t∆̇kb+ div ∆̇k~u = ∆̇kF,

∂t∆̇k~u− Ã∆̇k~u+∇∆̇kb = 1
n3/2∇∆̇kj0 + L̃M

n ∆̇k
~ζ1 + ∆̇k

~G,

we easily get by computing
1
2
d

dt

(
2‖(∆̇kb, ∆̇k~u)‖2L2 + ‖∆̇k∇b‖2L2 + 2(∆̇k∇b|∆̇k~u)L2

)
, (5.13)

and by using Lemma 4.1 in [7] to handle the para-convection terms, the following
inequality for all 2k > C1

‖(∆̇k∇b, ∆̇k~u)(t)‖L2 +22k
∫ t

0
‖∆̇k~u‖L2 dτ+

∫ t

0
‖∆̇k∇b‖L2 dτ . ‖(∆̇k∇b, ∆̇k~u)(0)‖L2

+
∫ t

0
‖(∆̇k∇F, ∆̇k

~G)‖L2 dτ +
∫ t

0
‖∇∆̇kj0‖L2 dτ + L̃M

∫ t

0
‖∇∆̇k

~j1‖L2 dτ

+
∑
k′∼k

∫ t

0
‖∇~v‖L∞‖(∆̇k′∇b, ∆̇k′~u)‖L2 dτ.
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Then looking at the equations satisfied by ∆̇kj0 and ∆̇k
~ζ1 (in the spirit of (4.40)),

we derive inequalities similar to (4.49) and (4.50) for ‖∆̇kj0‖L2 and ‖∆̇k
~ζ1‖L2 , and

thus following the computations leading to (4.53), we end up in the case m < +∞
with

‖∆̇k(∇b, ~u,∇j0,~j1)(t)‖L2 + 22k
∫ t

0
‖(∆̇k~u, ∆̇kj0)‖L2 dτ +

∫ t

0
‖∆̇k∇b‖L2 dτ

+ νLs
∫ t

0
‖∆̇k

~ζ1‖L2 dτ . ‖∆̇k(∇b, ~u,∇j0,~j1)(0)‖L2 +
∫ t

0
‖∆̇k(∇F, ~G)‖L2 dτ

+
∑
k′∼k

∫ t

0
‖∇~v‖L∞‖∆̇k′(∇b, ~u)‖L2 dτ. (5.14)

Comparing the definition of ~ζ1 and~j1, we see that one may replace ~ζ1 with~j1 above,
if C1 6 2k 6 cL̃Ls.

The obvious modifications to be done if m = +∞ are left to the reader.
3. High frequencies: 2k > cL̃Ls.

Again, we compute (5.13) to bound the fluid unknowns. In addition, to handle
radiative unknowns, we compute for some small enough κ (see the proof of (4.65))
the following quantity

1
2
d

dt

(
‖∆̇kj0‖2L2 + ‖∆̇k

~j1‖2L2 − κL̃M 2−2k(∆̇kj0|∆̇kdiv~j1)L2
)
.

Combining the computations leading to (5.7) with Fourier-Plancherel theorem and
Lemma 4.1 in [7] eventually yields

‖∆̇k(∇b, ~u, j0,~j1)(t)‖L2 + 22k
∫ t

0
‖∆̇k~u‖L2 dτ + 2k

∫ t

0
‖∆̇kb‖L2 dτ

+νLs
∫ t

0
‖(∆̇kj0, ∆̇k

~j1)‖L2 dτ . ‖∆̇k(∇b, ~u, j0,~j1)(0)‖L2

+
∫ t

0
‖∆̇k(∇F, ~G)‖L2 dτ +

∑
k′∼k

∫ t

0
‖∇~v‖L∞‖∆̇k′(∇b, ~u)‖L2 dτ.

Finally, multiplying (5.12), (5.14) and the above inequality by 2k(n2−1) and summing
up over k completes the proof of the proposition. �

5.1.3. A global existence result. According to the computations of the previous
paragraph and to the change of variables (4.1), it is suitable to introduce the
following norms for getting global solutions with uniform estimates in the case3

m < +∞

‖(b, ~u, j0,~j1)‖Xνε := ‖b‖`,ν
−1

Ḃ
n
2 −1

2,1

+ ν‖b‖h,ν
−1

Ḃ
n
2

2,1

+ ‖(~u, j0,~j1)‖
Ḃ
n
2 −1

2,1
,

3Writing out the corresponding definition if m = +∞ is left to the reader.
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and

‖(b, ~u, j0,~j1)‖Y νε := sup
t>0
‖(b, ~u, j0,~j1)(t)‖Xν

+
∫
R+

(
ν‖b‖`,ν

−1

Ḃ
n
2 +1

2,1

+ ‖b‖h,ν
−1

Ḃ
n
2

2,1

+ ν‖~u‖
Ḃ
n
2 +1

2,1

)
dτ

+
∫
R+

(
ν−1M‖~j1‖`,εM

Ḃ
n
2 −1

2,1

+ν−1‖j0‖`,ν
−1

Ḃ
n
2 −1

2,1

+ν‖j0‖m,ν
−1,εM

Ḃ
n
2 +1

2,1

+ν−1M‖(j0,~j1)‖h,εM
Ḃ
n
2 −1

2,1

)
dτ,

with j0 := j0 − b− ε
Ldiv ~u and~j1 := j1 + 1

LM∇j0 −
1

LLsM∇b.

Of course, if (b′, ~u′, j′0,~j′1) and (b, ~u, j0,~j1) are interrelated through (4.1) and νL
is used for (b′, ~u′, j′0,~j′1) instead of L, then we have

‖(b, ~u, j0,~j1)‖Xνε = ν‖(b′, ~u′, j′0,~j′1)‖X1
ε

and ‖(b, ~u, j0,~j1)‖Y νε = ν‖(b′, ~u′, j′0,~j′1)‖Y 1
ε
.

Theorem 5.2. — Assume that L ≈ 1, that lim inf ε−1nνL > 1 and that L2Ls ≈
1. There exists a positive constant η depending only on µ/ν, n and on the pressure
law such that if ε is small enough and the data (bε0, ~uε0, jε0,0,~jε1,0) satisfy

‖(bε0, ~uε0, jε0,0,~jε1,0)‖Xνε 6 ην, (5.15)

then System (1.6) admits a unique global solution (bε, ~uε, jε0 ,~jε1) in Y νε . In addition,
we have

‖(bε, ~uε, jε0 ,~jε1)‖Y νε 6 C‖(b
ε
0, ~u

ε
0, j

ε
0,0,~j

ε
1,0)‖Xνε . (5.16)

A similar result holds true if L2Ls → +∞.

Proof. — Performing the change of variables proposed in (4.1) reduces the proof
to the case ν = 1 (changing L into L̃ := νL). Hence we consider a smooth enough
solution to (4.2), and show that one may close the estimates globally4 under As-
sumption (5.15).

Let us set U0 := ‖(bε0, ~uε0, jε0,0,~jε1,0)‖X1
ε
and U(t) := ‖(bε, ~uε, jε0 ,~jε1)‖Y 1

ε (t). In what
follows, we drop exponents ε for notational simplicity. Finally, to shorten the
presentation, we just treat the case where L2Ls ≈ 1.

Now applying Proposition 5.1 with ~v = ~u, F := −T ′∇b · ~u− k1(b)div ~u and

~G := −T ′∇~u · ~u+ k2(b)Ã~u− k3(b)∇b+ L̃M
n

k4(b)~j1,

yields for all t > 0

U(t) 6 C
(
U0 +

∫ t

0
‖∇~u‖L∞‖(b, ~u, j0,~j1)‖X1

ε
dτ

+
∫ t

0

(
‖F‖

Ḃ
n
2

2,1
+ ‖F − T~u · ∇b‖

Ḃ
n
2 −1

2,1
+ ‖~G‖

Ḃ
n
2 −1

2,1
+ ‖T~u · ∇~u‖

Ḃ
n
2 −1

2,1

)
dτ

)
· (5.17)

4Existence follows from spectral truncation as in e.g. [1], Chap. 10, and is thus omitted. As
for uniqueness, we refer to [7].
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Using standard continuity results for the paraproduct and remainder, and compo-
sition estimates leads to

‖T ′∇b · ~u‖Ḃ
n
2

2,1
6 C‖∇b‖

Ḃ
n
2 −1

2,1
‖~u‖

Ḃ
n
2 +1

2,1
,

‖k1(b)div ~u‖
Ḃ
n
2

2,1
6 C‖b‖

Ḃ
n
2

2,1
‖div ~u‖

Ḃ
n
2

2,1
.

Hence we have ∫ t

0
‖F‖

Ḃ
n
2

2,1
dτ 6 CU2(t). (5.18)

We also have
‖T~u · ∇~u‖

Ḃ
n
2 −1

2,1
6 C‖~u‖

Ḃ
n
2 −1

2,1
‖∇~u‖

Ḃ
n
2

2,1
,

‖T ′∇~u · ~u‖Ḃ
n
2

2,1
6 C‖∇~u‖

Ḃ
n
2

2,1
‖~u‖

Ḃ
n
2 −1

2,1
,

‖k2(b)Ã~u‖
Ḃ
n
2 −1

2,1
6 C‖b‖

Ḃ
n
2

2,1
‖∇2~u‖

Ḃ
n
2 −1

2,1
,

‖k3(b)∇b‖
Ḃ
n
2 −1

2,1
6 C‖b‖

Ḃ
n
2

2,1
‖∇b‖

Ḃ
n
2 −1

2,1
.

Bounding L̃Mk4(b)~j1 is slightly more involved as it is not true that the low fre-
quencies of ~j1 are bounded in L1(R+; Ḃ

n
2−1
2,1 ). However, one may write that

L̃M~j1 = L̃M~jh,L̃M1 + L̃M~j`,L̃M1 + L−1
s ∇b`,L̃M − n−1/2∇j`,L̃M0 .

Therefore

L̃M‖k4(b)~j1‖
L1
t (Ḃ

n
2 −1

2,1 )
. L̃M

(
‖~j1‖h,L̃M

L1
t (Ḃ

n
2 −1

2,1 )
+ ‖~j1‖`,L̃M

L1
t (Ḃ

n
2 −1

2,1 )

)
‖b‖

L∞t (Ḃ
n
2

2,1)

+‖b‖
L2
t (Ḃ

n
2

2,1)

(
L−1
s ‖∇b‖

`,L̃M

L2
t (Ḃ

n
2 −1

2,1 )
+ ‖∇j0‖`,L̃M

L2
t (Ḃ

n
2 −1

2,1 )

)
.

Hence ∫ t

0

(
‖T~u · ∇~u‖

Ḃ
n
2 −1

2,1
+ ‖~G‖

Ḃ
n
2 −1

2,1

)
dτ 6 CU2(t). (5.19)

Finally
‖~u · ∇b‖

Ḃ
n
2 −1

2,1
6C‖~u‖

Ḃ
n
2

2,1
‖∇b‖

Ḃ
n
2 −1

2,1
,

‖k1(b)div ~u‖
Ḃ
n
2 −1

2,1
6C‖b‖

Ḃ
n
2

2,1
‖div ~u‖

Ḃ
n
2 −1

2,1
.

Therefore, by Cauchy-Schwarz inequality∫ t

0
‖F − T~u · ∇b‖

Ḃ
n
2 −1

2,1
dτ 6 CU2(t). (5.20)

Inserting (5.18), (5.19), (5.20) in (5.17) and remembering that Ḃ
n
2
2,1 ↪→ L∞ (to

ensure that, say, |b| 6 1/2 if ‖b‖
Ḃ
n
2

2,1
is small enough), we end up with

U(t) 6 C(U0 + U2(t)) for all t > 0.
By a standard bootstrap argument, we easily deduce that

U(t) 6 2CU0 for all t > 0,
provided the data have been chosen so that 4C2U0 6 1. �
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5.2. Study of the limit system. In this paragraph, we prove the existence and
uniqueness of strong (small) solutions with critical regularity for Systems (2.5) and
(2.6). We shall give a common proof that works for both systems.

Before giving the global existence statement, let us introduce the solution space
• If m ∈ (0,+∞) (that is for System (2.5)) then Initial data will be taken in
the space X ν which is the set of triplets (b, ~u, j0) satisfying

‖(b, ~u, j0)‖Xν := ‖b‖`,ν
−1

Ḃ
n
2 −1

2,1

+ν‖b‖h,ν
−1

Ḃ
n
2

2,1

+‖~u‖
Ḃ
n
2 −1

2,1
+ν‖j0‖`,ν

−1

Ḃ
n
2

2,1

+ν−1‖j0‖h,ν
−1

Ḃ
n
2 −2

2,1

<∞,

and the solution space Yν will be the set of triplets (b, ~u, j0) in Cb(R+;X ν)
satisfying

‖(b, ~u, j0)‖Yν := sup
t>0
‖(b, ~u, j0)(t)‖Xν

+
∫
R+

(
‖j0 − b‖

Ḃ
n
2

2,1
+ ν‖b‖`,ν

−1

Ḃ
n
2+1

2,1

+ ν‖~u‖
Ḃ
n
2+1

2,1
+ ‖j0‖h,ν

−1

B
n
2

2,1

)
dτ.

• If m = +∞ (that is for System (2.6)), Initial data will be taken in the space
X ν∞ which is the set of triplets (b, ~u, j0) satisfying

‖(b, ~u, j0)‖Xν∞ := ‖b‖`,ν
−1

Ḃ
n
2 −1

2,1

+ ν‖b‖h,ν
−1

Ḃ
n
2

2,1

+ ‖~u‖
Ḃ
n
2 −1

2,1
+ ν‖j0‖

Ḃ
n
2

2,1
<∞,

and the solution space Yν∞ will be the set of triplets (b, ~u, j0) in Cb(R+;X ν∞)
satisfying

‖(b, ~u, j0)‖Yν∞ := sup
t>0
‖(b, ~u, j0)(t)‖Xν∞

+
∫
R+

(
‖j0 − b‖

Ḃ
n
2

2,1
+ ν‖b‖`,ν

−1

Ḃ
n
2 +1

2,1

+ ν‖~u‖
Ḃ
n
2 +1

2,1
+ ‖j0‖h,ν

−1

B
n
2

2,1

)
dτ <∞.

Theorem 5.3. — There exist two positive constants c and C so that if
‖(b0, ~u0, j0,0)‖Xν 6 cν (case m < +∞), (5.21)

or ‖(b0, ~u0, j0,0)‖Xν∞ 6 cν (case m = +∞), (5.22)
then System (2.5) (resp. (2.6)) admits a unique solution in the space Yν (resp.
Yν∞) satisfying in addition,

‖(b, ~u, j0)‖Yν 6 C‖(b0, ~u0, j0,0)‖Xν if m < +∞, (5.23)
‖(b, ~u, j0)‖Yν∞ 6 C‖(b0, ~u0, j0,0)‖Xν∞ if m = +∞· (5.24)

Proof. — Set κ̃ := κ/n and m̃ := mn. As usual, it is enough to treat the case
ν = 1 as performing the change of unknowns

(b, u, j0)(t, x) = (̃b, ũ, j̃0)(ν−1t, ν−1x),

gives Systems (2.5) or (2.6) for (̃b, ũ, j̃0) with ν = 1 and Ã := A/ν and, obviously

‖(b, u, j0)(t)‖Xν = ν‖(̃b, ũ, j̃0)(ν−1t)‖X 1 and ‖(b, u, j0)‖Yν = ν‖(̃b, ũ, j̃0)‖Y1 .

Let us start with the study of the linearized equations with no source term, namely
∂tb+ div ~u = 0,

∂t~u− Ã~u+∇b+ n−1∇j0 = ~0,
∂tj0 + κ̃(j0 − m̃−1∆j0 − b) = 0.

(5.25)
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The divergence-free part P~u of the velocity satisfies
∂tP~u− µ∆P~u = ~0,

while the coupling between b, d := Λ−1div ~u and j0 is described by
∂tb+ Λd = 0,
∂td−∆d− Λb− n−1Λj0 = 0,
∂tj0 + κ̃(j0 − m̃−1∆j0 − b) = 0.

(5.26)

Note that the stability of a similar system has already been established in the
previous section for κ > 1 (or, equivalently, κ̃ > 1/n).

Linear estimates for low frequencies. We introduce ζ0 := j0− b− κ̃−1Λd and notice
that

∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2(1− 1
κ̃n

)
d̂−

(
1 + 1

n

)
ρb̂ = 1

nρζ̂0,

∂tζ̂0 +
(
κ̃+ ( κ̃

m̃
+ 1

κ̃n
)ρ2)ζ̂0 = −

((
1 + 1

n

) 1
κ̃

+ κ̃

m̃

)
ρ2b̂+

((
1− 1

κ̃n

) 1
κ̃
− 1

m̃

)
ρ3d̂.

On one hand, because κ̃n > 1, the method described in the appendix (see in
particular (B.7)) allows to write that, omitting the dependence with respect to κ̃

|(̂b, d̂)(t)|+ ρ2
∫ t

0
|(̂b, d̂)| dτ . |(̂b, d̂)(0)|+ ρ

∫ t

0
|ζ̂0| dτ.

On the other hand, the last equation directly gives

|ζ̂0(t)|+
(
κ̃+ ( κ̃

m̃
+ 1
κ̃n

)ρ2
)∫ t

0
|ζ̂0| dτ 6 |ζ̂0(0)|+ C

(
1 + 1

m

)
ρ2
∫ t

0
|(̂b, ρd̂)| dτ.

Hence plugging the second inequality in the first one

|(̂b, d̂)(t)|+ ρ2
∫ t

0
|(̂b, d̂)| dτ . |(̂b, d̂)(0)|

+ ρ

1+(1+m−1)ρ2

(
|ζ̂0(0)|+ (1+m−1)ρ2

∫ t

0
|(̂b, ρd̂)| dτ

)
·

It is clear that the last term may be absorbed by the integral of the l.h.s. if
ρ� m

1+m · Hence we eventually get if ρ 6
(

m
1+m

)
ρ` for some small enough ρ` > 0,

|(̂b, d̂, ρζ̂0)(t)|+ ρ2
∫ t

0
|(̂b, d̂)| dτ +

∫ t

0
|ρζ̂0| dτ . |(̂b, d̂, ρζ̂0)(0)|. (5.27)

Linear estimates for high frequencies. We set δ := d− Λ−1b and notice that
∂tb̂+ b̂ = −ρδ̂,

∂tδ̂ + (ρ2 − 1)δ̂ = ρ−1b̂+ n−1ρĵ0,

∂tĵ0 + κ̃
(
1 + ρ2

m̃

)
ĵ0 = κ̃b̂.

Therefore

|δ̂(t)|+ (ρ2 − 1)
∫ t

0
|δ̂| dτ 6 |δ̂(0)|+ ρ−1

∫ t

0
|̂b| dτ + 1

n

∫ t

0
ρ|̂j0| dτ.
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At the same time

|̂b(t)|+
∫ t

0
|̂b| dτ 6 |̂b(0)|+ ρ

∫ t

0
|δ̂| dτ,

|̂j0(t)|+ κ̃
(

1 + ρ2

m̃

)∫ t

0
|̂j0| dτ 6 |̂j0(0)|+ κ̃

∫ t

0
|̂b| dτ.

Hence

|δ̂(t)|+ (ρ2 − 1)
∫ t

0
|δ̂| dτ 6 |δ̂(0)|+

(1
ρ

+ ρ

n

)
|̂b(0)|

+
( n−1κ̃−1

1+m̃−1ρ2

)
ρ|̂j0(0)|+

(
1 + ρ2

n(1 + m̃−1ρ2)

)∫ t

0
|δ̂| dτ.

Therefore there exists a constant ρh depending only on m and n (with n > 2 if
m = +∞) such that for ρ > ρh, we have

|(ρb̂, δ̂)(t)|+ min(ρ,mρ−1)|̂j0(t)|+ ρ

∫ t

0
|(̂b, ĵ0)| dτ + ρ2

∫ t

0
|δ̂| dτ . |(ρb̂, δ̂, ρĵ0)(0)|.

(5.28)
Of course, one may replace δ with d in (5.28).

Linear estimates for medium frequencies. The stability argument used just below
(4.37) allows to write that there exist two constants c and C depending continuously
on 1/m, such that if ρ ∈ [ m

m+1ρ`, ρh] then

|(̂b, d̂, ĵ0)(t)| 6 Ce−ct|(̂b, d̂, ĵ0)(0)|. (5.29)

Estimates for the paralinearized system. The previous steps allow us to get handy
estimates for the following paralinearized version of System (2.6)

∂tb+ T~v · ∇b+ div ~u = F,

∂t~u+ T~v · ∇~u− Ã~u+∇b+ n−1∇j0 = ~G,

∂tj0 + κ̃(j0 − m̃−1∆j0 − b) = 0.
(5.30)

More precisely, following the steps leading to (5.27), (5.28) and (5.29), introducing
ζ0 := j0 − b− κ̃−1div ~u, and arguing as in Subsection 5.1.2 we end up with5

‖j0(t)‖`,1
Ḃ
n
2

2,1

+ ‖(b, ~u)(t)‖`,1
Ḃ
n
2 −1

2,1

+
∫ t

0

(
‖j0 − b‖`,1

Ḃ
n
2

2,1

+ ‖(b, ~u)‖`,1
Ḃ
n
2 +1

2,1

)
dτ

. ‖j0(0)‖`,1
Ḃ
n
2

2,1

+‖(b, ~u)(0)‖`,1
Ḃ
n
2 −1

2,1

+
∫ t

0

(
‖F−T~v ·∇b‖`,1

Ḃ
n
2 −1

2,1

+‖~G−T~v ·∇~u‖`,1
Ḃ
n
2 −1

2,1

)
dτ.

(5.31)

5Here we do not track the dependency with respect to m.
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For high frequencies, we get, in the case m = +∞

‖(b, j0)(t)‖h,1
Ḃ
n
2

2,1

+ ‖~u(t)‖h,1
Ḃ
n
2 −1

2,1

+
∫ t

0

(
‖(b, j0)‖h,1

Ḃ
n
2

2,1

+ ‖~u‖h,1
Ḃ
n
2 +1

2,1

)
dτ

. ‖(b, j0)(0)‖h,1
Ḃ
n
2

2,1

+ ‖~u(0)‖h,1
Ḃ
n
2 −1

2,1

+
∫ t

0

(
‖F‖h,1

Ḃ
n
2

2,1

+ ‖~G‖h,1
Ḃ
n
2 −1

2,1

)
dτ

+
∫ t

0
‖∇~v‖L∞

(
‖(b, j0)‖

Ḃ
n
2

2,1
+ ‖~u‖

Ḃ
n
2 −1

2,1

)
dτ, (5.32)

and if 0 < m < +∞

‖b(t)‖h,1
Ḃ
n
2

2,1

+ ‖j0(t)‖h,1
Ḃ
n
2 −2

2,1

+ ‖~u(t)‖h,1
Ḃ
n
2 −1

2,1

+
∫ t

0

(
‖(b, j0)‖h,1

Ḃ
n
2

2,1

+ ‖~u‖h,1
Ḃ
n
2 +1

2,1

)
dτ

. ‖b(0)‖h,1
Ḃ
n
2

2,1

+ ‖j0(0)‖h,1
Ḃ
n
2 −2

2,1

+ ‖~u(0)‖h,1
Ḃ
n
2 −1

2,1

+
∫ t

0

(
‖F‖h,1

Ḃ
n
2

2,1

+ ‖~G‖h,1
Ḃ
n
2 −1

2,1

)
dτ

+
∫ t

0
‖∇~v‖L∞

(
‖b‖

Ḃ
n
2

2,1
+ ‖j0‖h

Ḃ
n
2 −2

2,1

+ ‖~u‖
Ḃ
n
2 −1

2,1

)
dτ. (5.33)

Proof of existence. We only establish global-in-time a priori bounds in the space
Y1 or Y1

∞ for the solutions to (2.5) or (2.6) with data satisfying (5.21) or (5.22).
Our proof is based on (5.31), (5.32) and (5.33) with ~v = ~u

F = −T ′∇b ·~v−k1(b)div ~u and ~G = −T ′∇~u ·~u+k2(b)Ã~u−k3(b)∇b−n−1k4(b)∇j0.

Bounding ‖F − T~v · ∇b‖`,1
Ḃ
n
2 −1

2,1

and ‖F‖h,1
Ḃ
n
2

2,1

relies on (5.18) and (5.20). As regards

~G, the computations that we did in the proof of Theorem 5.2 ensure that the first
three terms may be bounded as in (5.19). To handle the last term, k4(b)∇j0, in
the case6 m < +∞ we use the decomposition

k4(b)∇j0 = k4(b)∇b+ k4(b)∇(j0 − b).

The first term may be bounded quadratically exactly as k3(b)∇b. As for the last
term, we may write

‖k4(b)∇(j0 − b)‖
L1
t (Ḃ

n
2

2,1)
. ‖b‖

L∞t (Ḃ
n
2

2,1)
‖∇(j0 − b)‖

L1
t (Ḃ

n
2 −1

2,1 )
,

hence it is also bounded by C‖(b, ~u, j0)‖2Y1(t).

This enables to conclude that we do have for all t ∈ R+

‖(b, ~u, j0)‖Y1(t) 6 C
(
‖(b, ~u, j0)(0)‖X 1 + ‖(b, ~u, j0)‖2Y1(t)

)
.

This obviously yields (5.24) if (5.22) is fulfilled.

6The case m = +∞ does not require that decomposition.
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Proof of uniqueness. It works the same as for the standard barotropic Navier-Stokes
equations: we look at the system satisfied by the difference (δb, δ~u, δj0) between two
solutions (b1, ~u1, j1

0) and (b2, ~u2, j2
0) of (2.5), namely (denoting Ki = 1 + ki for

i = 1, 2, 3, 4)
∂tδb+ ~u2 · ∇δb = −δ~u · ∇b1 + (K1(b1)−K1(b2))div ~u2 −K1(b1)div δ~u,
∂tδ~u+ ~u2 ·∇δ~u+ δ~u·∇~u1 − (K2(b2)−K2(b1))A~u2 −K2(b1)Aδ~u+K3(b1)∇δb

+(K3(b2)−K3(b1))∇b2+n−1(K4(b2)−K4(b1))∇j1
0 + n−1K4(b2)∇δj0 = ~0,

∂tδj0 + κ̃
(
δj0 − δb− 1

m̃
∆δj0

)
= 0.

Now, exactly as for the barotropic Navier-Stokes equations, it is possible to bound
δb, δ~u and δj0 just resorting to basic estimates for the transport and heat equations.
However, the hyperbolic nature of the first equation forces us to estimate (δb, δ~u, δj0)
with one less derivative, namely in

L∞(0, T ; Ḃ
n
2−1
2,1 )×

(
L∞(0, T ; Ḃ

n
2−2
2,1 ) ∩ L1(0, T ; Ḃ

n
2
2,1)
)n × L1(0, T ; Ḃ

n
2−1
2,1 ).

In dimension n = 3 combining estimates for the transport and the heat equation
allows to get uniqueness on a small time interval, then on the whole R+ by induction.
In dimension n = 2, this is slightly more involved as some product laws do not work
correctly if estimating (δb, δ~u, δj0) in the above space (some regularity exponents
become too negative). Nevertheless this may be overcome by combining logarithmic
interpolation and Osgood lemma (see e.g. [6] for more details). This completes the
proof of the theorem. �

Remark 5.4. — If 0 < m < +∞ then one may alternately assume that j0 is in
Ḃ
n
2
2,1. Taking advantage of the parabolic smoothing given by the equation for j0, it

is not difficult to get a solution (b, ~u, j0) with

m̃

∫
R+

‖j0‖
Ḃ
n
2 +2

2,1
6 C

(
‖b0‖

Ḃ
n
2 −1

2,1
+ ν‖b0‖

Ḃ
n
2

2,1
+ ‖~u0‖

Ḃ
n
2 −1

2,1
+ ‖j0‖

Ḃ
n
2

2,1

)
·

5.3. Weak convergence. Here we justify the weak convergence of (1.6) to (2.5)
or (2.6) under the assumption that lim inf ε2Ls > 0 and that L tends to κε

nν for
some κ > 1.

Theorem 5.5. — Let the family of data (bε0, ~uε0, jε0,0,~jε1,0)0<ε<1 satisfy Condi-
tion (5.15). Assume in addition that

L2Lsν2 → m ∈ (0,+∞] and nνL
ε
→ κ ∈ (1,+∞). (5.34)

Then the global solution (bε, ~uε, jε0 ,~jε1) given by Theorem 5.2 satisfies

~jε1 → ~0 in L1(R+; Ḃ
n
2−1
2,1 + Ḃ

n
2
2,1),

and, if (bε0, ~uε0, jε0,0) ⇀ (b0, ~u0, j0,0) then (bε, ~uε, jε0) converges weakly to the unique
solution (b, ~u, j0) of (2.5) supplemented with initial data (b0, ~u0, j0,0).

Proof. — From (5.16) we gather that

(~jε1)`,LM = O(M−1) and (~jε1)h,LM = O(M−1) in L1(R+; Ḃ
n
2−1
2,1 ).
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Therefore, taking advantage of the boundedness of the low frequencies of ∇bε and
∇jε0 in L1(R+; Ḃ

n
2
2,1), and of the fact that

~jε1 =~jε1 −
1
LM

∇jε0 + 1
LLsM

∇bε,

we get
~jε1 = O(ε) in L1(R+; Ḃ

n
2−1
2,1 + Ḃ

n
2
2,1). (5.35)

Next, we observe that (5.16) implies that (bε) and (~uε) are bounded in the spaces
L∞(R+; Ḃ

n
2−1
2,1 ∩ Ḃ

n
2
2,1)∩L1(R+; Ḃ

n
2 +1
2,1 + Ḃ

n
2
2,1) and L∞(R+; Ḃ

n
2−1
2,1 )∩L1(R+; Ḃ

n
2 +1
2,1 ),

respectively. Note that this implies that ~uε is bounded in L2(R+; Ḃ
n
2
2,1). Because

∂tb
ε = −~uε · ∇bε − k1(bε)div ~uε,

and the product maps Ḃ
n
2−1
2,1 × Ḃ

n
2
2,1 in Ḃ

n
2−1
2,1 , we thus get in addition that ∂tbε is

bounded in L2(R+; Ḃ
n
2−1
2,1 ), and thus (bε) is bounded in C 1

2 (R+; Ḃ
n
2−1
2,1 ). Interpolat-

ing with the bound in Cb(R+; Ḃ
n
2
2,1), we thus have (bε) bounded in C α2 (R+; Ḃ

n
2−α
2,1 ) for

all α ∈ [0, 1]. Then combining locally compact Besov embeddings and Ascoli theo-
rem allows to conclude that there exists b in L∞(R+; Ḃ

n
2−1
2,1 ∩Ḃ

n
2
2,1)∩L1(R+; Ḃ

n
2 +1
2,1 +

Ḃ
n
2
2,1) and a sequence (εk)k∈N going to 0 so that, for all φ ∈ S and all α ∈ (0, 1]

φ bεk −→ φ b in L∞loc(R+; Ḃ
n
2−α
2,1 ). (5.36)

From (5.16), we readily get for some sequence (εk)k∈N tending to 0

~uεk ⇀ ~u in L∞(R+; Ḃ
n
2−1
2,1 ) ∩ L1(R+; Ḃ

n
2 +1
2,1 ) weak *, (5.37)

which, combined with (5.36) is clearly enough to pass to the limit in the mass
equation. Next, we see that (5.16) implies that (jε0) is bounded in L∞(R+; Ḃ

n
2−1
2,1 ).

Hence there exists j0 ∈ L∞(R+; Ḃ
n
2−1
2,1 ) and a sequence (εk)k∈N going to 0 so that

jεk0 ⇀ j0 in L∞(R+; Ḃ
n
2−1
2,1 ) weak *.

Because
1
ε

div~jε1 = −L
ε

(
1

L2(1 + Ls)

)
∆jε0 −

1
L(1 + Ls)

∂tdiv~jε1 , (5.38)

and (5.35) implies that ∂t~jε1 → 0 in the sense of distributions, we deduce that

1
ε

div~jε1 → −
κν

nm
∆j0 in S ′.

Note that the right-hand side is 0 if m = +∞. Therefore (b, j0) satisfies the third
line of (2.5) (case m < +∞) or (2.6) (case m = +∞).

Let us finally pass to the limit in the second equation of (1.6). The main difficulty
is that, owing to the radiative term which is only bounded in a L1-in-time type space
(namely L1(R+; Ḃ

n
2−1
2,1 ) or so), one cannot take advantage of some suitable bound
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of ∂t~uε so as to glean some equicontinuity and then resort to Ascoli theorem. To
overcome this, we use the fact that, owing to (5.38)

∂t

(
~uε + ε

n
(1 + k4(bε))~jε1

)
= −~uε · ∇~uε + (1 + k2(bε))A~uε

−(1 + k3(bε))∇bε − 1
n

(1 + k4(bε))∇jε0 + ε

n
k′4(bε)∂tbε~jε1 .

Now, because (~uε) is bounded in the space L∞(R+; Ḃ
n
2−1
2,1 ) ∩ L2(R+; Ḃ

n
2
2,1), (jε0) is

bounded in L∞(R+; Ḃ
n
2−1
2,1 ) and (bε) is bounded in (L2 ∩ L∞)(R+; Ḃ

n
2
2,1), product

laws in Besov spaces ensure that the first four terms of the r.h.s. are bounded in
L2(R+; Ḃ

n
2−2
2,1 ) (only in L2(R+; Ḃ

n
2−2
2,∞ ) if n = 2). The same property holds true

for the last term for (∂tbε) is bounded in L2(R+; Ḃ
n
2−1
2,1 ) and (~jε1) is bounded in

L∞(R+; Ḃ
n
2−1
2,1 ). Using locally compact Besov embedding and Ascoli theorem, one

can now conclude that there exists some ~v in L∞(R+; Ḃ
n
2−1
2,1 ) so that for all φ in S

and α ∈ (0, 1), we have, up to extraction

φ
(
~uε + ε

n
(1 + k4(bε))~jε1

)
−→ φ~v in L∞loc(R+; Ḃ

n
2−1−α
2,1 ).

Of course, combining with (5.35), we discover that ~v = ~u. Hence we also have

φ~uε −→ φ~v in L∞loc(R+Ḃ
n
2−1−α
2,1 ) for all φ ∈ S.

It is now easy to conclude that the second line of (2.5) is fulfilled by (b, ~u, j0).

Finally, that the whole family (bε, ~uε, jε0) (and not only subsequences) converges
to (b, ~u, j0) stems from the fact that the solution to (2.5) or (2.6) is unique. �

Remark 5.6. — It is also possible to justify the strong convergence of the solu-
tions of (1.6) to (2.5) or (2.6) using (5.35) and performing the difference between
(bε, ~uε, jε0) and the solution (b, ~u, j0) to the limit system. Again, taking advantage
of the decay properties of jε1 is crucial. Note however that, exactly as in the proof
of uniqueness, owing to the hyperbolic nature of the density equation, one cannot
prove the strong convergence in the solution space. There is a loss of one derivative
that may be partially compensated by combining with uniform estimates. As we
do not think this approach to bring much compared to weak compactness, we leave
the details to the reader.

6. The equilibrium diffusion regime

This section is devoted to the mathematical justification of the equilibrium dif-
fusion regime given by (2.10). To avoid useless technicality, we focus on the case
where

L → +∞ and εLM ≈ 1. (6.1)

6.1. Linear estimates. Let us gather the estimates we proved for (4.7) for the
above asymptotics in Section 4.
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Regarding low frequencies, one may combine (4.20) and (4.21) to get

|(̂b, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|(̂b, d̂)| dτ + L̃

ε

∫ t

0
|j0| dτ + L̃M

ε

∫ t

0
|j1| dτ

6 C|(̂b, d̂, ĵ0, ĵ1)(0)| for 0 6 ρ 6
√

1 + n−1, (6.2)

with L̃ := νL, ĵ0 := ĵ0 −
√
nb̂−

√
n ε

L̃
ρd̂ and ĵ1 = ĵ1 − ρ

L̃M
b̂.

For middle frequencies, we have according to (4.57) and (4.63)

|(ρb̂, d̂, ĵ0, ĵ1)(t)|+
∫ t

0
|ρb̂| dτ + ρ2

∫ t

0
|d̂| dτ + ρ

∫ t

0
|̂j0| dτ + L̃M

∫ t

0
|̂j1| dτ

6 C|(ρb̂, d̂, ĵ0, ĵ1)(0)| for
√

2/n 6 ρ 6 cL̃M, (6.3)

and (4.69) gives, ifM is large enough

|(ρb̂, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|d̂| dτ + ρ

∫ t

0
|̂b| dτ + L̃M

ε

∫ t

0
|(ĵ0, ĵ1)| dτ

6 C|(ρb̂, d̂, ĵ0, ĵ1)(0)| for ρ > cL̃M. (6.4)

IfM is bounded then we must assume that ρ > C1L̃M for some C1 > c. However,
we have (4.70) andM bounded implies that εL̃ ≈ 1. Therefore (6.3) is satisfied up
to ρ 6 C1L̃M.

For the whole system (4.4) with nonzero source terms f and ~g, we thus obtain
(taking slightly abusively c = C1 = 1 for notational simplicity)

‖(~u, j0,~j1)(t)‖Ḃs2,1 + ‖b(t)‖`,1
Ḃs2,1

+ ‖b(t)‖h,1
Ḃs+1

2,1
+
∫ t

0
‖~u‖Ḃs+2

2,1
dτ + L̃

ε

∫ t

0
‖j0‖`,1Ḃs2,1 dτ

+ L̃M
ε

∫ t

0
‖~j1‖`,1Ḃs2,1 dτ+

∫ t

0
‖(b, j0,~j1)‖`,1

Ḃs+2
2,1

dτ+
∫ t

0

(
‖j0‖m,1,L̃MḂs+1

2,1
+L̃M‖~j1‖m,1,L̃MḂs2,1

)
dτ

+
∫ t

0
‖b‖h,1

Ḃs+1
2,1

dτ + L̃M
ε

∫ t

0
‖(j0,~j1)‖h,L̃M

Ḃs2,1
dτ . ‖(~u, j0,~j1)(0)‖Ḃs2,1

+‖b(0)‖`,1
Ḃs2,1

+ ‖b(0)‖h,1
Ḃs+1

2,1
+
∫ t

0

(
‖f‖`,1

Ḃs2,1
+ ‖f‖h,1

Ḃs+1
2,1

+ ‖~g‖Ḃs2,1
)
dτ,

with

j0 := j0 −
√
nb−

√
n
ε

L̃
div ~u and ~j1 = ~j1 + 1

L̃M
∇b.

Back to the original variables, that linear analysis induces us to introduce the
following norms

‖(b, ~u, j0,~j1)‖
X̃νε

:= ‖b‖`,ν
−1

Ḃ
n
2 −1

2,1

+ ν‖b‖h,ν
−1

Ḃ
n
2

2,1

+ ‖~u‖
Ḃ
n
2 −1

2,1
+ ‖(j0,~j1)‖

Ḃ
n
2 −1

2,1
and
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‖(b, ~u, j0,~j1)‖
Ỹ νε

:= sup
t>0
‖(b, ~u, j0,~j1)(t)‖

X̃νε
+ν

∫
R+

(
‖(b, j0,~j1)‖`,ν

−1

Ḃ
n
2 +1

2,1

+‖~u‖
Ḃ
n
2 +1

2,1

)
dτ

+
∫
R+

(
‖b‖h,ν

−1

Ḃ
n
2

2,1

+ LM
ε
‖~j1‖`,ν

−1

Ḃ
n
2 −1

2,1

+ L
ε
‖j0‖`,ν

−1

Ḃ
n
2 −1

2,1

)
dτ

+
∫
R+

(
‖j0‖m,ν

−1,LM

Ḃ
n
2

2,1

+ LM‖~j1‖m,ν
−1,LM

Ḃ
n
2 −1

2,1

+LM
ε
‖(j0,~j1)‖h,LM

Ḃ
n
2 −1

2,1

)
dτ,

with j0 := j0 − b− ε
Ldiv ~u and~j1 := ~j1 + 1

LM∇b.

We denote by X̃ν
ε and Ỹ νε the corresponding functional spaces (where time con-

tinuity is imposed rather than just boundedness). Of course, we still have

‖(b, ~u, j0,~j1)‖
X̃νε

= ν‖(b′, ~u′, j′0,~j′1)‖
X̃1
ε

and ‖(b, ~u, j0,~j1)‖
Ỹ νε

= ν‖(b′, ~u′, j′0,~j′1)‖
Ỹ 1
ε

,

through the change of variables (4.1), if we replace L by L̃ in the left-hand side.

6.2. The paralinearized equations. In the equilibrium diffusion limit case the
estimates for the paralinearized system

∂tb+ T~v · ∇b+ div ~u = F,

∂t~u+ T~v · ∇~u−A~u+∇b− L(1+Ls)
n

~j1 = ~G,

∂tj0 + div~j1
nε + L

ε (j0 − b) = 0,

∂t~j1 + ∇j0
ε + L(1+Ls)

ε
~j1 = ~0

(6.5)

recast as follows

Proposition 6.1. — For any smooth solution (b, ~u, j0,~j1) we have the following
a priori estimate for (5.10)

‖(b, ~u, j0,~j1)‖
Ỹ νε (t) 6 C

(
‖(b, ~u, j0,~j1)(0)‖

X̃1
ε

+
∫ t

0
‖∇~v‖L∞‖(b, ~u, j0,~j1)‖

X̃νε
dτ

+
∫ t

0
‖(∇F, ~G)‖h,1

Ḃ
n
2 −1

2,1

dτ +
∫ t

0
‖(F − T~v · ∇b, ~G− T~v · ∇~u)‖`,1

Ḃ
n
2 −1

2,1

dτ

+
∫ t

0
‖T~v · ∇b− F‖m,1,L̃M

Ḃ
n
2 −1

2,1

dτ

)
·

Proof. — Except in the middle frequencies range, the proof goes along the lines
of the corresponding result in the non-equilibrium case. Still assuming that ν = 1
and replacing L with L̃ = νL then, working directly on the localized paralinearized
system (6.5), and combining Inequalities (6.2) to (6.4) with estimates for the para-
convection terms gives
1. Low frequencies: 2k 6 C1.
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‖∆̇k(b, ~u, j0,~j1)(t)‖L2 + 22k
∫ t

0
‖∆̇k(b, ~u, j0,~j1)‖L2 dτ + L̃M

ε

∫ t

0
‖∆̇k

~j1‖L2 dτ

+ L̃
ε

∫ t

0
‖∆̇kj0‖L2 dτ . ‖∆̇k(b, ~u, j0,~j1)(0)‖L2

+
∫ t

0
‖∆̇k(F − T~v · ∇b)‖L2 dτ +

∫ t

0
‖∆̇k(~G− T~v · ∇~u)‖L2 dτ.

2. Medium frequencies: C1 6 2k 6 cL̃M.
One has to keep in mind that in order to derive (6.3) from (4.57) and (4.63), one

has to consider the system that is fulfilled by (b, ~u, ζ0,~j1) with ζ0 := j0 −
√
n b. In

particular, a part of the the paraconvection term of b enters in the equation for ζ0
as we have

∂tζ0 + L̃
ε
ζ0 + 1

ε
√
n

div~j1 −
√
ndiv ~u =

√
n(T~v · ∇b− F ).

Therefore, following the computations leading to (4.57) and (4.63), and using
Lemma 4.1 in [7] to bound the convection terms coming from the equations for
b and ~u, we end up with

‖∆̇k(∇b, ~u, j0,~j1)(t)‖L2 + 22k
∫ t

0
‖∆̇k~u‖L2 dτ + 2k

∫ t

0
‖(∆̇kb, ∆̇kj0)‖L2 dτ

+L(1 + Ls)
∫ t

0
‖∆̇k

~j1‖L2 dτ . ‖∆̇k(∇b, ~u, j0,~j1)(0)‖L2 +
∫ t

0
‖∆̇k(∇F, ~G)‖L2 dτ

+
∫ t

0
‖∆̇k(T~v · ∇b− F )‖L2 dτ +

∑
k′∼k

∫ t

0
‖∇~v‖L∞‖∆̇k′(∇b, ~u)‖L2 dτ.

3. High frequencies: 2k > cL̃M. We get

‖∆̇k(∇b, ~u, j0,~j1)(t)‖L2 +
∫ t

0

(
22k‖∆̇k~u‖L2 + 2k‖∆̇kb‖L2

)
dτ

+L̃Mε

∫ t

0
‖∆̇k(j0,~j1)‖L2 dτ . ‖∆̇k(∇b, ~u, j0,~j1)(0)‖L2

+
∫ t

0
‖∆̇k(∇F, ~G)‖L2 dτ +

∑
k′∼k

∫ t

0
‖∇~v‖L∞‖∆̇k′(∇b, ~u)‖L2 dτ.

Putting together all those inequalities completes the proof. �

6.3. A global existence result. Our global existence result with uniform esti-
mates reads

Theorem 6.2. — There exists a positive constant η depending only on µ/ν, n
and on the pressure law such that if ε ∈ (0, 1) and the data (bε0, ~uε0, jε0,0,~jε1,0) satisfy

‖(bε0, ~uε0, jε0,0,~jε1,0)‖
X̃νε
6 ην, (6.6)

then System (1.6) admits a unique global solution (bε, ~uε, jε0 ,~jε1) in Ỹ νε . In addition,
we have

‖(bε, ~uε, jε0 ,~jε1)‖
Ỹ νε
6 C‖(bε0, ~uε0, jε0,0,~jε1,0)‖

X̃νε
. (6.7)
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Proof. — The proof relies on Proposition 6.1. Note in particular that the ‘new’
last term in the estimate of (6.1) does not entail a loss of derivative as we simply
have

‖T~v · ∇b− F‖m,1,L̃M
L1
t (Ḃ

n
2 −1

2,1 )
6 ‖~v · ∇b‖

L1
t (Ḃ

n
2 −1

2,1 )
. ‖~v‖

L2
t (Ḃ

n
2

2,1)
‖b‖

L2
t (Ḃ

n
2

2,1)
.

The rest of the proof works exactly the same as in the non-equilibrium case. �

6.4. Weak convergence. Here we justify weak convergence to (2.10) when as-
sumption (6.1) is fulfilled.

Theorem 6.3. — Let the family of data (bε0, ~uε0, jε0,0,~jε1,0)0<ε<1 satisfy (6.6).
Then the global solution (bε, ~uε, jε0 ,~jε1) in Ỹ νε given by Theorem 6.2 satisfies

~jε1 → ~0 in L1(R+; Ḃ
n
2−1
2,1 + Ḃ

n
2
2,1),

and if (bε0, ~uε0) ⇀ (b0, ~u0) then (bε, ~uε, jε0) converges weakly to (b, ~u, b) where (b, ~u)
stands for the unique solution of{

∂tb+ ~u · ∇b+ k1(b)div ~u = 0,
∂t~u+ ~u · ∇~u− k2(b)A~u+

(
k3(b) + n−1k4(b)

)
∇b = ~0.

(6.8)

supplemented with initial data (b0, ~u0).

Proof. — Let~jε1 = ~jε1 + ∇bε
LM · From (6.7), we have

LM
ε
‖~jε1‖

`,ν−1

L1(R+;Ḃ
n
2 −1

2,1 )
+ ν‖∇bε‖`,ν

−1

L1(R+;Ḃ
n
2

2,1)
+ LM‖~jε1‖

h,ν−1

L1(R+;Ḃ
n
2 −1

2,1 )
6 Cην.

Hence, given (6.1), we deduce that

~jε1 = O(ε) in L1(R+; Ḃ
n
2−1
2,1 +Ḃ

n
2
2,1). (6.9)

Using the equation of ~jε1 , this gives

∇jε0 + L(1 + Ls)~jε1 → 0 in the sense of distributions. (6.10)

As in the non-equilibrium case, (6.7) implies that the families (bε) and (~uε) are
bounded in L∞(R+; Ḃ

n
2−1
2,1 ∩ Ḃ

n
2
2,1) ∩ L1(R+; Ḃ

n
2 +1
2,1 + Ḃ

n
2
2,1) and L∞(R+; Ḃ

n
2−1
2,1 ) ∩

L1(R+; Ḃ
n
2 +1
2,1 ), respectively. Hence (∂tbε) is bounded in L2(R+; Ḃ

n
2−1
2,1 ) and we can

thus deduce that there exists b in L∞(R+; Ḃ
n
2−1
2,1 ∩ Ḃ

n
2
2,1)∩L1(R+; Ḃ

n
2 +1
2,1 + Ḃ

n
2
2,1) and

a sequence (εk)k∈N going to 0 so that, for all φ ∈ S and all α ∈ (0, 1]

φ bεk −→ φ b in L∞(R+; Ḃ
n
2−α
2,1 ). (6.11)

For (~uε), we still have the weak convergence result given by (5.37), which suffices
to pass to the limit in the mass equation.

Next, we observe that (6.7) implies that (jε0) is bounded in L1(R+; Ḃ
n
2−1
2,1 +Ḃ

n
2 +1
2,1 ).

Hence, there exists a sequence (εk)k∈N going to 0 so that jεk0 ⇀ j0 in the sense of
distributions. Moreover, we have

jε0 − bε = −L−1n−1div~jε1 − εL−1∂tj
ε
0 .
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Remembering (6.9) and (6.1), we see that the first term of the r.h.s. is O(ε) in
a suitable space. The second one also tends to 0 in the sense of distributions as
εL−1 → 0. Hence

j0 = b. (6.12)
In order to pass to the limit in the velocity equation, we proceed as in the non-
equilibrium case. First we use (5.37) and next, the fact that

∂t

(
~uε + ε

n
k4(bε)~jε1

)
= −~uε · ∇~uε + k2(bε)A~uε − k3(bε)∇bε

+ ε

n
k′4(bε)∂tbε~jε1 −

1
n
k4(bε)∇jε0 .

Taking advantage of (6.7) and of product laws in Besov spaces, we readily obtain
that the four first terms of the r.h.s. are bounded in L2(R+; Ḃ

n
2−2
2,1 ) (or only in

L2(R+; Ḃ
n
2−2
2,∞ ) if n = 2). To handle the last term, we observe that according to

(6.7), ∇jε0 is bounded in L∞(R+; Ḃ
n
2−2
2,1 ) hence the term k4(bε)∇jε0 is bounded in

L∞(R+; Ḃ
n
2−2
2,1 ) (or L∞(R+; Ḃ

n
2−2
2,∞ ) if n = 2).

As in the non-equilibrium case, it is now easy to conclude that there exists some
~v in L∞(R+; Ḃ

n
2−1
2,1 ) so that for all φ in S and α ∈ (0, 1), we have

φ
(
~uεk + εk

n
~jεk1

)
−→ φ~v in L∞loc(R+; Ḃ

n
2−1−α
2,1 ).

Of course, combining with (6.9), this implies that ~v = ~u, and (b, ~u) thus satisfies
the second line of (6.8).

Finally, that the whole family (bε, ~uε, jε0 ,~jε1) converges to (b, ~u, b,~0) stems from
the uniqueness of solutions to (6.8) (note that it is just the standard barotropic
Navier-Stokes equations with a modified but still stable pressure law). �

7. The Poisson diffusion regime

This section is devoted to the study of the asymptotics regime where
ε� L . ε1/2 and L2Ls ≈ 1. (7.1)

According to the formal computations of Section 2, we expect the solutions of (1.6)
to tend to those of the Navier-Stokes-Poisson system (2.9).

The general scheme of the proof that we here propose is the same as in the study
of the other asymptotics: we first perform a fine analysis of the linearized equations
so as to check the long-time stability and exhibit the quantities that are likely to be
bounded uniformly when ε → 0, then tackle the proof of the global existence. We
rapidly justify that the limit system is globally well-posed in a functional framework
that is consistent with the analysis we used for (1.6), and eventually take advantage
of compactness arguments so as to prove the expected convergence result. As in the
other regimes, the fact that the limit system has a unique solution will guarantee
that the whole family of solutions to (1.6) converges to the solution to (2.9).

7.1. Linear analysis in the Poisson regime. We here gather the estimates for
(4.7) that have been obtained in Section 4 in the Poisson regime (7.1). Recall that
L̃ := νL.
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Small frequencies. Using (4.28), (4.33), (4.34) and the fact that |(̂b, d̂, ĵ0, ĵ1)| ≈
|(b̂, d̂, ĵ0, ĵ1)| and that the last term in the original definition of ĵ0 in (4.22) has a
negligible contribution with respect to ĵ1, we get

|(̂b, d̂, ε
L̃
ĵ0, ρĵ0, ĵ1)(t)|+ ρ2

∫ t

0
|(̂b, d̂, ĵ0, ĵ1)| dτ +

∫ t

0
|̂j0| dτ + L̃

ε

∫ t

0
|ρζ̂0|

+ L̃M
ε

∫ t

0
|̂j1| dτ 6 C|(̂b, d̂,

ε

L̃
ĵ0, ρĵ0, ĵ1)(0)| for all 0 6 ρ 6 C1, (7.2)

with ĵ0 := ĵ0−
√
n b̂−

√
n ε
L̃
ρd̂, ζ̂0 := ĵ0−

√
n

1+ ρ2

nL̃2M

b̂ and ĵ1 := ĵ1− ρ
√
n L̃M

ĵ0 + ρ̂b

L̃LsM
·

Middle frequencies. Combining (4.53) and the definition of ζ̂1 versus that of ĵ1, we
get

|(ρb̂, d̂, ĵ0, ĵ1)(t)|+ ρ

∫ t

0
|̂b| dτ + ρ2

∫ t

0
|d̂| dτ + ρ2 L̃

ε

∫ t

0
|̂j0| dτ

+ L̃M
ε

∫ t

0
|̂j1| dτ . |(ρb̂, d̂, ĵ0, ĵ1)(0)| for C1 6 ρ 6 cL̃M. (7.3)

Large frequencies. Finally, using (4.69), we have

|(ρb̂, d̂, ĵ0, ĵ1)(t)|+ ρ2
∫ t

0
|d̂| dτ + ρ

∫ t

0
|̂b| dτ + L̃M

ε

∫ t

0
|(ĵ0, ĵ1)| dτ

6 C|(ρb̂, d̂, ĵ0, ĵ1)(0)| for ρ > cL̃M. (7.4)

Therefore, localizing (4.4) (with nonzero source terms f and ~g) according to
Littlewood-Paley operator ∆̇k, using (4.5), following the computations leading to
the above three inequalities and using Fourier-Plancherel theorem, we end up with
the following inequality for all s ∈ R

‖(~u,~j1)(t)‖Ḃs2,1 +‖b(t)‖`,1
Ḃs2,1

+‖b(t)‖h,1
Ḃs+1

2,1
+ ε

L̃
‖j0(t)‖`,1

Ḃs2,1
+‖j0(t)‖`,1

Ḃs+1
2,1

+‖j0(t)‖h,1
Ḃs2,1

+
∫ t

0
‖~u‖Ḃs+2

2,1
dτ +

∫ t

0
‖(b, j0,~j1)‖`,1

Ḃs+2
2,1

dτ + L̃
ε

∫ t

0
‖ζ0‖`,1Ḃs+1

2,1
dτ +

∫ t

0
‖j0‖`,1Ḃs2,1 dτ

+ L̃M
ε

∫ t

0
‖~j1‖`,L̃MḂs2,1

dτ+ L̃
ε

∫ t

0
‖j0‖m,1,L̃MḂs+2

2,1
+
∫ t

0
‖b‖h,1

Ḃs+1
2,1

dτ+ L̃M
ε

∫ t

0
‖(j0,~j1)‖h,L̃M

Ḃs2,1

. ‖(~u,~j1)(0)‖Ḃs2,1 + ‖b(0)‖`,1
Ḃs2,1

+ ‖b(0)‖h,1
Ḃs+1

2,1
+ ε

L̃
‖j0(0)‖`,1

Ḃs2,1
+ ‖j0(0)‖`,1

Ḃs+1
2,1

+ ‖j0(0)‖h,1
Ḃs2,1

+
∫ t

0

(
‖f‖`,1

Ḃs2,1
+ ‖f‖h,1

Ḃs+1
2,1

+ ‖~g‖Ḃs2,1
)
dτ, (7.5)

with j0 := j0 −
√
n b−

√
n ε

L̃
div ~u,

ζ0 := j0 −
√
n
(

Id− 1
nL̃2M

∆
)−1

b and ~j1 := ~j1 + 1
√
n L̃M

∇j0 −
1

L̃LsM
∇b.

As in the previous sections, owing to the convection term in the equation for b,
the above inequality does not allow to prove the global existence for (1.6), and one
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has to consider the paralinearized system (5.10). Adapting the proof of Proposition
5.1, we get the following

Proposition 7.1. — If the coefficients L, Ls and ε fulfill (7.1) then for any
smooth solution (b, ~u, j0,~j1) to (5.10), one has the following inequality

‖(b, ~u, j0,~j1)(t)‖Y̌ νε (t) 6 C

(
‖(b, ~u, j0,~j1)(0)‖X̌νε +

∫ t

0
‖∇~v‖L∞‖(b, ~u, j0,~j1)‖X̌νε dτ

+
∫ t

0
‖(∇F, ~G)‖h,1

Ḃ
n
2 −1

2,1

dτ +
∫ t

0
‖(F − T~v · ∇b, ~G− T~v · ∇~u)‖`,1

Ḃ
n
2 −1

2,1

dτ

)
,

with

‖(b, ~u, j0,~j1)‖X̌νε := ‖(~u,~j1)‖
Ḃ
n
2 −1

2,1
+ ‖b‖`,ν

−1

Ḃ
n
2 −1

2,1

+ ν‖b‖h,ν
−1

Ḃ
n
2

2,1

+ ε

Lν
‖j0‖`,ν

−1

Ḃ
n
2 −1

2,1

+ ν‖j0‖`,ν
−1

Ḃ
n
2

2,1

+ ‖j0‖h,ν
−1

Ḃ
n
2 −1

2,1

,

and

‖(b, ~u, j0,~j1)(t)‖Y̌ νε (t) := sup
06τ6t

‖(b, ~u, j0,~j1)(τ)‖X̌νε + L
ε

∫ t

0
‖ζ0‖`,ν

−1

Ḃ
n
2

2,1

dτ

+ν
∫ t

0

(
‖~u‖

Ḃ
n
2 +1

2,1
+ ‖(b,~j1)‖`,ν

−1

Ḃ
n
2 +1

2,1

+ Lν
ε ‖j0‖

m,ν−1,LM

Ḃ
n
2 +1

2,1

)
dτ + ν−1

∫ t

0
‖j0‖`,ν

−1

Ḃ
n
2 −1

2,1

dτ

+LM
ε

∫ t

0
‖~j1‖`,LM

Ḃ
n
2 −1

2,1

dτ +
∫ t

0
‖b‖h,1

Ḃ
n
2

2,1

dτ + LM
ε

∫ t

0
‖(j0,~j1)‖h,LM

Ḃ
n
2 −1

2,1

dτ.

Above, we set j0 := j0 − b− ε

L
div ~u,

ζ0 := j0 −
(

Id− 1
nL2M

∆
)−1

b and ~j1 := ~j1 + 1
LM

∇j0 −
1

LLsM
∇b.

7.2. Uniform global well-posedness in the Poisson regime. In this para-
graph, we sketch the proof of the following global existence result.

Theorem 7.2. — There exists a positive constant η depending only on µ/ν, n
and on the pressure law such that if ε ∈ (0, 1) and if the coefficients L and Ls fulfill
(7.1) then any data (bε0, ~uε0, jε0,0,~jε1,0) satisfying

‖(bε0, ~uε0, jε0,0,~jε1,0)‖X̌νε 6 ην, (7.6)

generates a unique global solution (bε, ~uε, jε0 ,~jε1) in Y̌ νε to System (1.6).
Furthermore, we have

‖(bε, ~uε, jε0 ,~jε1)‖Y̌ νε 6 C‖(b
ε
0, ~u

ε
0, j

ε
0,0,~j

ε
1,0)‖X̌νε . (7.7)

Proof. — Assuming with no loss of generality that ν = 1, the proof relies on
Proposition 7.1 with, dropping the indices ε for better readability, ~v = ~u

F := −T ′∇b ·~u−k1(b)div ~u and ~G := −T ′∇~u ·~u+k2(b)Ã~u−k3(b)∇b+ LM
n

k4(b)~j1.



76 R. Danchin & B. Ducomet

Let us just explain how to handle the last term, as it cannot be bounded exactly
as in the proof of Theorems 5.2 or 6.2 due to the difference between the spaces Y̌ νε
and Ỹ νε . We use the fact that

LM~j1 = LM~j1 + L−1
s ∇b−∇j0,

and thus

LMk4(b)~j1 = LMk4(b)(~jh,LM1 +~j`,LM1 ) + L−1
s k4(b)∇b`,LM − k4(b)∇j`,LM0 .

It is clear that

‖k4(b)~jh,LM1 ‖
L1(Ḃ

n
2 −1

2,1 )
. ‖b‖

L∞(Ḃ
n
2

2,1)
‖~jh,LM1 ‖

L1(Ḃ
n
2 −1

2,1 )
. (LM)−1‖(b, ~u, j0,~j1)‖Y̌ 1

ε
,

that the second term in the r.h.s. may be bounded in the same way, and that the
third one can be bounded as the pressure term k3(b)∇b. For the last term, one just
has to observe that the definition of ‖ · ‖Y̌ 1

ε
guarantees that

‖∇j0‖`,LM
L1(Ḃ

n
2

2,1)
. ‖(b, ~u, j0,~j1)‖Y̌ 1

ε
, (7.8)

and that
‖k4(b)‖

L∞(Ḃ
n
2

2,1)
. ‖b‖

L∞(Ḃ
n
2

2,1)
.

The rest of the proof is standard, and thus left to the reader. �

7.3. Study of the limit system. We introduce the following norms

‖(b, ~u, j0)‖X̌ν := ‖b‖`,ν
−1

Ḃ
n
2 −1

2,1

+ ν‖b‖h,ν
−1

Ḃ
n
2

2,1

+ ‖~u‖
Ḃ
n
2 −1

2,1
+ ‖j0‖`,ν

−1

Ḃ
n
2 −1

2,1

+ ν3‖j0‖h,ν
−1

Ḃ
n
2 +2

2,1

,

and

‖(b, ~u, j0)‖Y̌ν := sup
t>0
‖(b, ~u, j0)(t)‖X̌ν

+ν
∫
R+

(
‖(b, j0)‖`,ν

−1

Ḃ
n
2 +1

2,1

+ ‖~u‖
Ḃ
n
2 +1

2,1

)
dt+

∫
R+

(
‖b‖h,ν

−1

Ḃ
n
2

2,1

+ ν2‖j0‖h,ν
−1

Ḃ
n
2 +2

2,1

)
dt.

Theorem 7.3. — Let the data (b0, ~u0, j0,0) satisfy for a small enough constant
c > 0

‖b0‖`,ν
−1

Ḃ
n
2 −1

2,1

+ ν‖b0‖h,ν
−1

Ḃ
n
2

2,1

+ ‖~u0‖
Ḃ
n
2 −1

2,1
6 cν, (7.9)

and the compatibility condition

j0,0 −
ν2

nm
∆j0,0 = b0.

Then System (2.9) admits a unique global solution (b, ~u, j0) in the space Y̌ν , satis-
fying in addition for a large enough constant C independent of ν

‖(b, ~u, j0)‖Y̌ν 6 C
(
‖b0‖`,ν

−1

Ḃ
n
2 −1

2,1

+ ν‖b0‖h,ν
−1

Ḃ
n
2

2,1

+ ‖~u0‖
Ḃ
n
2 −1

2,1

)
. (7.10)

Proof. — We just sketch the proof as it is very similar to the standard one for
the barotropic Navier-Stokes equations. As usual, it suffices to treat the case ν = 1.
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The first step is to analyse the linearized system
∂tb+ div ~u = f,

∂t~u− Ã~u+∇b+ 1
n∇j0 = g,(

Id− 1
nm∆

)
j0 = b.

(7.11)

To this end, we set d = (−∆)−1/2div ~u and observe that in the Fourier space, (̂b, d̂)
fulfills the following ODE if f = g = 0{

∂tb̂+ ρd̂ = 0,

∂td̂+ ρ2d̂− ρaρb̂ = 0

with ρ := |ξ| and aρ := 1 + m
ρ2+nm · Of course, j0 may be computed from b by the

relation
ĵ0 = nm

ρ2 + nm
b̂.

Introducing the following Lyapunov and diffusion functionals

L2
ρ = 2aρ |̂b|2 + 2|d̂|2 + |ρb̂|2 − 2Re (ρb̂d̂) and H2

ρ = ρ2(aρ |̂b|2 + |d̂|2),

we see that
1
2
d

dt
L2
ρ +H2

ρ = 0.

Because we have a±1
ρ 6 c0 for some c0 independent of ρ, one can thus conclude

exactly as in the standard barotropic case that for all t > 0 and ρ > 0

|(̂b, ρb̂, d̂)(t)|+ min(1, ρ)
∫ t

0
|ρb̂| dτ + ρ2

∫ t

0
|d̂| dτ . |(̂b, ρb̂, d̂)(0)|.

Back to (7.11), one may combine Fourier-Plancherel theorem and Duhamel formula
to get the following estimate for all s ∈ R

‖(b,∇b, ~u)(t)‖Ḃs2,1 + ‖j0(t)‖Ḃs2,1∩Ḃs+3
2,1

+
∫ t

0

(
‖~u‖Ḃs+2

2,1
+ ‖(b, j0)‖`,1

Ḃs+2
2,1

)
dτ

+
∫ t

0

(
‖b‖h,1

Ḃs+1
2,1

+ ‖j0‖h,1Ḃs+3
2,1

)
dτ 6 C

(
‖(b0,∇b0, ~u0)‖Ḃs2,1 +

∫ t

0
‖(f,∇f, g)‖Ḃs2,1 dτ

)
.

However, because of the convection term in the equation for b, this does not allow to
prove estimates for the nonlinear system (2.9). Therefore, mimicking the standard
approach for the compressible Navier-Stokes equation we ‘paralinearize’ the system
and get the following result

Proposition 7.4. — The solutions to the following paralinearized system
∂tb+ T~v · ∇~u+ div ~u = f,

∂t~u+ T~v · ∇~u− Ã~u+∇b+ 1
n∇j0 = ~g,(

Id− 1
nm∆

)
j0 = b.



78 R. Danchin & B. Ducomet

fulfill the following a priori estimate

‖(b,∇b, ~u)(t)‖Ḃs2,1 + ‖j0(t)‖Ḃs2,1∩Ḃs+3
2,1

+
∫ t

0

(
‖~u‖Ḃs+2

2,1
+ ‖(b, j0)‖`,1

Ḃs+2
2,1

)
dτ

+
∫ t

0

(
‖b‖h,1

Ḃs+1
2,1

+ ‖j0‖h,1Ḃs+3
2,1

)
dτ 6 C

(
‖(b0,∇b0, ~u0)‖Ḃs2,1 +

∫ t

0
‖(f,∇f, g)‖Ḃs2,1 dτ

+
∫ t

0
‖∇~v‖L∞‖(b,∇b, ~u)‖Ḃs2,1 dτ

)
.

Now, in order to estimate the solutions of the nonlinear system (2.9), it suffices
to apply the above proposition with ~v = ~u

f = −T ′~u ·∇b−k1(b)div ~u and ~g = −T ′~u ·∇~u+k2(b)Ã~u−k3(b)∇b−n−1k4(b)∇j0.

All the terms but the last one of ~g are already present in the barotropic Navier-
Stokes equations, and may be bounded quadratically in terms of ‖(b, ~u, j0)‖Y̌1 . Now,
we have

‖k4(b)∇j0‖
Ḃ
n
2 −1

2,1
. ‖b‖

Ḃ
n
2

2,1
‖j0‖

Ḃ
n
2

2,1
,

hence

‖k4(b)∇j0‖
L1
t (Ḃ

n
2 −1

2,1 )
. ‖b‖

L2
t (Ḃ

n
2

2,1)

(
‖j0‖`,1

L2
t (Ḃ

n
2

2,1)
+ ‖j0‖h,1

L2
t (Ḃ

n
2 +2

2,1 )

)
,

and one can thus conclude that whenever the solution (b, ~u, j0) exists we have

‖(b, ~u, j0)‖Y̌1(t) 6 C
(
‖b0‖

Ḃ
n
2 −1

2,1 ∩Ḃ
n
2

2,1
+ ‖~u0‖

Ḃ
n
2 −1

2,1
+ ‖(b, ~u, j0)‖2Y̌1(t)

)
,

which allows to get (7.10) if (7.9) is fulfilled with a small enough c. �

7.4. Weak convergence. Here we justify weak convergence to (2.9) when assump-
tion (7.1) is fulfilled and, in addition

ν2L2Ls → m ∈ (0,+∞). (7.12)

Theorem 7.5. — Let the family of data (bε0, ~uε0, jε0,0,~jε1,0)0<ε<1 satisfy (7.6).
Then the global solution (bε, ~uε, jε0 ,~jε1) in Y̌ νε given by Theorem 7.2 satisfies

~jε1 = O(L) in L1(R+; Ḃ
n
2−1
2,1 + Ḃ

n
2
2,1), (7.13)

and, up to extraction, (bε, ~uε, jε0) converges weakly to some solution (b, ~u, j0) in Y̌ν
of System (2.9) when ε goes to 0.

If in addition

(bε0, ~uε0, jε0,0) ⇀ (b0, ~u0, j0,0) with − ν2∆j0,0 + nm(j0,0 − b0) = 0, (7.14)

then the whole family (bε, ~uε, jε0) converges to the unique solution (b, ~u, j0) corre-
sponding to the initial data (b0, ~u0, j0,0), given by Theorem 7.3.

Proof. — Let us first prove (7.13). From (7.7), we already know that (~jε1)`,LM

and (~jε1)h,LM are O(εL) in L1(R+; Ḃ
n
2−1
2,1 ). Now, we have

~jε1 =~jε1 −
1
LLs
∇jε0 + 1

LLsM
∇bε.
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It is easy to see that the last term is O(L3) in L1(R+; Ḃ
n
2
2,1 + Ḃ

n
2−1
2,1 ), and that,

according to (7.8) and L2Ls ≈ 1, the last but one term is O(L) in L1(R+; Ḃ
n
2
2,1),

which completes the proof of (7.13).
Next, let us turn our attention to the convergence of jε0 . First, (7.7) and the

definition of ‖ · ‖Y̌ νε ensure that (jε0)h,LM is bounded in, say, L2(R+; Ḃ
n
2−1
2,1 ). Next,

using the bound for the middle frequencies of j0 and for the low frequencies of ζ0,
we discover that (jε0)`,LM is bounded in L2(R+; Ḃ

n
2
2,1). Hence, up to an omitted

extraction
jε0 ⇀ j0 weak ∗ in L2(R+; Ḃ

n
2−1
2,1 + Ḃ

n
2
2,1). (7.15)

Now, taking the divergence of the equation of ~jε1 , then using the equation of jε0
gives

∆jε0 = −L(1 + Ls)
(
nL(bε − jε0)− εn∂tjε0

)
− ε∂tdiv jε1 . (7.16)

Given (7.13), one can assert that the last term tends to 0 in the sense of distribu-
tions. We also know that, up to an omitted extraction, jε0 → j0 in the sense of distri-
butions, hence given that L(1+Ls)ε→ 0, the term with ∂tjε0 also tends to 0. Finally,
exactly as in the cases treated before, (bε) is bounded in L∞(R+; Ḃ

n
2−1
2,1 ∩Ḃ

n
2
2,1) hence

weakly converges to some b ∈ L∞(R+; Ḃ
n
2−1
2,1 ∩ Ḃ

n
2
2,1). As (7.12) has been assumed,

passing to the limit in (7.16) gives
ν2∆j0 = −nm

(
b− j0).

Passing to the limit in the equation of b goes along the lines of the non-equilibrium
case we notice that (∂tbε) is bounded in L2(R+; Ḃ

n
2−1
2,1 ) and we thus have, up to an

omitted extraction
φ bε −→ φ b in L∞(R+; Ḃ

n
2−α
2,1 ) for all α ∈ (0, 1). (7.17)

As (7.7) also implies that (~uε) is bounded in L∞(R+; Ḃ
n
2−1
2,1 ) ∩ L1(R+; Ḃ

n
2 +1
2,1 ), we

have ~uε ⇀ ~u weakly * in that space, which is enough to justify the first equation
of (2.9).

In order to pass to the limit in the velocity equation, we use again the fact that

∂t

(
~uε + ε

n
k4(bε)~jε1

)
= −~uε · ∇~uε + k2(bε)A~uε − k3(bε)∇bε

+ ε

n
k′4(bε)∂tbε~jε1 −

1
n
k4(bε)∇jε0 .

As in the other asymptotic regimes, the first four terms of the r.h.s. are bounded in
L2(R+; Ḃ

n
2−2
2,1 ) (or in L2(R+; Ḃ

n
2−2
2,∞ ) if n = 2). To handle the last term, we observe

that according to (7.7) and (7.15), (∇jε0) is bounded in L2(R+; Ḃ
n
2−2
2,1 + Ḃ

n
2−1
2,1 ).

Because (bε) is bounded in L∞(R+; Ḃ
n
2−1
2,1 ∩ Ḃ

n
2
2,1), this implies that k4(bε)∇jε0 is

bounded in L2(R+; Ḃ
n
2−2
2,1 ) (or L2(R+; Ḃ

n
2−2
2,∞ ) if n = 2), and thus ∂t

(
~uε+ ε

n k4(bε)~jε1
)

is bounded in the same space.
As in the already studied cases, we conclude that there exists some vector-field

~u in L∞(R+; Ḃ
n
2−1
2,1 ) so that for all φ in S and α ∈ (0, 1), we have

φ
(
~uε + ε

n
~jε1

)
−→ φ~u in L∞loc(R+; Ḃ

n
2−1−α
2,1 ).
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Finally, in the case where (7.14) is fulfilled, the limit system (2.9) supplemented
with initial data (b0, ~u0, j0,0) possesses a unique solution (b, ~u, j0) given by Theorem
7.3, and the whole family (bε, ~uε, jε0) thus converges to (b, ~u, j0). �

Appendix A. Estimates for a toy linear differential equation

The appendix is devoted to the proof of decay estimates for the solutions to
systems of ODEs of the form

(E) ∂tU +A0U + ρ (A1 +B1)U + ρ2A2U = 0,

where ρ is a nonnegative parameter, and A0, A1, B1 and A2 are given N × N
matrices. We have in mind System (4.7) in which case, after suitable change of
unknowns (see (A.4)), A0 is a degenerate nonnegative diagonal matrix, A2 has
nonnegative eigenvalues and A1 is skewsymmetric up to some positive diagonal
symmetrizer.

A.1. A general approach. The basic idea is to set V := (I + ρP )U where P is a
suitable matrix, so as to eliminate the bad first order term ρB1U. Now, whenever
(I + ρP ) is invertible, the equation for V reads

∂tV +A0V + ρ
(
A1 +B1 + [P,A0]

)
V + ρ2([A0, P ]P + [P,A1] + [P,B1] +A2

)
V

+ρ3[(A1 +B1)P −A0P
2 −A2, P

]
(I + ρP )−1V = 0.

Therefore, if one can find some matrix P so that

[A0, P ] = B1, (A.1)

then we have

∂tV +A0V + ρA1V + ρ2 (A2 + PB1 + [P,A1])V = ρ3 [A3, P ] (I + ρP )−1V, (A.2)

with A3 := (PA0 −A1)P +A2.

The gain is clear as the matrix B1 now appears at order 2 instead of order 1.
Hence the system for V is more likely to be tractable for small enough ρ as we shall
see below.

A.2. Application to the linearized system for barotropic radiative flows.
The system we are interested in reads

d

dt


â

d̂

ĵ0
ĵ1

+


0 ρ 0 0
−ρ ρ2 0 −ς
−η 0 β αρ
0 0 −αρ γ




â

d̂

ĵ0
ĵ1

 =


0
0
0
0

 , (A.3)

where all the coefficients of the matrix are positive.
To bound the solutions of (A.3) for small enough ρ (under some stability con-

dition that we will discover below), we propose two different approaches, the first
one being appropriate to handle the case where β and γ are of the same order of
magnitude, and the second one, to the case where β/γ � 1 or γ/β � 1 (of course
only γ > β is relevant as far as (4.7) is concerned).
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A.2.1. First approach. Making the change of unknown

U :=


1 0 0 0
0 1 0 ς

γ

− η
β 0 1 0

0 0 0 1




â

d̂

ĵ0
ĵ1

 , (A.4)

and setting α̃ := α+ ςη
βγ , we see that U satisfies a system of type (E) with

A0 :=


0 0 0 0
0 0 0 0
0 0 β 0
0 0 0 γ

 , A1 :=


0 1 0 0

−1− αςη
βγ 0 0 0

0 0 0 α̃
0 0 −α 0

 ,

B1 := −


0 0 0 ς

γ

0 0 ας
γ 0

0 η
β 0 0

αη
β 0 0 0

 and A2 :=


0 0 0 0
0 1 0 − ς

γ

0 0 0 0
0 0 0 0

 ·
Note that the above matrices may be written in block form as follows

B1 =
(

0 B1
1

B2
1 0

)
, A0 =

(
0 0
0 ∆

)
, A1 =

(
A1

1 0
0 A2

1

)
, P =

(
P 11 P 12

P 21 P 22

)
·

Computing the commutator

[A0, P ] =
(

0 −P 12∆
∆P 21 [∆, P 22]

)
, (A.5)

we see (A.1) is satisfied if

P 11 := 0, P 22 := 0, P 12 := −B1
1∆−1, P 21 := ∆−1B2

1 .

In other words

P =


0 0 0 ς

γ2

0 0 ας
βγ 0

0 − η
β2 0 0

−αηβγ 0 0 0

 , (A.6)

which, remembering (A.4), corresponds to the following change of unknowns

V =


b̂

d̂

ĵ0
ĵ1

 :=


1 0 0 ς

γ2 ρ

−αςηβ2γ ρ 1 ας
βγ ρ

ς
γ

− η
β − η

β2 ρ 1 − ςη
β2γ ρ

−αηβγ ρ 0 0 1




â

d̂

ĵ0
ĵ1

 · (A.7)

Note that the determinant of the matrix (I + ρP ) is(
1 + αςη

β3γ
ρ2
)(

1 + αςη

βγ3 ρ
2
)
,

and is thus of order 1 whenever ρ satisfies the smallness condition

ρ2 .
βγ

αςη
min(β2, γ2). (A.8)
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In order to go further in the estimates of V, we compute

PB1 =
(
−B1

1∆−1B2
1 0

0 ∆−1B2
1B

1
1

)
=


−αςηβγ2 0 0 0

0 −αςηβ2γ 0 0
0 0 αςη

β2γ 0
0 0 0 αςη

βγ2

 and

[P,A1] =
(

0 −B1
1∆−1A2

1 +A1
1B

1
1∆−1

∆−1B2
1A

1
1 −A2

1∆−1B2
1 0

)

=


0 0 −αςγ ( 1

β + 1
γ ) 0

0 0 0 αα̃ς
βγ + ς

γ2 (1+ αςη
βγ )

αα̃η
βγ + η

β2 (1+ αςη
βγ ) 0 0 0

0 −αηβ ( 1
β + 1

γ ) 0 0

·
Finally, A3 := (PA0 −A1)P +A2 reads

A3 =


−αςηβγ2 0 −ας

βγ 0
0 1− αςη

β2γ 0 ς
γ2 (1 + αςη

βγ )− ς
γ

αη
βγ (α+ ςη

βγ ) 0 0 0
0 −αηβ2 0 0

 · (A.9)

Therefore, resuming to (A.2), we conclude that
d

dt
V +A0V + ρA1V + ρ2(PB1 +A2

)
V = ρ2[A1, P ]V +O(ρ3).

Of course, the remainder term O(ρ3) strongly depends on the coefficients of the
system. We shall see below that the structure of [A1, P ] will enable us to treat
ρ2[A1, P ] and the nondiagonal term of A2 as small error terms as well.

Let us focus on the system satisfied by (b̂, d̂) for a while. We have

d

dt

(
b̂

d̂

)
+ ρ

(
0 1

−1− αςη
βγ 0

)(
b̂

d̂

)
+ ρ2

( −αςηβγ2 0
0 1− αςη

β2γ

)(
b̂

d̂

)
= ρ2

( ας
γ ( 1

β + 1
γ ) 0

0 ςν
γ −

αα̃ς
βγ −

ς
γ2 (1 + αςη

βγ )

)(
ĵ0
ĵ1

)
+O(ρ3). (A.10)

For small enough ρ, optimal estimates may be proved by taking advantage of the
results of Appendix B. Indeed, denoting by F̂ρ the r.h.s. of (A.10), we see from
(B.6) that if we set

U2
ρ :=

(
1 + αςη

βγ

)
|b̂|2 + |d̂|2 − ρ

(
1 + αςη

βγ

( 1
γ
− 1
β

))
Re (b̂ d̂),

then, under the following necessary and sufficient stability condition

ν̃ := 1− αςη

βγ

(
1
β

+ 1
γ

)
> 0, (A.11)

we have (see (B.4) and (B.5))

Uρ ≈ |(b̂, d̂)| and d

dt
U2
ρ + ν̃

3ρ
2U2

ρ . Uρ|F̂ρ|, (A.12)
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whenever

ρ 6

√
1 + αςη

βγ

1 + αςη
βγ ( 1

γ −
1
β )
· (A.13)

So finally, we get for some appropriate constant C = C(α, β, γ, ς, η)

|(b̂, d̂)(t)|+ν̃ρ2
∫ t

0
|(b̂, d̂)| dτ 6 C

(
|(b̂, d̂)(0)|+ρ2

∫ t

0
|(̂j0, ĵ1)| dτ+ρ3

∫ t

0
|(b̂, d̂, ĵ0, ĵ1)| dτ

)
which, if ρ� ν̃, may be simplified into

|(b̂, d̂)(t)|+ ν̃ρ2
∫ t

0
|(b̂, d̂)| dτ 6 C

(
|(b̂, d̂)(0)|+ ρ2

∫ t

0
|(̂j0, ĵ1)| dτ

)
· (A.14)

The modified radiative modes j0 and j1 fulfill

d

dt

(
ĵ0
ĵ1

)
+ ρ

(
0 α̃
−α 0

)(
ĵ0
ĵ1

)
+
(
β + αςη

β2γ ρ
2 0

0 γ + αςη
βγ2 ρ

2

)(
ĵ0
ĵ1

)

= ρ2

(
−αα̃ηβγ −

η
β2 (1 + αςη

βγ ) 0
0 αη

β ( 1
β + 1

γ )

)(
b̂

d̂

)
+O(ρ3). (A.15)

Therefore we easily get

1
2
d

dt

(
|̂j0|2 + α̃

α
|̂j1|2

)
+
(
β + αςη

β2γ
ρ2
)
|̂j0|2 + α̃

α

(
γ + αςη

βγ2 ρ
2
)
|̂j1|2

6 C
(
ρ2|(b̂, d̂)|+ ρ3|(b̂, d̂, ĵ0, ĵ1)|

)
.

Then, integrating and assuming that ρ� 1 yields

(|(̂j0, ĵ1)(t)|+ min(β, γ)
∫ t

0
|(̂j0, ĵ1)| dτ 6 C

(
|(̂j0, ĵ1)(0)|+ρ2

∫ t

0
|(b̂, d̂)| dτ

)
· (A.16)

Combining with (A.14), we can conclude that there exists some positive constants
ρ0 and C depending only on (α, β, γ, ς, η) so that for all

0 6 ρ 6 min(1, ν̃) ρ0, (A.17)

we have

|(b̂, d̂)(t)|+ ν̃|(̂j0, ĵ1)(t)|+ ν̃ρ2
∫ t

0
|(b̂, d̂)| dτ + ν̃min(β, γ)

∫ t

0
|(̂j0, ĵ1)| dτ

6 C
(
|(b̂, d̂)(0)|+ ν̃|(̂j0, ĵ1)(0)|

)
. (A.18)

A.2.2. Second approach. In the case where β and γ are not of the same order of
magnitude, Inequality (A.18) is not satisfactory, first because we would like to have
a control on β

∫ t
0 |̂j0| dτ and γ

∫ t
0 |̂j1| dτ rather than just on min(β, γ)

∫ t
0 |(̂j0, ĵ1)| dτ

and, second, because the range for which (A.18) holds true tends to shrink to 0 if
β � γ or γ � β.

In this paragraph, we propose another approach to handle (A.3) in the case
β 6= γ, still based on rewriting the system in the form (A.2), but with a different
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definition of A1 and B1 (A0 and A2 being unchanged): we now set

A1 :=


0 1 0 0

−1− αςη
βγ 0 0 0

0 0 0 0
0 0 0 0

 and B1 :=


0 0 0 − ς

γ

0 0 −αςγ 0
0 − η

β 0 α̃

−αηβ 0 −α 0

 ·

Then writing the matrices coming into play in block form and putting α̃ := α+ εη
βγ ,

we see according to (A.5), that a possible choice for P is

P 11 := 0, P 12 := −B1
1∆−1, P 21 := ∆−1B2

1 , and P 22 := 1
β−γ

(
0 α̃
α 0

)
·

With this new definition of P, we have

PB1 =


−αςηβγ2 0 −αςγ2 0

0 −αςηβ2γ 0 αα̃ς
βγ

αα̃η
β(γ−β)0 0 αςη

β2γ + αα̃
γ−β 0

0 αη
β(γ−β) 0 αςη

βγ2 + αα̃
β−γ



and [P,A1] =


0 0 −ας

βγ 0
0 0 0 ς

γ2

(
1+ αςη

βγ

)
η
β2

(
1+ αςη

βγ

)
0 0 0

0 −αηβγ 0 0

 ·

Therefore setting

V =


b̂

d̂

ĵ0
ĵ1

 :=


1 0 0 ς

γ2 ρ

−αςηβ2γ ρ 1 ας
βγ ρ

ς
γ

− η
β − η

β2 ρ 1
(

α̃
β−γ −

ςη
β2γ

)
ρ

αη
γ(γ−β)ρ 0 α

β−γ ρ 1




â

d̂

ĵ0
ĵ1

 , (A.19)

it is clear that working with (â, d̂, ĵ0, ĵ1) or (b̂, d̂, ĵ0, ĵ1) is equivalent whenever

ρ 6 C|γ − β|,

for some constant depending continuously on the coefficients of the system.
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Putting together the previous computations, we see that V fulfills

d

dt
V +


−αςηβγ2 ρ

2 0 0 0
0

(
1− αςη

β2γ

)
ρ2 0 0

0 0 β+(αςηβ2γ + αα̃
γ−β )ρ2 0

0 0 0 γ+
(
αςη
βγ2 + αα̃

β−γ
)
ρ2

V

+ρ


0 1 0 0

−1− αςη
βγ 0 0 0

0 0 0 0
0 0 0 0

V

= ρ2


0 0 ας

γ

( 1
β + 1

γ

)
0

0 0 0 ς
γ −

αα̃ς
βγ −

ς
γ2

(
1+ αςη

βγ

)
αα̃η

β(β−γ) −
η
β2

(
1+ αςη

βγ

)
0 0 0

0 αη
γ(β−γ) 0 0


+ρ3[A3, P ](I + ρP )−1V,

with A3 := (PA0 −A1)P +A2 satisfying |A3| 6 C
(
1 + |γ − β|−2).

Next, arguing exactly as to handle (A.10), we discover that under the stability
condition (A.11) and for ρ satisfying (A.13) (and of course also ρ 6 c|β − γ|3), we
have

|(b̂, d̂)(t)|+ ν̃ρ2
∫ t

0
|(b̂, d̂)| dτ 6 C

(
|(b̂, d̂)(0)|

+ ρ2
∫ t

0
|(̂j0, ĵ1)| dτ + ρ3

(
1 + 1
|γ − β|3

)∫ t

0
|(b̂, d̂, ĵ0, ĵ1)| dτ

)
· (A.20)

Now, in contrast with the first method, we can bound ĵ0 and ĵ1 independently from
one another: from the equation satisfied by ĵ0, we readily get

|̂j0(t)|+
(
β + αςη

β2γ
ρ2
)∫ t

0
|̂j0| dτ 6 |̂j0(0)|+ Cρ2

|β − γ|

∫ t

0
|b̂| dτ

+ Cρ3
(

1 + 1
|γ − β|3

)∫ t

0
|(b̂, d̂, ĵ0, ĵ1)| dτ, (A.21)

while ĵ1 satisfies

|̂j1(t)|+
(
γ +

(αςη
βγ2 + αα̃

β − γ

)
ρ2
)∫ t

0
|̂j1| dτ 6 |̂j1(0)|+ Cρ2

|β − γ|

∫ t

0
|d̂| dτ

+ Cρ3
(

1 + 1
|γ − β|3

)∫ t

0
|(b̂, d̂, ĵ0, ĵ1)| dτ. (A.22)

Putting inequalities (A.20), (A.21) and (A.22) together, it is easy to conclude that

|(b̂, d̂)(t)|+ ν̃|γ − β||(̂j0, ĵ1)(t)|+ ν̃ρ2
∫ t

0
|(b̂, d̂)| dτ

+ν̃|γ − β|
(
β

∫ t

0
|̂j0| dτ + γ

∫ t

0
|̂j1| dτ

)
6 C

(
|(b̂, d̂)(0)|+ ν̃|γ − β||(̂j0, ĵ1)(0)|

)
,
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if, for some small enough constant c depending continuously on α, β, γ and ς, we
have

ρ 6 cmin
(

1, ν̃, |γ − β|2, ν̃|γ − β|3
)
· (A.23)

Appendix B. Optimal decay estimates for a toy system

For the reader convenience, we here recall some results that have been obtained in
our recent work [8] for the following linear system of ordinary differential equations{

∂tX + aρY − bρ2X = A,
∂tY − cρX + dρ2Y = B.

(B.1)

Above, ρ stands for a given nonnegative small parameter and a, b, c and d are four
real numbers satisfying the stability condition

a > 0, c > 0 and d− b > 0. (B.2)

Routine computations show that the following Lyapunov functional L2
ρ := c|X|2 +

a|Y |2 − ρ(d+ b)Re (XȲ ) satisfies the relation

1
2
d

dt
L2
ρ +

(
d− b

2

)
ρ2(c|X|2 + a|Y |2

)
+
(
b2 − d2

2

)
ρ3Re (XȲ )

= Re
(
cAX̄ + aBȲ − ρ(b+d)(BX̄+AȲ )

)
. (B.3)

Now, observe that whenever ρ 6
√
ac

|b+d| , we have∣∣∣∣(b2 − d2

2

)
ρ3Re (XȲ )

∣∣∣∣ 6 (d− b4

)
ρ2(c|X|2 + a|Y |2

)
,

and
1
2
(
c|X|2 + a|Y |2

)
6 L2

ρ 6
3
2
(
c|X|2 + a|Y |2

)
, (B.4)

which leads if A ≡ B ≡ 0 to

d

dt
L2
ρ +

(
d− b

3

)
L2
ρ 6 0, (B.5)

and thus
Lρ(t) 6 e−( d−b6 )ρ2tLρ(0). (B.6)

Combining with (B.4) and Duhamel’s formula, we deduce that for general source
terms A and B we have√

c|X(t)|2 + a|Y (t)|2 6
√

3 e−( d−b6 )ρ2t

(√
c|X(0)|2 + a|Y (0)|2

+
∫ t

0
e( d−b6 )τ

√
c|A|2 + a|B|2 dτ

)
· (B.7)
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