
ANNALES MATHÉMATIQUES

BLAISE PASCAL
Vincent Duchêne & Samer Israwi
Well-posedness of the Green–Naghdi and Boussinesq–Peregrine systems

Volume 25, no 1 (2018), p. 21-74.

<http://ambp.cedram.org/item?id=AMBP_2018__25_1_21_0>

© Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal, 2018,
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
Creative Commons attribution – pas de modification 3.0 France.
http://creativecommons.org/licenses/by-nd/3.0/fr/

L’accès aux articles de la revue « Annales mathématiques Blaise Pascal »
(http://ambp.cedram.org/), implique l’accord avec les conditions générales d’utilisation
(http://ambp.cedram.org/legal/).

Publication éditée par le laboratoire de mathématiques Blaise Pascal
de l’université Clermont Auvergne, UMR 6620 du CNRS

Clermont-Ferrand — France

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://ambp.cedram.org/item?id=AMBP_2018__25_1_21_0
http://creativecommons.org/licenses/by-nd/3.0/fr/
http://ambp.cedram.org/
http://ambp.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Annales mathématiques Blaise Pascal 25, 21-74 (2018)

Well-posedness of the Green–Naghdi and Boussinesq–Peregrine
systems

Vincent Duchêne
Samer Israwi

Abstract

In this paper we address the Cauchy problem for two systems modeling the propagation of long
gravity waves in a layer of homogeneous, incompressible and inviscid fluid delimited above by a free
surface, and below by a non-necessarily flat rigid bottom. Concerning the Green–Naghdi system, we
improve the result of Alvarez–Samaniego and Lannes [5] in the sense that much less regular data are
allowed, and no loss of derivatives is involved. Concerning the Boussinesq–Peregrine system, we improve
the lower bound on the time of existence provided by Mésognon-Gireau [40]. The main ingredient is a
physically motivated change of unknowns revealing the quasilinear structure of the systems, from which
energy methods are implemented.

1. Introduction

1.1. Motivation

The Green–Naghdi system1 (sometimes called Serre or fully nonlinear Boussinesq
system) is a model for the propagation of surface gravity waves in a layer of homogeneous
incompressible inviscid fluid with rigid bottom and free surface. It has been formally
derived several times in the literature, in particular in [25, 42, 46, 47, 50], using different
techniques and various hypotheses. For a clear and modern exposition, it is shown in [32]
that the Green–Naghdi system can be derived as an asymptotic model from the water
waves system (namely the “exact” equations for the propagation of surface gravity waves),
by assuming that the typical horizontal length of the flow is much larger than the depth
of the fluid layer (that is in the shallow-water regime) and that the flow is irrotational.
Roughly speaking, a Taylor expansion with respect to the small “shallow-water parameter”
yields at first order the Saint-Venant system, and at second order the Green–Naghdi system
(see for instance [38] for higher order systems). As a relatively simple fully nonlinear

VD is partially supported by the project Dyficolti ANR-13-BS01-0003-01 of the Agence Nationale de la
Recherche.
SI is partially supported by the Lebanese University research program (MAA group project).
Keywords:Well-posedness theory, shallow water models, quasilinear dispersive systems.
2010 Mathematics Subject Classification: 35L45, 35Q35, 76B15.

1The Boussinesq–Peregrine system can be viewed as a simplification of the Green–Naghdi system for
small-amplitude waves, which is particularly relevant for numerical purposes; see [7, 31, 40, 44]. This work is
dedicated to the Green–Naghdi system and we only remark incidentally that our strategy may also be favorably
applied to the Boussinesq–Peregrine system described thereafter.
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model (that is without restriction on the amplitude of the waves) formally improving
the precision of the Saint-Venant system, the Green–Naghdi system is widely used to
model and numerically simulate the propagation of surface waves, in particular in coastal
oceanography. It would be impossible to review the vast literature on the subject, and we
only let the reader refer to [6, 10] for an introduction and relevant references.

In this work, we are interested in the structural properties and rigorous justification of
the Green–Naghdi system. The derivation through formal Taylor expansions of Bonneton
and Lannes [32] can be made rigorous [31, Prop. 5.8]: roughly speaking, any sufficiently
smooth solution of the water waves system satisfies the Green–Naghdi system up to a
quantifiable (small) remainder. This consistency result is only one step towards the full
justification of the model in the following sense: the solution of the water waves system
and the solution of the Green–Naghdi system with corresponding initial data remain
close on a relevant time interval. In order for such result to hold, one needs of course
to ensure the existence and uniqueness of a solution to the Green–Naghdi system in the
aforementioned time interval for a large class of initial data; one also needs a stability
property ensuring that the two solutions are close. These two results typically call for
robust energy estimates on exact and approximate solutions.

Somewhat surprisingly, the well-posedness theory concerning the Cauchy problem
for the Green–Naghdi system is in some sense less satisfactory than the corresponding
one for the water waves system. Again, the literature on the latter problem is too vast
to summarize, and we only mention the result of [4, 27] and [31, Thm. 4.16]. Indeed,
the latter pay attention to the various dimensionless parameters of the system, and in
particular obtain results which hold uniformly with respect to the shallow-water parameter.
The outcome of these results is that provided that the initial data is sufficiently regular
(measured through Sobolev spaces) and satisfy physical assumptions (the so-called
non-cavitation and Rayleigh–Taylor criteria) then there exists a unique solution of the
water waves system preserving the regularity of the initial data. Moreover, the maximal
time of existence may be bounded from below uniformly with respect to the shallow-water
parameter; see details therein. Such result is very much nontrivial as the limit of small
shallow-water parameter is singular in some sense. Similar results have been proved for
the Green–Naghdi system in horizontal dimension d = 1 in [37] (for flat bottom) and [28]
(for general bathymetries). An apparent obstruction prevents to implement the strategy in
dimension d = 2; see the discussion therein. Alvarez–Samaniego and Lannes [5] proved
an existence and uniqueness result in the general setting and on the correct time-scale but
their proof relies on a Nash–Moser scheme, and as such involves a loss of derivatives
between the regularity of the initial data and the control of the solution at positive times.
The main result of this paper is to show that this loss of derivatives is in fact not necessary,
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and that the Cauchy problem for the Green–Naghdi system is well-posed in the sense of
Hadamard in Sobolev-type spaces.

1.2. Strategy

Let us now introduce the system of equations at stake. In order to ease the discussion and
notations, we restrict the study to the horizontal space X ∈ Rd with d = 2, although the
results are easily adapted to the setting d = 1, thus yielding another proof of the result
in [28]. The non-dimensionalized Green–Naghdi system may be written (see [32, 31])

∂t ζ + ∇ · (hu) = 0,(
Id+µT[h, βb]

)
∂tu + ∇ζ + ε(u · ∇)u + µε

(
Q[h, u] + Qb[h, βb, u]

)
= 0,

(1.1)

with h = 1 + εζ − βb and

T[h, βb]u def
=
−1
3h
∇(h3∇ · u) +

1
2h

(
∇
(
h2(β∇b) · u

)
− h2(β∇b)∇ · u

)
+ β2(∇b · u)∇b, (1.2)

and

Q[h, u] def
=
−1
3h
∇

(
h3 ((u · ∇)(∇ · u) − (∇ · u)2) ),

Qb[h, βb, u] def
=

β

2h

(
∇
(
h2(u · ∇)2b

)
− h2 ((u · ∇)(∇ · u) − (∇ · u)2)∇b

)
+ β2 ((u · ∇)2b

)
∇b.

Here, the unknowns are ζ(t, X) ∈ R and u(t, X) ∈ Rd (representing respectively the
dimensionless surface deformation and layer-averaged horizontal velocity), b(X) ∈ R is
the fixed bottom topography (so that h(t, X) represents the depth of the fluid layer) and
ε, β, µ are dimensionless parameters.

As aforementioned, by setting µ = 0 in (1.1), one recovers the Saint-Venant system,
which is an archetype of first-order quasilinear systems of conservation laws. Our strategy
in the following is to adapt to the Green–Naghdi equations the well-known techniques
(and in particular a priori energy estimates) developed for such systems. Such energy
estimates are obviously not guaranteed, due to the presence of the additional third-order
nonlinear operators. The key ingredient of this work is the extraction of a quasilinear
structure of (1.1), from which energy estimates can be deduced, and eventually a standard
Picard iteration scheme can be set up.

Such a “quasilinearization” is also the key ingredient in the proof of the local existence
of solutions to the water waves system [31, Thm. 4.16]. However, the structure of the
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water waves system and the one of the Green–Naghdi system look different, due to the
fact that they use different unknowns. Indeed, the second equation in (1.1) describes the
time-evolution of the layer-averaged horizontal velocity, while the Zakharov/Craig–Sulem
formulation of the water waves system involves the trace of the velocity potential at the
surface. To our opinion, the main contribution of this work is the demonstration that when
expressed in a different set of variables, the Green–Naghdi system possesses a structure
which is very similar to the water waves one; and that one can take advantage of this fact
to adapt the proof of the local well-posedness of the latter to the one of the former.

To be more precise, we work on another formulation for system (1.1):
∂t ζ + ∇ · (hu) = 0,(
∂t + εu⊥ curl

)
v + ∇ζ + ε

2∇(|u|
2) = µε∇

(
R[h, u] + Rb[h, βb, u]

)
,

(1.3)

where we denote curl(v1, v2)
def
= ∂1v2 − ∂2v1 and (u1, u2)

⊥ def
= (−u2, u1),

R[h, u] def
=

u
3h
· ∇(h3∇ · u) +

1
2

h2(∇ · u)2, (1.4)

Rb[h, βb, u] def
= −

1
2

(u
h
· ∇

(
h2(β∇b · u)

)
+ h(β∇b · u)∇ · u + (β∇b · u)2

)
(1.5)

and v is defined (recalling the definition of the operator T in (1.2)) by

hv = hu + µhT[h, βb]u def
= T[h, βb]u. (1.6)

In the following, we study system (1.3) as evolution equations for the variables ζ and
v, with u = u[h, βb, v] being uniquely defined (see Lemma 2.3 thereafter) by (1.6), and
deduce the well-posedness of (1.1) from the one of (1.3).

That system (1.3) is equivalent to (1.1) is certainly not straightforward, and we detail
the calculations in Section 6. Physically speaking, the variable v approximates (in the
shallow-water regime, µ � 1) vww = ∇ψww where ψww is the trace of the velocity
potential at the surface, and thus system (1.3) is more directly comparable to the water
waves system. In particular, the Hamiltonian structure of system (1.3), as brought to
light in [26, 36], is a direct counterpart of the celebrated one of the water waves system,
and we show in Appendix B how system (1.3) can be quickly derived thanks to the
Hamiltonian formalism. This allows to obtain preserved quantities of the system in a
straightforward way (see [49] and references therein). Most importantly for our purposes,
this allows us to follow the strategy of the proof for the local existence of a solution to the
water waves system in [27, 31], and to obtain the corresponding local existence result for
system (1.3). More precisely, the variables ζ, v allow to define the analogue of Alinhac’s
“good unknowns” [3] for the water waves system (see e.g. [2]) on which energy estimates
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can be established. We then extend the analysis so as to prove the well-posedness of the
Cauchy problem, in the sense of Hadamard.

After the completion of this work, it was pointed to us that the use of system (1.3)
was not necessary (and may be an over-complicated strategy) to derive a priori energy
estimates. For the sake of completeness, we sketch in Appendix A the computations which
provide such a priori estimates directly on system (1.1) and would yield an alternative
proof of our main results. As a matter of fact, a sketch of such proof was given in [21].
However, we believe that the similarity of structure between the Green–Naghdi system
and the one of the water waves system that we exhibit and exploit in this work is an
interesting feature. It may serve as a pedagogical tool to get a grasp at some properties
of the latter without technical difficulties related to the Dirichlet-to-Neumann operator.
Incidentally, we do not claim the discovery of formulation (1.3); see [34] and references
given therein, as well as in Appendix B.

1.3. Main results

Let us now present the main results of this work. Here and thereafter, we fix the parameters
ε, β ≥ 0 and µ ∈ (0, µ?) with µ? > 0. The validity of the Green–Naghdi system as
an asymptotic model for the water waves system stems from assuming µ � 1 while
ε, β = O(1) (see [31] for details) but we do not make use of such restriction in this work.
However, we shall always assume that

0 < h? < h(εζ(x), βb(x)) < h? < ∞, h(εζ, βb) def
= 1 + εζ − βb. (1.7)

We work with the following functional spaces, defined for n ∈ N by

Hn def
=

ζ ∈ L2(Rd),
��ζ ��2

Hn

def
=

n∑
|α |=0

��∂αu
��2
L2 < ∞

 ,
ÛHn def
=

{
b ∈ L2

loc(R
d), ∇b ∈ (Hn−1)d

}
,

Xn def
=

u ∈ L2(Rd)d,
��u��2

Xn

def
=

n∑
|α |=0

��∂αu
��2
L2 + µ

��∂α∇ · u��2
L2 < ∞

 ,
Yn def
=

v ∈ (X0)′,
��v��2

Yn

def
=

n∑
|α |=0

��∂αv
��2
(X0)′

< ∞

 .
Here, α ∈ Nd is a multi-index, (X0)′ is the topological dual space of X0, endowed with
the norm of the strong topology; and we denote by

〈
v, u

〉
(X0)′

the (X0)′ − X0 duality
bracket.
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Given variables λi ∈ R+, we denote C(λ1, λ2, . . . ) a multivariate polynomial with
non-negative coefficients, and F(λ1, λ2, . . . ) a multivariate polynomial with non-negative
coefficients and zero constant term. Since such notations are used for upper bounds and
will take variables restricted to line segments, C should be regarded as a constant and F
as a linear functional.

Theorem 1.1 (Well-posedness of the Green–Naghdi system). Let N ≥ 4, b ∈ ÛHN+2 and
(ζ0, u0) ∈ HN × XN satisfying (1.7) with h?, h? > 0. Then there exists T > 0 and a
unique (ζ, u) ∈ C([0,T]; HN × XN ) satisfying (1.1) with initial data (ζ, u)

��
t=0 = (ζ0, u0).

Moreover, one can restrict

T−1 = C(µ?, h−1
? , h

?)F
(
β
��∇b

��
HN+1, ε

��ζ0��HN , ε
��u0

��
XN

)
> 0

such that, for any t ∈ [0,T], (1.7) holds with h̃? = h?/2, h̃? = 2h?, and

sup
t∈[0,T ]

(��ζ ��2
HN +

��u��2
XN

)
≤ C ×

(��ζ0��2HN +
��u0

��2
XN

)
,

where C = C
(
µ?, h−1

? , h
?, β

��∇b
��
HN+1, ε

��ζ0��HN , ε
��u0

��
XN

)
, and such that the map (ζ0, u0) ∈

HN × XN 7→ (ζ, u) ∈ C([0,T]; HN × XN ) is continuous.

The full justification of the Green–Naghdi system is a consequence of the local existence
and uniqueness result for the water waves system ([31, Thm. 4.16]), its consistency with
the Green–Naghdi system ([31, Prop. 5.8]), the well-posedness of the Cauchy problem for
the Green–Naghdi system (Theorem 1.1) as well as a stability result ensuring the Lipschitz
dependence of the error with respect to perturbations of the system (Proposition 5.2,
thereafter). The following result improves [31, Thm. 6.15] by the level of regularity
required on the initial data.

Theorem 1.2 (Full justification of the Green–Naghdi system). Let N ≥ 7 and assume
that (ζww, ψww) ∈ C([0,Tww]; HN × ÛHN+1) is a solution to the water waves system (B.3)
(recall that such solutions exist for a large class of initial data by [31, Thm. 4.16]) such
that (1.7) holds with b ∈ HN+2(Rd).

Denote ζ0 = (ζww)
��
t=0 and h0 = 1 + εζ0 − βb, ψ0 = (ψww)

��
t=0 and u0 =

T[h0, βb]−1(h0∇ψ0); and M = supt∈[0,Tww]

(��ζww
��
HN +

��∇ψww
��
HN

)
.

Then there exists T > 0 and (ζGN, uGN) ∈ C([0,T]; HN × XN ) unique strong solution
to the Green–Naghdi system (1.1) with initial data (ζ0, u0), by Theorem 1.1; and one can
restrict

T−1 = C(µ?, h−1
? , h

?)F(β
��b��

HN+2, εM) > 0
such that for any t ∈ [0,min(T,Tww)],��ζww − ζGN

��
HN−6 +

��∇ψww − vGN
��
YN−6 ≤ C µ2 t,
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with C = C(µ?, h−1
? , h

?, β
��b��

HN+2, εM), and vGN is defined by (1.6).

Remark 1.3. The functional spaces arise as natural energy spaces for the quasilinear
structure of system (1.3) that we exhibit in this work. The regularity assumption N ≥ 4 is
most certainly not optimal. By the method of our proof, we are restricted to N ∈ N, and
we cannot hope to obtain a lower threshold than in the pure quasilinear setting, namely
N > d/2 + 1. That N = 3 is not allowed when d = 2 comes from technical limitations in
various places.

Since our proof is based solely on the structural properties of the system and on energy
estimates (in particular, no dispersive estimates are used), it may be adapted almost
verbatim to the periodic situation. Although we have not checked all the technical details,
we also expect that the strategy may be extended to the more general situation of Kato’s
uniformly local Sobolev spaces [29].

Remark 1.4. Applying the operator curl to (1.3)2, one observes the identity

∂t curl v + ε∇ · (u curl v) = 0.

Thus standard energy estimates on conservation laws [8] yield, for any t ∈ [0,T],��curl v
��
HN−1 (t) ≤

��curl v0
��
HN−1 exp(ελt)

with λ .
��u��

HN ≤
��u��

XN . Thus a byproduct of Theorem 1.1 is that initial smallness of the
“generalized vorticity” [42, 24], curl v, propagates for large positive times (and remains
trivial if it vanishes initially, as in Theorem 1.2). As already mentioned, the variable v
physically approximates ∇ψww where ψww is the trace of the velocity potential at the
surface. It is therefore physically relevant to assume

curl v = curl
(
u + µT[h, βb]u

)
≡ 0.

This two-dimensional irrotationality condition is a direct consequence of the three-
dimensional irrotationality assumption on the velocity flow inside the fluid layer. Outside
of this irrotational framework, we believe that the Green–Naghdi system is not a valid
model, and refer to [14] for a thorough discussion in this situation.

Outline

The body of the paper is dedicated to the proof of Theorem 1.1. In Section 2, we
provide some technical results concerning our functional spaces and the operator T. We
then exhibit the quasilinear system satisfied by the derivatives of any regular solution
to (1.3) in Section 3. This quasilinear formulation allows to obtain a priori energy
estimates in Section 4. Finally, we make use of these energy estimates for proving the
well-posedness of the Cauchy problem for system (1.3) in Section 5. The equivalence
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between formulation (1.3) and (1.1) is stated in Proposition 6.1. Theorems 1.1 and 1.2
follow as direct consequence of the results in Section 5 and Proposition 6.1, and we
complete the proofs in Section 6. In Appendix A, we roughly sketch of how energy
estimates could be obtained directly on formulation (1.1). We also provide a quick
discussion on the derivation and Hamiltonian formulation of system (1.3) in Appendix B.
We conclude this section with some independent remarks.

Large time well-posedness and asymptotics

A very natural question in the oceanographic context concerns the large time asymptotic
behavior of solutions to the Green–Naghdi system for small data. After a straightforward
rescaling of (1.1), the problem is naturally formulated in terms of solutions to the system

∂t ζ +
1
ε ∇ · (hu) = 0, h def

= 1 + εζ − βb,(
Id+µT[h, βb]

)
∂tu + 1

ε ∇ζ + (u · ∇)u + µ
(
Q[h, u] + Qb[h, βb, u]

)
= 0.

(1.8)

Is the Cauchy problem for (1.8) locally well-posed, uniformly with respect to the small
parameter ε? Is it globally well-posed for ε small enough? Can we exhibit “averaged”
equations asymptotically describing a slow coherent evolution of the solution?

This type of singular limit has been widely studied in particular in the context of the
low Mach number limit; see e.g. [22, 1] and references therein. As a matter of fact, when
β = µ = 0, one recognizes the incompressible limit for the isentropic two-dimensional
Euler equations, and it is tempting to elaborate on the analogy. One would then expect the
solutions to (1.8) to be asymptotically described (as ε → 0) as the superposition of two
components, described thereafter.

(1) The “incompressible” component, being defined as the solution to
∇ · ((1 − βb)u) = 0,(
Id+µT[1 − βb, βb]

)
∂tu + (u · ∇)u

+µ
(
Q[1 − βb, u] + Qb[1 − βb, βb, u]

)
= −∇p,

(1.9)

where the “pressure” p in (1.9)2 is the Lagrange multiplier associated to the
“incompressibility” constraint (1.9)1.

(2) The “acoustic” component, being defined as the solution to
∂t ζ +

1
ε ∇ · ((1 − βb)u) = 0,(

Id+µT[1 − βb, βb]
)
∂tu + 1

ε ∇ζ = 0,
(1.10)

with initial data satisfying curl(u + µT[1 − βb, βb]u)
��
t=0 = 0.
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System (1.9) was derived in [12, 13], and is usually referred to as the great-lake equations.
Its well-posedness, extending the theory concerning the two-dimensional incompressible
Euler equations, was subsequently provided in [35, 43]. However, these authors apparently
overlooked the role of the irrotationality assumption discussed in Remark 1.4, as the
only functions satisfying the constraint (1.9)1 as well as the irrotationality condition
curl(u + µT[1 − βb, βb]u) = 0 are in fact trivial. In other words, in the irrotational
framework that is the only one so far for which the Green–Naghdi system is rigorously
justified, the incompressible (or rigid-lid) component vanishes; see also [39] for a similar
discussion on the water waves system. One thus expects that the flow is asymptotically
described by (1.10) only, in the limit ε → 0 and in the irrotational setting.

However, when trying to adapt the usual strategy for rigorously proving such behavior,
one immediately encounters a serious difficulty in the physically relevant situation of
non-trivial topography, which transpires in the fact that our lower bound for the existence
time in Theorem 1.1 depends on the size of the bottom variations in addition to the size
of the initial data. When transcribed to system (1.8), this means that we are not able to
obtain a lower bound on the existence time of its solutions which is uniform with respect
to ε , unless β = O(ε).

For the Saint-Venant system, that is setting µ = 0, Bresch and Métivier [11] have
obtained such a uniform lower bound without any restriction on the amplitude bathymetry.
The strategy consists in estimating first the time derivatives of the solution, and then using
the system to deduce estimates on space derivatives. A related strategy (in the sense that
we look for operators commuting with the singular component of the system) amounts to
remark that for any n ∈ N, one can control the L2-norm of

ζn
def
= (∇ · (1 − b)∇)nζ, un

def
= (∇(1 − b)∇·)nu

by exhibiting the quasilinear system satisfied by (ζn, un) and applying simple energy
estimates. This allows to control the H2n-norm of ζ, u, provided that the initial data and
bottom topography are sufficiently regular. One expects a similar strategy to work for the
water waves system (partial results have been obtained by the method of time derivatives
in [41]), that is to control

ζn
def
=

(
1
µ

Gµ[0, βb]
)n
ζ, ψn

def
=

(
1
µ

Gµ[0, βb]
)n
ψ

where Gµ is the Dirichlet-to-Neumann operator, recalled in Appendix B. Since Gµ is an
operator of order 1, controlling ζn, ψn indeed allows to control higher regularities on ζ, ψ.
The strategy however fails for the Green–Naghdi system, as the corresponding operator,
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namely (see Appendix B)

1
µ

Gµ[0, βb]• ≈ −∇ ·
(
(1 − βb)T[1 − βb, βb]−1{(1 − βb)∇ •

})
is of order 0. One could easily propose different systems that do not suffer from such a
shortcoming, by adding the effect of surface tension as in [41], or modifying the system
without hurting its consistency as in [40]. This is however out of the scope of the present
work, and we leave the question of uniform lower bounds for the existence time of
solutions to (1.8) as an open problem.

Other models

We expect that our strategy may be of interest to other models for surface gravity waves.
Since our result holds uniformly with respect to µ ∈ (0, 1), we may deduce the well-
posedness of the Saint-Venant system. This result is of course a direct application of the
standard theory on quasilinear hyperbolic systems [8]. In the other direction, it would
be interesting to apply our strategy to the higher-order models derived by Matsuno [38],
which enrich the Saint-Venant and Green–Naghdi systems with models of arbitrary high
order, while preserving the structure of which we take advantage in this work. Similarly,
one can derive models with improved frequency dispersion while preserving the structure
of the Green–Naghdi model, by modifying the approximate Hamiltonian in Appendix B.
Such a strategy was applied by the authors in the one-dimensional and bilayer situation
in [20]. Interestingly, since such models can be tuned to fit the dispersion relation of
the water waves system, they do not suffer from the shortcoming described above, so
that large-time well-posedness is expected to hold even in the presence of a non-trivial
bathymetry.

Let us clarify however that our strategy does not require the Hamiltonian structure, but
only exploits the ability to construct “good unknowns” through ζ, v and their derivatives.
Thus even models which are derived through careless approximations may preserve the
quasilinear structure which is necessary for our energy estimates. Such is the case for
the Boussinesq–Peregrine system (see [44, 31, 40]), which consists in a simplification of
the Green–Naghdi system obtained by withdrawing contributions of size O(µε) while
keeping O(µβ) ones:


∂t ζ + ∇ · (hu) = 0,

∂t
(
u + µT[1 − βb, βb]u

)
+ ∇ζ + ε(u · ∇)u = 0.

(1.11)
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Because the elliptic operator Id+µT[1 − βb, βb] does not depend on time, solving
numerically the Boussinesq–Peregrine system is much less costly than solving the Green–
Naghdi system; see [34, 33]. It turns out that the proof of Theorem 1.1 does extend to
the Boussinesq–Peregrine system with straightforward modifications (all on the side
of simplification). More precisely, we obtain the well-posedness of system (1.11) after
applying the change of variable

v def
= u + µT[1 − βb, βb]u (1.12)

and extracting the quasilinear system satisfied by ∂αζ and ∂αv.

Theorem 1.5 (Well-posedness and full justification of the Boussinesq–Peregrine system).
Theorem 1.1 holds replacing system (1.1) with system (1.11). The full justification in the
sense of Theorem 1.2 holds as well, controlling the error as��ζww − ζBP

��
HN−6 +

��∇ψww − vBP
��
YN−6 ≤ C (µ2 + µε) t,

with ζBP, uBP the unique strong solution to (1.11) and vBP defined by (1.12), and the other
notations are as in Theorem 1.2.

Compared with [40, Thm. 2.1], our result provides a larger lower bound on the time of
existence, and does not rely on the assumption ε = O(µ).

2. Preliminary results

In this section, we fix parameters n ∈ N, α ∈ Nd, and dimension d ∈ {1, 2}. We denote
a . b for a ≤ Cb where C is a constant depending (non-decreasingly) only on n, d, and
possibly |α | and µ. We denote

〈
A
〉
n>r
= A if n > r and

〈
A
〉
n>r
= 0 otherwise, and

a ∨ b = max(a, b). The results are tailored for the dimension d = 2 (through the repeated
use of the continuous Sobolev embedding H2 ⊂ L∞ for instance) but hold as well when
d = 1. They are not meant to be sharp, but only sufficient for our needs. The call for “tame”
estimates stems from the Bona–Smith technique enforcing continuity properties stated in
Proposition 5.3; rougher estimates would be sufficient for the existence and uniqueness of
solutions, as in Proposition 5.1.

Lemma 2.1. The continuous embeddings Hn+1(Rd)d ⊂ Xn ⊂ Hn(Rd)d and Hn(Rd)d ⊂

Yn ⊂ Hn−1(Rd)d hold. The following inequalities hold as soon as the right-hand side is
finite: ��u��

Hn ≤
��u��

Xn,
��u��

Xn .
��u��

Hn+1, (2.1)��v��
Hn−1 .

��v��
Yn,

��v��
Yn ≤

��v��
Hn . (2.2)
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We also have the non-uniform continuous embedding��∇ f
��
Yn .

1
√
µ

�� f ��
Hn,

��∇ · u��
Hn .

1
√
µ

��u��
Xn . (2.3)

Proof. The continuous embeddings H1(Rd)d ⊂ X0 ⊂ L2(Rd)d are straightforward, and
the corresponding L2(Rd)d ⊂ Y0 ⊂ H−1(Rd)d follow by duality. The estimate (2.3) with
n = 0 is easily checked, as for any u ∈ X0,

|
〈
∇ f , u

〉
(X0)′
| = |

(
f ,∇ · u

)
L2 | ≤

1
√
µ

�� f ��
L2

��u��
X0 .

The case n ∈ N? is reduced to the case n = 0 by considering ∂αu, ∂αv, ∂α f with
0 ≤ |α | ≤ n. �

Lemma 2.2. Let f ∈ H2∨n(Rd) and g ∈ Hn(Rd). Then f g ∈ Hn(Rd)�� f g��
Hn .

�� f ��
H2

��g��
Hn +

〈�� f ��
Hn

��g��
H2

〉
n>2. (2.4)

The above holds as well allowing exceptionally the value n = −1.
Let f ∈ L∞(Rd) ∩ ÛH3∨n(Rd) and g ∈ Hn(Rd). Then f g ∈ Hn(Rd) and�� f g��

Hn .
(�� f ��

L∞
+

��∇ f
��
H2

) ��g��
Hn +

〈��∇ f
��
Hn−1

��g��
H2

〉
n>2. (2.5)

If, moreover, f ≥ f0 > 0, then f −1g ∈ Hn(Rd) and�� f −1g
��
Hn ≤ C

(
f −1
0 ,

�� f ��
L∞
,
��∇ f

��
H2

) (��g��
Hn +

〈��∇ f
��
Hn−1

��g��
H2

〉
n>2

)
. (2.6)

Let f ∈ L∞(Rd) ∩ ÛH3∨n+1(Rd) and u ∈ Xn. Then f u ∈ Xn and�� f u
��
Xn .

(�� f ��
L∞
+

��∇ f
��
H2

) ��u��
Xn +

〈��∇ f
��
Hn

��u��
X2

〉
n>2. (2.7)

Let f ∈ L∞(Rd) ∩ ÛH3∨n(Rd), and v ∈ Yn. One has f v ∈ Yn and�� f v
��
Yn .

(�� f ��
L∞
+

��∇ f
��
H2

) ��v��
Yn +

〈��∇ f
��
Hn−1

��v��
H2

〉
n>2. (2.8)

Proof. Estimate (2.4) is well-known; see [31, Prop. B.2] for instance. As for (2.5), the
cases n ∈ {0, 1, 2} are straightforward, using Leibniz rule and the continuous Sobolev
embedding H2 ⊂ L∞. When n > 2, we decompose Leibniz rule as follows: for any
1 ≤ |α | ≤ n,

∂α( f g) = f ∂αg +
∑
β+γ=α
|β | ≥1, |γ | ≥0

(
α

β

)
(∂β f )(∂γg).

Since |β | ≥ 1 and using the standard bilinear estimate for (see e.g. [51, Prop. 3.6]), one
has ��(∂β f )(∂γg)

��
L2 .

��∇ f
��
L∞

��g��
H |β |+|γ |−1 +

��∇ f
��
H |β |+|γ |−1

��g��
L∞
,
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and the result follows. Estimate (2.6) is obtained in the same way, and using the induction
hypothesis to control the contribution of

��∇( f −1)
��
H |β |+|γ |−1 . As for (2.7), we use�� f u

��
Xn .

�� f u
��
Hn +

√
µ
�� f∇ · u��

Hn +
√
µ
��∇ f · u

��
Hn,

with product estimates (2.4) and (2.5), as well as the continuous embedding (2.1) in
Lemma 2.1. Finally, we notice that f v ∈ Y0 = (X0)′ and

�� f v
��
Y0 .

(�� f ��
L∞
+
��∇ f

��
H2

) ��v��
(X0)′

since for any u ∈ X0,

|
〈

f v, u
〉
(X0)′
| ≤

��v��
(X0)′

�� f u
��
X0 .

��v��
(X0)′

(�� f ��
L∞
+

��∇ f
��
H2

) ��u��
X0 .

For n ∈ {0, 1}, we write�� f v
��
Yn+1 .

�� f v
��
Yn +

∑
|α |=1

�� f ∂αv
��
Yn +

��(∂α f )v
��
Hn,

where we used (2.2) in Lemma 2.1. Estimate (2.8) follows by finite induction, using (2.4)
and again (2.2). For n > 2, we use Leibniz rule and the bilinear estimate as above:��(∂β f )(∂γv)

��
Y0 .

��(∂β f )(∂γv)
��
L2 ≤

��∇ f
��
H2

��v��
Hn−1 +

��∇ f
��
Hn−1

��v��
H2 .

Estimate (2.8) follows from using again the embedding (2.2). The proof is complete. �

Let us now exhibit elliptic estimates concerning the operator T, defined in (1.2), (1.6).

Lemma 2.3. Let b ∈ ÛH3(Rd) and h ∈ ÛH2(Rd) be such that (1.7) holds. Then T[h, βb] ∈
L(X0; (X0)′) and is symmetric:

∀u1, u2 ∈ X0,
〈
T[h, βb]u1, u2

〉
(X0)′
=

〈
T[h, βb]u2, u1

〉
(X0)′

.

Moreover, one has

∀u1, u2 ∈ X0, |
〈
T[h, βb]u1, u2

〉
(X0)′
| ≤ C(µ, h?, β

��∇b
��
L∞
)
��u1

��
X0

��u2
��
X0,

∀u ∈ X0,
��u��2

X0 ≤ C(h−1
? )

〈
T[h, βb]u, u

〉
(X0)′

.

In particular, T[h, βb] : X0 → (X0)′ is a topological isomorphism and

∀v ∈ (X0)′,
��T[h, βb]−1v

��
X0 ≤ C(h−1

? )
��v��
(X0)′

.

Proof. We establish the estimates for u, u1, u2 ∈ S(R
d)d so that all the terms are well-

defined, and the ((X0)′ − X0) duality product coincides with the L2 inner product. The
result for less regular functions is obtained by density of S(Rd)d in X0 and continuous
linear extension.
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By definition of T in (1.6) and after integration by parts, one has(
T[h, βb]u1, u2

)
L2 =

∫
Rd

hu1 · u2 +
µ

3
h3(∇ · u1)(∇ · u2)

−
µ

2
h2 ((∇ · u2)(β∇b · u1) + (β∇b · u2)(∇ · u1)

)
+ µh(β∇b · u1)(β∇b · u2),

from which the symmetry is evident. The first estimate of the Lemma follows by
Cauchy–Schwarz inequality. The second one is obvious when rewriting(

T[h, βb]u, u
)
L2 =

∫
Rd

h|u|2 +
µ

12
h3 |∇ · u|2 +

µ

4
h|h∇ · u − 2β∇b · u|2.

This shows that T[h, βb] : X0 → (X0)′ is continuous and coercive, so that the operator
version of Lax–Milgram theorem ensures that T[h, βb] is an isomorphism. The continuity
of the inverse follows from the coercivity of T[h, βb]:��u��2

X0 ≤ C(h−1
? )|

〈
T[h, βb]u, u

〉
(X0)′
| ≤ C(h−1

? )
��T[h, βb]u

��
(X0)′

��u��
X0,

and setting u = T[h, βb]−1v above. �

Lemma 2.4. Let b ∈ ÛH4(Rd) and h ∈ ÛH3(Rd) be such that (1.7) holds; and let v ∈ Yn.
Then T[h, βb]−1v ∈ Xn and��T[h, βb]−1v

��
Xn ≤ C

(��v��
Yn +

〈��∇h
��
Hn−1

��v��
Y2

〉
n>2

)
with C = C(µ, h−1

? , h
?,

��∇h
��
H2, β

��∇b
��
H3 ).

Proof. Let v ∈ S(Rd)d, and denote for simplicity T def
= T[h, βb]. One has, for Λn =

(Id−∆)n/2, [
Λ

n,T−1]v = −T−1 [
Λ

n,T
]
T
−1v.

By definition of T and since Λn commutes with space differentiation, we have for any
u,w ∈ S(Rd)d ,

|
( [
Λ

n,T
]
u,w

)
L2 | =

( [
Λ

n, h
]
u,w

)
L2 +

µ

3
( [
Λ

n, h3]∇ · u,∇ · w)
L2

−
µ

2
(
[Λn, h2(β∇b)·]u,∇ · w

)
L2

−
µ

2
(
[Λn, h2(β∇b)]∇ · u,w

)
L2

+ µ
(
[Λn, h(β∇b)(β∇b)·]u,w

)
L2 .

Commutator estimates (see e.g. [31, Cor. B.9]) and product estimate (2.5) yield

|
( [
Λ

n,T
]
u,w

)
L2 | ≤ C

(��Λn−1u
��
X0 +

〈��∇h
��
Hn−1

��Λ2u
��
X0

〉
n>2

)��w��
X0 .
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By density and continuity arguments, we infer that for any u ∈ Xn−1,
[
Λn,T

]
u ∈ (X0)′

and �� [Λn,T
]
u
��
(X0)′
≤ C

(��u��
Xn−1 +

〈��∇h
��
Hn−1

��u��
X2

〉
n>2

)
.

Combining the above and by Lemma 2.3, we find��T−1v
��
Xn =

��T−1
Λ

nv − T−1 [
Λ

n,T
]
T
−1v

��
X0

≤ C(h−1
? )

��Λnv −
[
Λ

n,T
]
T
−1v

��
(X0)′

≤ C
(��v��

Yn +
��T−1v

��
Xn−1 +

〈��∇h
��
Hn−1

��T−1v
��
X2

〉
n>2

)
.

The result follows by induction on n, and by density of S(Rd)d in Yn. �

We now exhibit some expansions of the operators at stake in system (1.3), which are
crucial to extract its quasilinear formulation, displayed in Proposition 3.1 below.

Lemma 2.5. For any f , g ∈ ÛH3∨n+ |α |−1(Rd) with n ∈ N and |α | ≥ 1, one has��∂α( f g) − f ∂αg
��
Hn .

��∇ f
��
H2∨n+|α |−1

��g��
Hn+|α |−1 .

Proof. Using Leibniz rule, we only have to estimate��(∂β f )(∂γg)
��
L2 for |β | + |γ | ≤ n + |α | and |β | ≥ 1.

If |β | = 1, then |γ | ≤ n+ |α | −1, and we find by continuous Sobolev embedding H2 ⊂ L∞��(∂β f )(∂γg)
��
L2 .

��∂β f
��
H2

��∂γg��
L2 .

If |β | = 2, then |γ | ≤ n + |α | − 2, and standard product estimate (see e.g. [31, Prop. B.2])
yields ��(∂β f )(∂γg)

��
L2 .

��∂β f
��
H1

��∂γg��
H1 .

If |β | > 2, then |γ | ≤ n+ |α | −3, and we find by continuous Sobolev embedding H2 ⊂ L∞��(∂β f )(∂γg)
��
L2 .

��∂β f
��
L2

��∂γg��
H2 .

This concludes the proof. �

Lemma 2.6. For any f ∈ ÛH4∨n+ |α |−1(Rd) and v ∈ Yn+ |α |−1 with n ∈ N and |α | ≥ 1, one
has ��∂α( f v) − f ∂αv

��
Yn .

��∇ f
��
H3∨n+|α |−1

��v��
Yn+|α |−1 .

Proof. Using Leibniz rule, we only have to estimate��(∂β f )(∂γv)
��
Y0 for |β| + |γ | ≤ n + |α | and |β | ≥ 1.

If |β | = 1, then |γ | ≤ n + |α | − 1, and we use the product estimate (2.8) in Lemma 2.2 to
deduce ��(∂β f )(∂γv)

��
Y0 .

��∂β f
��
H3

��∂γv
��
Y0 .
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For |β | = 2, |β| = 3 and |β | > 3, we proceed as in the proof of Lemma 2.5, and using (2.2)
in Lemma 2.1: by the continuous embedding L2 ⊂ Y0 we fall into the L2 setting,
and the continuous embedding Yn+ |α |−1 ⊂ Hn+ |α |−2 allows to control

��∂γv
��
H |β |−2 ≤��∂γv

��
Hn+|α |−2 . �

Lemma 2.7. For any f , g ∈ ÛH3∨n+ |α |−1(Rd) with n ∈ {0, 1} and |α | ≥ 1, one has��∂α( f g) − g∂α f − f ∂αg
��
Hn .

��∇ f
��
H2

��∇g��
Hn+|α |−2 +

��∇ f
��
Hn+|α |−2

��∇g��
H2 .

Proof. The result for n = 0 follows from Leibniz rule:

∂α( f g) − g∂α f − f ∂αg =
∑
β+γ=α
|β | ≥1, |γ | ≥1

(
α

β

)
(∂β f )(∂γg),

and we use the standard bilinear estimate [51, Prop. 3.6] to estimate��(∂β f )(∂γg)
��
L2 .

��∇ f
��
L∞

��∇g��
H |β |+|γ |−2 +

��∇ f
��
H |β |+|γ |−2

��∇g��
L∞
,

together with the continuous embedding H2 ⊂ L∞. The case n = 1 is obtained in the
same way after differentiating the above identity. �

Lemma 2.8. For any f ∈ ÛH4∨n+ |α |−1(Rd), v ∈ Y4∨n+ |α |−1 with n ∈ {0, 1} and |α | ≥ 1,
one has ��∂α( f v) − v∂α f − f ∂αv

��
Yn .

��∇ f
��
H3

��v��
Yn+|α |−1 +

��∇ f
��
Hn+|α |−2

��v��
Y4 .

Proof. If α = 1, then the result is obvious. For |α | ≥ 2, we use Leibniz rule as above.
When |β | = 1, then by (2.8) in Lemma 2.2,��(∂β f )(∂γv)

��
Y0 .

(��∂β f
��
L∞
+

��∂β∇ f
��
H2

)��∂γv
��
Y0 .

��∇ f
��
H3

��v��
Y |α |−1 .

When |β | ≥ 2, we use the standard bilinear estimate as above:��(∂β f )(∂γv)
��
L2 .

��Λ∇ f
��
L∞

��Λv
��
H |β |+|γ |−3 +

��Λ∇ f
��
H |β |+|γ |−3

��Λv
��
L∞
.

This yields the desired estimate for n = 0, by the continuous embedding H2 ⊂ L∞

and (2.2) in Lemma 2.1. The case n = 1 is obtained similarly. �

In the following Lemmata, similar expansions are carried on the operators T and T−1,
in particular exhibiting the shape derivatives of these operators.

Lemma 2.9. Let |α | ≥ 1, n ∈ {0, 1}. Let ζ ∈ H3∨n+ |α |−1(Rd), b ∈ ÛH4∨n+ |α |+1(Rd) be
such that (1.7) holds, and u ∈ X3∨n+ |α |−1. Define

dhT[h, βb]( f , u) def
= f u − µ∇(h2 f∇ · u) + µ∇

(
f h(β∇b) · u

)
− µ f h(β∇b)∇ · u. (2.9)
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Then��∂α (
T[h, βb]u

)
− T[h, βb]∂αu − εdhT[h, βb](∂αζ, u)

��
Yn

≤ C(µ, h?)F
(
β
��∇b

��
H3∨n+|α |, ε

��∇ζ ��
H2, ε

��u��
X3

) (��∇ζ ��
Hn+|α |−2 +

��u��
Xn+|α |−1

)
.

Proof. Assume first that u ∈ S(Rd)d , and denote

r def
= ∂α

(
T[h, βb]u

)
− T[h, βb]∂αu − εdhT[h, βb](∂αζ, u).

By definition of T in (1.6), integration by parts and since Λn commutes with spatial
differentiation, one has for any w ∈ X0,〈

Λ
nr,w

〉
(X0)′
=

(
Λ

n{∂α(hu) − h∂αu − ε∂αζu},w
)
L2

+ µ
1
3
(
Λ

n{∂α(h3∇ · u) − h3∂α∇ · u − 3εh2(∂αζ)∇ · u},∇ · w
)
L2

− µ
1
2
(
Λ

n{∂α(h2(β∇b) · u) − h2(β∇b) · ∂αu − 2εh(∂αζ)(β∇b) · u},∇ · w
)
L2

− µ
1
2
(
Λ

n{∂α(h2(β∇b)∇ · u) − h2(β∇b)∇ · ∂αu − 2εh(∂αζ)(β∇b)∇ · u},w
)
L2

+ µ
(
Λ

n{∂α(hβ2(∇b · u)∇b) − hβ2(∇b · ∂αu)∇b − ε(∂αζ)β2(∇b · u)∇b},w
)
L2

def
=

(
Λ

nr1,w
)
L2 +
√
µ
(
Λ

nr2,∇ · w
)
L2

The two contributions are estimated using Lemmata 2.5 and 2.7, product estimates (2.4)
and (2.5) and the continuous embedding H2 ⊂ L∞. For instance, by Lemma 2.7, one has��∂α(ζu) − ζ∂αu − ∂αζu

��
Hn .

��∇ζ ��
H2

��u��
Hn+|α |−1 +

��∇ζ ��
Hn+|α |−2

��u��
H3

and by Lemma 2.5, ��∂α(bu) − b∂αu
��
Hn .

��∇b
��
H2∨n+|α |−1

��u��
Hn+|α |−1,

and (2.1) in Lemma 2.1 allows to complete the estimate of the first contribution. The other
terms are treated similarly, using first Lemma 2.5 to commute the differentiation operator
with bottom contributions, product estimates (2.4) and (2.5) to estimate the commutator,
and then Lemma 2.7 to deal with surface contributions.

Altogether, one finds that
��r1

��
Hn and

��r2
��
Hn are estimated as in the statement. By

Cauchy–Schwarz inequality and duality, we deduce that r ∈ Yn and
��r��

Yn satisfies the
same estimate. The result for u ∈ X3∨n+ |α |−1 follows by density and continuous linear
extension. �
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Lemma 2.10. Let |α | ≥ 1, n ∈ {0, 1}. Let b ∈ ÛH4∨n+ |α |+1(Rd) and ζ ∈ H3∨n+ |α |−1(Rd)

be such that (1.7) holds, and v ∈ Y3∨n+ |α |−1. Denote T = T[h, βb] and dhT = dhT[h, βb]
defined in (2.9). Then one has��∂α (

T
−1v

)
− T−1∂αv + εT−1{dhT(∂αζ,T−1v)

}��
Xn

≤ C(µ, h−1
? , h

?)F
(
β
��∇b

��
H3∨n+|α |, ε

��∇ζ ��
H2, ε

��u��
X3

) (��∇ζ ��
Hn+|α |−2 +

��v��
Yn+|α |−1

)
.

Proof. Let us denote r = ∂α
(
T−1v

)
− T−1∂αv + εT−1{dhT(∂αζ,T−1v)

}
and u = T−1v.

One has

r = T−1
T∂α

(
T
−1v

)
− T−1∂α

(
TT
−1v

)
+ εT−1{dhT(∂αζ,T−1v)

}
= −T−1{∂α (

Tu
)
− T∂αu − εdhT(∂αζ, u)

} def
= −T−1r̃.

By Lemma 2.4 and Lemma 2.9, one has��r��
Xn ≤ C

(
µ, h−1

? , h
?,

��∇h
��
H2, β

��∇b
��
H3

)��r̃��
Yn

≤ C
(
µ, h−1

? , h
?)F (

β
��∇b

��
H3∨n+|α |, ε

��∇ζ ��
H2, ε

��u��
X3

)
×

(��∇ζ ��
Hn+|α |−2 +

��u��
Xn+|α |−1

)
and for m = 3 or m = n + |α | − 1,��u��

Xm ≤ C
(
µ, h−1

? , h
?, β

��∇b
��
H3, ε

��∇ζ ��
H2

) (��v��
Ym +

〈��∇h
��
Hm−1

��v��
Y2

〉
m>2

)
.

This concludes the proof. �

We conclude this section with the following result which is essential for estimating the
difference between two approximate solutions (in later Proposition 5.2 for instance).

Lemma 2.11. Let n ∈ N, b ∈ ÛH4∨n+1(Rd) and ζ, ζ̃ ∈ H3∨n(Rd) be such that (1.7) holds,
and v ∈ Y2∨n. Then, denoting h = 1 + εζ − βb and h̃ = 1 + ε ζ̃ − βb, one has��T[h, βb]−1v − T[h̃, βb]−1v

��
Xn ≤ C

��v��
Y2∨n

��ζ − ζ̃ ��
Hn

with C = C(µ, h−1
? , h

?,
��∇b

��
H3∨n,

��∇h
��
H2∨n−1,

��∇h̃
��
H2∨n−1 ).

Proof. We rewrite

T[h, βb]−1v − T[h̃, βb]−1v = T[h̃, βb]−1 (
T[h̃, βb] − T[h, βb]

)
T[h, βb]−1v.

By Lemma 2.4, one has��T[h, βb]−1v
��
Xn ≤ C(µ, h−1

? , h
?,

��∇h
��
H2∨n−1, β

��∇b
��
H3 )

��v��
Yn .
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Using the definition (1.6), one has

T[h̃, βb]u − T[h, βb]u = ε(ζ − ζ̃)u −
µ

3
∇
(
(h3 − h̃3)∇ · u

)
+
µ

2
∇
(
(h2 − h̃2)(β∇b · u)

)
−
µ

2
(h − h̃)(β∇b)∇ · u.

By (2.2) and (2.1) in Lemma 2.1 and (2.4) in Lemma 2.2, one has immediately��ε(ζ − ζ̃)u��
Yn . ε

��u��
X2∨n

��ζ − ζ̃ ��
Hn .

Using now (2.3) in Lemma 2.1, we find

µ
��∇ (
(h3 − h̃3)∇ · u

) ��
Yn ≤

√
µ
��(h3 − h̃3)∇ · u

��
Hn ≤

��u��
X2∨n

��h3 − h̃3��
Hn

≤ ε C
(��∇h

��
H2∨n−1,

��∇h̃
��
H2∨n−1

) ��u��
X2∨n

��ζ − ζ̃ ��
Hn .

The other terms are treated similarly, and we find��T[h̃, βb]u − T[h, βb]u
��
Yn ≤ C

��u��
X2∨n

��ζ − ζ̃ ��
Hn .

The proof is completed when collecting the above and applying once again Lemma 2.4. �

3. The quasilinear system

The result below is the key ingredient of our proof. We extract the quasilinear structure of
system (1.3) in terms of “good unknowns”, from which energy estimates will be deduced
in subsequent Section 4. The strategy consists in differentiating system (1.3) several times,
and estimate lower order contributions thanks to the formulas obtained in Section 2.
However, in order not to break the structure of the first equation, we are led (as for the
water waves system [27, 31]) to introduce an appropriate velocity variable which is a
combination of the original variables and their derivatives.

Proposition 3.1. Letα be a non-trivialmulti-index and ζ ∈ H4∨|α |(Rd), b ∈ ÛH5∨|α |+2(Rd)

be such that (1.7) holds, and v ∈ Y4∨|α | , satisfying (1.3). Denote w def
= −h∇ · u + β∇b · u

and
ζ(α)

def
= ∂αζ ; v(α)

def
= ∂αv − µε ∇(w∂αζ). (3.1)

Then ζ(α), v(α) satisfy
∂t ζ(α) + ε∇ · (uζ(α)) + ∇ · (hu(α)) = r(α),

(∂t + εu⊥ curl)v(α) + ∇ζ(α) + ε∇(u · v(α)) = r(α),
(3.2)

where we denote

u def
= T[h, βb]−1(hv) and u(α)

def
= T[h, βb]−1(hv(α)),
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and r(α), r(α) satisfy the estimates��r(α)��L2 +
��r(α)��Y0 ≤ F

(��ζ ��
H |α |
+

��v��
Y |α |
+

��curl v
��
H |α |−1

)
(3.3)

with F = C(µ, h−1
? , h

?)F
(
β
��∇b

��
H4∨|α |+1, ε

��∇ζ ��
H3, ε

��v��
Y4, ε

��curl v
��
H3

)
.

Moreover, if we denote ζ̃, ṽ satisfying the same assumptions and r̃(α), r̃(α) the corre-
sponding residuals, then one has��r(α) − r̃(α)

��
L2 +

��r(α) − r̃(α)
��
Y0

≤ F̃
(��ζ − ζ̃ ��

H |α |
+

��v − ṽ
��
Y |α |
+

��curl v − curl ṽ
��
H |α |−1

)
(3.4)

with

F̃ = C(µ, h−1
? , h

?)F
(
β
��∇b

��
H4∨|α |+1, ε

��ζ ��
H4∨|α |, ε

��v��
Y4∨|α |, ε

��curl v
��
H3∨|α |−1,

ε
��ζ̃ ��

H4∨|α |, ε
��̃v��

Y4∨|α |, ε
��curl ṽ

��
H3∨|α |−1

)
.

Remark 3.2. One recovers the quasilinear structure of the water waves system, as exhibited
in [31, Sec. 4.2], up to two differences. Firstly, the advection velocity is u instead of U
(using the notation introduced in Appendix B). This was to be expected, comparing the
formulation of the Green–Naghdi system (B.11) with the corresponding formulation of
the water waves system (B.12).

Secondly, from the comparison of the aforementioned formulations, one would
expect (3.2)2 to exhibit a component of the form

∇(aζ) with a
def
= 1 + µε∂tw + µε2V · ∇w,

with the hyperbolicity condition a > 0 accounting for the Rayleigh–Taylor criterion,
(−∂zP)z=ε ζ > 0; see the discussion in [31, Sec. 4.3.5]. In our system, we simply set a ≡ 1
since the additional contributions can be discarded, thanks to our energy norm and the µ
prefactor, by (2.3) in Lemma 2.1. In other words, using the notation of the proof below,
one can check that

∇ζ(α) ∼Y0 ∇

( (
1 + µε(∂t + εu · ∇)w

)
ζ(α)

)
.

Thus the Rayleigh–Taylor criterion for water waves, which is automatically satisfied for
small values of the parameter µ, disappears in the Green–Naghdi system (for any values
of µ).

Proof. Let us first remark that by (2.8) in Lemma 2.2, one has for any v ∈ Yn and n ∈ N,��hv
��
Yn ≤ C(h?)

(
1 +

��∇h
��
H2

) ��v��
Yn +

〈��∇h
��
Hn−1

��v��
Y2

〉
n>2. (3.5)
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Using Lemma 2.4, it follows u = T[h, βb]−1(hv) ∈ Xn and��u��
Xn ≤ C

(
µ, h−1

? , h
?, β

��∇b
��
H3, ε

��∇ζ ��
H2

) (��v��
Yn +

〈��∇h
��
Hn−1

��v��
Y2

〉
n>2

)
. (3.6)

We now enter into the detailed calculations. For simplicity, we denote

a ∼L2 b ⇐⇒ a − b = r,

a ∼Y0 b ⇐⇒ a − b = r

with
��r ��

L2 and
��r��

Y0 satisfying (3.3).

First equation. We start by differentiating α-times the first equation of (1.3):

∂t ζ(α) + ∂
α∇ · (hu) = 0.

By Lemma 2.7 for the surface contribution and Lemma 2.5 for the bottom contribution
(with n = 1), and using (2.1) in Lemma 2.1 and (3.6), one finds

∂α∇ · (hu) ∼L2 ∇ · (h∂αu) + ε∇ · (u∂αζ).

Now, we use (2.5) in Lemma 2.2, (2.1) in Lemma 2.1, Lemma 2.10 and (3.5), so that

∇ · (h∂αu) ∼L2 ∇ ·
(
hT[h, βb]−1{∂α(hv) − εdhT[h, βb](∂αζ, u)

})
.

Using (2.1) and (2.2) in Lemma 2.1, Lemma 2.4, and proceeding as above but with
Lemma 2.8 for the surface contribution and Lemma 2.6 for the bottom contribution, we
find

∇ ·
(
hT[h, βb]−1{∂α(hv)

})
∼L2 ∇ ·

(
hT[h, βb]−1{h∂αv + ε(∂αζ)v

})
.

In order to deal with the second contribution, we use the identity (see the definition (1.6))

v = u −
µ

3h
∇(h3∇ · u) +

µ

2h
∇
(
h2(β∇b) · u

)
−
µ

2
h(β∇b)∇ · u + µβ2(∇b · u)∇b.

By the extra µ prefactor, we can use now (2.3) and (2.2) in Lemma 2.1, Lemmata 2.2
and 2.3 as well as (3.6) to deduce

ε∇ ·
(
hT[h, βb]−1{(∂αζ)v}) ∼L2 ε∇ ·

(
hT[h, βb]−1{(∂αζ)u})

.

Finally, recalling (2.9), and proceeding as above, we find

ε∇ ·
(
hT[h, βb]−1{dhT[h, βb](∂αζ, u)

})
∼L2 ε∇ ·

(
hT[h, βb]−1{(∂αζ)u − µh∇

(
(∂αζ)(h∇ · u − β∇b · u)

)})
.

Collecting the above information and using the definition of u(α), we obtain, as desired,

∂α∂t ζ = −∂
α∇ · (hu) ∼L2 −∇ · (hu(α)) − ε∇ · (uζ(α)). (3.7)
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Second equation. Now we differentiate the second equation of (1.3):

∂t∂
αv + ∂α

(
∇ζ + εu⊥ curl v +

ε

2
∇(|u|2)

)
= µε∂α∇

(
R[h, u] + Rb[h, βb, u]

)
.

By (2.2) and (2.1) in Lemma 2.1, Lemma 2.7 with n = 1 and (3.6), one has
ε

2
∂α∇(|u|2) ∼Y0 ε∇(u · ∂αu).

Recalling the definition (1.4)-(1.5), we use (2.3) in Lemma 2.1, Lemma 2.7 with n = 0
and Sobolev embedding H2 ⊂ L∞, product estimates (2.5) and (2.6) in Lemma 2.2 and
finally (3.6), to deduce

µε∂α∇
(
R[h, u] + Rb[h, βb, u]

)
∼Y0 µε∇

(
u
3h
· ∂α∇(h3∇ · u) −

1
2

u
h
· ∂α∇

(
h2(β∇b · u)

) )
.

Recalling once again the identity

v = u −
µ

3h
∇(h3∇ · u) +

µ

2h
∇
(
h2(β∇b) · u

)
−
µ

2
h(β∇b)∇ · u + µβ2(∇b · u)∇b,

and proceeding as previously for the remainder terms, we deduce

ε∂α∇

(
1
2
|u|2 − µR[h, u] − µRb[h, βb, u]

)
∼Y0 ε∇(u · ∂αv).

Now, by (2.2) in Lemma 2.1 and Lemma 2.7 with n = 0, Sobolev embedding H2 ⊂ L∞

and (3.6), we find
ε∂α(u⊥ curl v) ∼Y0 εu⊥(curl ∂αv),

and the combination yields

∂t∂
αv ∼Y0 −∂α∇ζ − ε∇(u · ∂αv) − εu⊥(curl ∂αv).

In order to conclude, we consider

∂t (v(α) − ∂αv) = −µε∂t∇(w∂αζ).

By continuous Sobolev embedding H2 ⊂ L∞, one has��∂tw��
L∞
≤ C

(
h?, β

��∇b
��
H2

) (��∂tu��
X2 +

��∂t ζ ��H2

)
.

Using the identity

∂tu = T[h, βb]−1∂t (hv) − εT[h, βb]−1{dhT[h, βb](∂t ζ, u)
}
,

plugging the expressions of ∂t ζ, ∂tv as given by (1.3), and by Lemmata 2.1 and 2.2,
Lemma 2.11 with n = 2, as well as (3.6), we deduce

∂t (v(α) − ∂αv) ∼Y0 −µε∇(w∂t∂
αζ).
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Finally, using (3.7) and (2.3) in Lemma 2.1, we find after straightforward manipulations
and proceeding as above,

µε∇(w∂t∂
αζ) ∼Y0 −µε2∇(w∇ · (uζ(α))) − µε∇(w∇ · (hu(α)))

∼Y0 −µε2∇(u · ∇(wζ(α))).

Collecting the above information yields

∂tv(α) ∼Y0 −∂α∇ζ − ε∇(u · ∂αv) − εu⊥(curl ∂αv) + µε2∇(u · ∇(wζ(α)))

= −∂α∇ζ − ε∇(u · v(α)) − εu⊥(curl v(α)). (3.8)

Estimates (3.7) and (3.8) provide the first estimate of the statement, namely (3.3).

The second estimate of the statement is obtained identically. Since all contributions on
the remainders involve either products or the operator T−1, we can express the difference
as a sum of terms of the same form but involving at least once ζ − ζ̃ or v− ṽ, or estimated
by Lemma 2.11. For instance, we find the corresponding estimate for (3.5) and (3.6) as
follows. Denote h = 1 + εζ − βb and h̃ = 1 + ε ζ̃ − βb. By (2.2) in Lemma 2.1 and (2.4)
and (2.8) in Lemma 2.2,��hv − h̃ṽ

��
Yn ≤

��h(v − ṽ)
��
Yn + ε

��(ζ − ζ̃ )̃v��
Yn

≤ C(µ, h?,
��∇h

��
H2∨n−1, ε

��̃v��
Y3∨n )

(��v − ṽ
��
Yn +

��ζ − ζ̃ ��
Hn

)
.

Applying this to u = T−1[h, βb](hv), ũ = T−1[h̃, βb](h̃ṽ) and by Lemma 2.4 and
Lemma 2.11, it follows��u − ũ

��
Xn ≤

(��v − ṽ
��
Yn +

��ζ − ζ̃ ��
Hn

)
× C

(
µ, h−1

? , h
?,

��∇b
��
H3∨n,

��∇h
��
H2∨n−1,

��∇h̃
��
H2∨n−1, ε

��v��
Y2∨n, ε

��̃v��
Y3∨n

)
.

It is now a tedious but straightforward task to follow the steps of the proof and check that
the estimate (3.4) holds. �

4. A priori energy estimates

This section is dedicated to a priori energy estimates on the quasilinearized system (3.2)
(or rather a mollified version; see below), which we make use in the proof of the existence
and uniqueness of solutions to system (1.3) in subsequent Section 5. It is convenient to
introduce the following notation, for n ∈ N:

En(ζ, v) def
=

��ζ ��2
Hn +

��v��2
Yn .

We wish to show that the regularity induced by En is propagated by the flow of the
Green–Naghdi system (1.3) provided n is chosen sufficiently large. However, the natural
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energy of our system is determined by the symmetrizer associated with the quasilinear
system (3.2) satisfied by ζ(α), v(α). This leads us to define

F n(ζ, v) def
=

∑
0≤ |α | ≤n

F [h, βb](ζ(α), v(α)).

with ζ(α), v(α) given by (3.1) and

F [h, βb](ζ(α), v(α))
def
=

��ζ(α)��2L2 +
〈
v(α), hu(α)

〉
(X0)′

,

where we recall that u(α)
def
= T[h, βb]−1(hv(α)). By convention, we denote ζ(0)

def
= ζ and

v(0)
def
= v. We denote F (ζ(α), v(α)) = F [h, βb](ζ(α), v(α)) in the following for the sake of

readability.
It is not obvious that controlling F (ζ(α), v(α)) for 0 ≤ |α | ≤ n allows to control En(ζ, v)

and conversely, and this is what we investigate in the following Lemmata.

Lemma 4.1. Let b ∈ ÛH3(Rd) and ζ ∈ H3(Rd) be such that (1.7) holds, and let
ζ ∈ L2(Rd), v ∈ Y0. Then u def

= T[h, βb]−1(hv) ∈ X0 is uniquely defined, and one has

C−1 ��u��
X0 ≤

��v��
Y0 ≤ C

��u��
X0,

and
C−1 F (ζ, v) ≤ E0(ζ, v) ≤ CF (ζ, v),

with C = C(µ, h−1
? , h

?, β
��∇b

��
H2, ε

��∇ζ ��
H2 ).

Proof. The estimates follow from Lemma 2.3 and (2.5), (2.6) and (2.8) in Lemma 2.2. �

Lemma 4.2. Let n ∈ N? and b ∈ ÛH4(Rd), ζ ∈ H4∨n(Rd) be such that (1.7) holds.
Assume v ∈ Y4∨n and define ζ(α), v(α) as in (3.1). Then one has

F n(ζ, v) ≤ C(µ, h−1
? , h

?, β
��∇b

��
H3, ε

2E4(ζ, v))En(ζ, v).

Conversely, if v ∈ Y4 is such that v(α) ∈ Y0 for any 1 ≤ |α | ≤ n, then v ∈ Yn and

En(ζ, v) ≤ C(µ, h−1
? , h

?, β
��∇b

��
H3, ε

2F 4(ζ, v))F n(ζ, v).

Proof. By Lemma 4.1, it suffices to prove the estimates replacing F n with

Ẽn(ζ, v) def
=

∑
0≤ |α | ≤n

E0(ζ(α), v(α)).

Recall definition (3.1): ζ(α)
def
= ∂αζ and v(α)

def
= ∂αv − µε ∇(w∂αζ) with w

def
= −h∇ · u +

β∇b · u. By Lemma 2.2 and Lemma 2.4, one has for any m ∈ {0, 1, 2},
√
µ
��w��

Hm ≤ C(µ, h?, β
��∇b

��
H2, ε

��∇ζ ��
H2 )

��u��
Xm

≤ C(µ, h−1
? , h

?, β
��∇b

��
H3, ε

��ζ ��
H3 )

��v��
Ym .

44



WP of Green–Naghdi and Boussinesq–Peregrine

Now, by (2.3) in Lemma 2.1 and continuous Sobolev embedding H2 ⊂ L∞, one has

µε
��∇(wζ(α))��Y0 . ε

√
µ
��wζ(α)��L2 . ε

√
µ
��w��

H2

��ζ(α)��L2 .

We immediately deduce the first inequality of the statement.
For the converse, we first use that if |α | ≤ 2, one has

µε
��∇(wζ(α))��Y0 . ε

√
µ
��wζ(α)��L2 . ε

√
µ
��ζ(α)��H2

��w��
L2 ≤

√
µ
��w��

L2

��εζ ��
H4 .

This yields for n ∈ {0, 1, 2},

��v��2
Yn ≤ C

(
µ, h−1

? , h
?, β

��∇b
��
H3, ε

��ζ ��
H4

)
×

©­«
∑

0≤ |α | ≤n

��v(α)��2Y0
ª®¬ .

Then, for |α | > 2, we use as previously

µε
��∇(wζ(α))��Y0 . ε

√
µ
��wζ(α)��L2 . ε

√
µ
��w��

H2

��ζ(α)��L2 .

We deduce that for n ≥ 3,��v��2
Yn ≤ C(µ, h−1

? , h
?, β

��∇b
��
H3, ε

��ζ ��
H4, ε

��v��
Y2 ) ×

©­«
∑

0≤ |α | ≤n
E0(ζ(α), v(α))

ª®¬ ,
so that the second inequality of the statement follows. �

In the following, we provide energy estimates for regular solutions of a mollified
version of the Green–Naghdi system (1.3), namely

∂t ζ + J ι∇ · (hu) = r ι,

∂tv + J ι
(
∇ζ + εu⊥ curl v + ε

2∇
(
|u|2

)
− µε∇

(
R[h, u] + Rb[h, βb, u]

) )
= rι,

(4.1)

whereu def
= T[h, βb]−1(hv) aswell as its associated quasilinear system (see Proposition 3.1)

∂t ζ(α) + J ι
(
ε∇ · (uζ(α)) + ∇ · (hu(α))

)
= r ι
(α)
,

∂tv(α) + J ι
(
∇ζ(α) + εu⊥ curl v(α) + ε∇(u · v(α))

)
= rι
(α)
,

(4.2)

where we denote u(α)
def
= T[h, βb]−1(hv(α)). Here and thereafter, J ι is a Friedrichs

mollifier, defined as the Fourier multiplier J ι = ϕ(ι|D |), where ι ∈ (0, 1) is a parameter
and ϕ is a smooth function taking values in [0, 1], compactly supported and equal to 1 in a
neighborhood of the origin. By convention we write J0 ≡ Id and J ι(u1, u2) = (J ιu1, J ιu2).
The following properties will be used repeatedly:
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Lemma 4.3. Let n ≤ m ∈ N, ι, ι1, ι2 ∈ (0, 1), and define the Fourier multiplier J ι as
above. Then for any f ∈ Hn(Rd) and v ∈ Yn, one has J ι f ∈ Hm(Rd), J ιv ∈ Ym and�� f − J ι f

��
Hn + ι

−1�� f − J ι f
��
Hn−1 +

��v − J ιv
��
Yn + ι

−1��v − J ιv
��
Yn−1 → 0(ι→ 0). (4.3)

The above holds for fn → f in Hn and vn → v in Yn, uniformly with respect to n ∈ N.
Moreover, there exists a constant C, depending only on ϕ, such that��J ι f

��
Hn ≤

�� f ��
Hn,

��J ιv��
Yn ≤

��v��
Yn, (4.4)��J ι f

��
Hm ≤ C ιn−m

�� f ��
Hn,

��J ιv��
Ym ≤ C ιn−m

��v��
Yn, (4.5)��(J ι2 − J ι1 ) f

��
Hn−1 +

��(J ι2 − J ι1 )v
��
Yn−1 ≤ C |ι2 − ι1 |

(�� f ��
Hn +

��v��
Yn

)
. (4.6)

Moreover, if f ∈ H3(Rd) and g ∈ Hn−1(Rd), there exists Cn, depending only on ϕ and n
such that ��[J ι, f ]g

��
Hn ≤ C

��∇ f
��
H2∨n−1

��g��
Hn−1 . (4.7)

Proof. The first estimates in Hn are straightforward by Fourier analysis (see [9, Lem. 5]).
The estimates in Yn follow by duality and using that J ι is symmetric and commutes with
spatial derivatives. The last estimate is a consequence of [31, Cor. B.9] and (4.4). �

Propositions 4.4 and 4.5 below provide a priori energy inequalities for sufficiently
regular solutions of (4.1) and (4.2). Again, these estimates are uniform with respect to
ι ∈ (0, 1), and in particular hold as well for J ι = Id.

Proposition 4.4. Let b ∈ ÛH4(Rd), (ζ, v) ∈ C1([0,T]; H3(Rd)1+d) be such that (1.7) holds
and satisfy system (4.1) with residuals (r ι, rι) ∈ C0([0,T]; L2(Rd)1+d). Then for any
t ∈ [0,T],

d
dt
F (ζ, v) ≤ FF (ζ, v) + C

(
F (r ι, rι)F (ζ, v)

)1/2

where we denote F = C(µ, h−1
? , h

?)F
(
β
��∇b

��
H3, ε

��∂t ζ ��H3, ε
��∇ζ ��

H2, ε
��v��

H3

)
and C =

C
(
µ, h−1

? , h
?, β

��∇b
��
H2, ε

��∇ζ ��
H2

)
, independent of ι ∈ (0, 1).

Proof. The regularity assumptions on the data and the assumption (1.7) are sufficient
to ensure that all the terms and calculations (including integration by parts) below are
well-defined. We test the first equation of the system (4.1) against ζ ∈ C0([0,T]; L2(Rd)),
and the second one against hu = hT[h, βb]−1(hv) ∈ C0([0,T]; X0). It follows

1
2

d
dt
F (ζ, v) = A1 + A2,ι + A3,ι + A4
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with, using the symmetry of the operator T[h, βb]−1,

A1 def
=

1
2
(
v, [∂t, hT[h, βb]−1h]v

)
L2

A2,ι def
= −ε

(
J ι

(
u⊥ curl v +

1
2
∇
(
|u|2

)
− µ∇

(
R[h, u] + Rb[h, βb, u])

)
, hu

)
L2

A3,ι def
= −

(
J ι∇ · (hu), ζ

)
L2 −

(
J ι∇ζ, hu

)
L2

A4 def
=

(
r ι, ζ

)
L2 +

(
rι, hu

)
L2 .

Since J ι is symmetric and commutes with differential operators, one has A3,ι ≡ 0 after
integrating by parts. The contributions of A1 and A4 are treated in details in the proof of
Proposition 4.5; see (4.8) and (4.12), below, with Lemma 4.1. As for A2,ι, one obtains
rough estimates as follows.

By continuous Sobolev embedding H2 ⊂ L∞ and (2.5) in Lemma 2.2,��ε∇ · (hu)
��
L∞
.

��h × (εu)��
H3 ≤ C(h?)F

(
β
��∇b

��
H2, ε

��∇ζ ��
H2, ε

��u��
H3

)
and therefore, by (4.4) in Lemma 4.3 and Cauchy–Schwarz inequality,����ε (

J ι
(
1
2
|u|2

)
,∇ · (hu)

)
L2

���� ≤ C(h?)F
(
β
��∇b

��
H2, ε

��∇ζ ��
H2, ε

��u��
H3

) ��u��2
L2 .

Similarly, recalling the definition (1.4)-(1.5), one obtains as above
√
µε

��R[h, u] + Rb[h, βb, u]
��
L2 ≤ C(µ, h−1

? , h
?)F

(
β
��∇b

��
H2, ε

��∇ζ ��
H2, ε

��u��
X3

) ��u��
X0

and
√
µ
��∇ · (hu)

��
L2 ≤

√
µ
��∇h

��
L∞

��u��
L2 +
√
µ
��h��

L∞

��∇ · u��
L2

≤ C
(
µ, h?, β

��∇b
��
H2, ε

��∇ζ ��
H2

) ��u��
X0 .

Finally, one has by Cauchy–Schwarz inequality and continuous Sobolev embedding
H2 ⊂ L∞

|
(
J ι(u⊥ curl v), hu

)
L2 | ≤ C(h?)

��curl v
��
H2

��u��2
L2 .

It follows, by (2.1) in Lemma 2.1,

|A2,ι | ≤ C(µ, h−1
? , h

?)F
(
β
��∇b

��
H2, ε

��∇ζ ��
H2, ε

��u��
X3, ε

��curl v
��
H2

) ��u��2
X0 .

We conclude by Lemma 2.4 and (2.8) in Lemma 2.2, and Lemma 4.1. �

Proposition 4.5. Let (ζ, u) ∈ C0([0,T]; H4(Rd)1+d)∩C1([0,T]; H3(Rd)1+d) and b ∈ ÛH4

be such that (1.7) holds, and (ζ(α), v(α)) ∈ C0([0,T]; H1(Rd)1+d) satisfying system (4.2)
with remainders (r ι

(α)
, rι
(α)
) ∈ C0([0,T]; L2(Rd)1+d). Then one has for any t ∈ [0,T],

d
dt
F (ζ(α), v(α)) ≤ FF (ζ(α), v(α)) + C

(
F (r ι

(α), r
ι
(α))F (ζ(α), v(α))

)1/2
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where we denote F = C(µ, h−1
? , h

?)F(β
��∇b

��
H3, ε

��∂t ζ ��H3, ε
��∇ζ ��

H3, ε
��u��

H3 ) and C =

C(µ, h−1
? , h

?, β
��∇b

��
H2, ε

��∇ζ ��
H2 ), independent of ι ∈ (0, 1).

Proof. The regularity assumptions on the data and the assumption (1.7) are sufficient to
ensure that all the terms and calculations below are well-defined. We test the first equation
of (4.2) against ζ(α) ∈ C0([0,T]; L2) and the second against hu(α) = hT[h, βb]−1(hv(α)) ∈
C0([0,T]; X0). It follows

1
2

d
dt
F (ζ(α), v(α)) = A1

(α) + A2,ι
(α)
+ A3,ι

(α)
+ A4

(α)

with, using the symmetry of the operator T[h, βb]−1,

A1
(α)

def
=

1
2
(
v(α), [∂t, hT[h, βb]−1h]v(α)

)
L2

A2,ι
(α)

def
= −ε

(
J ι∇ · (uζ(α)), ζ(α)

)
L2 − ε

(
J ι(u⊥ curl v(α) + ∇(u · v(α))), hu(α)

)
L2

A3,ι
(α)

def
= −

(
J ι∇ · (hu(α)), ζ(α)

)
L2 −

(
J ι∇ζ(α), hu(α)

)
L2

A4
(α)

def
=

(
r1,ι
(α)
, ζ(α)

)
L2 +

(
r2,ι
(α)
, hu(α)

)
L2 .

We now estimate each contribution in terms of
��v(α)��Y0,

��u(α)��X0,
��ζ(α)��L2 .

Estimate on A1
(α)

. We use the explicit formula for the commutator

1
2
(
v(α), [∂t, hT[h, βb]−1h]v(α)

)
L2

=
(
v(α), (∂th)T[h, βb]−1{hv(α)}

)
L2 +

1
2
(
v(α), h[∂t,T[h, βb]−1]hv(α)

)
L2

=
(
(∂th)v(α), u(α)

)
L2 −

1
2
(
u(α), [∂t,T[h, βb]]u(α)

)
L2

=
(
(∂th)v(α), u(α)

)
L2 −

1
2
(
u(α), (∂th)u(α)

)
L2

−
µ

2
(
∇ · u(α), (h2∂th)∇ · u(α)

)
L2 + µ

(
(h∂th)∇ · u(α), (β∇b) · u(α)

)
L2

where we used the symmetry of T[h, βb]−1 and the definitions (1.6), (1.2). Since
∂th = ε∂t ζ , we deduce by (2.8) in Lemma 2.2, continuous Sobolev embedding H2 ⊂ L∞

and Cauchy–Schwarz inequality,

|A1
(α) | ≤ C(µ, h?, β

��∇b
��
H2 ) ×

(��ε∂t ζ ��H3

��u(α)��X0

��v(α)��Y0 +
��ε∂t ζ ��H2

��u(α)��2X0

)
. (4.8)

Estimate on A2,ι
(α)

. First remark that, since J ι is symmetric and commutes with differential
operators, one has after integrating by parts

A2,ι,i
(α)

def
= −ε

(
J ι∇ · (uζ(α)), ζ(α)

)
L2 = ε

(
ζ(α), u · ∇J ιζ(α)

)
L2
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and therefore, averaging the left-hand side and the right-hand side,

A2,ι,i
(α)

def
= −

1
2
ε
(
J ι(ζ(α)∇ · u), ζ(α)

)
L2 −

1
2
ε
(
ζ(α), [J ι, u·]∇ζ(α)

)
L2 .

By the product and commutator estimates (4.4) and (4.7) in Lemma 4.3, and applying
Cauchy–Schwarz inequality and continuous Sobolev embedding H2 ⊂ L∞, we get

|A2,i
(α)
| . ε

��u��
H3 ×

��ζ(α)��2L2, (4.9)

uniformly with respect to ι ∈ (0, 1).
The second contribution, namely

A2,ι,ii
(α)

def
=

(
J ι(u⊥ curl v(α) + ∇(u · v(α))), hT[h, βb]−1(hv(α))

)
L2,

is by far the most involved (notice that in the case of the water waves system, the
corresponding term requires a specific attention as well; see [31, Prop. 3.30]). We prove
in Lemma 4.6, below, that

|A2,ι,ii
(α)
| ≤ C(µ, h−1

? , h
?)F(β

��∇b
��
H3, ε

��∇ζ ��
H3, ε

��u��
H3 ) ×

��v(α)��2Y0 . (4.10)

Estimate on A3,ι
(α)

. Thanks to our choice of the symmetrizer and since J ι is symmetric
and commutes with differential operators, one has after integrating by parts

A3,ι
(α)
≡ 0. (4.11)

Estimate on A4
(α)

. By Cauchy–Schwarz inequality and (2.7) in Lemma 2.2,

|A4
(α) | ≤ C(h?, β

��∇b
��
H2, ε

��∇ζ ��
H2 ) ×

(��ζ(α)��2L2 +
��u(α)��2X0

)1/2
E0(r1

(α), r
2
(α)). (4.12)

Estimates (4.8)–(4.12), with Lemma 4.1 yield the desired result. �

We conclude this section with the proof of estimate (4.10), which is essential in the
proof of Proposition 4.5.

Lemma 4.6. Under the assumptions of Proposition 4.5, one has

ε |
(
J ι(u⊥ curl v(α) + ∇(u · v(α))), hT[h, βb]−1(hv(α))

)
L2 | ≤ F

��v(α)��2Y0,

with F = C(µ, h−1
? , h

?)F(β
��∇b

��
H3, ε

��∇ζ ��
H3, ε

��u��
H3 ), uniformly with respect to ι ∈ (0, 1).

Proof. We denote u(α)
def
= T[h, βb]−1(hv(α)) and use the identity valid for any U and V

sufficiently regular two-dimensional vector fields

∇(U · V) = (U · ∇)V + (V · ∇)U − V⊥ curl U −U⊥ curl V . (4.13)
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Thus we have

Bι def
=

(
J ι(u⊥ curl v(α) + ∇(u · v(α))), hu(α)

)
L2

=
(
(u · ∇)v(α) + (v(α) · ∇)u − v⊥

(α) curl u, J ι(hu(α))
)
L2

= −
(
(u · ∇h)v(α), J ιu(α)

)
L2

+
(
(u · ∇)(hv(α)) + (hv(α) · ∇)u − (hv(α))⊥ curl u, J ιu(α)

)
L2

+
(
(u · ∇)v(α) + (v(α) · ∇)u − v⊥

(α) curl u, [J ι, h]u(α)
)
L2 .

The first term in Bι is controlled by Cauchy–Schwarz inequality, (2.4) and (2.8) in
Lemma 2.2 and (4.4) in Lemma 4.3:

ε |Bι0 |
def
= ε |

(
(u · ∇h)v(α), J ιu(α)

)
L2 |

≤ F(β
��∇b

��
H3, ε

��∇ζ ��
H3, ε

��u��
H3 )

��v(α)��Y0

��u(α)��X0 . (4.14)

For the second term, we plug the identity (recall the definition of T[h, βb] in (1.2)
and (1.6))

hv(α) = hu(α) −
µ

3
∇(h3∇ · u(α)) +

µ

2

(
∇
(
h2(β∇b) · u(α)

)
− h2(β∇b)∇ · u(α)

)
+ µhβ2(∇b · u(α))∇b

and consider separately the four contributions.
One has

Bι1
def
=

(
(u · ∇)(hu(α)), J ιu(α)

)
L2 +

(
(hu(α) · ∇)u − (hu(α))⊥ curl u, J ιu(α)

)
L2 .

Integrating by parts the advection operator and averaging yields

(
(u · ∇)(hu(α)), J ιu(α)

)
L2 =

1
2
(
u(α), [J ι, (hu · ∇)]u(α)

)
L2

+
1
2
(
(u · ∇h)u(α), J ιu(α)

)
L2 −

1
2
(
u(α), (h∇ · u)J ιu(α)

)
L2 .

All components are now estimated by Cauchy–Schwarz inequality and continuous Sobolev
embedding H2 ⊂ L∞ as well as (4.4), (4.7) in Lemma 4.3:

ε |Bι1 | ≤ C(h?)F(β
��∇b

��
H2, ε

��∇ζ ��
H2, ε

��u��
H3 )

��u(α)��2L2 . (4.15)

50



WP of Green–Naghdi and Boussinesq–Peregrine

One has, denoting V = ∇(h3∇ · u(α)),

Bι2
def
= −

µ

3
(
(u · ∇)V + (V · ∇)u − (V⊥ curl u, J ιu(α)

)
L2

=
µ

3
(
u · V, J ι∇ · u(α)

)
L2

= −
µ

6
(
(h3∇ · u − 3h2u · ∇h)∇ · u(α), J ι∇ · u(α)

)
L2

+
µ

6
(
∇ · u(α), [J ι, h3u] · ∇(∇ · u(α))

)
L2,

where we used the identity (4.13) (notice that curl V = 0) and integration by parts. We
conclude as above

ε |Bι2 | ≤ µC(h?)F(β
��∇b

��
H2, ε

��∇ζ ��
H2, ε

��u��
H3 )

��∇ · u(α)��2L2 . (4.16)

One has, denoting for readability F def
= h2(β∇b) and V = ∇(F · u(α)),

Bι3
def
=

µ

2
(
(u · ∇)V + (V · ∇)u − (V⊥ curl u, J ιu(α)

)
L2

−
µ

2
(
(u · ∇)(F∇ · u(α)) + ((F∇ · u(α)) · ∇)u − (F∇ · u(α))⊥ curl u, J ιu(α)

)
L2

= −
µ

2
(
u · V, J ι∇ · u(α)

)
L2 −

µ

2
(
(u · ∇)(F∇ · u(α)), J ιu(α)

)
L2

−
µ

2
(
((F∇ · u(α)) · ∇)u − (F∇ · u(α))⊥ curl u, J ιu(α)

)
L2

=
µ

2
(
F · u(α), u · (J ι∇∇ · u(α))

)
L2 −

µ

2
(
F(u · ∇∇ · u(α)), J ιu(α)

)
L2

+
µ

2
(
F · u(α), (∇ · u)J ι∇ · u(α)

)
L2 −

µ

2
(
(∇ · u(α))(u · ∇)F, J ιu(α)

)
L2

−
µ

2
(
((F∇ · u(α)) · ∇)u − (F∇ · u(α))⊥ curl u, J ιu(α)

)
L2,

where we used again the identity (4.13), and integration by parts. All the components
are estimated as above by Cauchy–Schwarz inequality, continuous Sobolev embedding
H2 ⊂ L∞, (4.4) as well as (4.7) for the first line. It follows

ε |Bι3 | ≤ µC(h?)F
(
β
��∇b

��
H3, ε

��∇ζ ��
H2, ε

��u��
H3

) ��u(α)��L2

��∇ · u(α)��L2 . (4.17)

One has

Bι4
def
= µβ2 ((u · ∇)(h(∇b · u(α))∇b), J ιu(α)

)
L2

+
(
h(∇b · u(α))(∇b · ∇)u − h(∇b · u(α))(∇b)⊥ curl u, J ιu(α)

)
L2 .

The second component is estimated by Cauchy–Schwarz inequality, continuous Sobolev
embedding H2 ⊂ L∞ and (4.4); and the first one after integrating by parts, averaging and
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repeated use of the commutator estimate (4.7). One obtains eventually

ε |Bι4 | ≤ µC(h?)F
(
β
��∇b

��
H3, ε

��∇ζ ��
H2, ε

��u��
H3

) ��u(α)��2L2 . (4.18)

We have one last term to estimate, namely

Bι5
def
=

(
(u · ∇)v(α) + (v(α) · ∇)u − v⊥

(α) curl u, [J ι, h]u(α)
)
L2 .

By (4.7) and (2.4) in Lemma 2.2, and (2.2) in Lemma 2.1, one has

ε |
(
(v(α) · ∇)u − v⊥

(α) curl u, [J ι, h]u(α)
)
L2 |

≤ F
(
β
��∇b

��
H2, ε

��∇ζ ��
H2, ε

��u��
H3

) ��v(α)��Y0

��u(α)��L2 .

Then, one has, integrating by parts,

ε |
(
(u · ∇)v(α), [J ι, h]u(α)

)
L2 |

≤ ε |
(
v(α), (∇ · u)[J ι, h]u(α)

)
L2 | + ε |

(
v(α), (u · ∇)[J ι, h]u(α)

)
L2 |.

The first term is estimated as above, and the second by duality, since��(u · ∇)[J ι, h]u(α)��X0 . ε
��(u · ∇)[J ι, h]u(α)��L2 +

√
µε

��∇ · ((u · ∇)[J ι, h]u(α))��L2

≤ C(µ)F
(
β
��∇b

��
H3, ε

��∇ζ ��
H3, ε

��u��
H3

) ��u(α)��X0,

where we used (4.7) and continuous Sobolev embedding H2 ⊂ L∞. Thus

ε |Bι5 | ≤ C(µ)F
(
β
��∇b

��
H3, ε

��∇ζ ��
H3, ε

��u��
H3

) ��v(α)��Y0

��u(α)��L2 . (4.19)

Collecting estimates (4.14)–(4.19) and using Lemma 4.1, we deduce that

εBι = ε(Bι0 + Bι1 + Bι2 + Bι3 + Bι4 + Bι5)

is estimated as in the statement. This concludes the proof. �

5. Well-posedness

We are now in position to prove our main results concerning the Cauchy problem for (1.3).

Proposition 5.1 (Existence and uniqueness). Let N ≥ 4, b ∈ ÛHN+2 and (ζ0, v0) ∈

HN × Y N satisfying (1.7) with h?, h? > 0, and curl v0 ∈ HN−1. Then there exists T > 0
and a unique (ζ, v) ∈ L∞(0,T ; HN × Y N ) ∩ C([0,T]; H2 × (H1)d) satisfying (1.3) and
(ζ, v)

��
t=0 = (ζ0, v0). Moreover, one can restrict

T−1 = C(µ, h−1
? , h

?)F
(
β
��∇b

��
HN+1, ε

��ζ0��H4, ε
��v0

��
Y4, ε

��curl v0
��
H3

)
> 0

such that, for any t ∈ [0,T], (1.7) holds with h̃? = h?/2, h̃? = 2h?, and

EN (ζ, v) +
��curl v

��2
HN−1 ≤ C0

(
EN (ζ0, v0) +

��curl v0
��2
HN−1

)
52



WP of Green–Naghdi and Boussinesq–Peregrine

with C0 = C
(
µ, h−1

? , h
?, β

��∇b
��
HN+1, ε

��ζ0��H4, ε
��v0

��
Y4, ε

��curl v0
��
H3

)
.

Proof. Construction. The construction of a solution is fairly classical, and follows the line
of [31, Sec. 4.3.4]. Consider the mollified system (4.1) with right-hand side r ι = 0, rι = 0
and mollified initial data (ζ ι0, v

ι
0)

def
= (J ιζ0, J ιv0). Obviously, for any ι ∈ (0, 1), ζ ι0, v

ι
0 ∈ Hn

with arbitrary large n ∈ N. By the Cauchy–Lipschitz theorem on Banach spaces, there
exists a unique (smooth) solution to (4.1) with initial data (ζ ι0, v

ι
0), that we denote

U ι def
= (ζ ι, vι), defined on the maximal time interval [0,T ι). For any multi-index α ∈ Nd ,

denote
ζ ι
(α)

def
= ∂αζ ι and vι

(α)

def
= ∂αvι − µε ∇(wι∂αζ ι)

where wι
def
= −hι∇ · uι + β∇b · uι, hι def

= 1 + εζ ι − βb, uι def
= T[hι, βb]−1(hιvι). By

proceeding exactly as in the proof of Proposition 3.1, one easily checks that U ι satisfies
the quasilinear mollified system (4.2) with

r ι
(α) = J ιr(α)(ζ ι, vι) and rι

(α) = J ιr(α)(ζ ι, vι) + µε∇r ′,ι
(α)
,

where r(α) and r(α) are given in Proposition 3.1, and

r ′,ι
(α)
= −(Id−J ι)

(
ζ ι
(α)∂tw

ι ) − [J ι,wι]∂α∇ · (hιuι).
By using (2.2) in Lemma 2.1, one has

µε
��∇r ′,ι
(α)

��
Y0 . ε

√
µ
��r ′,ι
(α)

��
L2,

which, by (4.4) and (4.7) in Lemma 4.3 and using bounds obtained in the proof of
Proposition 3.1, is easily seen to satisfy the same estimate as r(α) (this is a simplification
with regards to the proof of [31, Sec. 4.3.4]; see Remark 4.26 therein). Thus we have, for
any 1 ≤ |α | ≤ N ,��r ι

(α)

��
L2 +

��rι
(α)

��
Y0 ≤ F

(��ζ ι��
H |α |
+

��vι��
Y |α |
+

��curl vι
��
H |α |−1

)
with F = C(µ, h−1

? , h
?)F

(
β
��∇b

��
HN+1, ε

��∇ζ ι��
H3, ε

��vι��
Y4, ε

��curl vι
��
H3

)
. It follows, applying

Proposition 4.4 and Proposition 4.5,
d
dt
F N (ζ ι, vι) ≤ F F N (ζ ι, vι) + F

(��ζ ι��
HN +

��vι��
YN +

��curl vι
��
HN−1

)
F N (ζ ι, vι)1/2

with F as above, using that by (4.1)1, (4.4) in Lemma 4.3, Lemma 2.4 and (2.7), (2.8) in
Lemma 2.2, ��∂t ζ ι��H3 ≤

��hιuι��
H4 ≤ C(µ, h−1

? , h
?, ε

��∇ζ ι��
H3, β

��∇b
��
H3 )

��vι��
Y4 .

Notice that (1.7) propagates for large time since

1 + εζ ι − βb = 1 + εζ ι0 − βb + ε
∫ t

0
∂t ζ

ι ≥ h? − ε
∫ t

0

��∂t ζ ��L∞ .
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Finally, applying the operator curl to (4.1)2 (recall r ι = 0, rι = 0), one has

∂t curl vι + ε J ι∇ · (uι curl vι) = 0.

Proceeding as in Proposition 3.1 to show that curl ∂αvι satisfies the same conservation
law up to a tame remainder term, testing against curl ∂αvι to deduce energy estimates and
summing over 0 ≤ |α | ≤ N − 1 yields

d
dt

��curl vι
��2
HN−1 . ε

��uι��
H4

��curl vι
��2
HN−1 + ε

��curl v
��
H3

��uι��
HN

��curl vι
��
HN−1 .

Altogether, using Gronwall-type estimates, Lemmata 4.2 and 4.4 and straightforward
arguments (see for instance [31, p. 109] for details), one deduces that there exists T > 0
with

T−1 = C(µ, h−1
? , h

?)F
(
β
��∇b

��
HN+1, ε

��ζ0��H4, ε
��v0

��
Y4, ε

��curl v0
��
H3

)
> 0

such that for any ι ∈ (0, 1), T ι > T ; and for any t ∈ [0,T],

EN (ζ ι, vι) +
��curl vι

��2
HN−1 ≤ C0

(
EN (ζ0, v0) +

��curl v0
��2
HN−1

)
(5.1)

with C0 = C(µ, h−1
? , h

?, β
��∇b

��
HN+1, ε

��ζ0��H4, ε
��v0

��
Y4, ε

��curl v0
��
H3 ), and (1.7) holds for

hι = 1 + εζ ι − βb with h̃? = h?/2 and h̃? = 2h?.
Notice that the time interval [0,T] and energy estimates are uniform with respect to

ι ∈ (0, 1). We shall prove below that the sequence (ζ ι, vι) defines a Cauchy sequence
whose limit provides the desired solution.

Convergence. Denote ζ def
= ζ ι2 − ζ ι1 and v def

= vι1 − vι2 . Then (ζ, v) satisfies
∂t ζ + J ι2∇ · (h u) = J ι2r + (J ι1 − J ι2 )r,

∂tv + J ι2
(
∇ζ + εu⊥ curl v + ε

2∇
(
|u|2

)
− µε∇

(
R[h, u] + Rb[h, βb, u]

) )
= J ι2r + (J ι1 − J ι2 )r,

(5.2)

with notation h = 1 + εζ − βb and u def
= T[h, βb]−1(hv), and

r = ∇ · (h u) + ∇ · (hι1uι1 ) − ∇ · (hι2uι2 ), r = ∇ · (hι1uι1 ),

r = ε
(
u⊥ curl v + (uι1 )⊥ curl vι1 − (uι2 )⊥ curl vι2

)
+
ε

2
∇
(
|u|2 + |uι1 |2 − |uι2 |2

)
− µε∇

(
R[h, u] + R[hι1, uι1 ] − R[hι2, uι2 ]

)
− µε∇

(
Rb[h, βb, u] + Rb[hι1, βb, uι1 ] − Rb[hι2, βb, uι2 ]

)
,

r = ∇ζ ι1 + ε(uι1 )⊥ curl vι1 +
ε

2
∇
(
|uι1 |2

)
− µε∇

(
R[hι1, uι1 ] + Rb[hι1, βb, uι1 ]

)
.

54



WP of Green–Naghdi and Boussinesq–Peregrine

By using the previously obtained energy estimates (5.1), Lemma 2.4 and Lemma 2.11,
one has ��u��

X1 +
��uι1 − uι2

��
X1 ≤ C0E

1(ζ, v)1/2

where we denote, here and thereafter,

C0 = C(µ, h−1
? , h

?, β
��∇b

��
HN+1, ε

��ζ0��H4, ε
��v0

��
Y4, ε

��curl v0
��
H3 ).

It follows, after straightforward computations and using Lemmata 2.1, 2.2 and (4.6) in
Lemma 4.3, ��J ι2r

��
L2 +

��J ι2r��
Y0 ≤ C0

(
E1(ζ, v)1/2 +

��curl v
��
L2

)
.

By (4.6) in Lemma 4.3, we have immediately��(J ι1 − J ι2 )r
��
L2 +

��(J ι1 − J ι2 )r
��
Y0 ≤ C0 |ι

2 − ι1 |.

In the same way, setting 1 ≤ |α | ≤ 2, then ζ
(α)

def
= ∂αζ ι2 −∂αζ ι1 and v

(α)

def
= vι2

(α)
−vι1
(α)

satisfy 

∂t ζ
(α)
+ J ι2

(
ε∇ · (uι2 ζ

(α)
) + ∇ ·

(
hι2T[hι2, βb]−1(hι2v

(α))
) )

= J ι2r
(α) + (J

ι1 − J ι2 )r (α),

∂tv(α) + J ι2
(
∇ζ
(α)
+ ε(uι2 )⊥ curl v

(α) + ε∇
(
uι2 · v

(α)

) )
= J ι2r

(α) + (J
ι1 − J ι2 )r(α) + µε∇(r ′,ι2(α) − r ′,ι1

(α)
),

(5.3)

where

r
(α) = ∇ ·

(
ε(uι1 − uι2 )ζ ι1

(α)
+ hι1T[hι1, βb]−1(hι1vι1

(α)
) − hι2T[hι2, βb]−1(hι2vι1

(α)
)
)

+ r(α)(ζ ι2, vι2 ) − r(α)(ζ ι1, vι1 ),
r (α) = ε∇ · (uι1 ζ ι1(α)) + ∇ · (h

ι1uι1
(α)
) − r(α)(ζ ι1, vι1 ),

r
(α) = ε(u

ι1 − uι2 )⊥ curl vι1
(α)
+ ε∇

(
(uι1 − uι2 ) · vι1

(α)

)
+ r(α)(ζ ι2, vι2 ) − r(α)(ζ ι1, vι1 ),

r(α) = ε(uι1 )⊥ curl vι1
(α)
+ ε∇

(
uι1 · vι1

(α)

)
− r(α)(ζ ι1, vι1 ).

In order to estimate the right-hand side, notice first that |α | + 2 ≤ 4 ≤ N , one has by (5.1),
(2.2) in Lemma 2.1, (2.4) in Lemma 2.2 and Lemma 2.4:��ζ ι1

(α)

��
H2 +

��vι1
(α)

��
Y2 +

��uι1
(α)

��
X2 ≤ C0.
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Moreover, we already indicated
��uι1 − uι2

��
X1 ≤ C0E

1(ζ, v)1/2 and by (3.4) in Proposi-
tion 3.1,��r(α)(ζ ι1, vι1 ) − r(α)(ζ ι2, vι2 )

��
L2 +

��r(α)(ζ ι1, vι1 ) − r(α)(ζ ι2, vι2 )
��
Y0

≤ C0
(
E2(ζ, v)1/2 +

��curl v
��
H1

)
.

It follows, by (4.4) in Lemma 4.3 and Lemmata 2.1, 2.2, 2.3 2.4 and 2.11,��J ι2r
(α)

��
L2 +

��J ι2r
(α)

��
Y0 ≤ C0

(
E2(ζ, v)1/2 +

��curl v
��
H1

)
and, by (5.1) and (4.6) in Lemma 4.3,��(J ι1 − J ι2 )r (α)

��
L2 +

��(J ι1 − J ι2 )r(α)
��
Y0 ≤ C0 |ι

2 − ι1 |.

Following the same remark as above, we control the last contribution:

µε
��∇r ′,ι2
(α)
− ∇r ′,ι1

(α)

��
Y0 ≤

√
µε

��r ′,ι2
(α)
− r ′,ι1
(α)

��
L2 ≤ C0

(
E2(ζ, v)1/2 + |ι2 − ι1 |

)
.

Thus applying Proposition 4.4 to (5.2), Proposition 4.5 to (5.3) and adapting Lemma 4.2,
one has

d
dt
F 2(ζ, v) ≤ C0

(
F 2(ζ, v) +

��curl v
��2
H1 + |ι

2 − ι1 |F 2(ζ, v)1/2
)
.

with the notation F 2(ζ, v) def
=

∑
0≤ |α | ≤2 F [hι2, βb](ζ

(α)
, v
(α)). Notice also the identity

∂t curl v + ε J ι2∇ · (uι2 curl v) = J ι2∇ · ((uι1 − uι2 ) curl vι1 )
+ ε(J ι1 − J ι2 )∇ · (uι1 curl vι1 ),

so that, proceeding as above,
d
dt

��curl v
��2
H1 ≤ C0

(
F 2(ζ, v) +

��curl v
��2
H1 + |ι

2 − ι1 |F 2(ζ, v)1/2
)
.

Applying Gronwall’s Lemma and since, by (4.6) in Lemma 4.3, one has��ζ ι20 − ζ
ι1
0

��
H2 +

��vι20 − vι10
��
H2 . |ι

2 − ι1 |EN (ζ0, v0)
1/2,

we find that
F 2(ζ, v)1/2 +

��curl v
��
H1 ≤ C0 |ι

2 − ι1 |(1 + t) exp(C0t).

Slightly adapting the proof Lemma 4.2 and thanks to (5.1) and Lemma 2.4 and 2.11, we
deduce��ζ ι2 − ζ ι1 ��

H2 +
��vι2 − vι1

��
Y2 +

��curl vι2 − curl vι1
��
H1 +

��uι2 − uι1
��
X2

≤ C0 |ι
2 − ι1 |(1 + t) exp(C0t).

The Cauchy sequences are strongly convergent in low regularity Banach spaces
C([0,T]; Hn), and are also bounded thus weakly convergent (up to a subsequence)
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in high regularity spaces by (5.1). By uniqueness of the limit, there exists (ζ, v,w, u, v) ∈
L∞(0,T ; HN × Y N × HN−1 × XN × HN ) such that (1.7) holds with h̃? = h?/2 and
h̃? = 2h?, satisfying the desired energy estimates and, as ι→ 0,

sup
t∈[0,T ]

(��ζ ι − ζ ��
H2 +

��vι − v
��
H1 +

��curl vι − w
��
H2 +

��uι − u
��
H2 +

��∇ · uι − v��
H2

)
→ 0.

By uniqueness of the limit, w = curl v, v = ∇ · u and u = T[h, βb]−1(hv). The level of
regularity in the above convergence result is sufficient to pass to the limit in (4.1), so that
(ζ, v) is a strong solution to (1.3). That it satisfies the desired initial data is guaranteed
by (4.3) in Lemma 4.3.

Uniqueness. By considering ζ, v the difference between two solutions with same initial
data, and proceeding exactly as above (with fewer terms since mollifications are not
involved), we find

d
dt

(
F 2(ζ, v) +

��curl v
��2
H1

)
≤ C0

(
F 2(ζ, v) +

��curl v
��2
H1

)
.

Applying Gronwall’s estimate and since
(
F 2(ζ, v) +

��curl v
��2
H1

) ��
t=0 = 0, we deduce

ζ = 0, v = 0. This concludes the proof of Proposition 5.1. �

Proposition 5.2 (Stability). Let N ≥ 4 and (b, ζ0, v0) satisfy the assumptions of Proposi-
tion 5.1, and denote

M0 =
��ζ0��HN +

��v0
��
YN +

��curl v0
��
HN

Let 1 ≤ n ≤ N and (ζ̃, ṽ, curl ṽ) ∈ L∞(0, T̃ ; HN+1×Y N+1×HN )∩C([0, T̃]; Hn×Yn×Hn−1)

satisfies (1.7) and (1.3) up to some remainders (̃r, r̃, curl r̃) ∈ L1(0, T̃ ; Hn × Yn × Hn−1).
Denote

M̃ = ess sup
t∈[0,T̃ ]

(��ζ̃ ��
HN+1 +

��̃v��
YN+1 +

��curl ṽ
��
HN

)
.

Then there exists

T−1 = C(µ, h−1
? , h

?)F(β
��∇b

��
HN+1, εM0, ε M̃) > 0,

such that for any t ∈ [0,min(T, T̃)],(��ζ − ζ̃ ��
Hn +

��v − ṽ
��
Yn +

��curl v − curl ṽ
��
Hn−1

)
(t)

≤ C
(��ζ − ζ̃ ��

Hn +
��v − ṽ

��
Yn +

��curl v − curl ṽ
��
Hn−1

) ��
t=0

+ C
∫ t

0

(��̃r ��
Hn +

��̃r��
Yn +

��curl r̃
��
Hn−1

)
(t ′) dt ′.

with C = C(µ, h−1
? , h

?, β
��∇b

��
HN+1, εM0, ε M̃).
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Proof. This Lipschitz stability property was already at stake in the convergence part of
the proof of Proposition 5.1. We use the same strategy.

Denote ζ def
= ζ − ζ̃ , v def

= v − ṽ, h def
= 1 + εζ − βb and u def

= T[h, βb]−1(hv); as well

as ζ
(α)

def
= ∂αζ − ∂α ζ̃ , v

(α)

def
= v(α) − ṽ(α) and u

(α)

def
= T[h, βb]−1(hv

(α)). Consider the
system satisfied by (ζ, v) and (ζ

(α)
, v
(α)). Compared with (5.2) and (5.3), there are fewer

terms in the right-hand side, but they require more precise estimates. For 1 ≤ |α | ≤ n,
one has 

∂t ζ
(α)
+ ε∇ · (uζ

(α)
) + ∇ · (hu

(α))

= r
(α) − ∂

αr̃ + r(α)(ζ, v) − r(α)(ζ̃, ṽ)

∂tv(α) + ∇ζ (α) + εu
⊥ curl v

(α) + ε∇(u · v(α))

= r
(α) − ∂

αr̃ + µε∇(w̃∂αr̃) + r(α)(ζ, v) − r(α)(ζ̃, ṽ)

(5.4)

where w̃ def
= −h̃∇ · ũ + β∇b · ũ, h̃ def

= 1 + ε ζ̃ − βb, ũ def
= T[h̃, βb]−1(h̃ṽ), and

r
(α) = ∇ ·

(
ε (̃u − u)ζ̃(α) + h̃T[h̃, βb]−1(h̃ṽ(α)) − hT[h, βb]−1(hṽ(α))

)
,

r
(α) = ε (̃u − u)⊥ curl ṽ(α) + ε∇

(
(̃u − u) · ṽ(α)

)
.

Since |α | ≤ N , one has by (2.2) in Lemma 2.1 and Lemmata 2.2 and 2.4 to estimate��w̃��
H2 ,

ε
��ζ̃(α)��H1 + ε

��̃v(α)��Y1 + ε
��curl ṽ(α)

��
L2

≤ C(µ, h−1
? , h

?)F(β
��∇b

��
H3, ε

��ζ̃ ��
HN+1, ε

��̃v��
YN+1, ε

��curl ṽ
��
HN ).

Using Lemmata 2.1, 2.2, 2.4, and 2.11, one checks that for m ∈ {0, 1, 2, 3},��u − ũ
��
Hm ≤

��u − ũ
��
Xm ≤ C ×

(��ζ ��
Hm +

��v��
Ym

)
with C = C(µ, h−1

? , h
?, β

��∇b
��
H3, ε

��ζ ��
H3, ε

��v��
Y3, ε

��ζ̃ ��
H3, ε

��̃v��
Y4 ). It follows, using again

Lemmata 2.1, 2.2, 2.4, and adapting the proof of Lemma 2.11 to replace
��v��

Y2∨n

��ζ − ζ̃ ��
Hn

with
��v��

Yn

��ζ − ζ̃ ��
H2∨n ,��r

(α)

��
L2 +

��r
(α)

��
Y0 ≤ εC

(��ζ ��
H3 +

��v��
Y3

) (��ζ̃(α)��H1 +
��̃v(α)��Y1 +

��curl ṽ(α)
��
L2

)
,

with C as above. Moreover, by (3.4) in Proposition 3.1, one has��r(α)(ζ, v) − r(α)(ζ̃, ṽ)
��
L2 +

��r(α)(ζ, v) − r(α)(ζ̃, ṽ)
��
Y0

≤ F̃
(��ζ ��

H |α |
+

��v��
Y |α |
+

��curl v
��
H |α |−1

)
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with

F̃ = C(µ, h−1
? , h

?)F
(
β
��∇b

��
H4∨|α |+1, ε

��ζ ��
H4∨|α |, ε

��v��
Y4∨|α |, ε

��curl v
��
H3∨|α |−1,

ε
��ζ̃ ��

H4∨|α |, ε
��̃v��

Y4∨|α |, ε
��curl ṽ

��
H3∨|α |−1

)
.

Finally, using (2.3) in Lemma 2.1, one finds as above��µε∇(w̃∂αr̃)
��
Y0 ≤ C(µ)

��ε w̃∂αr̃
��
L2 ≤ C

��∂αr̃
��
L2 .

By Proposition 4.5, the energy estimate of Proposition 5.1 and using the identity
∂t ζ = −∇ · (hu) to control

��∂t ζ ��H3 , we obtain

d
dt
F (ζ

(α)
, v
(α)) ≤ F

(
F (ζ

(α)
, v
(α)) + E

3∨|α |(ζ, v) +
��curl v

��2
H |α |−1

)
+ C

(
F (∂αr̃, ∂αr̃)F (ζ

(α)
, v
(α))

)1/2
,

where we denote F = C
(
µ, h−1

? , h
?)F(β

��∇b
��
HN+1, εM0, ε M̃

)
, and C = C

(
µ, h−1

? , h
?,

β
��∇b

��
HN+1, εM0, ε M̃

)
.

In order to control curl v, we notice that

∂t curl v + ε∇ · (u curl v) = ε∇ ·
(
(̃u − u) curl ṽ

)
− curl r̃,

so that standard energy estimates yield

d
dt

(��curl v
��2
Hn−1

)
.

��curl v
��
Hn−1

×

(
ε
��u��

H2∨n

��curl v
��
Hn−1 + ε

��̃u − u
��
Hn

��curl ṽ
��
H2∨n +

��curl r̃
��
Hn−1

)
.

Finally, one easily checks that, as in Lemma 4.2, that

En(ζ, v) ≤ C
∑

0≤ |α | ≤n
F (ζ

(α)
, v
(α)) ;

∑
0≤ |α | ≤n

F (ζ
(α)
, v
(α)) ≤ C En(ζ, v).

Thus for any n ≥ 3, adding the above energy estimates for 1 ≤ |α | ≤ n, the
corresponding one based on Proposition 4.4 when α = (0, 0), and by Gronwall’s Lemma,
we find��ζ ��

Hn +
��v��

Yn +
��curl v

��
Hn−1 ≤

(��ζ ��
t=0

��
Hn +

��v ��
t=0

��
Yn +

��curl v
��
t=0

��
Hn−1

)
eFt

+ C
∫ t

0

(��̃r ��
Hn +

��̃r��
Yn +

��curl r̃
��
Hn−1

)
(t ′)eF(t−t′)dt ′.

with C,F as above. The proposition is proved for n ≥ 3. The case n ≤ 2 is obtained in the
same way, but using the estimates��r

(α)

��
L2 +

��r
(α)

��
Y0 ≤ εC

(��ζ ��
H1 +

��v��
Y1

) (��ζ̃(α)��H3 +
��̃v(α)��H3 +

��curl ṽ(α)
��
H2

)
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(notice that in that case, |α | ≤ 2 ≤ N + 1 − 3). �

We now conclude this section with continuity results, completing the well-posedness
of the Cauchy problem for system (1.3) in the sense of Hadamard.

Proposition 5.3 (Well-posedness). Under the hypotheses of Proposition 5.1, the unique
strong solution to (1.3) satisfies additionally (ζ, v, curl v) ∈ C([0,T]; HN × Y N ×

HN−1). Moreover, the mapping (ζ0, v0 curl v0) ∈ HN × Y N × HN−1 7→ (ζ, v, curl v) ∈
C([0,T]; HN × Y N × HN−1) is continuous.

More precisely, for (ζ0, v0, curl v0) ∈ HN × Y N × HN−1 satisfying (1.7) and
(ζ0,n, v0,n, curl v0,n) → (ζ0, v0, curl v0) in HN × Y N × HN−1, one can set T−1 =

C(µ, h−1
? , h

?)×F(β
��∇b

��
HN+1, ε

��ζ0��HN , ε
��v0

��
YN ,

��curl v0
��
HN−1 ) and n0 ∈ N such that for all

n ≥ n0, there exists a unique strong solution (ζn, vn) ∈ C([0,T]; HN ×Y N ) satisfying (1.3)
with initial data (ζn, vn)

��
t=0 = (ζ0,n, v0,n), and one has

lim
n→∞

sup
t∈[0,T ]

(��ζn − ζ ��HN +
��vn − v

��
YN +

��curl vn − curl v
��
HN−1

)
= 0.

Proof. Our proof is based on the Bona–Smith technique [9]. For ι ∈ (0, 1), denote (ζ ι, vι)
(resp. (ζ ιn, vιn)) the unique solution to (1.3)withmollified initial data (ζ ι0, v

ι
0)

def
= (J ιζ0, J ιv0)

(resp. (ζ ι0,n, v
ι
0,n)

def
= (J ιζ0,n, J ιv0,n)) in C([0,T]; H2 × (H1)d) ∩ L∞(0,T ; HN × Y N ), as

provided by Proposition 5.1; see Lemma 4.3 for the definition of J ι and relevant properties.
In particular, by (4.4), one can restrict n0 ∈ N such that the energy estimate and lower
bound on T stated in Proposition 5.1 hold uniformly with respect to ι ∈ (0, 1) and n ≥ n0.

We then proceed as in the proof of Proposition 5.2, with (ζ̃, ṽ) = (ζ ι, vι) and (r, r) = 0.
We thus find that the difference, ζ def

= ζ − ζ ι and v = v − vι satisfies, for any 3 ≤ m ≤ N ,

d
dt

(
Fm(ζ, v) +

��curl v
��2
Hm−1

)
≤ C0

(
Fm(ζ, v) +

��curl v
��2
Hm−1

)
+ εC0 F

m(ζ, v)1/2E3(ζ, v)1/2
(��ζ ι��

Hm+1 +
��vι��

Ym+1 +
��curl vι

��
Hm

)
,

with Fm(ζ, v) def
=

∑
0≤ |α | ≤m F [h, βb](ζ

(α)
, v
(α)) where ζ

(α)

def
= ∂αζ − ∂α ζ̃ , v

(α)

def
=

v(α) − ṽ(α), and (using (4.4) in Lemma 4.3 and the energy estimate in Proposition 5.1)

C0 = C(µ, h−1
? , h

?, β
��∇b

��
HN+1, ε

��ζ0��HN , ε
��v0

��
YN , ε

��curl v0
��
HN−1 ).

By (4.5) in Lemma 4.3 and the energy estimate in Proposition 5.1, we find��ζ ι��
HN+1 +

��vι��
YN+1 +

��curl vι
��
HN ) ≤ ι

−1C0.

Moreover, since 3 + 1 ≤ N , the above differential energy inequality with m = 3 reads
d
dt

(
F N (ζ, v) +

��curl v
��2
HN−1

)
≤ C0

(
F N (ζ, v) +

��curl v
��2
HN−1 + E

3(ζ, v)
)
,
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so that, adapting Lemma 4.2 and Gronwall’s Lemma, and finally applying (4.3) in
Lemma 4.3,

sup
t∈[0,T ]

ι−1E3(ζ, v) ≤ C0 exp(C0T) × ι−1E3(ζ
0
, v0) → 0 (ι→ 0).

Thus applying Gronwall’s Lemma to the differential energy inequality with m = N and
again adapting Lemma 4.2 yields

lim
ι→0

sup
t∈[0,T ]

(��ζ − ζ ι��
HN +

��v − vι
��
YN +

��curl v − curl vι
��
HN−1

)
= 0,

Using that, for any ι ∈ (0, 1), (ζ ι, vι) ∈ C([0,T]; HN × Y N ) (by the smoothness of the
initial data, Proposition 5.1, and integrating (1.3) with respect to time), we deduce
(ζ, v) ∈ C([0,T]; HN × Y N ).

Now we turn to the continuity of the flow map. The proof above yields

lim
ι→0

sup
t∈[0,T ]

(��ζn − ζ ιn��HN +
��vn − vιn

��
YN +

��curl vn − curl vιn
��
HN−1

)
= 0

uniformly with respect to n ≥ n0 (notice in particular the uniformity with respect to n in
Lemma 4.3). Moreover, proceeding in the same way, we find the following estimate for
(ζ ι, vι) def

= (ζ ιn − ζ
ι, vιn − vι) with any given ι ∈ (0, 1):

d
dt

(
F N (ζ ι, vι) +

��curl vι
��2
HN−1

)
≤ C0

(
F N (ζ ι, vι) +

��curl vι
��2
HN−1 + ι

−1F N (ζ ι, vι)1/2E3(ζ ι, vι)1/2
)
.

By Gronwall’s Lemma, adapting Lemma 4.2 and (4.4) in Lemma 4.3, we immediately
deduce

lim
n→∞

sup
t∈[0,T ]

(��ζ ι − ζ ιn��HN +
��vι − vιn

��
YN +

��curl vι − curl vιn
��
HN−1

)
= 0.

The continuity of the flow map follows from the above limits and triangular inequality. �

6. Proof of the main results

We proved in the previous section the well-posedness and stability of the Cauchy problem
for system (1.3). We show in this section how to transcribe these results to the original
formulation of the Green–Naghdi system (1.1). It is claimed in [12, 38] that (1.3) and (1.1)
are equivalent, after “judiciously differentiating by parts” and “lengthy calculations”.
Since this fact is of considerable importance in our work and is rather tedious to check, we
detail the calculations below.We then conclude this section with the proof of Theorems 1.1
and 1.2.
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Proposition 6.1. Let b ∈ ÛH5(Rd) and ζ ∈ C0([0,T]; H4(Rd)) be such that (1.7) holds.
Assume u ∈ C0([0,T]; X4) is such that (ζ, u) satisfies (1.1). Then v def

= h−1T[h, βb]u ∈
C0([0,T];Y4) is uniquely defined and (ζ, v) satisfies (1.3).

Assume v ∈ C0([0,T];Y4) is such that (ζ, v) satisfies (1.3), then u def
= T[h, βb]−1(hv) ∈

C0([0,T]; X4) is uniquely defined and (ζ, u) satisfies (1.1).

Proof. By Lemmata 2.1, 2.2 and 2.5, one easily checks that for any given u ∈
C0([0,T]; X4) and ζ ∈ C0([0,T]; H4(Rd)) such that (1.7) holds, then v def

= h−1T[h, βb]u ∈
C0([0,T];Y4). Conversely, given v def

= ∈ C0([0,T];Y4), that u def
= T[h, βb]−1(hv) is well-

defined and satisfies u ∈ C0([0,T]; X4) follows by Lemmata 2.3 and 2.4. The regularity
of time derivatives is provided by the equations (1.1) or (1.3). This regularity is sufficient
to ensure that all the identities below hold in, say, L2(Rd).

Let us first notice that, by the identity 1
2∇(|u|

2) = (u · ∇)u−u⊥ curl u, all terms of order
O(µ) in (1.3) and (1.1) agree. Notice also that, as pointed out in Appendix B, system (1.3)
can be rewritten as (B.11). It follows that to complete the proof, we only need to show that

[
∂t,T[h, βb]

]
u + εu⊥ curl(T [h, βb]u) + ε∇

(
u · T [h, βb]u −

1
2
w2

)
= εQ[h, u] + εQb[h, βb, u], (6.1)

with w
def
= (β∇b) · u − h∇ · u. We clarify below why (6.1) holds.

Let us first decompose

T[h, βb]u =
1
h
∇

(
−h3

3
∇ · u +

β

2
h2∇b · u

)
+ β

(
−

1
2

h∇ · u + β(∇b · u)
)
∇b

def
=

1
h
∇ f1 + β f2∇b.

We use the identity valid for sufficiently regular scalar functions f , g:

u⊥ curl( f∇g) + ∇(u · ( f∇g)) = (u · ∇)( f∇g) + f (∇g · ∇)u − (∇g)⊥ curl(u)
= (u · ∇ f )∇g + f∇(∇g · u)

to deduce

u⊥ curl(T [h, βb]u) + ∇(u · T [h, βb]u)

=
−1
h2 (u · ∇h)∇ f1 +

1
h
∇(∇ f1 · u) + β(u · ∇ f2)∇b + β f2∇(∇b · u). (6.2)
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Now, using that b is time-independent and replacing ∂t ζ = −∇ · (hu),[
∂t,T[h, βb]

]
u =

ε∇ · (hu)
h2 ∇ f1 +

ε

h
∇
(
(h∇ · (hu))(h∇ · u − βu · ∇b)

)
+
ε β

2
(∇ · (hu))(∇ · u)∇b. (6.3)

By (6.2) and (6.3), the desired identity (6.1) becomes

∇ · u
h
∇ f1 +

1
h
∇

( (
∇ f1 + (h2∇ · u)∇h − βh∇ · (hu)∇b

)
· u + h3(∇ · u)2

)
+
β

2
(∇ · (hu))(∇ · u)∇b + β(u · ∇ f2)∇b + β f2∇(∇b · u) −

1
2
∇
(
(βu · ∇b − h∇ · u)2

)
= Q[h, u] + Qb[h, βb, u]. (6.4)

The non-topographical contributions in (6.4) (i.e. setting β = 0, including in f1) are easily
seen to match:

−1
3
∇ · u

h
∇(h3∇ · u) +

1
h
∇

(
−1
3

h3 (∇(∇ · u)) · u + h3(∇ · u)2
)
−

1
2
∇
(
(h∇ · u)2

)
=
−1
3h
∇

(
h3 ((u · ∇)(∇ · u) − (∇ · u)2) ) = Q[h, u].

The remaining contributions in (6.4) aremore involved. Denoting f = ∇·u and g = β∇b·u,
1
2

f
h
∇(h2g) +

1
h
∇

(
1
2

u · ∇(h2g) − h(u · ∇h + h f )g
)

+
β

2
(u · ∇h + h f ) f∇b + β(u · ∇(g −

1
2

h f ))∇b

+ (g −
1
2

h f )∇g −
1
2
∇
(
g2 − 2gh f

)
=

1
2

f
h
∇(h2g) +

1
h
∇

(
1
2

h2u · ∇g − h2 f g
)
+
β

2
h f 2∇b

+ β(u · (∇g −
1
2

h∇ f ))∇b −
1
2

h f∇g + ∇
(
gh f

)
=

1
2h
∇

(
h2u · ∇g

)
−
β

2
h(u · ∇ f )∇b +

β

2
h f 2∇b + β(u · ∇g)∇b

= Qb[h, βb, u].

Thus the identity (6.1) holds, and the Proposition is proved. �

Proof of Theorem 1.1. Let N ≥ 4, b ∈ ÛHN+2 and (ζ0, u0) ∈ HN × XN satisfying (1.7)
with h?, h? > 0. Denote h0 = 1 + εζ0 − βb and

v0 = h−1
0 T[h0, βb]u0 = u0 + µT[h0, βb]u0,
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where we recall that the operator T is defined in (1.2). Using Lemma 2.1, 2.2 and 2.5,
one easily checks that v0 ∈ Y N, curl v0 ∈ HN−1 and��v0

��
YN +

��curl v0
��
HN−1 ≤ C0

(��ζ ��
HN +

��u0
��
XN

)
with C0 = C(µ, h−1

? , h
?, β

��∇b
��
HN+1, ε

��ζ0��HN , ε
��u0

��
XN ). One may thus apply Proposi-

tions 5.1 and 5.3: there exists (ζ, v) ∈ C([0,T]; HN × Y N ) strong solution to (1.3); and
one may restrict

T−1 = C(µ, h−1
? , h

?)F(β
��∇b

��
HN+1, ε

��ζ0��HN , ε
��u0

��
XN )

such that, for any t ∈ [0,T], (1.7) holds with h̃? = h?/2, h̃? = 2h?, and

EN (ζ, v) +
��curl v

��2
HN−1 ≤ C0

(
EN (ζ0, v0) +

��curl v0
��2
HN−1

)
.

By Lemmata 2.1, 2.4 and 2.11 as well as Proposition 6.1, setting u def
= T[h, βb]−1(hv)

defines (ζ, u) ∈ C([0,T]; HN × XN ) strong solution to (1.1), and one has

sup
t∈[0,T ]

(��ζ ��2
HN +

��u��2
XN

)
≤ C0

(��ζ0��2HN +
��u0

��2
XN

)
.

We thus constructed a strong solution to the Cauchy problem for (1.1) with initial data
(ζ0, u0). The uniqueness of the solution follows from the uniqueness in Proposition 5.1
and Proposition 6.1. The continuity of the flow map follows from Proposition 5.3 and
Lemmata 2.1, 2.4 and 2.11. This concludes the proof of Theorem 1.1. �

Proof of Theorem 1.2. By the assumptions of Theorem 1.2, one has ζ0 ∈ HN,∇ψ0 ∈ HN

and therefore, by Lemmata 2.1, 2.2 and 2.4, u0 ∈ XN and��u0
��
XN ≤ C(µ, h−1

? , h
?, β

��∇b
��
HN−1, ε

��ζ0��HN )
��∇ψ0

��
HN .

Thus Theorem 1.1 applies, (ζGN, uGN) is well-defined, and one can restrict T as in the
Proposition to ensure that

sup
t∈[0,T ]

(��ζGN
��
HN +

��uGN
��
XN

)
≤ C0,

with C0 = C(µ, h−1
? , h

?, β
��∇b

��
HN+1, ε

��ζ0��HN , ε
��∇ψ0

��
HN ).

Now, slightly adapting the proof of [31, Prop. 5.8] and denoting

vww
def
= ∇ψww, uww

def
= T[hww, βb]−1(hwwvww)

with hww
def
= 1 + εζww − βb, one finds that (ζww, uww) ∈ C(0,T ; HN × XN ) satisfies (1.1)

up to remainder terms rww, rww, with

sup
t∈[0,T ]

(��rww
��
HN−6 +

��rww
��
HN−6

)
≤ µ2 Cww,
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with Cww = C(µ, h−1
? , β

��b��
HN , ε

��ζww
��
HN , ε

��∇ψww
��
HN ). Proposition 6.1 immediately ex-

tends to non-trivial remainder terms, and it follows that (ζww, vww) ∈ C([0,T]; HN ×Y N )

satisfies (1.3) up to the small remainder terms rww, rww. We apply Proposition 5.2 and
deduce that (��ζww − ζGN

��
HN−6 +

��vww − vGN
��
YN−6

)
(t) ≤ µ2 C t,

with C as in the statement. This concludes the proof of Theorem 1.2. �

Appendix A. Energy estimates from the original formulation

Asmentioned in the introduction, on can obtain energy estimates directly from system (1.1),
rather than from system (1.3), as carried out in this work. We roughly sketch the different
steps below.

Quasilinearization of the system. Let (ζ, u) ∈ C([0,T]; H |α | × X |α |) satisfies (1.1), with
α a non-zero multi-index andT > 0. Assume that b is sufficiently smooth, |α | is sufficiently
large, and (1.7) holds. Then one can check that ζ(α)

def
= ∂αζ and u(α)

def
= ∂αu satisfy

∂t ζ(α) + ε∇ · (uζ(α)) + ∇ · (hu(α)) = r(α),(
Id+µT[h, βb]

)
∂tu(α) + ∇ζ(α) + ε(u · ∇)u(α) + µεQ(α)[h, βb, u]u(α)

= r(α),

(A.1)

with h = 1 + εζ − βb and (abusing notations)

Q(α)[h, βb, u]u(α)
def
=
−1
3h
∇

(
h3 ((u · ∇)(∇ · u(α))) )

+
β

2h

(
∇
(
h2(u · ∇)(u(α) · ∇b)

)
− h2 ((u · ∇)(∇ · u(α)))∇b

)
+ β2 ((u · ∇)(u(α) · ∇b)

)
∇b

and where (r(α), r(α)) ∈ C([0,T]; L2 × Y0) satisfies��r(α)��L2 +
��r(α)��Y0 .

��ζ ��
H |α |
+

��u��
X |α |

. (A.2)

The system (A.1) satisfied by (ζ(α), u(α)) is nothing but the linearized system (1.1) around
(ζ, u), from which order-zero operators have been discarded. The estimate (A.2) would
follow as in the proof of Proposition 3.1, and in particular using quasilinearization
formulas derived in Section 2.

A priori energy estimates. For sufficiently smooth and finite-energy solutions of (A.1),
we add the L2-inner product of the first equation with ζ(α) and the one of the second
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equation with hu(α). After some cancellations, integrations by parts and rearrangements,
we find

d
dt
F(α) + εG(α) =

∫
Rd

r(α)ζ(α) + hr(α) · u(α) dx, (A.3)

where
F(α)

def
=

1
2

∫
Rd
ζ2
(α) + h|u(α) |2 + µ hT[h, βb]u(α) · u(α) dx

and

G(α)
def
=

1
2

∫
Rd
(∇ · u)ζ2

(α) −
(
∂t ζ + ∇ · (hu)

)
|u(α) |2

−
µ

3
(
3h2∂t ζ + ∇ · (h3u)

)
(∇ · u(α))2

+ µ
(
2h∂t ζ + ∇ · (h2u)

)
(β∇b · u(α))∇ · u(α)
− µ

(
∂t ζ + ∇ · (hu)

)
(β∇b · u(α))2 dx.

By Lemma 2.3 and Cauchy–Schwarz inequality, we find that��ζ(α)��2L2 +
��u(α)��2X0 . F(α) and G(α) .

��ζ(α)��2L2 +
��u(α)��2X0 .

Using (A.2) and again Cauchy–Schwarz inequality, Gronwall’s Lemma to the differential
equation (A.3) yields (locally in time) the control of the energy F(α). Proceeding as in
Sections 4 and 5, one may then set up a Picard iteration scheme which yields the strong
local well-posedness of the Cauchy problem for system (1.1).

Appendix B. Derivation of the Green–Naghdi system

Our work is based on a non-standard formulation of the Green–Naghdi system. We would
like to motivate the relevance of this formulation (the verification of the equivalence
between the different formulations is provided in Proposition 6.1). Below, we formally
derive the non-standard formulation of the Green–Naghdi system from the Hamiltonian
formulation of the water waves system, by approximating the associated Hamiltonian
functional. This study, which was essentially provided in [12], has the advantage of
revealing in a very straightforward way the Hamiltonian structure of the non-standard
formulation of the Green–Naghdi system (and therefore the associated conservation laws)
and giving a natural physical interpretation of the variables at stake.

Let us first recall the canonical Hamiltonian structure of the water waves system as
brought to light by [53] and Craig–Sulem [19, 18]. Define the following Hamiltonian
functional

H(ζ, ψ)
def
=

1
2

∫
Rd
ζ2 +

1
µ
ψGµ[εζ, βb]ψ (B.1)
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where ψ(t, X) = φ(t, X, ε ζ(t, X)) is the trace of the velocity potential at the surface, and
Gµ is the Dirichlet-to-Neumann operator, defined by

Gµ : ϕ 7→
√

1 + µ|ε∇ζ |2(∂nφ)
��
z=ε ζ = (∂zφ)

��
z=ε ζ − µ(ε∇ζ) · (∇Xφ)

��
z=ε ζ ,

where φ is the unique solution (see e.g. [31] for a detailed and rigorous analysis) to
µ∆Xφ + ∂

2
z φ = 0 in {(X, z) ∈ Rd+1, −1 + βb(X) ≤ z ≤ εζ(X)},

φ(X, ε ζ(X)) = ϕ

(∂zφ − µ(β∇b) · (∇Xφ))(X,−1 + βb(X)) = 0.
(B.2)

The operator Gµ is well-defined provided h def
= 1 + εζ − βb ≥ h? > 0, and one can then

show that the Zakharov/Craig–Sulem formulation of the water waves system simply reads

∂t

(
ζ

ψ

)
=

(
0 Id
− Id 0

) (
δζH

δψH

)
. (B.3)

If one reformulates (in dimension d = 2) the above system using, instead of the
canonical variables (ζ, ψ), the variables ζ and v = (v1, v2)

> def
= ∇ψ, then one obtains

∂t
©­­«
ζ

v1
v2

ª®®¬ = −
©­­«

0 ∂1 ∂2
∂1 0 −q
∂2 q 0

ª®®¬
©­­«
δζH

δv1H

δv2H

ª®®¬ . (B.4)

where q = curl v
h . Of course, in our situation, q ≡ 0 since v = ∇ψ, but this contribution is

kept for the analogy with the Euler or Saint-Venant Hamiltonian formalism ; see e.g. [48].
Keeping this contribution turns out to be necessary for comparing with the standard
formulation of the Green–Naghdi system in the general setting; see Proposition 6.1.

Recall that one has the identity [31, Prop. 3.35]

1
µ

Gµ[εζ, βb]ψ = −∇ · (hu), u def
=

1
1 + εζ − βb

∫ ε ζ

−1+βb
∇Xφ(·, z) dz. (B.5)

so that the first equation in (B.3) or (B.4) simply reads

∂t ζ + ∇ · (hu) = 0,

which is the first equation of the Green–Naghdi system. The system is then completed by
constructing an evolution equation for u, containing only differential operators, which is
approximately satisfied by exact solutions of the water waves system, through asymptotic
expansions with respect to the parameter µ→ 0. This equation has different equivalent
formulations in the literature as the equations have been rediscovered several times; in this
paper we use (1.1), originating from [32, (26)] and justified in the sense of consistency
in [31, Prop. 5.8].
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Our strategy here is different: we obtain equations written with the original variables
ζ, ψ (or ζ, v) by using an asymptotic expansion of the Hamiltonian functional H , and
plugging it in (B.3) or (B.4). The strategy of deriving the Green–Naghdi system using
an approximate Hamiltonian functional or Lagrangian is not new: it was already used in
particular in [52, 17] (leading however to an ill-posed system of Green–Naghdi type) and
in [42] to derive the Green–Naghdi system; see also [12, 30, 15, 16].

Let us recall the Dirichlet-to-Neumann expansion [31, Rem. 3.39]

1
µ

Gµ[εζ, βb]ψ = −∇ · (h∇ψ) + µ∇ · (hT[h, βb]∇ψ
)
+ O(µ2) (B.6)

with the notation

T[h, b]V def
=
−1
3h
∇(h3∇ · V) +

1
2h

(
∇
(
h2∇b · V

)
− h2∇b∇ · V

)
+ ∇b(∇b · V).

It would therefore be natural to consider the approximateHamiltonian functional from (B.1)

H(ζ, ψ) ≈
1
2

∫
Rd
ζ2 + ψ

(
− ∇ · (h∇ψ) + µ∇ · (hT[h, βb]∇ψ

) )
.

However, plugging this approximation into (B.3) or (B.4) yields an ill-posed system (in the
sense that the linearized system around the trivial solution ζ = 0, ψ = 0, in the flat-bottom
case, exhibits unstable modes whose amplitude grows exponentially and arbitrarily rapidly
for large frequencies). It is interesting to note that the obtained system corresponds to the
one exhibited in [52, (10)-(11)] and [17, (14)-(15)] (in the one-dimension and flat-bottom
situation) and, as pointed out in [42, (1.8a)-(1.8b)], it reduces to a standard (also ill-posed)
Boussinesq (or Kaup) system when the amplitude is small, that is withdrawing O(µε)
terms.

The ill-posedness of the aforementioned systems can be anticipated from the fact that
the approximate Hamiltonian functional is no longer positive, whereas the original one is;
see [31, Prop. 3.9 and 3.12]. This issue can be avoided as follows: by (B.5) and (B.6), one
has

u = ∇ψ − µT[h, βb]∇ψ + O(µ2), thus ∇ψ = u + µT[h, βb]u + O(µ2).

Now, we notice that the operator T[h, βb] defined by

T[h, βb]u def
= hu + µhT[h, βb]u

is a topological isomorphism (see Lemma 2.3), and therefore

u = T[h, βb]−1(h∇ψ) + O(µ2). (B.7)
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It is now natural to use the following approximation:

H(ζ, ψ) =
1
2

∫
Rd
ζ2 + (∇ψ) · (hu)

≈
1
2

∫
Rd
ζ2 + (h∇ψ) · T[h, βb]−1(h∇ψ) def

= HGN(ζ, ψ). (B.8)

Now, plugging the new approximate Hamiltonian in (B.3) and (B.4) yields, respectively,
∂t ζ + ∇ · (hu) = 0,

∂tψ + ζ +
ε
2 |u|

2 = µε
(
R[h, u] + Rb[h, βb, u]

)
,

(B.9)

and 
∂t ζ + ∇ · (hu) = 0,(
∂t + εu⊥ curl

)
v + ∇ζ + ε

2∇(|u|
2) = µε∇

(
R[h, u] + Rb[h, βb, u]

)
,

(B.10)

where we denote v = ∇ψ, u def
= T[h, βb]−1(h∇ψ), (u1, u2)

⊥ def
= (−u2, u1), curl(v1, v2)

def
=

∂1v2 − ∂2v1, and

R[h, u] def
=

u
3h
· ∇(h3∇ · u) +

1
2

h2(∇ · u)2,

Rb[h, βb, u] def
= −

1
2

(u
h
· ∇

(
h2(β∇b · u)

)
+ h(β∇b · u)∇ · u + (β∇b · u)2

)
.

System (B.10) is the system we study, and we show in Proposition 6.1 that it is equivalent
to the standard formulation of the Green–Naghdi system, namely (1.1). System (B.9) is
immediately deduced in the situation curl v = 0, and inherit the canonical Hamiltonian
structure of the Zakharov/Craig–Sulem formulation of the water waves system. Notice
that one can rewrite system (B.10) as

∂t ζ + ∇ · (hu) = 0,(
∂t + εu⊥ curl

)
v + ∇

(
ζ + εu · v − ε

2 u · u − εµ
2 w2) = 0,

(B.11)

with w = (β∇b) · u − h∇ · u. To our knowledge, system (B.11), as a new formulation
for the Green–Naghdi system, has been first brought to light in [12, (4.3)-(4.4)] (in the
flat bottom case, the formulation (B.9) appears in [42, (6.5)] and [45, (9.12)] but is
quickly disregarded in favor of the aforementioned ill-posed model). It appears also in [30,
(5.14)-(5.15)] (in the irrotational setting), [23, (30)] (in the flat bottom situation) and [38,
(2.9)-(2.34)-(2.35)]. As a matter of fact, the latter references point out that system (B.11)
echoes a formulation of the water waves system. Indeed, system (B.4) may be equivalently
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written as
∂t ζ + ∇ · (hu) = 0,(
∂t + εU⊥ curl

)
v + ∇

(
ζ + εU · v − ε

2U ·U − εµ
2 w2) = 0,

(B.12)

where v, u,U,w are determined from the velocity potential, φ, by

v = ∇
(
φ
��
z=1+ε ζ

)
, u =

1
h

∫ 1+ε ζ

βb
∇φ dz, (U,w) = (∇Xφ, µ−1∂zφ)

��
z=1+ε ζ .

System (B.12) is determined by the sole variables ζ and v (and b), after solving the
Laplace problem (B.2). Now, by the identity (B.5) and chain rule, one has

U = v − µεw∇ζ and w = εU · ∇ζ − ∇ · (hu).

It follows in particular

U = v + O(µ) = u + O(µ) and w = (β∇b) · u − h∇ · u + O(µ),

and therefore (B.11) is immediately seen as a O(µ2) approximation of (B.12), with the
abuse of notation u def

= T[h, βb]−1(hv) and w
def
= (β∇b) · u − h∇ · u being justified by the

above approximations.
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