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Harmonic functions on Manifolds whose large
spheres are small.

Gilles Carron

Abstract

We study the growth of harmonic functions on complete Riemannian manifolds
where the extrinsic diameter of geodesic spheres is sublinear. It is an generalization
of a result of A. Kasue. Our estimates also yields a result on the boundedness of
the Riesz transform.

Résumé

On étudie la croissance des fonctions harmoniques sur les variétés rieman-
niennes complètes dont le diamètre des grandes sphères géodésiques croît sous
linéairement. Il s’agit d’une généralisation de travaux de A. Kasue. Nous obtenons
aussi un résultat de continuité pour la transformée de Riesz

1. Introduction

When (M, g) is a complete Riemannian manifold with non negative Ricci
curvature, S-Y. Cheng and S-T. Yau have proven that any harmonic func-
tion h : M → R satisfies the gradient estimate [4]:

sup
z∈B(x,R)

|dh|(z) ≤ C(n)
R

sup
z∈B(x,2R)

|h(z)|.

This result implies that such a manifold can not carry non constant har-
monic function h : M → R with sublinear growth:

|h(x)| = o
(
d(o, x)

)
, d(o, x)→ +∞ .

A celebrated conjecture of S-T. Yau predicted the finite dimensionality of
the space of harmonic functions with polynomial growth on a complete

I’m partially supported by the grants ACG: ANR-10-BLAN 0105 and GTO: ANR-12-
BS01-0004.
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Riemannian manifold with non negative Ricci curvature:

Hν(M, g) =
{
h ∈ C2(M) , ∆gh = 0, |h(x)| = O

(
dν(o, x)

)}
.

This conjecture has been proven by T. Colding and B. Minicozzi in a much
more general setting.

We say that a complete Riemannian manifold (Mn, g) satisfies the dou-
bling condition if there is a constant ϑ such that for any x ∈M and radius
R > 0:

volB(x, 2R) ≤ ϑ volB(x,R).
If B ⊂ M is a geodesic ball, we will use the notation r(B) for the radius
of B and κB for the ball concentric to B and with radius κr(B). And if
f is an integrable function on a subset Ω ⊂ M , we will note fΩ its mean
over Ω:

fΩ = 1
vol Ω

∫
Ω
f.

We say that a complete Riemannian manifold (Mn, g) satisfies the
scaled (L2) Poincaré inequality if there is a constant µ such that for any
ball B ⊂M and any function ϕ ∈ C1(2B):

‖ϕ− ϕB‖2L2(B) ≤ µ r
2(B)‖dϕ‖2L2(2B) .

Theorem ([5]). If (M, g) is a complete Riemannian manifold that is dou-
bling and that satisfies the scaled Poincaré inequality then for any ν, the
space of harmonic function of polynomial growth of order ν has finite di-
mension:

dimHν(M, g) < +∞.
It is well known that a complete Riemannian manifold with non negative

Ricci curvature is doubling and satisfies the scaled Poincaré inequality,
hence the Yau’s conjecture is true.

The proof is quantitative and gives a precise estimation of the dimension
of the space of harmonic functions with polynomial growth of order ν. In
fact, the condition on the Poincaré inequality can be weakened and the
result holds on a doubling manifold (M, g) that satisfies the mean value
estimation [6, 11]: for any harmonic function h defined over a geodesic
ball 3B:

sup
x∈B
|h(x)| ≤ C

vol 2B

∫
2B
|h|.

An example of Riemannian manifold satisfying the above condition are
Riemannian surfaces of revolution (R2, gγ) where γ ∈ (0, 1] and such that
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on R2 \ {0} ' (0,∞)× S1 we have gγ = (dr)2 + fγ(r)2(dθ)2, where for all
r > 1: fγ(r) = rγ (see [8, Proposition 4.10]). Using the new variable

ρ(r) = exp
(∫ r

1

ds

fγ(s)

)
,

we see that this metric is conformal to the Euclidean metric (dρ)2+ρ2(dθ)2

on R2. In dimension 2, the Laplace equation is conformally invariant hence
harmonic functions on (R2, gγ) are harmonic functions on the Euclidean
space. We know that any harmonic function h on R2 such that for h =
O (ρα) for some α < 1 is necessary constant. Hence we see that when
γ ∈ (0, 1), any harmonic function h on (R2, gγ) satisfying for some ε > 0:

h(x) = O
(
eCr

1−γ−ε)
is necessary constant. In particular, a harmonic function with polynomial
growth is constant.

In [9, 10], A. Kasue has shown that this was a general result for manifold
whose Ricci curvature satisfies a quadratic decay lower bound and whose
geodesic spheres have sublinear growth (see also [13] for a related results):

Theorem 1.1. If (M, g) is complete Riemannian manifold with a based
point o whose Ricci curvature satisfies a quadratic decay lower bound:

Ricci ≥ − κ2

d2(o, x)g ,

and whose geodeosic sphere have sublinear growth:

diam ∂B(o,R) = o(R) , R→ +∞,

then any harmonic function with polynomial growth is constant.

Following A. Grigor’yan and L. Saloff-Coste [8], we say that a ball
B(x, r) is remote (from a fixed point o) if

3r ≤ d(o, x).

Our first main result is a refinement of A. Kasue’s result when the hypoth-
esis of the Ricci curvature is replaced by a scaled Poincaré inequality for
remote ball: there is a constant µ such that all remote balls B = B(x, r)
satisfy a scaled Poincaré inequality:

∀ϕ ∈ C1(2B) : ‖ϕ− ϕB‖2L2(B) ≤ µr
2‖dϕ‖2L2(2B).
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Theorem 1.2. Let (M, g) be a complete Riemannian manifold whose re-
mote balls satisfy the scaled Poincaré inequality and assume that geodesic
spheres have sublinear growth:

diam ∂B(o,R) = o(R) , R→ +∞.

If h : M → R is a harmonic function such that for IR :=
∫
B(o,R) h

2:

lim
R→+∞

log(IR) diam ∂B(o,R/4)
R

= 0,

then h is constant.

For instance, on such a manifold, a harmonic function h : M → R sat-
isfying:

|h(x)| ≤ Cd(o, x)ν (volB(o, d(o, x)))−
1
2

is constant.
Moreover, consider (M, g) be a complete Riemannian manifold satisfy-

ing the hypothesis of the Theorem 1.2 and assume that for some γ ∈ (0, 1),
the diameter of geodesic spheres satisfies

diam ∂B(o,R) ≤ CRγ .

If h : M → R is a harmonic function satisfying, for some positive constants
C and ε,

|h(x)| ≤ CeCd(o,x)1−γ−ε volB(o, d(o, x))−
1
2 ,

then h is constant.

Remark 1.3. Our result is a slight improvement of the Theorem 1.1. Indeed
if (M, g) is a complete Riemannian manifold with a based point o whose
Ricci curvature satisfies a quadratic decay lower bound:

Ricci ≥ − κ2

d2(o, x)g .

On a remote ball B ⊂M , the Ricci curvature is bounded from below

Ricci ≥ − κ2

4r2(B)g ,

hence according to [3, inequality (4.5)], we have the Poincaré inequality:

∀ϕ ∈ C1(B) : ‖ϕ− ϕB‖2L2(B) ≤ C(n)r2(B)‖dϕ‖2L2(B).
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Moreover a slight variation of the Bishop–Gromov comparison theorem
(see for instance [12, Lemma 3.1]) implies that (M, g) has polynomial
growth: there is some N > 0 such that for all r > 1:

volB(o, r) ≤ CrN .

A by product of the proof will imply that on the class of manifold
considered by A. Kasue, the doubling condition implies a Cheng–Yau’s
estimate for for the gradient of harmonic function:

Theorem 1.4. Let (Mn, g) be a complete Riemannian manifold that is
doubling and whose Ricci curvature satisfies a quadratic decay lower bound.
Assume that the diameter of geodesic sphere has a sublinear growth

diam ∂B(o,R) = sup
x,y∈∂B(o,R)

d(x, y) = o(R) .

Then there is a constant C such that for any geodesic ball B ⊂ M and
any harmonic function h : 3B → R

sup
x∈B
|dh|2(x) ≤ C

vol 2B

∫
2B
|dh|2.

This result has consequences for the boundness of the Riesz transform.
When (Mn, g) is a complete Riemannian manifold with infinite volume,
the Green formula and the spectral theorem yield the equality:

∀ f ∈ C∞0 (M) ,
∫
M
|df |2g dvolg = 〈∆f, f〉L2 =

∫
M

∣∣∣∆ 1
2 f
∣∣∣2 dvolg .

Hence the Riesz transform
R := d∆−

1
2 : L2(M)→ L2(T ∗M)

is a bounded operator. It is well known [14] that on a Euclidean space,
the Riesz transform has a bounded extension R : Lp(Rn) → Lp(T ∗Rn)
for every p ∈ (1,+∞). Also according to D. Bakry, the same is true on
manifolds with non-negative Ricci curvature [2]. As it was noticed in [7,
Section 5], in the setting of the Theorem 1.4, the analysis of A. Grigor’yan
and L. Saloff-Coste [8] implies a scaled L1-Poincaré inequality: there is a
constant C such that any balls B = B(x, r) satisfies:

∀ϕ ∈ C1(2B) : ‖ϕ− ϕB‖L1(B) ≤ Cr2‖dϕ‖L1(2B) .

And according to the analysis of P. Auscher and T. Coulhon [1] (see also
the explanations in [7, Section 5]), the Theorem 1.4 implies:
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Corollary 1.5. Under the assumption of the Theorem 1.4, the Riesz
transform is bounded on Lp for every p ∈ (1,+∞).

Acknowledgment
I thank Hans-Joachim Hein: this project had begun by a very fruitful
discussion where we proved together the key Lemma 2.1. I’m also grateful
to the referee for her/his very useful comments who improve the original
manuscript.

2. Absence of harmonic functions

Recall that when (M, g) is a complete Riemannian manifold and o ∈ M ,
we say that a geodesic ball B(x, r) is remote (from o) if

3r ≤ d(o, x).
We define ρ the radius function by ρ(t) = inf

x∈∂B(o,t)
max

y∈∂B(o,t)
d(x, y), we

have
ρ(t) ≤ diam ∂B(o, t) ≤ 2ρ(t).

2.1. An inequality
Lemma 2.1. Let (M, g) be a complete Riemannian manifold whose all
remote balls B = B(x, r) satisfy a scaled Poincaré inequality:

∀ϕ ∈ C1(2B) : ‖ϕ− ϕB‖2L2(B) ≤ µ r
2(B)‖dϕ‖2L2(2B) .

Then there are constants C > 0 and κ ∈ (0, 1) depending only on µ such
that if for some ε ∈ (0, 1/12):

∀ r ∈ [R, 2R] : ρ(r) ≤ εr ,
then ∫

B(o,R)
|dh|2 ≤ C κ

1
ε

∫
B(o,2R)

|dh|2 ,

for any harmonic function h on B(o, 2R).

Proof. Let r ∈ [R + 4εR, 2R − 4εR], our hypothesis implies that there is
some x ∈ ∂B(o, r) such that

B(o, r + εR) \B(o, r) ⊂ B(x, εR+ εr).
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Let h : B(o, 2R) → R be a harmonic function and c ∈ R a real number.
We use the Lipschitz function:

χ(x) =


1 on B(o, r)
r+εR−d(o,x)

εR on B(o, r + εR) \B(o, r)
0 outside B(o, r + εR)

Then integrating by parts and using the fact that h is harmonic we get∫
M
χ2|d(h−c)|2 +2χ(h−c)〈dχ, d(h−c)〉 =

∫
M
〈d((h−c)χ2), d(h−c)〉 = 0.

So that we have:∫
M
|d(χ(h− c))|2

=
∫
M
χ2|d(h− c)|2 + 2χ(h− c)〈dχ, d(h− c)〉+ (h− c)2|dχ|2

=
∫
B(o,r+εR)

(h− c)2|dχ|2 ,

and hence∫
B(o,r)

|dh|2 ≤
∫
B(o,r+εR)

|d(χ(h− c))|2 =
∫
B(o,r+εR)

(h− c)2|dχ|2

≤ 1
ε2R2

∫
B(o,r+εR)\B(o,r)

(h− c)2

≤ 1
ε2R2

∫
B(x,εR+εr)

(h− c)2.

The hypothesis that ε ≤ 1/12 implies that the ball B(x, εR+εr) is remote,
hence if we choose

c = hB(x,ε(R+r)) = 1
volB(x, , ε(R+ r))

∫
B(x,,ε(R+r))

h,

then the Poincaré inequality and the fact that r +R ≤ 3R imply:∫
B(o,r)

|dh|2 ≤ 9µ
∫
B(x,6εR)

|dh|2.

But we have:

B(x, 6εR) ⊂ B(o, r + 6εR) \B(o, r − 6εR) ,
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hence we get∫
B(o,r−6εR)

|dh|2 ≤ 9µ
∫
B(o,r+6εR)\B(o,r−6εR)

|dh|2.

And for all r ∈ [R, 2R− 12εR] we get:∫
B(o,r)

|dh|2 ≤ 9µ
1 + 9µ

∫
B(o,r+12εR)

|dh|2.

We iterate this inequality and get∫
B(o,R)

|dh|2 ≤
( 9µ

1 + 9µ

)N ∫
B(o,2R)

|dh|2,

provide that N12εR ≤ R; hence the result with C = 1 + 1
9µ and

κ =
( 9µ

1 + 9µ

) 1
12

. �

2.2. Harmonic functions with polynomial growth
We can now prove the following extension of Kasue’s results:

Theorem 2.2. Let (M, g) be a complete Riemannian manifold whose all
remote balls B = B(x, r) satisfy a scaled Poincaré inequality:

∀ϕ ∈ C1(2B) : ‖ϕ− ϕB‖2L2(B) ≤ µr
2(B)‖dϕ‖2L2(2B).

Assume that balls anchored at o have polynomial growth:
volB(o,R) ≤ CRµ

and that geodesic spheres have sublinear diameter growth:

lim
t→+∞

ρ(t)
t

= 0.

Then any harmonic function on (M, g) with polynomial growth is constant.

Proof. Let h : M → R be a harmonic function with polynomial growth:
h(x) ≤ C(1 + d(o, x))ν .

We will define

ER =
∫
B(o,R)

|dh|2 and ε(r) = sup
t≥r

ρ(t)
t
.
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We remark first that using the cut off function ξ defined by

ξ(x) =


1 on B(o,R)
2R−d(o,x)

R on B(o, 2R) \B(o,R)
0 outside B(o, 2R).

We obtain

ER ≤
∫
B(o,2R)

|d(ξh)|2 =
∫
B(o,2R)

|h|2|dξ|2 ≤ CR2ν+µ−2. (2.1)

If we iterate the inequality obtained in the Lemma 2.1, we get for all R
such that ε(R) ≤ 1/12:

ER ≤ C`κ
∑`−1

j=0
1

ε(2jR) E2`R .

Using the estimation (2.1), we get

ER ≤ C(R)e`
(

logκ
`

∑`−1
j=0

1
ε(2jR)

+log(2)(2ν+µ−2)+logC
)
. (2.2)

But the Cesaro theorem convergence implies that:

lim
`→+∞

1
`

`−1∑
j=0

1
ε (2jR) = +∞,

hence if we let `→ +∞ in the inequality (2.2) we get ER = 0 and this for
all sufficiently large R, hence h is constant. �

2.3. An extension

A slight variation of the arguments yields the following extension, which
implies the Theorem 1.2:

Theorem 2.3. Let (M, g) be a complete Riemannian manifold whose all
remote balls B = B(x, r) satisfies a scaled Poincaré inequality:

∀ϕ ∈ C1(2B) : ‖ϕ− ϕB‖2L2(B) ≤ µr
2(B)‖dϕ‖2L2(2B).

Assume that the geodesic spheres have sublinear diameter growth:

lim
t→+∞

ρ(t)
t

= 0 and let ε(r) = sup
t≥r

ρ(t)
t

.
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Let h : M → R be a harmonic function such that IR =
∫
B(o,R)

h2 satisfies

log I(R) = o

(∫ R/4

1

dt

tε(t)

)
,

then h is constant.

Proof. Indeed, the above argumentation shows that if R is large enough
then

ER ≤M(`, R)I(2`+1R) 4−`R−2,

where

log(M(`, R)) = log
(
C`κ

∑`−1
j=0

1
ε(2jR)

)

= ` logC + log κ

`−1∑
j=0

1
ε (2jR)

 .
But

`−1∑
j=0

1
ε (2jR) ≥

1
log 2

`−1∑
j=0

∫ 2jR

2j−1R

dt

tε (t) ≥
1

log 2

∫ 2`−1R

R/2

dt

tε (t) .

Hence we get the inequality:

logER ≤ log I
(
2`+1R

)
− ` log(4) + ` logC + log κ

log 2

∫ 2`−1R

R/2

dt

tε (t) − 2 logR.

It is then follows from the above inequality and the Cesaro theorem con-
vergence that h is constant. �

3. Lipschitz regularity of harmonic functions

We are going to prove that a Lipschitz regularity for harmonic function
analogous to the Cheng–Yau gradient inequality:

Theorem 3.1. Let (Mn, g) be a complete Riemannian manifold that sat-
isfy the doubling condition: there is a constant ϑ such that for any x ∈M
and radius R > 0:

volB(x, 2R) ≤ ϑ volB(x,R)
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and assume moreover that the Ricci curvature satisfies a quadratic decay
lower bound

Ricci ≥ − κ2

r2(x)g ,

where for a fixed point o ∈M : r(x) := d(o, x).
Assume that the diameters of geodesic spheres growth slowly

diam ∂B(o,R) = sup
x,y∈∂B(o,R)

d(x, y) = o(R).

Then there is a constant C such that for any geodesic ball B ⊂ M and
any harmonic function h : 3B → R

sup
x∈B
|dh|2(x) ≤ C

vol 2B

∫
2B
|dh|2.

Proof. According to [7, Proposition 5.3], we need only to show that there
is a constant C such that if R > 0 and if h : B(o, 2R)→ R is a harmonic
function then for any s ≤ σ ≤ R :

1
volB(o, s)

∫
B(o,s)

|dh|2 ≤ C

volB(o, σ)

∫
B(o,σ)

|dh|2. (3.1)

According to the Remark 1.3, we can apply the Lemma 2.1: for all η > 0,
there is a R0 > 0 such that for all R ≥ R0, then∫

B(o,R)
|dh|2 ≤ η

∫
B(o,2R)

|dh|2.

Hence for all R ≥ R0 :
1

volB(o,R)

∫
B(o,R)

|dh|2 ≤ η ϑ 1
volB(o, 2R)

∫
B(o,2R)

|dh|2.

Choose η = ϑ−1, then we get that for all R0 ≤ s ≤ σ ≤ R :
1

volB(o, s)

∫
B(o,s)

|dh|2 ≤ ϑ

volB(o, σ)

∫
B(o,σ)

|dh|2.

The Ricci curvature being bounded on B(o, 3R0), the Cheng and Yau
gradient estimate yields a constant B such that for all x ∈ B(o,R0):

|dh|2(x) ≤ B

volB(o, 2R0)

∫
B(o,2R0)

|dh|2.

Hence the estimate (3.1) holds with C = max{Bϑ, ϑ}. �
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