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Elementary proof of logarithmic Sobolev
inequalities for Gaussian convolutions on R

David Zimmermann

Abstract

In a 2013 paper, the author showed that the convolution of a compactly
supported measure on the real line with a Gaussian measure satisfies a logarithmic
Sobolev inequality (LSI). In a 2014 paper, the author gave bounds for the optimal
constants in these LSIs. In this paper, we give a simpler, elementary proof of this
result.

Une preuve élémentaire des inégalités de Sobolev logarithmiques
pour des convolutions gaussiennes sur R

Résumé
Dans un article de 2013, l’auteur a montré que la convolution d’une mesure

à support compact sur la droite réelle avec une mesure gaussienne satisfait une
inégalité de Sobolev logarithmique. Dans un article de 2014, l’auteur a donné des
bornes pour les constantes optimales dans ces inégalités de Sobolev logarithmiques.
Dans cet article, nous donnons une preuve élémentaire simple de ce résultat.

1. Introduction

A probability measure µ on Rn is said to satisfy a logarithmic Sobolev
inequality (LSI) with constant c ∈ R if

Entµ(f2) ≤ c E (f, f)

for all locally Lipschitz functions f : Rn → R+, where Entµ, called the
entropy functional, is defined as

Entµ(f) :=
∫
f log f∫

f dµ
dµ

Keywords: Logarithmic Sobolev inequality, convolutions.
Math. classification: 26D10.
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and E (f, f), the energy of f , is defined as

E (f, f) :=
∫
|∇f |2dµ,

with |∇f | defined as

|∇f |(x) := lim sup
y→x

|f(x)− f(y)|
|x− y|

so that |∇f | is defined everywhere and coincides with the usual notion
of gradient where f is differentiable. The smallest c for which a LSI with
constant c holds is called the optimal log-Sobolev constant for µ.

LSIs are a useful tool that have been applied in various areas of mathe-
matics, such as geometry [1, 2, 5, 8, 9, 10, 14], probability [6, 11, 12, 13, 16],
optimal transport [15, 17], and statistical physics [19, 20, 21]. In [23], the
present author showed that the convolution of a compactly supported
measure on R with a Gaussian measure satisfies a LSI, and an application
of this fact to random matrix theory was given; that result, however, did
not provide any quantitative information about the optimal log-Sobolev
constants. In [22, Thms. 2 and 3], bounds for the optimal constants in
these LSIs were given (stated as Theorem 1.1 below), and the results were
extended to Rn. (See [18] for statements about LSIs for convolutions with
more general measures).

Theorem 1.1. Let µ be a probability measure on R whose support is
contained in an interval of length 2R, and let γδ be the centered Gaussian
of variance δ > 0, i.e., dγδ(t) = (2πδ)−1/2 exp(− t2

2δ )dt. Then for some
absolute constants Ki, the optimal log-Sobolev constant c(δ) for µ ∗ γδ
satisfies

c(δ) ≤ K1
δ3/2R

4R2 + δ
exp

(
2R2

δ

)
+K2 (

√
δ + 2R)2.

In particular, if δ ≤ R2, then

c(δ) ≤ K3
δ3/2

R
exp

(
2R2

δ

)
.

The Ki can be taken in the above inequalities to be K1 = 6905,K2 =
4989,K3 = 7803.

Theorem 1.1 was proved in [22] using the following theorem due to
Bobkov and Götze [4, p. 25, Thm 5.3]:
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Theorem 1.2 (Bobkov, Götze). Let µ be a Borel probability measure on
R with distribution function F (x) = µ((−∞, x]). Let p be the density of
the absolutely continuous part of µ with respect to Lebesgue measure, and
let m be a median of µ. Let

D0 = sup
x<m

(
F (x) · log 1

F (x) ·
∫ m

x

1
p(t)dt

)
,

D1 = sup
x>m

(
(1− F (x)) · log 1

1− F (x) ·
∫ x

m

1
p(t)dt

)
,

defining D0 and D1 to be zero if µ((−∞,m)) = 0 or µ((m,∞)) = 0,
respectively, and using the convention 0 · ∞ = 0. Then the optimal log
Sobolev constant c for µ satisfies 1

150(D0 +D1) ≤ c ≤ 468(D0 +D1).

Remark 1.3. In Rn, the analogue of Theorem 1.1 holds for measures
supported in a ball of radius R, with optimal log-Sobolev constant c(δ)
bounded by

c(δ) ≤ KR2 exp
(

20n+ 5R2

δ

)
for some absolute constant K and for δ ≤ R2. This was proved in [22]
using a theorem due to Cattiaux, Guillin, and Wu [7, Thm. 1.2] that gives
satisfaction of a LSI under a Lyapunov condition.

The goal of the present paper is to provide an elementary proof of
Theorem 1.1. The result proved is the following:

Theorem 1.4. Let µ be a probability measure on R whose support is
contained in an interval of length 2R, and let γδ be the centered Gaussian
of variance δ > 0, i.e., dγδ(t) = (2πδ)−1/2 exp(− t2

2δ )dt. Then the optimal
log-Sobolev constant c(δ) for µ ∗ γδ satisfies

c(δ) ≤ max
(

2δ exp
(

4R2

δ
+ 4R√

δ
+ 1

4

)
, 2δ exp

(
12R2

δ

))
.

In particular, if δ ≤ 3R2, we have

c(δ) ≤ 2δ exp
(

12R2

δ

)
.
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Remark 1.5. The bound in Theorem 1.4 is worse than the bound in Theo-
rem 1.1 for small δ, but still has an order of magnitude that is exponential
in R2/δ. (It is shown in [22, Example 21] that one cannot do better than
exponential in R2/δ for small δ.)

Remark 1.6. In fact, the proof of Theorem 1.4 yields a slightly stronger
result. The proof is based upon showing that the convolution of the com-
pactly supported measure with the Gaussian is the push-forward of the
Gaussian under a Lipschitz map. This fact, together with the Gaussian
isoperimetric inequality, yields the isoperimetric inequality for the convo-
lution measure, which implies the logarithmic Sobolev inequality; see [3],
in which Bakry and Ledoux show that a probability measure on R satis-
fies this isoperimetric inequality if and only if the measure is a Lipshitz
push-forward of the Gaussian.)

The author would like to thank his Ph.D. advisor, Todd Kemp, for his
valuable insights and discussions regarding this topic. The author would
also like to thank the anonymous referee for his or her corrections and
suggestions (especially Remark 1.6) that have improved the overall pre-
sentation and exposition of this paper.

2. Proof of Theorem 1.4

The proof of Theorem 1.4 is based on two facts: first, the Gaussian mea-
sure γ1 of unit variance satisfies a LSI with constant 2. Second, Lipshitz
functions preserve LSIs. We give a precise statement of this second fact
below.

Proposition 2.1. Let µ be a measure on R that satisfies a LSI with
constant c, and let T : Rn → Rn be Lipschitz. Then the push-forward
measure T∗µ also satisfies a LSI with constant c||T ||2Lip.

Proof. Let g : Rn → R be locally Lipschitz. Then g◦T is locally Lipschitz,
so by the LSI for µ,∫

(g ◦ T )2 log (g ◦ T )2∫
(g ◦ T )2 dµ

dµ ≤ c
∫
|∇(g ◦ T )|2dµ. (2.1)

But since T is Lipschitz,

|∇(g ◦ T )| ≤ (|∇g| ◦ T )||T ||Lip.
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So by a change of variables, (2.1) simply becomes∫
g2 log g2∫

g2 dT∗µ
dT∗µ ≤ c||T ||2Lip

∫
|∇g|2dT∗µ.

as desired. �

We now prove Theorem 1.4.

Proof of Theorem 1.4. In light of Proposition 2.1, we will establish the
theorem by showing that µ∗γδ is the push-forward of γ1 under a Lipschitz
map. By translation invariance of LSI, we can assume that supp(µ) ⊆
[−R,R]. We will also first assume that δ = 1 (the general case will be
handled at the end of the proof by a scaling argument).

Let F and G be the cumulative distribution functions of γ1 and µ ∗ γ1,
i.e.,

F (x) =
∫ x

−∞
p(t) dt, G(x) =

∫ x

−∞
q(t) dt,

where

p(t) = 1√
2π

exp
(
− t

2

2

)
and q(t) =

∫ R

−R
p(t− s) dµ(s).

Notice that q is smooth and strictly positive, so that G−1 ◦ F is well-
defined and smooth. It is readily seen that (G−1 ◦ F )∗(γ1) = µ ∗ γ1, so to
establish the theorem we simply need to bound the derivative of G−1 ◦F .

Now

(G−1 ◦ F )′(x) = 1
G′((G−1 ◦ F )(x)) · F

′(x) = p(x)
q((G−1 ◦ F )(x)) .

We will bound the above derivative in cases – when x ≥ 2R, when
−2R ≤ x ≤ 2R, and when x ≤ −2R.

We first consider the case x ≥ 2R. Define

Λ(x) =
∫ R

−R
exsdµ(s), K(x) = log Λ(x) +R

x
.

Note Λ and K are smooth for x 6= 0.

Lemma 2.2. For x ≥ 2R,

exp
(
−2R2 − 2R− 1

8

)
p(x) ≤ q(x+K(x)) ≤ e−R p(x).
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Proof. By definition of q, p,Λ, and K,

q(x+K(x)) =
∫ R

−R
p(x+K(x)− s) dµ(s)

= p(x) · e−xK(x)
∫ R

−R
exp

(
−(K(x)− s)2

2

)
· exs dµ(s)

= e−R p(x)
Λ(x)

∫ R

−R
exp

(
−(K(x)− s)2

2

)
· exs dµ(s)

≤ e−R p(x)
Λ(x)

∫ R

−R
exs dµ(s)

= e−R p(x).

To get the other inequality, first note that e−Rx ≤ Λ(x) ≤ eRx. (These
are just the maximum and minimum values in the integrand defining Λ.)
This implies that −R+R/x ≤ K(x) ≤ R+R/x, so for −R ≤ s ≤ R and
x ≥ 2R, we have

−2R− R

x
≤ −2R+ R

x
≤ K(x)− s ≤ 2R+ R

x

so that

exp
(
−(K(x)− s)2

2

)
≥ exp

(
−(2R+R/x)2

2

)

≥ exp
(
−(2R+R/(2R))2

2

)

= exp
(
−2R2 −R− 1

8

)
.

Therefore

q(x+K(x)) = e−R p(x)
Λ(x)

∫ R

−R
exp

(
−(K(x)− s)2

2

)
· exs dµ(s)

≥ exp
(
−2R2 − 2R− 1

8

)
p(x). �

Lemma 2.3. K ′(x) ≤ R for x > 0.
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Proof. Recall that e−Rx ≤ Λ(x). (Again, e−Rx is the minimum value in
the integrand defining Λ). We therefore have

K ′(x) = Λ′(x)
xΛ(x) −

log Λ(x)
x2 − R

x2 =
∫ R
−R s e

sx dµ(s)
xΛ(x) − log Λ(x)

x2 − R

x2

≤
R
∫ R
−R e

sx dµ(s)
xΛ(x) + Rx

x2 −
R

x2

= 2R
x
− R

x2 .

By elementary calculus, the above has a maximum value of R. �

Lemma 2.4. For x ≥ 2R,

x−R ≤ (G−1 ◦ F )(x) ≤ x+K(x).

Proof. Since G and G−1 are increasing, the lemma is equivalent to

G(x−R) ≤ F (x) ≤ G(x+K(x)).

The first inequality follows from the definition of G and the Fubini-Tonelli
Theorem:

G(x−R) =
∫ x−R

−∞
q(t) dt =

∫ x−R

−∞

∫ R

−R
p(t− s) dµ(s) dt

=
∫ R

−R

∫ x−R

−∞
p(t− s) dt dµ(s)

=
∫ R

−R

∫ x−R−s

−∞
p(u) du dµ(s)

where u = t− s

≤
∫ R

−R

∫ x

−∞
p(u) dt dµ(s)

= F (x).
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To establish the other inequality, we use Lemmas 2.2 and 2.3:

1−G(x+K(x)) =
∫ ∞
x+K(x)

q(t) dt =
∫ ∞
x

q(u+K(u))(1 +K ′(u)) du

where t = u+K(u)

≤
∫ ∞
x

p(u)e−R(1 +R) du

by Lemmas 2.2 and 2.3

≤
∫ ∞
x

p(u) du

since eR ≥ 1 +R

= 1− F (x),

so that F (x) ≤ G(x+K(x)), as desired. �

We are almost ready to bound (G−1 ◦ F )′(x) for x ≥ 2R. The last
observation to make is that q is decreasing on [R,∞) since

q′(t) =
∫ R

−R
p′(t− s) dµ(s) =

∫ R

−R
−(t− s)p(t− s) dµ(s) ≤ 0 for t ≥ R.

So for x ≥ 2R we have, by Lemma 2.4,

q((G−1 ◦ F )(x)) ≥ q(x+K(x)).

Combining this with Lemma 2.2, we get

(G−1 ◦ F )′(x) = p(x)
q((G−1 ◦ F )(x)) ≤

p(x)
q(x+K(x)) ≤ exp

(
2R2 + 2R+ 1

8

)

for x ≥ 2R.
In the case where −2R ≤ x ≤ 2R, first note that for all x,

x−R ≤ (G−1 ◦ F )(x) ≤ x+R;
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the first inequality above was done in Lemma 2.4, and the second inequal-
ity is proven in the same way. So

sup
−2R≤x≤2R

(G−1 ◦ F )′(x) = sup
−2R≤x≤2R

p(x)
q((G−1 ◦ F )(x))

≤ sup
−2R≤x≤2R
−R≤y≤R

p(x)
q(x+ y)

=

 inf
−2R≤x≤2R
−R≤y≤R

q(x+ y)
p(x)


−1

.

For convenience, let S = {(x, y) : −2R ≤ x ≤ 2R,−R ≤ y ≤ R}. Now

inf
(x,y)∈S

q(x+ y)
p(x) = inf

(x,y)∈S

1
p(x)

∫ R

−R
p(x+ y − s) dµ(s).

Since p has no local minima, the minimum value of the above integrand
occurs at either s = R or s = −R. Without loss of generality, we assume
the minimum is achieved at s = R (otherwise, we can replace (x, y) with
(−x,−y) by symmetry of S and p). So

inf
(x,y)∈S

q(x+ y)
p(x) ≥ inf

(x,y)∈S

1
p(x) · p(x+ y +R).

Elementary calculus shows that the above infimum is equal to e−6R2

(achieved at x = 2R, y = R). Therefore

sup
−2R≤x≤2R

(G−1 ◦ F )′(x) ≤
(

inf
(x,y)∈S

q(x+ y)
p(x)

)−1

≤ e6R2
.

The case x ≤ −2R is dealt with in the same way as the case x ≥ 2R,
the analagous statements being:

exp
(
−2R2 − 2R− 1

8

)
p(x) ≤ q(x+K(x)) ≤ e−R p(x),

K ′(x) ≤ R,
x+K(x) ≤ (G−1 ◦ F )(x) ≤ x+R,

and q is increasing for x ≤ −2R. The upper bound for (G−1 ◦ F )′(x)
obtained in this case is the same as the one in the case x ≥ 2R.
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We therefore have

||G−1 ◦ F ||Lip ≤ max
(

exp
(

2R2 + 2R+ 1
8

)
, e6R2

)
So by Proposition 2.1, µ ∗ γ1 satisfies a LSI with constant c(1) satisfying

c(1) ≤ 2||G−1 ◦ F ||2Lip ≤ max
(

2 exp
(

4R2 + 4R+ 1
4

)
, 2 e12R2

)
.

This proves the theorem for the case δ = 1.
To establish the theorem for a general δ > 0, first observe that

µ ∗ γδ = (h√δ)∗
(
((h1/

√
δ)∗µ) ∗ γ1

)
,

where hλ denotes the scaling map with factor λ, i.e., hλ(x) = λx. Now
(h1/

√
δ)∗µ is supported in [−R/

√
δ,R/

√
δ], so by the case δ = 1 just

proven, ((h1/
√
δ)∗µ) ∗ γ1 satisfies a LSI with constant

max
(

2 exp
(

4(R/
√
δ)2 + 4(R/

√
δ) + 1

4

)
, 2 e12(R/

√
δ)2
)
.

Finally, since ||h√δ||
2
Lip = δ, we have by Proposition 2.1,

c(δ) ≤ max
(

2δ exp
(

4R2

δ
+ 4R√

δ
+ 1

4

)
, 2δ exp

(
12R2

δ

))
.

In particular, when δ ≤ 3R2 (in fact when δ ≤ (160 − 64
√

6)R2 ≈
3.23R2), we have

2δ exp
(

4R2

δ
+ 4R√

δ
+ 1

4

)
≤ 2δ exp

(
12R2

δ

)
so the above bound on c(δ) simplifies to

c(δ) ≤ 2δ exp
(

12R2

δ

)
. �
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