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On D5-polynomials with integer coefficients

Yasuhiro Kishi

Abstract

We give a family of D5-polynomials with integer coefficients whose splitting
fields over Q are unramified cyclic quintic extensions of quadratic fields. Our poly-
nomials are constructed by using Fibonacci, Lucas numbers and units of certain
cyclic quartic fields.

1. Introduction

The following is a fundamental problem in the theory of quadratic fields:
For a given positive integer N , find quadratic fields whose class num-
ber is divisible by N . Several authors (for example, T. Nagell [6], N. C.
Ankeny and S. Chowla [1], Y. Yamamoto [12], P. J. Weinberger [11] and H.
Ichimura [3]) gave an infinite family of quadratic fields whose class number
is divisible by arbitrary given integer N . If limited to the case N = 5, C.
J. Parry [8], J.-F. Mestre [5], M. Sase [10] and D. Byeon [2] gave a family
of quadratic fields whose class number is divisible by 5. In particular, Sase
[10] gave a family of polynomials whose splitting field is a D5-extension
of Q and an unramified C5-extension of containing the quadratic field. In
the present paper, we will give other such polynomials by the use of the
result of our previous result [4]. Then we get a new family of quadratic
fields whose class number is divisible by 5. As a consequence, the following
conjecture arises:

Conjecture 1.1. Let Fn denote the n-th number in the Fibonacci se-
quence:

1, 1, 2, 3, 5, 8, 13, . . .

Then the class number of the quadratic field Q(
√
−F50s+25) (s ≥ 0) is

divisible by 5.

Keywords: class number, Fibonacci number, polynomial.
Math. classification: 11R29.
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The organization of this paper is as follows. In Section 1, we state the
main theorem that the above conjecture is true under some conditions. In
Section 2, we give a parametric D5-polynomial with integer coefficients.
It is a review of [4]. In Section 3, we study the Fibonacci and the Luca
sequences. In Section 4, we give a proof of the main theorem. We give a
numerical example in the last Section 5.

We list here those symbols which will be used throughout this article.
Let Q denote the field of rational numbers and Z denote the ring of

rational integers.
For an integer n, let Cn and Dn denote the cyclic group of order n and

the dihedral group of order 2n, respectively.
For an extension L/K, denote the norm map and the trace map of L/K

by NL/K and by TrL/K , respectively. For simplicity, we denote NL and
TrL if the base field K = Q. For a Galois extension L/K, we denote the
Galois group of L/K by Gal(L/K).

For a polynomial f(X) and a field K, we denote the minimal splitting
field of f(X) over K by SplK(f).

2. The main Theorem

To state the main theorem, we prepare some notations.
Let (Fn) and (Ln) be the Fibonacci and the Luca sequences, respec-

tively, defined as follows:

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn (n ≥ 1),

L1 = 1, L2 = 3, Ln+2 = Ln+1 + Ln (n ≥ 1).

Let ζ := e2πi/5 be a primitive fifth root of unity. For a non-negative
integer m, we set km := Q(

√
−F2m+1). Moreover we define a cyclic quartic

field Mm as follows: Mm is the proper subextension of km(ζ)/Q(
√

5) other
than km(

√
5) and Q(ζ). Then we can express Mm = Q(

√
−F2m+1(ζ −

ζ−1)). We define an element δm of Mm by

δm := 1 + εm
√
−F2m+1(ζ − ζ−1),

where ε := (1 +
√

5)/2 is a fundamental unit of Q(
√

5). As we will see in
Section 4, δm is a unit in Mm. Let τ be a generator of Gal(km(ζ)/km) (∼=
C4) with ζτ = ζ2.
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For a non-negative integer m, we define a polynomial gm(X) of degree
5 with integer coefficients by

gm(X) := X5 − 10X3 − 20X2 + 5(20F 2
2m+1 − 3)X

+ 40F 2
2m+1((−1)mL2m+1 + 1)− 4.

Under the above notations and assumptions, we have the following.

Theorem 2.1. Let m be a non-negative integer. If δ2+3τ+τ2

m is not a fifth
power in Mm, then SplQ(gm) is a D5-extension of Q containing km. If,
moreover, m ≡ 12 (mod 52), then SplQ(gm) is an unramified cyclic quintic
extension of km. Hence, by putting m = 25s + 12, the class number of the
quadratic field Q(

√
−F50s+25) is divisible by 5.

Remarks 2.2. The author think the assumption “δ2+3τ+τ2

m is not a fifth
power in Mm” can be excluded (cf. Remark 6.2).

3. Construction of D5-polynomials

This section is a review of [4] in the case p = 5 and the base field Q. Let ζ

be a primitive fifth root of unity, and let k = Q(
√

D) be a quadratic field
which does not coincide with Q(

√
5). Then there exists a unique proper

subextension of the bicyclic biquadratic extension k(ζ)/Q(
√

5) other than
k(
√

5) and Q(ζ). We denote it by M . Then M is a cyclic quartic field. Let
us call M the associated field with k. Fix the generator τ of Gal(k(ζ)/k)
with ζτ = ζ2, and define a subset M(k) of k(ζ)× as follows:

M(k) := {γ ∈ k(ζ)× | γ3+4τ+2τ2+τ3 6∈ k(ζ)5}.

For an element γ ∈ M , we define a polynomial fγ(X) by

fγ(X) := X5 − 10NM (γ)X3 − 5NM (γ)NT (γ)X2

+ 5NM (γ){NM (γ)−NT (γ1+τ )}X −NM (γ)NT (γ2+τ ),

where NT = NQ(
√

5)TrM/Q(
√

5).
Applying [4, Theorem 2.1, Corollary 2.6] to the case p = 5, we get the

following proposition.

Proposition 3.1. Let the notation be as above. Then for δ ∈M(k)∩M ,
SplQ(fδ) is a D5-extension of Q containing k. Putting E := SplQ(fδ),
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moreover, we have

E = k
(
TrE(ζ)/E

( 5
√

δ3+4τ+2τ2+τ3)).

Remarks 3.2. In [4], we can see that every D5-extension E of Q containing
k is given as E = SplQ(fδ) for some δ ∈M(k) ∩M .

4. Properties of Fibonacci and Lucas numbers

There are many relations between Fibonacci and Lucas numbers. (See for
example [9] and [7].) In this section, we show the following four properties
which we need in the next section.

(A) The power of ε = (1 +
√

5)/2 is expressed by

εm =
Lm + Fm

√
5

2
.

(B) For positive integer m, we have

Fm+1 =
Lm + Fm

2
, (4.1)

Lm+1 =
Lm + 5Fm

2
. (4.2)

(C) Let m be a positive integer. If m is divisible by 52, then so is Fm.
(D) Let n and m be positive integers. If d = gcd(n, m), then we have

gcd(Fn, Fm) = Fd.

We easily get the property (A) by mathematical induction on m, using

εm+1 =
Lm + Fm

√
5

2
· 1 +

√
5

2

=
(Lm + 5Fm)/2 + (Lm + Fm)/2 ·

√
5

2
,

and the property (B).
We will prove the property (B) by mathematical induction on m. The

equations (4.1) and (4.2) hold clearly for m = 1. Assume that (4.1) and
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(4.2) hold for m. Then we have

Lm+1 + Fm+1

2
=

(Lm + 5Fm)/2 + Fm+1

2
=

Lm + 5Fm + 2Fm+1

4

=
(2Fm+1 − Fm) + 5Fm + 2Fm+1

4
= Fm+1 + Fm = Fm+2

and
Lm+1 + 5Fm+1

2
=

Lm+1 + 5(Lm + Fm)/2
2

=
2Lm+1 + 5Lm + 5Fm

4

=
2Lm+1 + 5Lm + (2Lm+1 − Lm)

4
= Lm+1 + Lm = Lm+2.

Hence (4.1) and (4.2) hold for m + 1.
Before proving the property (C), we show that the relation

Fn+m = FmFn+1 + Fm−1Fn (4.3)

holds for positive integers n, m. For any n, we have

Fn+1 = 1 · Fn+1 + 0 · Fn = F1Fn+1 + F0Fn,

Fn+2 = 1 · Fn+1 + 1 · Fn = F2Fn+1 + F1Fn.

(For convenience we define F0 = 0.) Then (4.3) holds for m = 1, 2. Assume
that (4.3) holds for m = k, k − 1:

Fn+k = FkFn+1 + Fk−1Fn,

Fn+(k−1) = Fk−1Fn+1 + Fk−2Fn.

Then we have

Fn+(k+1) = Fn+k + Fn+(k−1)

= (FkFn+1 + Fk−1Fn) + (Fk−1Fn+1 + Fk−2Fn)

= (Fk + Fk−1)Fn+1 + (Fk−1 + Fk−2)Fn = Fk+1Fn+1 + FkFn.

Hence (4.3) holds for m = k + 1.
Next we prove

m ≡ 0 (mod n) =⇒ Fm ≡ 0 (mod Fn), (4.4)

namely,
Fnk ≡ 0 (mod Fn)
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for each k ∈ Z, k ≥ 1. It holds clearly for k = 1. Assume that Fnk ≡
0 (mod Fn). Then by (4.3), we have

Fn(k+1) = Fnk+n = FnFnk+1 + Fn−1Fnk ≡ 0 (mod Fn).

Hence (4.4) is proved.
The property (C) follows from (4.4) and F25 = 75025 ≡ 0 (mod 52).
For positive integers n and m, express n = qm + r, 0 ≤ r ≤ m. Then

we claim
gcd(Fn, Fm) = gcd(Fr, Fm). (4.5)

Using (4.3) and (4.4), we have

gcd(Fn, Fm) = gcd(Fqm+r, Fm)

= gcd(FqmFr+1 + Fqm−1Fr, Fm)

= gcd(Fqm−1Fr, Fm).

Here we have

gcd(Fqm−1, Fqm) = gcd(Fqm−1, Fqm−1 + Fqm−2) = gcd(Fqm−1, Fqm−2)

= · · · · · · = gcd(F2, F1) = gcd(1, 1) = 1.

From this together with Fm | Fqm, we have gcd(Fqm−1, Fm) = 1. Then
we get (4.5). Hence by using the Euclidean algorithm, the property (D)
follows.

Remarks 4.1. The inverse of the property (C) also holds true.

5. Proof of the main theorem

The goal of this section is to give a proof of our main theorem.
By the definition, Mm is the associated field with km. Hence we can

apply Proposition 3.1. Now let us calculate fδm(X);

fδm(X) = X5 − 10NM (δm)X3 − 5NM (δm)NT (δm)X2

+ 5NM (δm){NM (δm)−NT (δ1+τ
m )}X −NM (δm)NT (δ2+τ

m ).

We note that τ satisfies the following:

ζτ = ζ2, (
√

5)τ = −
√

5, (
√
−F2m+1)τ =

√
−F2m+1.

118



On D5-polynomials

Put ε := ετ ; then we have

NM (δm) = (1 + εm
√
−F2m+1(ζ − ζ−1))(1 + εm

√
−F2m+1(ζ2 − ζ−2))

× (1− εm
√
−F2m+1(ζ − ζ−1))(1− εm

√
−F2m+1(ζ2 − ζ−2))

= (1 + ε2mF2m+1(ζ − ζ−1)2)(1 + ε2mF2m+1(ζ2 − ζ−2)2)

=
(

1− 5 +
√

5
2

ε2mF2m+1

)(
1− 5−

√
5

2
ε2mF2m+1

)
= 1− 5 +

√
5

2
ε2mF2m+1 −

5−
√

5
2

ε2mF2m+1

+ 5NQ(
√

5)(ε)
2mF 2

2m+1

= 1− F2m+1

{
TrQ(

√
5)

(
5 +

√
5

2
ε2m

)
− 5F2m+1

}
,

by using

(ζ − ζ−1)2 =
(

2i sin
2π

5

)2

= −5 +
√

5
2

and

(ζ2 − ζ−2)2 =
(

2i sin
4π

5

)2

= −5−
√

5
2

.

Here, by (4.1) we have

TrQ(
√

5)

(
5 +

√
5

2
ε2m

)
= TrQ(

√
5)

(
5 +

√
5

2
· L2m + F2m

√
5

2

)
=

5L2m + 5F2m

2
= 5F2m+1.

Therefore we get NM (δm) = 1. By similar calculations, we have

NT (δm) = 4,

NT (δ1+τ
m ) = 4− 20F 2

2m+1,

NT (δ2+τ
m ) = 4− 40F 2

2m+1(1 + (−1)nL2m+1).
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Substituting them into fδm(X), we have

fδm(X) = X5 − 10X3 − 20X2 + 5(20F 2
2m+1 − 3)X

+ 40F 2
2m+1((−1)nL2m+1 + 1)− 4

= gm(X).

Assume that δ2+3τ+τ2

m is not a fifth power in Mm. Then we have

δ3+4τ+2τ2+τ3

m = NM (δm)δ2+3τ+τ2

m = δ2+3τ+τ2

m 6∈ km(ζ)5,

and hence δ3+4τ+2τ2+τ3

m ∈M(km). Then by Proposition 3.1, SplQ(gm) (=
SplQ(fδm)) is a D5-extension of Q containing km.

Assume in addition that m ≡ 12 (mod 52). We will show that the
cyclic quintic extension SplQ(gm)/km is unramified. Let θ be a root of
gm(X). Let q be a prime number in general. A prime divisor of q in km is
ramified in SplQ(gm) if and only if q is totally ramified in Q(θ) because
[SplQ(gm) : km] and [km : Q] are relatively prime. Hence we have only to
verify that no primes are totally ramified in Q(θ). This can be proved by
using the following Sase’s result. For a prime number p and for an integer
m, we denote the greatest exponent µ of p such that pµ | m by vp(m).

Proposition 5.1. [10, Proposition 2] Let p (6= 2) and q be prime numbers.
Suppose that the polynomial

ϕ(X) = Xp +
p−2∑
j=0

ajX
j , aj ∈ Z

is irreducible over Q and satisfies the condition

vq(aj) < p− j for some j, 0 ≤ j ≤ p− 2. (5.1)

Let θ be a root of ϕ(X).
(1) If q is different from p, then q is totally ramified in Q(θ)/Q if and
only if

0 <
vq(a0)

p
≤ vq(aj)

p− j
for every j, 1 ≤ j ≤ p− 2.
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(2) The prime p is totally ramified in Q(θ)/Q if and only if one of the
following conditions (S-i), (S-ii) holds:

(S-i) 0 <
vp(a0)

p
≤ vp(aj)

p− j
for every j, 1 ≤ j ≤ p− 2;

(S-ii) (S-ii-1) vp(a0) = 0,

(S-ii-2) vp(aj) > 0 for every j, 1 ≤ j ≤ p− 2,

(S-ii-3)
vp(ϕ(−a0))

p
≤ vp(ϕ(j)(−a0))

p− j
for every j, 1 ≤ j ≤ p− 2,

and

(S-ii-4) vp(ϕ(j)(−a0)) < p− j for some j, 0 ≤ j ≤ p− 1,

where ϕ(j)(X) is the j-th differential of ϕ(X).

Now let us apply Proposition 4.1 to our polynomial gm(X). First, we
easily verify that gm(X) satisfies (4.1) for each prime. Next, we see from
Proposition 4.1 (1) that no primes except for 5 are totally ramified in
Q(θ)/Q because the greatest common divisor of the coefficient of X3 and
that of X is equal to 5. We will show, therefore, that 5 is not totally
ramified. Denote the constant term of gm(X) by c0;

c0 := 40F 2
2m+1((−1)nL2m+1 + 1)− 4.

Since c0 is not divisible by 5, the condition (S-i) does not hold. By the
assumption m ≡ 12 (mod 52), we have 2m + 1 ≡ 0 (mod 52). Then by
the property (C), in Section 3, we have F2m+1 ≡ 0 (mod 52), and hence
−c0 ≡ 4 (mod 55). Therefore we have

gm(−c0) ≡ 45 − 10 · 43 − 20 · 42 − 5(20d2 − 3) · 4− 4 ≡ 0 (mod 55),

g(1)
m (−c0) ≡ 5 · 44 − 30 · 42 − 40 · 4− 15 ≡ 0 (mod 54),

g(2)
m (−c0) ≡ 20 · 43 − 60 · 42 − 40 ≡ 0 (mod 53),

g(3)
m (−c0) ≡ 60 · 42 − 60 ≡ 0 (mod 52).

Then the condition (S-ii-4) does not hold. (We can easily check that
(S-ii-1), (S-ii-2) and (S-ii-3) hold.) Hence 5 is not totally ramified in Q(θ).
This completes the proof of the main theorem.

Next, we consider when δ2+3τ+τ2

m is not a fifth power in Mm.
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Suppose that δ2+3τ+τ2

m is a fifth power in Mm; δ2+3τ+τ2

m = α5, α ∈ Mm.
Since

δ3+4τ+2τ2+τ3

m = NM (δm)δ2+3τ+τ2

m = δ2+3τ+τ2

m = α5

and Mm is normal over Q, we have

TrE(ζ)/E

(
5
√

δ3+4τ+2τ2+τ3

m

)
= TrE(ζ)/E(α) ∈ Mm,

where E = SplQ(gm). By the last half of Proposition 3.1, therefore, we
have

SplQ(gm) = km(TrE(ζ)/E(α)) ⊂ Mm.

Hence the degree [SplQ(gm) : km] is less than 5. Then gm(X) must be
reducible over Q. Therefore, we have

Proposition 5.2. The element δ2+3τ+τ2

m is not a fifth power in Mm if
and only if gm(X) is irreducible over Q.

Finally in this section, we prove the following.

Proposition 5.3. The set{
Q(

√
−F50s+25)

∣∣∣ s ≥ 0
}

is infinite.

Proof. On the contrary, we assume #{Q(
√
−F50s+25)

∣∣ s ≥ 0} < ∞. For
an integer m, we denote the square free part of m by sf(m). By the as-
sumption, the set

P :=
⋃
s≥0

{prime factors of sf(F50s+25)}

is finite. Then there exists a positive integer t so that we have

P =
⋃

0≤s≤t

{prime factors of sf(F25(2s+1))}.

Take a prime q with q > 2t + 1. Then for each prime factor r of sf(F25q),
we have

sf(F25(2s+1)) ≡ 0 (mod r) for some s, 0 ≤ s ≤ t. (5.2)

On the other hand, because q is prime, for each s, 0 ≤ s ≤ t, we have

gcd(25(2s + 1), 25q) = 25,

122



On D5-polynomials

and hence by the property (D),

gcd(F25(2s+1), F25q) = F25 = 3001 · 52.

From this together with (5.2), we can express

F25q = 3001A2
q

for some Aq ∈ Z. Then we have

−1 = NQ(
√

5)(ε
25q) =

L2
25q − 5F 2

25q

4
=

L2
25q − 5 · 30012A4

q

4
This implies that (Aq, L25q) is an integer solution of the equation

Y 2 = 5 · 30012X4 − 4. (5.3)

The values of L25q (q is prime), of course, are different from each other.
However by Siegel’s theorem, there are only finitely many integer solutions
(X, Y ) of Eq. (5.3), This is a contradiction. �

6. Numerical examples

Example 6.1. Let m = 12. By F12 = 144, L12 = 322 and F25 = 3001 · 52,
we have

δ12 = 1 +
322 + 144

√
5

2

√
−3001 · 52(ζ − ζ−1)

and g12(X) = fδ12(X) is given by

X5 − 10X3 − 20X2 + 562875062485X + 37771618494049996.

Since g12(X) is irreducible over Q, it follows from Proposition 5.2 that δ12

is not a fifth power in Mm. Then by the main theorem, the splitting field
of g12(X) is an unramified cyclic quintic extension of Q(

√
−F25).

In the following table, we list the prime decompositions of −F2m+1 and
the structure of the ideal class groups of km = Q(

√
−F2m+1) for m ≤ 87

with m ≡ 12 (mod 52).

Remarks 6.2. For this table we use GP/PARI (Version 2.1.5). By using
the same calculator, the author verified that gm(X) is irreducible over Q
for every m, 0 ≤ m ≤ 2000. (The disit of the constant term of g2000(X) is
2510.)
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m −F2m+1
Structure of the ideal class
group of km = Q(

√
−F2m+1)

12 −3001 · 52 C40

37 −2 · 61 · 3001 · 230686501 · 52 C2461460 × C2 × C2

62 −5 · 3001 · 158414167964045700001 · 52 C79285156360 × C8 × C2

87 −13 · 701 · 3001 · 141961 C1737032019043290

×17231203730201189308301 · 52 ×C6 × C2 × C2 × C2
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Added in proof

After this paper had been written, the author proved our conjecture (Con-
jecture 1.1) himself. For the details, see in “A new family of imaginary qua-
dratic fields whose class number is divisible by five”, J. Number Theory
128 (2008), 2450–2458.

References

[1] N. C. Ankeny and S. Chowla, On the divisibility of the class number of
quadratic fields, Pacific J. Math. 5 (1955), 321–324. MR MR0085301
(19,18f)

[2] Dongho Byeon, Real quadratic fields with class number divisible by 5
or 7, Manuscripta Math. 120 (2006), no. 2, 211–215. MR MR2234249
(2007f:11124)

[3] H. Ichimura, Note on the class numbers of certain real qua-
dratic fields, Abh. Math. Sem. Univ. Hamburg 73 (2003), 281–288.
MR MR2028521 (2004k:11174)

[4] Masafumi Imaoka and Yasuhiro Kishi, On dihedral extensions and
Frobenius extensions, Galois theory and modular forms, Dev. Math.,
vol. 11, Kluwer Acad. Publ., Boston, MA, 2004, pp. 195–220.
MR MR2059764 (2005f:11245)

124



On D5-polynomials

[5] Jean-François Mestre, Courbes elliptiques et groupes de classes
d’idéaux de certains corps quadratiques, J. Reine Angew. Math. 343
(1983), 23–35. MR MR705875 (84m:12004)

[6] T. Nagell, Über die Klassenzahl imaginär-quadratischer Zahlköper,
Abh. Math. Sem. Univ. Hamburg 1 (1922), 140–150.

[7] S. Nakamura, A microcosm of fibonacci numbers (japanese), Nippon
Hyoronsha Co., Tokyo, 2002.

[8] Charles J. Parry, On the class number of relative quadratic fields,
Math. Comp. 32 (1978), no. 144, 1261–1270. MR MR502013
(80h:12004)

[9] Paulo Ribenboim, The new book of prime number records, Springer-
Verlag, New York, 1996. MR MR1377060 (96k:11112)

[10] Masahiko Sase, On a family of quadratic fields whose class numbers
are divisible by five, Proc. Japan Acad. Ser. A Math. Sci. 74 (1998),
no. 7, 120–123. MR MR1658854 (2000b:11117)

[11] P. J. Weinberger, Real quadratic fields with class numbers divisible by
n, J. Number Theory 5 (1973), 237–241. MR MR0335471 (49 #252)

[12] Yoshihiko Yamamoto, On unramified Galois extensions of quadratic
number fields, Osaka J. Math. 7 (1970), 57–76. MR MR0266898 (42
#1800)

Yasuhiro Kishi
Department of Mathematics
Fukuoka University of Education
1-1 Bunkyoumachi Akama, Munakata-shi
Fukuoka, 811-4192
Japan
ykishi@fukuoka-edu.ac.jp

125

mailto:ykishi@fukuoka-edu.ac.jp

	1. Introduction
	2. The main Theorem
	3. Construction of D5-polynomials
	4. Properties of Fibonacci and Lucas numbers
	5. Proof of the main theorem
	6. Numerical examples
	Acknowledgments
	Added in proof
	References

