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Counting on the variety of modules over the
quantum plane

Yifeng Huang

Abstract Let ζ be a fixed nonzero element in a finite field Fq with q elements. In this article,
we count the number of pairs (A,B) of n×n matrices over Fq satisfying AB = ζBA by giving a
generating function. This generalizes a generating function of Feit and Fine that counts pairs of
commuting matrices. Our result can be also viewed as the point count of the variety of modules
over the quantum plane XY = ζY X, whose geometry was described by Chen and Lu.

1. Introduction
1.1. Main results. Fix a nonzero element ζ in Fq, the finite field with q elements.
Let ord(ζ) denote the smallest positive integer m such that ζm = 1 in Fq. We define
the set of Fq-points of the ζ-commuting variety to be
(1) Kζ,n(Fq) := {(A,B) ∈ Matn(Fq)×Matn(Fq) : AB = ζBA}.

The ζ-commuting variety Kζ,n can be viewed as the variety of n-dimensional mod-
ules over the algebra of the quantum plane, namely, the noncommutative associative
algebra in variablesX and Y such thatXY = ζY X. The geometry of the ζ-commuting
variety was studied by Chen and Lu [3], where explicit descriptions of its irreducible
components and of a GIT quotient were given. The combinatorics of the ζ-commuting
has also been studied when ζ = 1: Feit and Fine [6] gave an explicit formula for the
point count of the commuting variety (namely, K1,n) over a finite field, and Bryan
and Morrison [2] proved that the “same” formula computes the motivic class of the
commuting variety (over C) in the Grothendieck ring of varieties.

The focus of this paper is to count the cardinality of Kζ,n(Fq) for ζ in general. As
a special case, the cardinality of K1,n(Fq), the set of pairs of commuting matrices,
was determined by Feit and Fine [6] in the form of a generating function. We give a
generating function for |Kζ,n(Fq)| that generalizes the ζ = 1 case.

Theorem 1.1. Let m = ord(ζ); in other words, ζ is a primitive m-th root of unity of
Fq. We have the following identity of power series in x:

(2)
∞∑
n=0

|Kζ,n(Fq)|
(qn − 1)(qn − q) . . . (qn − qn−1)x

n =
∞∏
i=1

Fm(xi; q),

where

(3) Fm(x; q) := 1− xm

(1− x)(1− xmq) ·
1

(1− x)(1− xq−1)(1− xq−2) . . . .
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We note that |Kζ,n(Fq)| only depends on the orderm of ζ. Whenm = 1, we recover
the generating function given by Feit and Fine.

Theorem 1.1 is a direct consequence of the following result, which in itself can be
viewed as a refinement of Theorem 1.1. We define
(4) Uζ,n(Fq) := {(A,B) ∈ Matn(Fq)×Matn(Fq) : AB = ζBA, A nonsingular},
and
(5) Nζ,n(Fq) := {(A,B) ∈ Matn(Fq)×Matn(Fq) : AB = ζBA, A nilpotent}.

When ζ = −1, the variety N−1,n is the semi-nilpotent anti-commuting variety,
whose irreducible components and their dimensions are explicitly described by Chen
and Wang [4].

For reasons of brevity, we put |GLn(Fq)| in place of (qn− 1)(qn− q) . . . (qn− qn−1)
in the formulas below, noting that |GLn(Fq)| = (qn − 1)(qn − q) . . . (qn − qn−1).

Theorem 1.2. Let m = ord(ζ). We have the following identities of power series in x:
(a)

∞∑
n=0

|Kζ,n(Fq)|
|GLn(Fq)|

xn =
( ∞∑
n=0

|Uζ,n(Fq)|
|GLn(Fq)|

xn

)( ∞∑
n=0

|Nζ,n(Fq)|
|GLn(Fq)|

xn

)
(b)

∞∑
n=0

|Uζ,n(Fq)|
|GLn(Fq)|

xn =
∞∏
i=1

Gm(xi; q),

where
Gm(x; q) := 1− xm

(1− x)(1− xmq) .

(c)
∞∑
n=0

|Nζ,n(Fq)|
|GLn(Fq)|

xn =
∞∏
i=1

H(xi; q),

where
H(x; q) := 1

(1− x)(1− xq−1)(1− xq−2) . . . .

Using Theorem 1.2(a), Theorem 1.1 follows from the observation Fm(x; q) =
Gm(x; q)H(x; q).

Note that Theorem 1.2(c) implies that |Nζ,n(Fq)| does not depend on m or ζ, as
long as ζ 6= 0. In particular, |Nζ,n(Fq)| always equals |N1,n(Fq)|, which was known to
Feit and Fine. Therefore, the nontrivial dependence of |Kζ,n(Fq)| on ζ stems purely
from that of |Uζ,n(Fq)|.

1.2. History and related work. An important starting case in the study of vari-
eties of modules is the commuting variety K1,n = {(A,B) : A,B ∈ Matn, AB = BA}.
The commuting variety over C was shown to be irreducible by Gerstenhaber [10] and
Motzkin and Taussky [15]. Its point count was given by Feit and Fine [6]. This result
was reproved by Bryan and Morrison [2] from the perspective of motivic Donaldson–
Thomas theory.

The commuting variety can be viewed in the context of Lie algebras. Let (g, [·, ·])
be a Lie algebra over an algebraically closed field. Define the commuting variety of g
as
(6) C(g) := {(x, y) ∈ g× g : [x, y] = 0},
thenK1,n is the commuting variety of the Lie algebra of n by n matrices. As a general-
ization of the irreducibility result ofK1,n, Richardson [16] showed that the commuting
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variety of any reductive Lie algebra over C is irreducible. Levy [14] extended this result
to positive characteristic under mild restrictions on the Lie algebra. On the combina-
torics side, Fulman and Guralnick [8] generalized the point-count result of Feit and
Fine to commuting varieties of unitary groups and of odd characteristic sympletic
groups. We also point out some papers that relate counting problems in Lie algebras
to maximal tori of Lie groups; see [9] and [13].

The focus of this paper, the ζ-commuting variety Kζ,n, is another generalization
of the commuting variety K1,n. When ζ = −1, we get the anti-commuting variety,
whose geometry over C was studied by Chen and Wang [4]. They gave explicit de-
scriptions of the irreducible components of K−1,n and of several variants. The above
work was extended to general ζ by Chen and Lu [3]. It is worth noting that Kζ,n is
not irreducible unless ζ = 1. The main contribution of our paper is the point count
of Kζ,n.

The point count ofKζ,n can also be viewed as statistical information on the classifi-
cation of modules over the quantum plane. More specifically, since an n-dimensional(1)

module over the quantum plane Fq{X,Y }/(XY − ζY X) can be parametrized by a
pair of matrices (A,B) in Kζ,n, the standard orbit-stabilizer argument gives

(7) |Kζ,n(Fq)|
|GLn(Fq)|

=
∑

dimM=n

1
|AutM | ,

whereM ranges over all isomorphism classes of n-dimensional modules over the quan-
tum plane. In other words, the xn-coefficient of the generating function in (1.1) is the
weighted count of isomorphism classes of n-dimensional modules over the quantum
plane, with weight inversely proportional to the size of the automorphism group (this
weighing is commonly known as the Cohen–Lenstra measure, following the impor-
tant work of Cohen and Lenstra [5] on random abelian groups). While Theorem 1.1
neither requires nor gives a classification of finite-dimensional modules, it does com-
pute their total weight. It is unknown whether Theorem 1.1 can be verified using a
classification, via the interpretation (7). For work towards the classification of finite-
dimensional modules over the quantum plane, we refer the reader to Bavula [1, §3],
where a classification of simple modules are given.

For a fixed integer g > 1, Hausel and Rodriguez-Villegas studied a related counting
problem [11, Eq (3.2.3)]

(8) Nn(q) := |{A1, B1, . . . , Ag, Bg ∈ GLn(Fq) : [A1, B1] · · · [Ag, Bg]ζn = 1}|,

where [A,B] := ABA−1B−1 and ζn is a primitive n-th root of unity of Fq. If g = 1,
then the defining equation for Nn(q) is A1B1 = ζnB1A1 (replacing ζ−1

n by ζn in the
process), so we have

(9) Nn(q) = |KGL×GL
ζn,n

(Fq)|

in the notation of Remark 2.2. We emphasize that Nn(q) are the diagonal entries of
the table |KGL×GL

ζm,n
(Fq)| in m,n, which we determine in (46) in terms of a generating

function.
Hausel and Rodriguez-Villegas observed a curious functional equation [11, Eq

(3.5.12)] about a generating function of Nn(q) that holds for all g, which reads

(10) [xn]EGL×GL
ζn

(x; q) = −q[xn]EGL×GL
ζn

(x; q−1)

when g = 1, where EGL×GL
ζm

(x; q) is a generating function of KGL×GL
ζm,n

defined in
Remark 2.2, and the operator [xn] refers to extracting the xn-coefficient. From our

(1)The dimensionality refers to the dimension as an Fq-vector space.
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formula (46) for EGL×GL
ζm

(x; q), we have

(11) [xn]EGL×GL
ζn

(x; q) = q − 1,

so the g = 1 case of the functional equation reads
(12) q − 1 = −q(q−1 − 1).

2. Proof of Theorem 1.2(a)
We recall that Theorem 1.2(a) claims that |Kζ,n(Fq)| for all n can be recovered from
|Uζ,n(Fq)| and |Nζ,n(Fq)| for all n. We start by proving a decomposition lemma,
following the approach of Feit and Fine [6].

Let V be an n-dimensional vector space over any field, then by Fitting’s lemma
(see for instance [12, p. 113]), for any linear map A ∈ End(V ), there is a unique
decomposition V = KA ⊕ IA such that A(KA) ⊆ KA, A(IA) ⊆ IA, A|KA is nilpotent,
and A|IA is nonsingular.

Lemma 2.1. Fix a linear map A ∈ End(V ) and a nonzero scalar ζ. Then a linear map
B ∈ End(V ) satisfies AB = ζBA if and only if

(a) B(KA) ⊆ KA, B(IA) ⊆ IA.
(b) A|KAB|KA = ζB|KAA|KA , A|IAB|IA = ζB|IAA|IA .

Proof. Having the decomposition V = KA ⊕ IA, any linear map X ∈ End(V ) can be
written as a matrix

(13) X =
[
X1 X2
X3 X4

]
,
X1 ∈ End(KA), X2 ∈ Hom(IA,KA),
X3 ∈ Hom(KA, IA), X4 ∈ End(IA).

Then we have

(14) A =
[
N 0
0 U

]
where N ∈ End(KA) is nilpotent and U ∈ End(IA) is nonsingular. For an arbitrary

B =
[
B1 B2
B3 B4

]
, the equation AB = ζBA is equivalent to

(15)


NB1 = ζB1N,

NB2 = ζB2U,

UB3 = ζB3N,

UB4 = ζB4U.

We note that B2 must be zero. Suppose not, since N is nilpotent, there exists
an integer r > 0 such that NrB2 6= 0 but Nr+1B2 = 0. The second equation gives
Nr+1B2 = ζNrB2U . The left-hand side is zero, while the right-hand side is nonzero
because ζ is a nonzero scalar and U is nonsingular. This yields a contradiction.

A similar argument shows that B3 = 0, completing the proof of the lemma. �

Let V = Fnq . To choose A,B ∈ End(V ) with AB = ζBA, because of Lemma
2.1, it suffices to choose a decomposition V = K ⊕ I, and then choose AK , BK ∈
End(K), AI , BI ∈ End(I) such that AK is nilpotent, AKBK = ζBKAK , AI is non-
singular, and AIBI = ζBIAI . We have

(16) |Kζ,n(Fq)| =
∑
s+t=n

h(s, t)|Nζ,s(Fq)||Uζ,t(Fq)|,

where h(s, t) is the number of ordered pairs (K, I) of subspaces of V such that dimK =
s, dim I = t.
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It is noted by Feit and Fine [6, Equation (5)] that

(17) h(s, t) = |GLn(Fq)|
|GLs(Fq)||GLt(Fq)|

.

It follows that

∞∑
n=0

|Kζ,n(Fq)|
|GLn(Fq)|

xn =
∞∑
n=0

∑
s+t=n

|GLn(Fq)|
|GLs(Fq)||GLt(Fq)|

|Nζ,s(Fq)||Uζ,t(Fq)|
1

|GLn(Fq)|
xn

(18)

=
∑
s,t>0

|Nζ,s(Fq)|
|GLs(Fq)|

|Uζ,t(Fq)|
|GLt(Fq)|

xs+t(19)

=
( ∞∑
s=0

|Nζ,s(Fq)|
|GLs(Fq)|

xs

)( ∞∑
t=0

|Uζ,t(Fq)|
|GLt(Fq)|

xt

)
,(20)

completing the proof of Theorem 1.2(a).

Remark 2.2. The same argument can prove two other similar factorization identities
below, by noting that B is nonsingular (or nilpotent) if and only if both BK and BI
are nonsingular (or nilpotent). To state the identities, for any combination of symbols
F,G taken from {Mat,GL,Nilp}, we define
(21) KF×G

ζ,n := {(A,B) ∈ Fn(Fq)×Gn(Fq) : AB = ζBA},

where Nilpn(Fq) denotes the set of n by n nilpotent matrices over Fq. Let

(22) EF×G
ζ (x; q) :=

∞∑
n=0

|KF×G
ζ,n (Fq)|
|GLn(Fq)|

xn.

Then
EMat×GL
ζ (x; q) = EGL×GL

ζ (x; q)ENilp×GL
ζ (x; q);(23)

EMat×Nilp
ζ (x; q) = EGL×Nilp

ζ (x; q)ENilp×Nilp
ζ (x; q).(24)

Note that Theorem 1.2(a) can be restated as

(25) EMat×Mat
ζ (x; q) = EMat×GL

ζ (x; q)EMat×Nilp
ζ (x; q).

3. Proof of Theorem 1.2(b)
Recall that the goal of Theorem 1.2(b) is to determine |Uζ,n(Fq)|, namely, to enumer-
ate pairs of matrices (A,B) ∈ Matn(Fq) ×Matn(Fq) such that AB = ζBA and A is
nonsingular. To do so, following the approach of Feit and Fine, let β be a similar-
ity class of n × n matrices. By a standard orbit-stabilizer argument, for B in β, the
number of nonsingular matrices A such that ABA−1 = ζB is either |GLn(Fq)|/|β| or
zero. Moreover, this number is not zero if and only if B is similar to ζB. We now give
a sufficient and necessary condition for it in terms of β.

We recall that each class β corresponds to a unique rational canonical form. It is
characterized by an n-dimensional module Mβ of the polynomial ring Fq[t]. Such a
module can be uniquely expressed in the form of

(26) Mβ = Fq[t]
(g1(t)) ⊕

Fq[t]
(g2(t)) ⊕ · · · ⊕

Fq[t]
(gr(t))

for monic polynomials g1, . . . , gr such that gi divides gi+1 for all 1 6 i 6 r − 1. For
a positive integer m, we say a monic polynomial g to be in Pm if g(t) = tbG(tm) for
some nonnegative integer b and monic polynomial G. For example, a polynomial is in
P2 if it is either even or odd.
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Lemma 3.1. Let B be an n × n matrix over any field, and let ζ be an m-th root of
unity. Then B is similar to ζB if and only if the polynomials g1, . . . , gr associated to
the rational canonical form of B are in Pm.

Proof. We denote the ground field by F. An endomorphism B over a vector space V
determines a module over the polynomial ring F[t] by letting t · v = Bv for v ∈ V .
We denote this F[t]-module by (B y V ). The isomorphism class of this F[t]-module
determines the rational canonical form of B.

Let g1, . . . , gh be the polynomials associated to the rational canonical form of B.
Then

(27) (B y V ) ∼=
F[t]

(g1(t)) ⊕
F[t]

(g2(t)) ⊕ · · · ⊕
F[t]

(gr(t))
.

We now compute (ζB y V ). We have
(ζB y V ) ∼= (ζtyMB)(28)

∼=
r⊕
i=1

(
ζty

F[t]
(gi(t))

)
(29)

∼=
r⊕
i=1

F[t]
(gi(ζ−1t)) ,(30)

where the last isomorphism follows from (a): the action of ζt on F[t]
(gi(t))

is cyclic, and

(b): the polynomial x 7→ gi(ζ−1x) is a minimal polynomial for ζt acting on F[t]
(gi(t))

.

Hence, B is similar to ζB if and only if

(31)
r⊕
i=1

F[t]
(gi(t))

∼=
r⊕
i=1

F[t]
(gi(ζ−1t))

as F[t]-modules. Since gi(t) divides gi+1(t) for all i, we have that gi(ζ−1t) divides
gi+1(ζ−1t) as well. By the uniqueness statement about the polynomials associated to
the rational canonical form, for each i, the monic polynomials gi(t) and ζdeg gigi(ζ−1t)
must be equal. Write gi(t) = td + c1t

d−1 + · · · + cd−1t + cd, then ζdgi(ζ−1t) = td +
ζc1t

d−1 + · · · + ζd−1cd−1t + ζdcd. Since ζ is an m-th root of unity, we observe that
gi(t) = ζdgi(ζ−1t) if and only if cj = 0 for all j not divisible by m. This is equivalent
to saying that gi(t) is in Pm. �

Let Sζ,n(Fq) denote the set of similarity classes β of n × n matrices over Fq such
that some (equivalently, every) matrix B in β is similar to ζB. We have

|Uζ,n(Fq)| =
∑

B∈Matn(Fq)

|{A ∈ GLn(Fq) : ABA−1 = ζB}|(32)

=
∑
β

∑
B∈β

|{A ∈ GLn(Fq) : ABA−1 = ζB}|(33)

=
∑

β∈Sζ,n(Fq)

|β| |GLn(Fq)|
|β|

+
∑

β/∈Sζ,n(Fq)

0(34)

= |GLn(Fq)||Sζ,n(Fq)|.(35)

We now count |Sζ,n(Fq)|. By Lemma 3.1, a similarity class in Sζ,n(Fq) is charac-
terized by monic polynomials g1, g2, . . . , gr in Pm such that every polynomial divides
the next. Let hi = gr+1−i/gr−i for 1 6 i 6 t, where g0 = 1. It is easily checked from
the definition of Pm that g1, . . . , gr are all in Pm if and only if h1, . . . , hr are all in
Pm. Let bi = deg hi. The only restriction on the monic hi is that hi is in Pm and that
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∑r
i=1 ibi = n. We observe the important fact that the number of monic polynomials

in Pm of degree bi is qbbi/mc. Hence to give g1, . . . , gr, we first choose (bi)i>1 such
that

∑
ibi = n, and then independently choose hi in Pm of degree bi. It follows that

(36) |Sζ,n(Fq)| =
∑
bi>0∑
ibi=n

qbbi/mc.

Therefore,
∞∑
n=0

|Uζ,n(Fq)|
|GLn(Fq)|

xn =
∞∑
n=0
|Sζ,n(Fq)|xn(37)

=
∑
n>0

∑
bi>0∑
ibi=n

qbbi/mcxn(38)

=
∑

b1,b2,···>0
qbbi/mcx

∑
ibi(39)

=
∞∏
i=1

∞∑
b=0

qbb/mc(xi)b.(40)

By writing b = km+ l with 0 6 l < m, we get
∞∑
b=0

qbb/mcxb =
m−1∑
l=0

∞∑
k=0

qkxkm+l(41)

=
m−1∑
l=0

xl

1− qxm(42)

= 1 + x+ · · ·+ xm−1

1− qxm(43)

= 1− xm

(1− x)(1− qxm) .(44)

Hence, if we define Gm(x; q) = 1− xm

(1− x)(1− qxm) , then we have

(45)
∞∑
n=0

|Uζ,n(Fq)|
|GLn(Fq)|

xn =
∞∏
i=1

Gm(xi; q),

finishing the proof of Theorem 1.2(b).

Remark 3.2. The same argument can compute a similar generating function below,
by noting that B is nonsingular if and only if each polynomial gi(t) that appears in
the rational canonical form has a nonzero constant term. In the notation of Remark
2.2, we have

(46) EGL×GL
ζ (x; q) =

∞∏
i=1

1− xim

1− ximq ,

where m = ord(ζ).
Similarly, if we instead notice that B is nilpotent if and only if each gi(t) is a power

of t, then we get

(47) EGL×Nilp
ζ (x; q) =

∞∏
i=1

1
1− xi .
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We notice that the above two formulas, together with Theorem 1.2(b), verify (23)
explicitly. We also observe that EGL×GL

ζ (x; q) is a power series in xm. In particular,
this implies that if AB = ζBA and A,B are both nonsingular, then the size n of the
matrices A,B must be a multiple of the order of ζ.

4. Proof of Theorem 1.2(c)
We follow the idea of Fine and Herstein [7] to determine |Nζ,n(Fq)|, namely, the
number of matrix pairs (A,B) ∈ Matn(Fq)×Matn(Fq) such that AB = ζBA and A
is nilpotent. In fact, we will show that the situation is completely the same as the
case ζ = 1 studied in [7].

Associate to each similarity class of n by n nilpotent matrices a partition π of n:
(48) π : n = a1 · 1 + a2 · 2 + . . . ,

so that a representative of the similarity class associated to π is given by

(49) Aπ =



0a1

0a2 1a2

0a2

0a3 1a3

0a3 1a3

0a3

. . .


,

where 0a and 1a denote the a by a zero matrix and the a by a identity matrix,
respectively.

Let α(π) denote the similarity class associated to π. Since the number of matrices
B such that AB = ζBA only depends on the similarity class of A, we have

(50) |Nζ,n(Fq)| =
∑
π`n

|α(π)||{B ∈ Matn(Fq) : AπB = ζBAπ}|.

For any fixed scalar ζ 6= 0, it is elementary to check that AπB = ζBAπ if and only
if B is of the following form:

(51)



B1
1,1 B1

1,2 B1
1,3 B1

1,4 · · ·
B1

2,1 B
1
2,2 B2

2,2 B1
2,3 B2

2,3 B1
2,4 B2

2,4
ζB1

2,2 ζB1
2,3 ζB1

2,4 · · ·
B1

3,1 B
1
3,2 B2

3,2 B1
3,3 B2

3,3 B3
3,3 B1

3,4 B2
3,4 B3

3,4
ζB1

3,2 ζB1
3,3 ζB2

3,3 ζB1
3,4 ζB2

3,4 · · ·
ζ2B1

3,3 ζ2B1
3,4

B1
4,1 B

1
4,2 B2

4,2 B1
4,3 B2

4,3 B3
4,3 B1

4,4 B2
4,4 B3

4,4 B4
4,4

ζB1
4,2 ζB1

4,3 ζB2
4,3 ζB1

4,4 ζB2
4,4 ζB3

4,4
ζ2B1

4,3 ζ2B1
4,4 ζ

2B2
4,4 · · ·

ζ3B1
4,4

...
...

...
...

. . .



,

where each Bki,j is an arbitrary ai by aj matrix, chosen independently. We note that
the count |{B ∈ Matn(Fq) : AπB = ζBAπ}| does not depend on ζ. Hence,
(52) |Nζ,n(Fq)| = |N1,n(Fq)|.

It is known [6, Equation (6)] that

(53) |N1,n(Fq)| = |GLn(Fq)|
∑
π`n

1
f(a1)f(a2) · · · ,
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where f(a) := (1− q−1)(1− q−2) . . . (1− q−a).
Hence,

∞∑
n=0

|Nζ,n(Fq)|
|GLn(Fq)|

xn =
∞∑
n=0

∑
π`n

1
f(a1)f(a2) · · ·x

n(54)

=
∑

a1,a2,···>0

1
f(a1)f(a2) · · ·x

∑
iai(55)

=
∞∏
i=1

∞∑
a=0

1
f(a) (xi)a(56)

=
∞∏
i=1

H(xi; q),(57)

where

(58) H(x; q) :=
∞∑
a=0

1
f(a)x

a = 1
(1− x)(1− xq−1)(1− xq−2) . . .

by a classical identity due to Euler. This concludes the proof of Theorem 1.2(c), and
hence proves Theorem 1.2 and Theorem 1.1.

Remark 4.1. Combining Theorem 1.2(c), formula (47) and the decomposition formula
(24), we get (in the notation of Remark 2.2)

(59) ENilp×Nilp
ζ (x; q) =

∞∏
i=1

1
(1− xiq−1)(1− xiq−2) . . . .

At this point, we have computed EF×G
ζ (x; q) for all combinations of F,G ∈

{Mat,GL,Nilp}. We notice that EF×G
ζ (x; q) does not depend on ζ whenever F or G

is Nilp. This should not be surprising in light of the argument of Theorem 1.2(c).

5. Discussions
We note from the work of Bryan and Morrison [2, §3.1] that |U1,n(Fq)| and |N1,n(Fq)|
“determine” each other. The key ingredient is that either of the quantities above is the
point count of the variety of modules over the “commutative” plane SpecFq[x, y] sup-
ported on a certain subset of closed points. A module is determined by its localizations
at closed points in its support, so both |U1,n(Fq)| and |N1,n(Fq)| are determined by
the point count of the variety of modules supported at a point. Since the commutative
plane “looks the same everywhere” locally in light of the Cohen structure theorem
(the complete localization of Fq[x, y] at any closed point is isomorphic to F[[x, y]] for
some field extension F of Fq), we can reverse the process, so that either of |U1,n(Fq)|
and |N1,n(Fq)| determines the point count of the variety of modules supported at a
point, and hence determines each other.

However, for ζ 6= 1, Theorem 1.2 shows that |Nζ,n(Fq)| does not depend on ζ while
|Uζ,n(Fq)| does. Is it still possible to recover |Uζ,n(Fq)| from |Nζ,n(Fq)| together with
the geometry of the quantum plane xy = ζyx (which will depend on ζ)?
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