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Comparing formulas for type GL,,

Macdonald polynomials

Weiying Guo & Arun Ram

Dedicated to Héléne Barcelo

ABSTRACT The paper compares (and reproves) the alcove walk and the nonattacking fillings
formulas for type GL, Macdonald polynomials which were given in [10], [1] and [18]. The
“compression” relating the two formulas in this paper is the same as that of Lenart [13]. We
have reformulated it so that it holds without conditions and so that the proofs of the alcove
walks formula and the nonattacking fillings formula are parallel. This reformulation highlights
the role of the double affine Hecke algebra and Cherednik’s intertwiners. An exposition of the
type G Ly double affine braid group, double affine Hecke algebra, and all definitions and proofs
regarding Macdonald polynomials are provided to make this paper self contained.

0. INTRODUCTION

The Macdonald polynomials are an incredible family of orthogonal polynomials which
simultaneously generalize Schur functions, Weyl characters, Demazure characters,
Askey-Wilson polynomials, Koornwinder polynomials, Hall-Littlewood polynomials,
Jack polynomials and spherical functions on p-adic groups. They are eigenfunctions
of a family of difference operators which generalize the classical Laplacian and, in this
sense, the Macdonald polynomials E,, are generalizations of spherical harmonics.
This paper is a study of the relationship between combinatorial formulas for G L,,-

type Macdonald polynomials:

(a) The nonattacking fillings formulas from [10, Theorem 3.5.1] and [1], and

(b) The alcove walks formula from [18, Theorem 3.1].

Except for Section 4, which contains the recursions and the calculations for the proofs,
we have made an effort to try to make the different sections of this paper readable
independent of each other. The reader should not hesitate to go directly to Section 5
for an introduction to the double affine Hecke algebra, to Section 2 for an entrée to
n-periodic permutations and the affine Weyl group, and to Section 3 for the basics of
Macdonald polynomials and some explicit examples of them.

The first half of Section 3 defines the various kinds of Macdonald polynomials, the
E,,, the Py and the EJ; the second half of Section 3 computes some examples. In 1],
the relative Macdonald polynomials E};, = (const)T.E,, of this paper are called “per-
muted basement Macdonald polynomials”. These “T, shifted Macdonald polynomials”
are useful for all root systems and have an alcove walks formula [18, Theorem 2.2].
In the general root system setting, the notion of a “basement” has a different flavor
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(the z in the T, is the “basement”) and so we propose the term relative Macdonald
polynomials for the Ej.

As explained in Macdonald’s book [16], the n-periodic permutation u, defined
in Section 2 is a critical ingredient for the understanding of the combinatorics of
Macdonald polynomials and their construction by intertwiners 7,”. Proposition 2.2
provides a favorite reduced word for u,, and determines its inversions. The inversions
of u,, provide the “arms” and “legs” that appear in [10] (denoted Narm, and Nleg,
in this paper), and this observation connects those statistics with the roots of the
affine root system for type GL,,. Proposition 4.3 derives a box-by-box recursion for
computing Macdonald polynomials and Remark 4.4 shows that the statistic that
falls out of this derivation (in terms of a comparison of lengths of permutations)
counts the coinversion triples that are used in [10]. This observation completes the
interpretation of the statistics in the nonattacking fillings formula in terms of the Weyl
group and the root system. Let us highlight that using the box-by-box recursion to
compute Macdonald polynomials is equivalent to using a special reduced word for the
n-periodic permutation u,, the box greedy reduced word for u,,.

The proof of the alcove walks formula is obtained by iterating the step-by-step
recursion for the relative Macdonald polynomials Ej. The proof of the nonattacking
fillings formula is obtained by iterating the boz-by-box recursion for the relative Mac-
donald polynomials E7. Except for the effort to normalize the E so that z*# has
coefficient 1, the proof of the step-by-step recursion does not differ from the proof
of [18, Theorem 2.2]. The proof of the box-by-box recursion is, at its core, the same
as [13, Proposition 4.1] (Lenart’s main results are stated for symmetric Macdonald
polynomials Py where A has distinct parts, we treat the general relative case EZ) Our
reformulation and proof highlights the role of the intertwiners and the connection to
the affine root system and pinpoints exactly which intertwiners get “compressed”.

Section 5 provides a Type G L, specific exposition, from scratch, of the double affine
Hecke algebra and its use for defining and studying Macdonald polynomials. In [9], a
supplement to this paper, we provide examples and further observations.

A small warning: Even though they all have a Type A root system, type SL,, Mac-
donald polynomials, type PGL, Macdonald polynomals and type GL, Macdonald
polynomials are all different (though the relationship is well known and not difficult).
We should stress that this paper is specific to the GL,-case and some results of this
paper do not hold for Type SL,, or type PGL,, unless properly modified.

1. BOXES, ALCOVE WALKS AND NONATTACKING FILLINGS

The goal of this section is to state the main results: the alcove walks formula and the
nonattacking fillings formula, and the compression map 1 which relates them. We be-
gin by setting up the combinatorics of boxes, diagrams, alcove walks and nonattacking
fillings. Then, after specifying the weights attached to alcove walks and to nonattack-
ing fillings we state the alcove walks formula and the nonattacking fillings formula for
Macdonald polynomials as weighted sums of alcove walks and nonattacking fillings,
respectively.

1.1. BoxEs. Fix n € Z-g. A boz is an element of {1,...,n} X Zx¢ so that

{boxes} = {(i,j) [ €{1,...,n}, j € Zzo}-

To conform to [14, p.2], we draw the box (i,7) as a square in row i and column j
using the same coordinates as are usually used for matrices.

(1) The cylindrical coordinate of the box (i, ) is the number i 4 nj.
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The basement is the set {(i,0) | i € {1,...,n}}, so that the basement is the collection
of boxes in the 0th column. Pictorially,

1 (1LO)|[s (LD [1(1,2)][16 (1,3) ][5 (1,9)] -
> 20|z 2]z @2)][r @3)][» @]
5 3.0 [s 3.0 [15 32|15 63 [ G 9] npox T
s @00 D] [14 @2)][10 @3)][20 (4.9)]--
5 (5,0) [[10 (5.1)|[15 (5,2) |20 (5,3) || 5 (5,4) -

Let = (p1,...,n) € Z%, be an n-tuple of nonnegative integers. The diagram of
 is the set dg(u) of boxes with p; boxes in row i and the diagram of p with basement
dg(w) includes the extra boxes (,0) for i € {1,...,n}:

(,u)z{( j)lie{l,...,n}tand j€{l,...,;}} and
{(,5) |ie{l,...,n}and j € {0,1,...,u;:}}.

It is often convenient to abuse notation and identify p, dg(u) and @(,u) (because
these are just different ways of viewing the sequence (1, ..., un)). For example, if
pw=(0,4,1,5,4) then

(| _ HDDDD

dg(p) = and dg(p) =
oREe T R

1.2. ALCOVE WALKS AND NONATTACKING FILLINGS. Let p € Z%,. Using cylindrical
coordinates for boxes as specified (1), define, for a box b € dg(u),

(2) attack, (b) = {b—1,...,b—n+ 1} Ndg(y),
3) Nleg, (b) = (b +nZso) Ndg(n) and
(4) Narm,, (b) = {a € attack,(b) | #Nleg,(a) < #Nleg,(b)},

where #Nleg,, (a) denotes the number of elements of Nleg,(a). For example, with
w=(3,0,5,1,4,3,4) and b = (5,2), which has cylindrical coordinate b =5+7-2 = 19
the sets attack, (b), Narm,(b) and Nleg,, (b) are pictured as

O ]
;D-DDD ;%DDDD

attack, (b) = Nleg,, (b) =

§ETER mmim

i-DDD ..
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@]
_%DDDD
IR

B0

Let p = (p1,...,ptn) € Z%, and let u,, be the n-periodic permutation defined in
(33). Letting w, (7, ) = n — 1 — #attack, (4, j), the boz-greedy reduced word for u,, is

(5) UE = H (Suu(i,j) S S981T).
boxes (¢,7) in dg(p)

Narm, (b) =

[ |

For the purposes of this section it is only necessary to recognize uE as an abstract word

in symbols s1,...,8,-1,7. For an example, if u = (0,4,1,5,4) then the box-greedy
reduced word for u, is

S1T S1T S281T || 82817

(6) uE = (517r)5(52517r)8(5352317r) =| s

S1T || S281T || 82817 || S281T || 352817

S1T || S281T || 82817 || S281T

(the reduced word is a product of the boxes read in increasing order by cylindrical
coordinate).

Let = (g1,...,pn) € Z%q and z € Sp. Let @, = wiws---w; be a reduced word

for w, so that wi,...,w, are the factors of @, (a good choice is to let @, = uE).

An alcove walk of type (z,4,) is a sequence p = (po,p1,...,pr) of elements of W
(see (19), but, as for uE, it is sensible just to view the p; as words in the symbols
S1y.+.y8n—1,7) such that

Do = 2, Pr = pr—17 if wy =, and Pk € {Pk—1, Pe—1wi } if wy # .

In other words, an alcove walk of type (z,,) is equivalent to choosing a subset of
the s; factors in %, to cross out. For example,

T S1T SoSA(T || 85517
() P= |sim
SAT || S281T || SESAT || S2S1T || S4So. 51T

S1T || S281T || SESAT || 82817

is equivalent
to the alcove walk

p=(po,p1,.-.,037) = (2,2, 27, 2MS1, 28T, 2SI, 2SI T2, 2SI T281, ZTSI TSI, . . .)
(there is a repeat entry in p each time there is an s; crossed out in P). In this example,
there are 5+ 2 -8 + 3 = 24 factors of the form s; in uE and so there are a total of 224
alcove walks of type (z, uE) (for any fixed permutation z € S,,).

Let p = (p1,...,pn) € Z%, and 2z € S,. A nonattacking filling for (z,p) is
T: ZZE(H) — {1,...,n} such that
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(a) T(#,0) = 2(¢) for i € {1,...,n} and
(b) if b € dg(p) and a € attack,,(b) then T'(a) # T'(b).

For example,

1
211112 is a nonattacking filling for (z, )
(8) T= 33
444544 with z =id € S5 and u = (0,4, 1,5,4).
5233

Let b be a box in u. Starting at b read, in succession, in reverse order by cylindrical
coordinate, the entries from 7T in (earlier) boxes, skipping values that have already
been encountered. This process produces, for each box b € dg(1), a permutation z7(b)
in S,,. For example, with T as in (8), box (4,3) in T (row 4, column 3) produces the
permutation (in one line notation)

1

201 1 @2
(34215) formed from the circled numbers in 3|3

44 @@ 44

55 @ 33

and doing this for all boxes in T produces

(23451) || (23451) || (35421) || (41532)

9) o = (24513)
(25134) || (23514) || (34215) || (15324) || (15234)
(21345) || (35142) || (42153) || (15243)

The sequence

(10) zr = (27(b) | b € dg(p)) is the permutation sequence of T.

Let ¢, = 81+ 8$n—1, an n-cycle in S,,. If b = (i, §) is a box in dg(u), the permutation
zr(b') in the next box of zp (by cylindrical coordinate) is

(11) 27 (b)) = z1(b)s, - - - 8281Cp, where r € {0,1,...,u,(t)},

and s, ---sgs17 is the entry in box ¥ of the alcove walk ¢(T) corresponding to the
nonattacking filling 7. (If this construction of the permutation sequence feels ad hoc,
the sentence before Lemma 4.2 may help to provide some insight into its source.)

For example, for z7 as in (9), and with z = (12345) the permutation in the basement
of T, then

(23451) = 2z7(2,1) = zcp, (23451) = 27(2,2) = 27(5,1)s1¢n,
(24513) = 27(3,1) = 27 (2,1)s1¢p,

(25134) = 2zr(4,1) = 20 (3, 1)s1¢p,  (23514) = 27(4,2) = 27(2,2)s251¢n,
(21345) = 27(5,1) = 27(4, 1)s1¢,  (35142) = 27(5,2) = 27(4, 2)cn,
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and so forth all the way to the last box of u. Keeping track only of the factor which
is the difference between successive boxes produces the alcove walk

S| |81 | | S2817 || sg81T

o(T) =| s1m

S1T || 82817 || S4S1T || SEAT || S3S281T

ST || SESAT || $854T || S251T

In summary, letting
AW?, = {alcove walks of type (z, uE)} and
NAF}, = {nonattacking fillings for (z, u)},
we have produced an injective map
@: NAF), — AW,

By (11), the image of ¢ consists exactly of the alcove walks such that, each box

b= (i,j) € dg(u) contains a suffix s, ---s;7 of the entry s, -+s17 in box b in

w(isg)
uE. The compression map is the function
(12) Y: AW, — NAF}

which, in each box, forces every s; factor before the last crossed out factor in that
box also to be crossed out. For example, if P is the alcove walk in (7) then

ST\ | S1T| | sE8(T || 8551

SAT || S2S1T | | SESAT || S2S1T || S45534T

S1T0 || S2S81T || SESAT || S2S1T

Identifying NAF}, with im ¢, then 1) o p: NAF;, — NAF} is the identity map on
nonattacking fillings.

1.3. FORMULAS FOR THE RELATIVE MACDONALD POLYNOMIALS E7. In this subsec-
tion we state the alcove walks formula and the nonattacking fillings formula for E7.
The proofs are by the step-by-step recursion (Proposition 4.1) and the box-by-box
recursion (Proposition 4.3), respectively. The statistics sh(—£)), ht(—/3)), norm(py)
on alcove walks which are introduced below are read off of the step-by-step recursion,
Proposition 4.1. Similarly, the statistics #Nleg,, (b) +1, #Narm,, (b)+1, and #bwnr(b)
on nonattacking fillings which are introduced below are read off the box-by-box re-
cursion, Proposition 4.3, and Remark 4.4.

Equations (13)—(15) use the notations of Section 2.3 so that W is the group of
n-periodic permutations defined in (19) the root sequence for @, corresponds to the
inversions of u,, as in (31) and the shift and height of an affine coroot are as given in
(27).

Let o= (p1,..-,pn) € Z%, and z € Sp,. Let s = 7 and let @, = s;, -+ si, be a
reduced word for u,, (a good choice is to let @, = uE). An alcove walk of type (z,4,)
is

(13) a sequence p = (po,p1,-.-,pr) of elements of W  such that
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po = z; if 8;, = 7 then pr = pr_17; and if s;, # 7 then pp € {pr—_1,Pk—18:, - The
permutation sequence of p is the sequence of elements of S,,,

(14) Zy = (20, -+, 2r), given by zj =Dy,

where : W — S, is the homomorphism given by f,v = v (see (24)). The root
sequence for 1, is

-1 _—1 —1 \Y%
G Zdp_1 Sik+1aik‘

the sequence (B) | ir # m) given by ﬁjv =5
Define
ht(ef —ef — LK) =j—1i, and  sh(g) —ef —IK) = L.
For k € {1,...,r} with py_1 = py define
norm(pg) = %(E(zk_lsikvz_]iw) — E(zk_lv;}iw) — Z(sik)),

where £(s;,) = 1. Let ¢ and ¢ and 1, ..., x, be variables. For a step k € {1,...,¢} of
the alcove walk p = (pq, ..., pe) define the weight of py by

1t .
(1 — (B (=B )tnorm(m’ if pr = pr—1 and pr_15i, < pr-1,

R O N _
th(k) = <( 1_ (ESh(_ﬂ’\c/)tht(_Bl\v/) )t (Pk)7 if pr. = pr—1 and pr_18i, > pr—1,

1, if pr. = pr—18i,,
Tzp_1(1) if pr = pr—1m,

and define the weight of p by

¢
(15) wt(p) = H wtp(k), a product over the steps of p.
k=1

Let p € Z%, and z € S, and let T' be a nonattacking filling of shape (z, ). For
bedg(p) let
_ T(b—n)>T(a)>T(b)
(16) bz (b) = {a € Narm,,(b) ’ or T(b—n) < T(a) < T(b) }
The weight of b in T is
(17)

1-—t
#bwnr (b :
(1 _ g#Nleg,, (5)+1;#Narm,, (b)+1 )t 7 )xT(b)v if T(b—n)>T(b),

WtT(b) = ((1 - t)q#Nlegu (b)+1t#Narmu (b)) —#bwnr(
1— q#NICgu(b)Jrlt#Narmu(b)Jrl

arw, if T(b—mn) < T(b),

TT(b) if T(b—n)=T(b),
and the weight of T is
(18) wt(T) = H wtp(b), a product over the boxes of T
bedg(p)

The following theorem summarizes (and slightly generalizes) [18, Theorem 3.1], [1,
Def. 5 and Prop. 6] and [10, Theorem 3.5.1].

THEOREM 1.1. Let p € Z%, and z € Sy, Let E}; be the relative (or permuted basement)

nonsymmetric Macdonald polynomial defined in (43). Let i, be a reduced word for u,,
and let

AW, = {alcove walks of type (z,1,)} and
NAF}, = {nonattacking fillings for (z, )}

Algebraic Combinatorics, Vol. 5 #5 (2022) 855
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(a) Alcove walks formula: Ej = Z wt(p).
PEAWS
(b) Nonattacking fillings formula: E, = Z wt(T).
TENAF?,

Proof. (a) is obtained by successive applications of the step-by-step recursion (Propo-
sition 4.1), and (b) is obtained by successive applications of the box-by-box recursion
(Proposition 4.3). The weight of each box wtr(b) comes from the coefficient of the
correpsonding term in Proposition 4.3 and, by Remark 4.4 and Remark 2.3, these
weights can be stated in the form (16) and (17). O

The following is a corollary of Lemma 4.2 (specifically, the step in line (52)). Lemma
4.2 is a version of [13, Proposition 4.1], which forms the core of the proof of the box-
by-box recursion Proposition 4.3.

COROLLARY 1.2. Let p € Z%, and z € Sy,. Let 1p: AW}, — NAF} be the compression
function defined in (12) and let T € NAF},. Then

wt(T) = Z wt(p).
peY~1(T)

The following example illustrates the proof of the nonattacking fillings formula by
iterating the box-by-box recursion to produce the nonattacking fillings expansion of

the Macdonald polynomial E3 2 1.1,0,0) = E((;ngéisf )0‘0). The first four applications of
Proposition 4.3 give
(123456) (234561) (345612) (456123)
Blazr,00) = 1B 11000 = T182E(1 1,0,01,1) = 217283 (10,0.1.1,0)
_ (561234)
= 212223840 011.0,0)-
The fifth box is produced by applying Proposition 4.3 to E((g’%l?gf)o 0) to obtain
(561234) (562341) 1-1 (512346) (612345)
E(0,0,1,1,0,0) = xlE(O,O,l,O,O,O) + (1 — qt5*2) (quE(O,O,l,O,O,O) + qx5E(0,0,1,0,0,0))'
The last box is obtained by applying Proposition 4.3 to each of the terms E((S?O%i%ol,)o,oy
E((g 102i’4§ )0 0) and E((g 102?45’ )0 0) which have been generated in the previous step:
(562341) -
E0,0,1,000 =2t (1 _ qt672) (atws + gtws),
(512346) 1—1¢
E(0,0,1,0,0,0) =T+ (1 — qt6—2) (ml + thfl)’
612345 1-1t .
E((O,o,l,o,)o,o) =29+ <71 — qt6—2) (xl + qa:G), since E(Zo,o,o,o,o,o) =1forzels,.

Compiling these produces an expansion of E3 21 1,0,0) With 9 terms,

(123456) (561234)
Elo911,00) = 12283459 0171 0,0)

B (562341) 1—1 (512346) (612345)
= T1X2L3T4 <x1E(0,0,1,0,0,0) + (1 — qt5—2) (quE(O,O,l,O,O,O) + q$5E(O,O,1,O,O,O))>

X ($2 + (%) (qtas + qt$5>)
= 21222324 | +( 1o ) are (T2 + (1o ) (21 + th5))

(== ) aws (22 + (== ) (1 +qx6)>

Algebraic Combinatorics, Vol. 5 #5 (2022) 856
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These 9 terms are exactly the 9 nonattacking fillings of u = (2,2,1,1,0,0) as follows

11
22

Uk W N~
w

6

T1T2X3T4X1T2

11
25

1
2
3
44
)
6

1-t
T1T2X3T4T1 (m)qt%

1116
2121
313
44
)
6
t

xlxzfcgm(l

15
22
3
4

S U W N~

1t

T1T2T3%4 (1_qt5—2 ) qT5X2

15
26

1
2
3
414
5
6

1-—t 1t
L1T2T3L4 ( 1,qt5—2)qx5 ( 1,qt6—2)qx6

1
2
3
4
5
6

11
26

1t
T1222T3T4T1 ( T=qto=2 ) qtxe

1
2
3
4
)
6

16
22
3
4

1-—t
T1T2T3%4 (1_qt5—2 >q$6332

S T W N

S U W N~

16
25
3
4

1-t 1-t 1-t
52 ) qTe ( T qio-2 )xl T1T2T3T4 (71%572 )qxa (71%672 )th5

15
21
3
4

1—t 1—t
L1X2X3L4 ( T_qi5-2 ) qxs ( T_qi5-2 )131

In this table, the weight wt(7T) of the nonattacking filling is shown directly below the
filling. These are exactly the weights produced by iterating the box-by-box recursion.
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2. THE AFFINE WEYL GROUP AND THE ELEMENT u,,

The underlying permutation combinatorics that controls Macdonald polynomials is
that of n-periodic permutations. In this section we define the group of n-periodic per-
mutations (the affine Weyl group), and establish notations and facts about inversions
and lengths of n-periodic permutations. At the end of this section we introduce the
special n-periodic permutation wu,, which is used for the construction of the Mac-
donald polynomial E,,. Proposition 2.2 provides a favorite reduced word for u, (the
box-greedy reduced word) and determines the inversions of u,,.

2.1. THE FINITE WEYL GROUP W5, AND THE AFFINE WEYL GROUP W. Let n €
Z1. The finite Weyl group is

Wsin = Sp, the symmetric group of bijections v: {1,...,n} = {1,...,n}

with operation of composition of functions. The type GL,, affine Weyl group W is the
group of n-periodic permutations w: Z — Z i.e.,

(19) bijective functions w: Z — Z such that w(i + n) = w(i) + n.
Any n-periodic permutation w is determined by its values w(1),...,w(n). Using w(i+
n) = w(i) + n, any permutation v: {1,...,n} = {1,...,n} in S, extends to an n-

periodic permutation in W, and so S,, C W.
Define m € W by

(20) w(i)=i4+1, forieZ.
Define sg, $1,...,8,-1 € W by
(21) igtiyi? and s;(j) =4 forj€{0,1,...,i—1,i+2,...,n—1}.

The finite Weyl group S, is the subgroup of W generated by s1,...,5,-1.
For p = (t1,..., n) € Z" define t, € W by

(22) tu(1) =14+nu, tu(2)=24+np2, ..., tu(n)=n+nu,.
Then
(23) W={t,w|peZ"vesS,} with vt, =t,,v forve S, and p € Z™.

The map
(24) W — S, given by t,o=v, forpeZ"andves,,
is a surjective group homomorphism. If v € S, and p = (u1,...,p,) € Z™ then

(tuv) (i) = v(4) + npryy for i € {1,...,n}. The two-line notation for w = t,v is

25 t,v= .
(25) uo (U(l) + 11y V(2) + Npy2) - v(n) + n:uv(n))

Another useful notation for n-periodic permutations is an extended one-line-notation:
If w= (1, ,ttn) € Z" and v € S,, write

(26) tuv = ((p11)v-101)5 (B2)v-1(2)5 - - > (Bn)v—1(n))-

. N (12345
For example, if 4 = (0,4,5,1,4) with n =5 and v = (1 125 3> then
1 2 3 4 5 123 4 5
%v_«h4&%J%%)_(14+n2+4n5+4n3+&0__(19%25%)'
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2.2. INVERSIONS OF n-PERIODIC PERMUTATIONS. Let w € W be an n-periodic per-
mutation. An inversion of w is

(4, k) with j <k and w(j) > w(k).

If (j, k) is an inversion of w then (j 4 ¢n, k + ¢n) is an inversion of w for £ € Z and so
it is sensible to assume j € {1,...,n} and define

Inv(w) ={(,k) | j€{1,....,n}, k€ Z, j <k and w(j) > w(k)}.
The number of elements of Inv(w),
l(w) = #Inv(w), is the length of w.
For notational convenience when working with reduced words, let s, = m. Then
Usz)=4L(mr)=0 and L(s;)=1 forie{l,...,n—1}.

Let w € W. A reduced word for w is an expression of w as a product of s1,...,8,-1
and S,

w = S8; ...8;, such that Ow) =L(syy) + -+ +L(s4,),
with 41,...,40 € {1,...,n — 1,7}

2.3. AFFINE COROOTS AND THE ROOT SEQUENCE OF A REDUCED WORD. Let ay be
the set of Z-linear combinations of symbols €Y, ...,eY, K. The affine coroots are

ef —ef +4K  withi,je{l,...,n} andi# jand (€ Z

(in the context of the corresponding affine Lie algebra the symbol K is the central
element). The shift and height of an affine coroot are given by

(27) sh(e/ —e] +IK)=—( and ht(ef —ef +(K)=j —i.

The affine coroot corresponding to an inversion

(28) (i k) = (i,j+n) withi,je{l,....,n}and L€ Z, is B =g/ —c]+IK.
Define a Z-linear action of the affine Weyl group W on az by

(29) e =V + K, 7w le) =g/, forie{2,...,n}

sief =&y, siel =g, sigg=¢f ifje{l,... ,n}andj¢{ii+1}.

If p = (pa,..., pn) € Z" then t,e; = e — p; K. This action matches the action from
the double affine Hecke algebra results in Proposition 5.5 and equation (75).
Let

ay =€, —¢) + K, and o =g/ —¢g/yy forie{l,....,n—1}.

Let w € W and let w = s;, - - - 54, be a reduced word for w. The root sequence of the
reduced word w = s;, - - - §;, (recall that s, =) is
(30)

the sequence (8) | k € {1,...,¢} and i), # 7}) given by B =s; -5, af

g [ Rt

Then, identifying inversions with affine coroots as in (28),
(31) Inv(w) ={B) | k€ {1,...,¢} and k # 7}
(see [16, (2.2.9)] or [3, Ch. VI §1 no. 6 Cor. 2]).
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2.4. THE ELEMENT u, IN THE AFFINE WEYL GROUP. Define an action of W on Z"
by
(32) T(p1, .o tin) = (B + L1, ptp—1)  and
Si(l1s s pn) = (15 Bim1, i1, i Hig2, - -+ fin),
for i € {1,...,n —1}. Let u, be the minimal length element of W such that
(33) 1, (0,0,...,0) = (f1,. .., ttn) and define v, € S, by u, = tuvljl,

where t,, € W is as defined in (22). As noted in [16, (2.4.3)], u, is the minimal length
element of the coset ¢,S5, in W and the choice of the notation u, and v, for these
elements follows that lead. Let A = (A1 > -+ > \,,) be the decreasing rearrangement
of 1 and let

(34) zy € S, be minimal length such that p = 2z, A.

The following result is the translation of [16, (2.4.1)-(2.4.5) and (2.4.14)(i) and
(2.4.12)] to our current setting.

PROPOSITION 2.1. Let j = (p1, ..., pin) € ZY,. Let uy, vy, A and z, be as defined in
(33) and (34).
(a) vy, is the minimal length element of Sy, such that v,p is (weakly) increasing.
(b) The permutation v, : {1,...,n} — {1,...,n} is given by

v () =1+ #{" € {1, i =1} [ pe <y +#{" € {i+ 1,0} | e < it

(¢) The n-periodic permutations u,: Z — Z and u;lz Z — Z are given by

uy (i) = v;l(i) + np; and u;l(z) = 0u() = Npty, (5) forie{l,...,n}.

(d) Let A be the decreasing rearrangement of p. The lengths of t,, u, and v, are
given by

C(vp) = #{i <j | pi > pj} and Cup) = €(t) — Lvy)-
() Leti e {1,....,n—1}. If p; # piy1 so that s;pu # p then ug, = s;u, and
Vs, = VpSi and
¢ L, df pi > prita, o) =1, df gy > pigr,
I AR B R B S e A
g(uu) - 1, Zf Hi < i1, é(’l}#) + 17 Zf Hi < fit1,

(f)  With 7 as in (20), then ur, = wu, and {(ur,) = £(u,) and
() = om) = (0 — 1) — 2(w,(n) — 1).

Proof. (c) The first formula follows from u, = tuv}jl and (22). To verify the second
formula:

up g (8) = (v (@) ) = g (o (0) i = v(vy (0) =n, o1 ) o = 4.
(d) From the definition of ¢, and Inv(w),
tv(ty) = (U 16,9, (25 +n). 0 G+l — g = 1)})

i<j
Wiz

U( U G+ ), G+ s = 1))}

i<j
nj<ng
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and so £(t,) = #Inv(t,) = Z |pi — 5], which gives the first statement. More gener-
1<j
ally,

v (t,.0) = ( {(6,). g+ m)ee o (il = i = 1)})

i<j,u(D)<v()
Ho (i) Z Fo(s)

i<j,v(i)>v(5)
Ho(i) Z 1o ()

U( U G+ G+l — i)}
i<j,v(i)<v(j)

Ko (3) <Ha (5)

U( U Gt G e — s = D)}).
i<j,v(i)>v(j)

Ha (i) SHo(h)
The length of t,v is {(t,v) = #Inv(t,v). Thus the minimal length element of the
coset t,S, is the element t,v, ' where, if i < j then v, (i) > v, '(j) if M1y <
Hay () and v, (i) < v, '(j) if Mty 2 ot () Thus v,p = v, .., o) =
(ﬂvl:l(l), e ,uvgl(n)) is in weakly increasing order and £(t,) = £(u,) + £(v,).
(a) and (e): These now follow from the last line of the proof of (d).

(b) In order for v, to rearrange p into increasing order v, must move the ith part of
1 to the position just to the right of the number of parts of p which are less than pu;,
or equal to u; and to the left of u;.

(f) Write v = (41, ..+, tn—1). Then
lvy) =Lvy)+#{ie{l,....n—1} | pi > pn} and
Uvgy) =L(vy) +#{ie{l,...,n =1} | gy < pon + 1}, giving
(o) = vrp) = #i € {1, on =1} | i > pn}
—#{ied{l,...;n =1} | s < pn + 1}
== —#{ie{l,....,n—1} | i < pn}
— e (L =1} | < )
= (n=1) = 2(vu(n) = 1),
where the third equality follows from the description of v, (n) in (b). O
2.5. THE BOX-GREEDY REDUCED WORD FOR wy,. Let u = (pu1,..., 1) € Z%, and

let u, be as defined in (33). The boz-greedy reduced word for the element u,, is the
sequence uf defined inductively by the conditions u(E(')y___ 0 = 1 and, when p # 0,

O _ O
(35) U(0,...,0,0, ks fteg 1yeeestin) — Sk=17 7" S281TU(Q 0,0, 004 1e st —1)

This is the reduced word for u,, that is used implicitly in [11, 12, 19]. Under the action
in (32), the factor sx_1 - - - 2517 which appears in (35) is an element of W of minimal
length which moves (0, ...,0,0, ug, ftk+1, - - - , bn) t0 & composition with one less box.

PROPOSITION 2.2. For a box (i,7) € dg(u) (i.e. i€ {1,...,n} and j € {1,...,u;})
define

(36) UN(Z,]) = #{Z/ € {L"'ai_ 1} | 122 <j < /1’1}
+#{ e {i+1,....,n} | pr <j—1<p}), and
el =Y +(ui—j+ DK, ...

37 R,(i, ] :{ vu(i) ~ €1 e }

(37) u(i:J) EZN)—6;/“(1-7]-)4-(#1'—]4-1)[(
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(a) The box greedy reduced word for u,, is
ul= I Guaig i),
(i,5)€dg(n)
where the product is over the bozes of p in increasing cylindrical wrapping order.

(b) The inversion set of u,, is

Inv(u,) = U Ru(,7). and  l(uy,) = Z up(i,7)-
(1,5)€dg(p) (i,5)Ep

Proof. Let p=1(0,...,0, i, .., ptn) and let

I/:7T715152"'5k_1/L: (07"'707.u“k+17"'5,u‘n5,u‘k - 1)

From the definition of w, (7, j) in (36),
uy(k,1) =k —1,
u,(i,j) =u, (i —1,j) fori e {k+1,...,n}, and
u,u(k7]) = u,,(n,j - 1)7 lfj € {27 . 'u;uk}a

which already establishes (a). Then, using Proposition 2.1 gives v, (i) = i for i €
{1,...,k—1},

v,(i) =v,(i—1)forie {k+1,...,n} and v, (k) = v, (n).
These expressions for u, (4, j) and v, (7) in terms of u, (¢, ) and v, (¢) establish that
R,(i,j)=R,(i—1,j), ifi#k and
R, (k,j) = R,(n,j — 1), if je{2,...,u}

It remains to compute R, (k,1). Since u, ‘e = v,t, el =€) ., = ey oy +viK
then
R, (k1) = {u'r Y, o ouy tr tsyso o sp_aag 1}

={utr 7 e —€Y), ..., u i n s sy o sp_ale)_ — X))}

= {uy (e + K) —f)soyuy M (e + K) — 1)}

- {(%Y,(n) +v, K+ K)— (¢ + nnK),..., }

B (sgu(n) + UK+ K) = (g)_ + vp_1K)

={es, &l +(u — DK+ K,....ey ) =1 + (e — 1)K + K},
where the next to last equality uses 11 = -+ =vg_1 =0 and v, = g — 1. O

REMARK 2.3. Relating affine roots to #Nleg,(b) and #Narm,(b). In the deriva-
tion of box-by-box recursion for relative Macdonald polynomials (Proposition 4.3), the
last root in each box in the expression of Inv(u,) in Proposition 2.2(b) gets picked
out (this is the d_,gjv71 and f—BJ-V,l in the proof of Lemma 4.2). More precisely, for

(4,7) € dg(p), let B (i,5) be the last element of R, (4, j) in (37):
Bi(isd) = €5y = Euniy + (i — 3+ DE.
With the shift and height of an affine coroot as defined in (27), then

Sh(—,@;{(l,j)) = #Nleg,u(zaj) + 17 and ht(—ﬂx(Z,j)) = #Narmﬂ(ia.j) + 17
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since, by (36) and Proposition 2.1(b),

0u0) — up(ird) = 1+ #00 € {1, yi = 1} | < o < pus)
+#{efi+1,...n} | j-1< i <}
= #Narm,,(7,7) + 1.

3. TYPE GL,, MACDONALD POLYNOMIALS

In this section we define the Macdonald polynomials £, and provide explicit fomulas
for all £, for p1 with less than 3 boxes. These examples are helpful for getting a feel
for what Macdonald polynomials actually look like. Although we have hidden the
double affine Hecke algebra (DAHA) from our exposition in this section, Section 5
derives, from scratch, all the formulas for the operators T; and Y; and the Macdonald
polynomials F,, which are efficiently pulled out of a hat in this section.

3.1. THE POLYNOMIAL REPRESENTATION AND CHEREDNIK-DUNKL OPERATORS. For
= (1, ) € Z" let

(38) ot =gtk
The Laurent polynomial ring C[z!, ..., '] has basis {z# | u € Z"} and the poly-
nomial ring Clz1,...,z,] has basis {z" | p € Z%,}, indexed by the set ZY, of com-

positions. The Symmetrlc group

Sy acts on (C[x1 vy and Clxy, ..., z,] by permuting the variables 21, ..., 2.

) n
The symmetric group S,, acts on Z™ by permuting the positions of the entries so that
wat = " for w € S, and p € Z".

Let ¢,t2 € C*. Following the notation of [14, Ch. VI (3.1)], let T;,-1 , be the

operator on ClzT!, ... 2] given by
(Ty-1 2, h) (21, wn) = h(1,. ., Tp—1, q ).
For i € {1,...,n— 1} let s; be the transposition which switches ¢ and ¢ + 1. Define
operators Tl,... T,_1, g and g¥ on ClzT!, ... zX!] by
1 tx; — Tip1
(39) T, =t Q(t_x—xiﬂ(l_s))
g=s5152Sp1Ty=1 5, and g =xTy - Tpy.

In §5.6 we give the derivation of these operators from the type GL,, double affine
Hecke algebra (DAHA). Except for the factor of =2, T} is the operator in [2, (2.3)],
which appears in the form (79) in [10, (7)]). The Cherednik-Dunkl operators are

(40) Yi=gTn 1T, Yo=T7'WVT7Y ..., Y, =T, v, T

3.2. MACDONALD POLYNOMIALS. Let gV, T; and Y; be as in (39) and (40) and define

1
t72(1—1t)
41 ™ =gY, and 7/ =Tj+ —7F—— foric{l,...,n—1}.
T Vet e )
Using the action of s1,...,$,, 7 on Z" given in (32), the (nonsymmetric) Macdonald

polynomials E,,, for p € Z", are determined by Ey = 1,

Eﬂ_u — t#{le{l,,’ﬂ} | Hi >;1,,,L}7%(1’L71) 7—7¥E#’ and
(42)
Eg,, = tz VE, ifie{l,...,n—1}and p; > pit1.
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REMARK 3.1. The source of the strange coefficients in (42) is Proposition 2.1(e) and
(f) which gives that —% ({(vs,,) — £(vy)) = & and —3(l(vgy) — L(vy)) = (R — 1) —
(vu(n)—1)=32(n—1)—#{i € {1,...,n—1} | p; < py,}. The role of these coefficients

is to force the coefficient of z* in E,, to be 1.

The following theorem, the type GL,, case of [4, Theorem 4.1 and Proposition 4.2],
shows that the £, are simultaneous eigenvectors of the Cherednik-Dunkl operators.
We provide a proof in Theorem 5.7 of this paper.

THEOREM 3.2. Let p € Z" and let v, € S, be the minimal length permutation
that rearranges p into weakly increasing order. Then E,, is the unique element of
Clzt, ..., 21 such that

ifie{l,....,n} then YE,= q_’”t_(”“(i)_1)+%("_1)E#,
and the coefficient of z# in E,, is 1.

Let p = (p1,..., ) and let z € S,,. Define T, = T;, - -+ T; if 2 = s;,---8; isa
reduced word for z.

(43)  The relative Macdonald polynomial E}, is E; = tié(l(w;l)*e(”;l))TzEu.
Let A=A =2 \y) €Z".

(44)  The symmetric Macdonald polynomial Py is P, = Z t%az")TzuEA,
veESLA

where the sum is over rearrangements v of A and z, € S, is minimal length such
that v = z,A. These definitions follow [15, Remarks after (6.8)], [16, (5.7.6), (5.7.7)],
[8, Definition 4.4.2], [1, Definition 5] and [7, (2.8)] (Ferreira references private com-
munication with Haglund). In [1], the E7 are called permuted basement Macdonald
polynomials.

REMARK 3.3. The following properties of the E,, are proved in Proposition 5.8:

— —1
E(,un-l—l,/tl,...“un_l) - q“nxlE,u(xQ; sy Iy q xl)»
E(/”‘l"l‘la“'vun""l) =Tr-c an(Mlv--an)’

E(—un,.w—ul)(zla sy T qat) = E/t(x:zla e a'rl_l; q, t)

REMARK 3.4. In generalization of (43), one could, for any p € Z™ and any n-periodic
permutation z € W, define £ = (const)T, E,,, where (const) is a constant determined
by requiring the coefficient of 2 in E}, to be 1. A more useful alternative might be
to define £ = X*E, = X?7,1 in the notation of [18, (2.26) and Theorem 2.2].

3.3. EXPLICIT E,, WITH LESS THAN THREE BOXES. The following explicit formulas
for E,, with 1 and 2 boxes already provide enough data that one might have a chance
at guessing the nonattacking fillings formula.

PROPOSITION 3.5. Let ¢; = (0,...,0,1,0,...,0) be the sequence with 1 in the ith
component.

(a) Ifie{l,...,n} then

(1-1)

EE =x; + (1 — qt”_(i_l))

i

(zi—l + -+ 'Il)'
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(b) Ifie{l,...,n} then

1—t 1t
_ .2 2
&“_xV+Q4qHWU4J > ‘”+(1—m)1 > am

ke{l,...,i—1} cefitl,....n}
1—t 1—t
+(@)(1+(W)Q) . 12 TT;

+ (11—_;15) (1 _ qlztj:(i_n ) (1+q) Z Ty

{k,0}C{1,...,i—1}

1—1 1-—1¢
+ (1_q2tn—(i—1)>(1_qt>q Z Z LTrTe-

ke{l,...,i—1} Lef{i+1,...,n}

(¢) Ifj1,72 € {1,...,n} with j1 < jo then

1—t ol 1—1¢ J2—1
E€jl+6'j2 = Tpth Tt ( —qt" Jl) Z TrTj, + (W) Z Tj e
=j1+1

1 _ t 1 _ t Ji—1

* (]_ — qtn*(j272)) (1 qtn—i + t) Z Lk jy
k=1
1 jo—1

1-t 1—t |

* (1 — qt"—(j2—2)) (1 — qtn*jl) Z Z Tkt
k=1 l=j1+1

1-t 1—t
+<1—qw—m—m)(1—qw<h)@*¢) > YL
(R OC{T, i —1}

Proof. Using the first identity in (39), if » € {1,...,n} then

Ti4+1, if r = i,
(45) 3Ty (2p) = { oy + (t — Dwgpq, ifr=i+1,
tr,, otherwise.

Assuming r,s € {1,...,n} with r < s then

TyTiq1, if s =1,
te,x; + (t — Dzpaipq, ifs=i+1andr <i,
t%Ti(xrxs): tr;xiqq, %frzziands:z:—l—l,

Tit1Ts, ifr=diands>i+1,
(t — Dajp1xs +tazs, ifr=i+1and s > 1+ 1,
tr,zs, otherwise.

If re{l,...,n} then

27y + (1= t)zimig, if r =1,
1

(46) t2Ty(a7) = St + (t— D + (1 — O)zzigr, ifr=i+1,

ta? otherwise.

[aR]

(a) The proof is by induction on i. The base case i =1 is
E&*l = tié(nil)TT\r/l = tié(nil)XlTl . 'Tn—ll =XT1.
For the induction step (note that Y; 'Y  E., = ¢' %" 7E.,) and use

1t
Eslzﬁﬁféz(ﬁﬂ+4———JEw

1 —qgtn—

it
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(b) The proof is by induction on i. Using part (a) and the first identity in Remark
3.3 applied to F.

n)

1—t
Epe, =@l + 1 — @1+ m),

and this provides the base of the induction. Then use Yi_lYiHEzgi = quot"*iEgsi

and
1 1-—t
) Boe, = (BT ) B

1-1¢

By = (t%Ti I S

28,+1 1 _ }/i_lYH_l
(¢) The proof is by induction on j;. From part (a) and the first identity in Remark
3.3 applied to E .

Ga—17

1—-t
E51+5]‘2 = T1Tj, + (m) (xlxjéfl + e+ 123 + x1$2)7
and this provides the base of the induction. Then use
1 1—¢
E5j1+5j2 = (t?’le*l + W)EEh*leajz : .

4. RECURSIONS FOR COMPUTING Eﬁ

In this section we derive the recursions which are used to produce expansions of
Macdonald polynomials in terms of monomials. These computations are extensions of
the defining recursions given in (42). It will be helpful to record carefully the action
of t%TZ-V and 2T} on the Macdonald polynomials E,, as follows.

Let p € Z™ and, with notations as in Theorem 3.2, let

— qH1 Hz+1tvu(1) UM(H‘I) (1 — ta#)(l — ta‘Sz‘M)
d D, = .
— gritr—pigou(it])= e o o an T A= a1 —as,)
Assume that p; > pi41. Using the identity Es,, = t%Ti\/Eﬂ if p; > piqq from (42),
the eigenvalue from Theorem 3.2, and (74) gives
YinHlEu =a, by, t%TivEu = Esp»
Yi Yi-‘rlEsm = asmEsm) tETiVESi,u = D,uE,Lu

a'éqzﬂ

1 1-— 1-1¢
(47 TE, = "B, +E,, and #T,E,,=D,E,+——"FE
—ay 1—a5m

Sipkt
Now assume that p; = pi41. Then v, (i + 1) = v,(i) + 1 and a, = t~* so that
(48) Y YW, E,=t'E,  (t*17)E,=0, and  (t3T))E, = tE,.

4.1. STEP-BY-STEP RECURSION FOR COMPUTING E7. Proposition 4.1(a) is used to
reduce the number of boxes in p and part (b) is used to reduce the computation to
decreasing p. Iterating these steps delivers a monomial expansion of E} as a weighted
sum of alcove walks p. The permutation sequence Zz, of the alcove walk which appears
in (14) is the sequence zg, #1, . . . of permutations which arise as superscripts of the EZ
which occur in the intermediate applications of the step-by-step recursion to obtain
the monomial expansion.

PROPOSITION 4.1. Let p € Z™ and let z € S,,. Let v, be the minimal length element
of Sp such that v, rearranges p to be weakly increasing.

(a) If u1 # 0 then

EZ = l‘z(l)E

M where ¢, = 81+ Sp—1 (an n-cycle in Sy,).

(H27 s, p1—1)7
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b) Letie{l,...,n— 1} such that pu; < p;r1 and let
i < it
BY =ey, (i+1) ~ €y T (Riv1 — i) K

SO that qSh(fﬁv)tht(iﬁv) — q“i‘l’l*l‘itvu(i“’»l)*vu(i)'
Let norm?, (i) = 1 (U(zs; v 1) —(zv, ") — £(s;)). Then

28, 1-t norm? (i) pz
ESY + ( v))t u()Esm, if z(1) < z(i+ 1),

1 — gh(—A)¢ht(—B

— ) gsh(=B8")4ht(=8")
EZS ((1 t)q t )tnorm ( )EZ
”L 1 — qsh(—,ﬁ’v)tht(—ﬁ\/)

Proof. (a) By the second identity in Proposition 5.3, T.g" = (1%, giving

T.Tu, l—TTv \/71“1 :ngvﬂ\[’r 1, 1—xz(1)Tzcn U -1, 1.

S ZfZ()>Z(Z+1)

Then (a) follows by using E; = 3tz )T T .1 to rewrite each side, and computing

((zv;, ) — (zepv L) =L(zu

(zu,) — ﬂ(zcncnluu) =0,

n) — Uzt —1,) = U(Zuy,) — L(zepmtuy)

14
l

where : W — S, is the homomorphism defined in (24).

(b) Let v = s, and let a, = gvi—vitrgov(D=vn(it) — sh(=8")ht(=5Y) Uging (42),

(76) and the eigenvalue formula from (3.2), then

. v T, (T_}_(M))Tub“l, if zs; > 2,
Tu“]_ .7 Ty, “1 = B Yoy v .
T, T, + ﬁ ay | Ty, . 1, if zs; < z,

Ty, 1+ (M)T v 1 ifzsi> 2,

Tos;ma, 1+ (%)aVTZTuS.Hl, if zs; < 2,
Then, using E7 = ¢ ztzuy )TZT/)/]. to obtain
43 (U(zsi ivs )~z ) pesi
Silb
+< 1t )t%(—1+€(zsiv;1)—€(zv ))EZ
E* = 1-— a, Sip?

I3 t%(z(zsw;i)fz(zu;l))E?i

il
+<11 —! )al,t%(_1+e(zsi“;1)_e(Z”;1))ESZ,M, if zs; < 2.
—a, T

~1 1
Vg, = Siv,~ and so

if zs; > 2,

By Proposition 2.1(e), v

2(Z(Zs ’U_l) Z(z’u_ ) t2( (zsisivgl)fﬁ(zv;jl)) _ tO -1

O

4.2. BOX-BY-BOX RECURSION FOR COMPUTING E7. Proposition 4.3 executes sev-
eral steps of Proposition 4.1 at once to provide a recursion for computing £} which
removes a box at each application of the recursion. Iterating this recursion deliv-
ers a monomial expansion of E as a weighted sum of nonattacking fillings T". The
permutation sequence Zp of the nonattacking filling T' (see (10)) is the sequence of
permutations zp, 21, ... which arise as superscripts of the EZ* which occur in the

intermediate applications of the box-by-box recursion.
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LEMMA 4.2. (Compressing 29~ terms to j terms) Let j € {1,...,n} and let
= (0,50, 5,00y fin) € L5, with gy =0,...,uj—1 =0 and p; # 0.

and let v = v = (uJ,O 0 Hjt1s-eoypin). Let 7/, .., 7Y_1 be the intertwiners of
(41) acting on Clzt, ..., 21 by (39) and (40).

1-1¢ 1
(a) 7y TWEy=Tj_1 T1E, + ZTa IR AT a1l O

1 — gritvn(d)—G-1)
(b) Letie{l,...,j—1}. Then

T]V_l - TlvE’Y — TJ'_}lTj:lz . Ti_lTi—l B 'TlE.y
e . ”“(”*(H)j_lT Tt 3U-a g
+ 1qu‘1t"’u(j)—(j—1)q ¢ Z a—1---171 "/
f— ST g
* 1 — gqriton()=(=1) Z:l a-1"" 11t -

Proof. Let evf: C(Y') — C(g,t) be the homomorphism given by
ev?(V;) = ¢ it~ O-D+3=D o that B, = evE(f)E,, for f € C(Y).

gl g
(we shall only apply this to rational expressions in Y7,...,Y,, where the denominator
does not evaluate to 0.) For i € {1,...,n— 1} set o = ¢ —¢),; and let

B =af =¢f —ey, By =si1ay =¢f -y, ... 5;'[1 =51 sj,ga;Ll = 6\1/—5;-/.
Forie{l,...,j —1} let

1
_gY -1 t7z(1-1)
YO =YY, F_pgv = T v C_py =T + f-py and

d_gy =evi (YR, fgv=evi(F_gv),  c_py =evh(tE + F_gy)
Ifie{l,...,j— 1} then

1 Y
t73(1 -ty ="
(49) C_B:/ :eV,g(ﬁ) :evf;(t% +F_ﬂ;/):t%+f—ﬂ1v7
d—ﬁiv — q'h*%‘ﬂtvw(l)*vw(“rl) — qﬂjtﬂw(l)*i — td—BiVH’
_1
oy s, = (AT (R 0y
ﬂjfl Ba+1 Ba 1 _ d—ﬁ}/_l 1 _ 75;‘/
1
1o/t 2(1—10) _lii_a),L
(50) SO () = gy
-1
(51) t=1+13f gv =d git3f gy,

where the last equality follows from

Lo tr(1—t) (1 -ty A

(té—t_i)"‘Ffﬁ;/:(té_t_é)"_ 1_Y7/BI\/ — 1_Y*Bl\/ =Y 1F7ﬁ1\/

Since
By = (T4 Foo )1y T By = (T; + evfy(l*ﬂ_sl...sl._l%v)Tiv_1 - E,
=(Ti+ fop )iy By =C_pvrly -1 E,
then ij—1 TV E, = C*ﬁf_l - C_gyEy.

Fori€{2,....j—1},  C_gvBy=(Ti+ f_pv)Ey = (t? + f_3v) By = c_pv .
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Thus,
By = Cgy -+ CpgyBEy=C gy - - C_py(Ty + f_pv ) E,
=C gy, --CpyT\E, + [ pyC_gv ---C_syE,
(52) :Cfﬁ\/ ".Cfﬁg/TlE’y—'_C*ﬁjv,l'“Cfﬁzvffﬁi/E
~Copy(To+ fopy)TiEy +copy -~ copy fpy By
N C*IBS/T2T1EW + C,B;/_l te C*Bgv f*,@;TlEV
tepy copyfopy By
and continuing this process and using (50) gives (a).

Let R; be the right hand side of the expression in statement of (b), so that the
identity in (a) can be considered as 7}11 ---17E, = R;. Then, canceling the common
terms in R;y; and R; gives

- —1(j—i),L
Rign — Ry =T, - T \T, - TYEy + T,y - Tht 5(i z>t2f,ﬁjv_lE
~1 ~1
— Tj71Tj72 TNy - TVE,
_ t%f,gv dfgvt_%(j_i)Tifl - TE,
=T T (T 2 (= )Ty T, + Ty - Tlt_%(j_i)t%f—ﬂjvﬂE
_ Tj—_llTj—_l2 TV - TVE, — t%f_ﬁv d_ﬁvf%(jﬂ‘)Ti_l .- T\E,
=t z2(t—1)Ti1-- 'Tle - Tih By +t7s0 0 f BY_, (1- d*ﬂf)ﬂfl - TE,
N 1
2U=D((t —1) +¢2 f—ﬁjv,l — t2f—ﬂjv,1d—5jv) i1 TVE, =0,
by (51). Thus 7" ---7'E, = Rj = Rj_1 = ... = R; and this establishes (b). O

Using Propostion 4.1(a) and adjusting for the normalization in the definition of
EZ in (43) produces the following box-by-box recursion for the relative Macdonald
polynomials E7.

PROPOSITION 4.3. Let z € S,,. Let
p=1(0,...,0,15,...,n) €Z3, with 1 =0,...,p5-1 =0 and p; # 0.

and let v =(0,...,0, i1, fin, j —1). Form € {0,...,n} let c;;} = spp—1--- 5251
(which is an m-cycle in Sy,). Let y = (y(1),...,y(n)) be the permutation which has
y(k) = =(k) for k € {j...n)

and {y(1),....y(G — 1)} ={2(1),....2( -1} and y(1)<--- <y(-1).
Then

1
yc,flcn (]. — t = id¥ yc;lc"
EIZL = my(j)E” ’ + 1— q#]tvu j) (3—-1) quaJ tCOVl (a)l'y(a)EV

a=1

where, fora € {1,...,5 — 1},

maj}(a) = {0’ 0) > v(a)

d
i i y(j) < yla), "

covid?(a)

(Elyeg tejupt) — Lyvgt) — ez ey)), ify(4) > y(a),
w(7) = (G =1+ 5(ye,  ejo ) — Ly, M) = Ueg ' ey)),  if y(G) < y(a).
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Proof. Write z = yo with ¢ € S;_; and y minimal length in the coset 2S;_;. Then
y(7) = z(4) and, by the last identity in (48),
T.E, =T,T,E, = T,t*"9E, sothat E-=EY.
To control the spacing let ¢, = s1 -+ s4—1 (which is an a-cycle in S,,) and let
1—t
1 — qriton(@)=0-1)"

d_gy , = gt W=0=1 = grigou(=0-1)  anq t%f—ﬁj,l -

Let v =nmv = (14;,0,...,0, f4j41, ..., ty) as in Lemma 4.2 and note that
Uy = VySj-1" 81 = vucj_l.
Ify(j) >y —1) then T -+ = T, Tj_1 --- T3, and using Lemma 4.2(a) gives
J
j—1

Ty oy TV By =Ty By + 43 fgy Y 473079, B,

a=1
If y(j) < y(j — 1) then T, = T,T;"Y -+ T, Ty -+ Ty with
J
i=min{r € {1,...,5 =1} | y(r) > y(4)},
and using Lemma 4.2(b) gives
j—1
1 _l(iig
Tyryy o By =T, By +2 f_gy | > 72U gy T B,

a=1t
i—1

ttEfey Y 4TRUOT B,
a=1
For a € {1,...,j}, let
normy)(a) = (£(ye, 'eju, ") — Leju ) — (Llyvy ') — £(vt) = (5 — 1))
= (0lycgteju ) — (v ) + 5 = 1) = Llyv ) + (v ) + (5 - 1))
= Uycg o) — Lyvy ).
With this notation, the identities
Eg = t—%(f(yvll)—f(vil))TyEﬂ — t_%(f(yvll)—f(vll))Ty(t%TJ\Ll) ... (15%7-1\/)E7
— t—5(ﬂyv;l)—av;1)—(j—1>>Tyij71 1V E,, and
B = t—%(Z(yc;lv;l)—é(%*l))TycglE7 — t—%(é(yc;lv;1)—f(v;1))TyTa_1 TV E,
= f%(Z(yc;1ij,71)*4(0jv,71))TyTa_1 -T\E,, fora € {1,...,5},
then give

. -1 izt . —1
EY = t%norm}{(])Egcj + t%ffﬁjv_l Z t—%(J—a)t%nOrmg(a)Ey/Ca
a=1

for y(j) > y(j — 1); and

-1 7j—1
Lnorm¥ yc. 1 1. 1 ormY ;1
By =t2"° mu(a)E,y It f*ij_l deﬁjv_lt 5(j—a)gno n“(a)E};C’
a=1i
. i—1 . )
1, _
+t2 fﬁﬂj\/—l Z t—i(]—a)tjnormﬂ(a)Ezca 7
a=1

for y(j) <y(j—1) and i = min{r € {1,...,5 — 1} | y(r) > y(H)}.
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If a = j then normy(j) = 0. Since

Uegtey) = Usa—1--s151--85-1) = L(sa---5;-1) = (j — a)
then
norm¥,(a) — (j — a) = L(ye, 'eju,t) — Lyv,t) — Leg M ey).

Applying Proposition 4.1(a) to the right hand side of the expressions that have been
obtained for E}] and substituting

d_ﬂj\/71 = qﬂjtvv(l) (J—-1) _ q/‘l‘]t’uy,(J) (j—-1) _ Q'U’Jt2 2(v, (§)—(5—1))

gives

o (1—-1¢)
z _ Y e on maj? (a) rcovidy, (a) ye, e
Eu=Ej =y Fv + 1— qu;tvu(J) G-1) Zq a Zy(a) B ’

where, if ¢ = min{r € {1,...,5} | y(r) > y(j)} then

covidY (q) — %norm%(a)—%(j—a), if a <1,

i {vu<j>—<j—1>+1normz<a> Si—a). o>

:{ s (e e ") = L) = Heg 'ey). if y(j) > y(a),
v (i) -G —-1)+3 (E(yc ¢ u) L(yv )—E(c;lcj)), if y(j) <yla). O

REMARK 4.4. Relating covid},(a) to coinversion triples. To give an alternate point
of view on the statistic covid},(a) which fell out of the computation in the proof of
Proposition 4.3, let us analyze how the inversions of yv_ change when the factor
¢, '¢; is inserted to form ye; '¢ju;, . To do this note that

yeu vt =y (Su, () -18u)—2 - 85) (Sa - sj-2)sj—1(s5 - S0, (j)—1)-

and analyze the effect of each of the factors on the right hand side.

(a) Since y(a) < y(a+1) < --- < y(j — 1) then (s, ---sj_2) creates (j — 1 — a)
inversions in yc; 'cjv, ' which do not occur in zv,;*
(b) The factor s,;_; creates an inversion if y(j) > y(a) and removes an inversion
if y(j) <y(a).
(c) The factor (s;---s,,(j)-1)
undoes inversions yv,, ' (k) < yv, ' (a) for k € {j,...,v,(j) — 1},
adds inversions yv;l(k‘) > yv;l(a) for k€ {j,...,v.(j) — 1},
(d) The factor (s,,(j)—150,(j)—2 " Sj)
undoes inversions yv;, (k) > yv, ' (v.(j)) for k€ {j,...,v,(j) — 1},
adds inversions yv, ' (k) < yv, " (vu(5)) for k€ {j,...,v.(j) — 1},
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Thus, if yv, ' (v.(7)) > yv, ' (a) (so that y(j) > y(a)) then

Uyc, teju, ) — Uy, M) — Ucy ) = Uyeg ' eju,t) — Ly, ') — (G — a)
=(j-1-a)+1

= (@#{k € ) =1} [yo (k) <o t(a)})
+ (k€ G- va() = 1} [ yop (k) > o' (a)})
— @k € (G, va() = 13 Ly (0a(9) < o' (0)})
+ @k € G, va() = 1} [yop (va(5)) > yo ' (B)})

+#keld. . ..o

( (a) ( )})

+ (#k € {4, vu(G) = 1} | yo, Ha) < vy (va() < yo, H(K)})

— (k€ (- vu(d) = 1} [y (a) < yo, (0u(5)) < yvp ' (K)})

+(#k e i v.() =1} | yv, Ha) <yv (k) < v, (v, (G)))

+@#k e G, 0u() — 1} L yu ' (k) <y, (a) < yo, (0.(5))})
=2- (ke {4, v.0) — 1} | g, M(a) <yv, (k) <yv, ' (vu(i)})

Then, if yv;l(vu(j)) < yv;l(a) (so that y(j) < y(a)) then

1

Uyca ejup ) = Lyoy ") = Uegtej) = Lyeg cjvy ') — Uyvy ) = (5 — a)

—(j—1-a)—1

— (ke () =1} Ly, (k) <yv, ' (a)})

+ @k € (-, va() = 13 Lyvy (@) < yoi ' (R)})

— #{k e {4, vu(0) = 1} [ yo,  (0u(5)) < yo, ' (K)})

+ (#{k € {4, vu(G) = 1} [ yo, (k) < v, (va(3)})

—(—a)

= —1—(#{k e {j- - 0.() = 1} L yo, ' (B) < yo, ' (0u(5)) <y, ' (a)})

— (ke g, () = 13 L yo,  (vu(h) < yv, (k) <yv, ' (a)})
+(#{k e (i v.() = 13 L yv, (v () < yvyHa) <y, (K)})
—(#{k e g, () — 13 L yo,  (vu(h) < yv, (k) <yv,'(a)})
—(#k e {d, - vu() =1} Ly (wu() < wvp'(a) <yv,'(K)})
+#k e vu(G) =13 yv,H (k) <y ) <y, (a)})

=-2-2-(#ke{j..., vu(3) — 1} | yv;l(a) <yv, (k) < yv;l(vu(j))}).

If y(5) > y(a) then

= <L

= #{vu(®) € (- v = 1} T y(a) <yo” (va(b) <y(i)}
=#{b € {v; ' (4, v (u() = DY | y(a) < y(d) <y(i)}
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and, if y(j) < y(a) then
(0(7) = (G = 1)) + 5 (Llyeg tejupt) — Llyv ) — Ueg 'ey)
= (vu(j) —Jj+1) -1
—#{k e (- vu(G) = 1} [yt (a) <yut (k) < yop (va(d)}
=((v,()) =D -G -1)
—#{k e (- vu(G) = 1) [y, (a) <yo,t(R) < yo,(vu(d)}
=#{ke i) -1 yy(k)<<>y<y() ot i)

_ 1 i (o y(b) <yla) <y(j)

=#{p e 0 0u) = DY GG Sy
These last two expressions are exactly the numbers of coninversion triples that appear
in [10, Lemma 3.6.3] for the box (j,1) filled with y(a) in a filling of shape p with
basement (y(1),...,y(n)).

5. TypE GL, DAART, DAHA AND THE POLYNOMIAL REPRESENTATION

The power tools that enable us to construct and manipulate Macdonald polynomials

with ease are the polynomial generators Xy, ..., X,, the Cherednik-Dunkl operators
Y1,...,Y, and the intertwiners 7y’,..., 77 ;, 7 which all live inside the double affine

Hecke algebra Hg L,.- In this section we will build the Macdonald polynomials E,, by
first constructing the double affine Artin group Be L., then the elements X1,..., X,
and Yi,...,Y,, then the DAHA Hgyp, and the intertwiners 7)’,..., 7Y ;, 7. Let
us begin by defining the DAArt BGLn and establishing its primary dualities. The
definition is by generators and relations and the dualities are automorphisms of Bg L,
The double affine Hecke algebra He 1, is constructed as a quotient of the group algebra
of Bgr, by the Hecke relations T2 = (£2 —t~2)T; 4 1. Alternative expositions of the
material in this section are found in [5] and [16].
Use Coxeter diagram shorthand for relations so that
a b a b
O—o0 indicates aba = bab, and ¢} O indicates ab = ba,
5.1. THE TYPE GL,, DOUBLE AFFINE ARTIN GROUP (DAART). The element ¢ will
be a parameter in the Macdonald polynomials. In the definition of the DAArt by
generators and relations the elememt g appears as a central element of the group, but
in Section 5.6 the element g will get specialized to be a complex parameter.
The type GL,, double affine Artin group (DAArt) BGLW, is generated by ¢,¢9",g,
Sy, So, Tu, ..., T,—1 with the relations

(53)
So
A .
7 o T T 9Tig~" = Tiy, 9Tn-19"" = So,
1 2 n—2 n—1
Sy
gVS(\)/(gV)_l =Tz,
n L Tno T, 9'Ti(g") "' =Tipa,  9"Taa(gY) ' =S¢,
1 2 n—2 n—1
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(54) Tig'g=g9"T,", and T2 ---T7'g(g") ' =q(g")  gTn - Th.

n
forie {1,...,n—2}.

The two visible symmetries in this defnition, switching the Coxeter diagram con-
taining Sp and the Coxeter diagram containing Sy, and flipping the Coxeter diagrams
about the middle, form two important dualities. These dualities are expressed as in-
volutive automorphisms of the DAArt Bg Lo -

THEOREM 5.1. (a) (VDuality) There is an involution v: Bar, — Bar, with

L(Q) - q717 L(Tz) - T;_la L(S(\)/) = S()_la L(g) - g\/'
(b) (FHDuality) There is an involution n: Bar, — Bar, with

) =a, (L) =Tuio nl@=g"  0lg")=(g")""
Proof. (a) Applying ¢ to the relations in (53) switches the upper (nonchecked) rela-
tions with the lower (checked) relations. Applying ¢ to the relations in (54) produces
the relations ¢~* € Z(Bgar,,),
Ty '9g" = g"gTun and T, y---Tig'g~ ' =q 'g g T, - T,
respectively. Thus the relations in (54) are preserved under ¢.

(b) The involution n preserves the relations in (53). Applying 7 to the relations in
(54) produces the relations q € Z(Bgar, ),

Too1(g") tg =g gY) Myt and 17T g g = g9V T T
which are equivalent to the original relations in (54) by taking inverses. 0

5.2. THE ELEMENTS X°®',..., X®" AND YEY,...,YEX. The elements X1, ..., X®»
will be used as the generators for a polynomial ring (inside the group algebra of
Bar, ), and the Macdonald polynomials are polynomials in these variables. Inside the
DAArt, these elements form a large commutative subgroups and, because of duality,
there is another large commutative subgroup generated by elements Yelv, ceey ven. In
this section we define these elements and give alternate presentations of B,, in terms
of these elements.
Define Y&, ..., Y and X°',..., X*" in Bgy, by

Yl = gThq - T} and Yoo =T7'YS T

55
( ) X = gViZ"n*}1 - Tf17 and X+l = EXEjTj,

forje{l,...,n—1}. If ¢: BGL" — [;’GLn and 7: BGLn — BGLn are the involutions
in Theorem 5.1 then
(56) (XF) =YY" and (X)) = X"+t and n(Y®) =Y " Enoitn

forie{1,...,n}.
The subgroup generated by ¢V, T1,...,T,,_1 has a pictorial representation given

by
(f/\:D
L o

and T, = 1~ i fori=1,...,n—1,
i+1»K:i+1

A
|
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so that

(57) X¢ =T, 4-- 'T19VT7;11 .

Use the notation X; = X°¢,

and let Xt = X" X = XHert o tlinen, for p= (p1,...,1n) € Z™.
Similarly use the notation Y; = yer,

andlet YN =Y.y = yMeltetel o for AV = (A, ..., A,) € Z7.

The pictorial representation provides an easy check of the relations

(58) (V)" = XT e and XS XS = XX,

(59) and similarly, g =Y ttel and Y YS =YS Y,

for 7,57 € {1,...,n}. The pictorial perspective also verifies the relations
0T, =Y ™50 an = oy

60 SoT,, =Ye1~¢ d (Sg) T, =XxF

where TS&P = ALlp—1-" 'Tl s 'Tn—1~

THEOREM 5.2.
(a) The group BGL" is presented by generators q, g%, Sy, Th,...,Th-1, Yslv, ceey yen
and relations

Sof
g\/n(g\/)—l = L4+1, g\/Tnfl(gv)_l = S(\)/,
Th T CZ277,—2 Tha
(61) g€ Z(Bgr,), YEYS =YSYE fork,je{l,...,n},
(62) Y€;/+1 — j“i—lyeivTi—l and EYE;/ _ YE;/E

forie{l,...,n—1} and j #i,i+ 1, and
(63) gyl (gV) = Yei fori € {1,...,n—1}, and g"ven (g") = qYalv.
(b) The group l’;’GLn is presented by generators q,g,To, T1,...,Th—1 and X, ..., X"

and relations

So
A glig~ =Tiv1, gTh-19~ = So,
n Too Toa
(64) q€ Z(Bar, ), X X% = X% X fork,je{l,...,n},
(65) X = T,XST,  and T,X9 = X9T;
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forie{l,...,n—1} and j #i,i+ 1, and
(66) gX®ig™'=X* foric{1,2,....,n—1} and gX°rg ' =g X"

Proof. The proof is by showing that the relations in (61), (62) and (63) follow from
the defining relations of Bgr,,, and vice versa.

(53)&(54) = (a): Using (55) to define Y=V, the pictorial perspective establishes the
relations in (61) and (62). The proof of the relations in (63) is completed by

gV =gVgT, 1 Ty =Ty gg" T g Ty = Ty Ty - Tog"
_ Tl_lng—l . TQTlelgV _ Tl—lyslle—lg\/ _ YE;gv,
ngaiV (gv)_l _ gva_ll . -TleEYTfl . ‘T;—11(9v)_1
=T .TglyfszQ*l LT = yeis, and
gV (g) T =g T T YT T ()
= gvT;—ll T Tlilngfl T Tlel T Tr?—ll(gv)_l = gvT;—ll T Tlilg(gv)_l
=q9"(9") M gTuor - T1 = qV®.

(a) = (53)&(54): Use (60) to define g and Sy in terms of T; and Y/'s. If i € {1,...,n—
2} then

gTg ' =Y T T T,y Y S =Y T T AT T - Ty e
=y T T T T, - Y " =YyETh T T T T,y ¢t
= YT Y ™ = Ti,

and
g 019 =gl Ty g VT T g = YT T gt
—ySlg Ty T =Yg T T T T
=yl st T T = S,
and
gSog L=y Ty e T T,y T Y S
=yl Ty ey Ty e
— Yelle‘l TN Ty Y SITy - Tn_lysfyfelan—jl Ty =T,

which establishes the relations in (53).
To prove the first relation in (54):

TigVg=Tig YT - T =Ty Ve gVt T
=TT YT T T = g Ty - VT VT T
= gTur - Tog T T = 99" g - VI T, = 99V T,
and to prove the second relation in (54):

T7;11 .. .Tflg(gv)—l - Tnil1 ... Tflng—l . Tlel R A (gv)—l

n—1
=T, YT T (gY) T =YY
= (97" Y (g) T = (¢") Y = alg") N gTumr - T
Part (b) follows from part (a) by applying the duality involution . O
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5.3. THE ELEMENTS X", Use the notation X; = X,
and let XH = X" X = XHert o tlinen, for p = (p1,...,pun) € Z™.

Using the notation of the affine Weyl group W = {t, ,w | p € Z™,w € S, } from Section
2.1, for p € Z™ and w € S,, define
(67) X' = XHT,, where T, =T; ---T;,
if w=s;,---s;, is a reduced word. The following proposition establishes how these
elements are affected by right multiplication by the generators 71,...,T, and g" of
Bar,, -
PROPOSITION 5.3. Let u € Z™ and w € S,,. Then
XH*T,T; ) i
XT,, = whi if L(ws;) > L(w),
XHPTL,T,  if L(ws;) < L(w),
XHngv = X#Xw(l)Twsr“
Proof. The first equality follows from the fact that if z € S,, and £(zs;) > ¢(z) then
T.T; = T.s,. For the second equality: Let £k = w(1) and write w = sp_1 - - $12z with z

in the subgroup of S,, that is generated by so,...,s,_1. Letting ¢, = s1---s,_1 and
using ¢V Ty(¢") ™" = Ty41 then (¢%) 'Tog" =T,-1_, and
Twg” =Ty TiTg" =Ty1---Tig" (") "' Tog")

=Ty_q-- .Tlg\/TC,lzc (Thy - T1gvT,:_11 .. .kal)Tk T T

c,;lzcn
= Xkrsk

and

Sn—1"

n

= XkTsk,lwslzcn = XkTwcn-

—1
“Sp_1Cp ZCp

O

5.4. THE TYPE GL, DOUBLE AFFINE HECKE ALGEBRA (DAHA). The type GL,
double affine Hecke algebra Hqy, is the quotient of the group algebra of Bgyr, by the
relations
(68) (T; —t3)(Ty+t72) =0, foriec{l,...,n—1}.
The involutions ¢: Bar, — Bgr, and n: Bar, — Bgr, from Theorem 5.1 preserve
the relations in (68) to provide involutions
(69) v: Hgp, — Hgr, and n: Haor, — Har,, .

The following proposition explains how ¢,7%,...,T, move past the Xi,...,X,
inside the affine Hecke algebra.

PROPOSITION 5.4. Let = (1, ..., in) € Z™ and define X# = XHie1t - +thnen  The
symmetric group S, acts on Z" by permuting coordinales. Let si,...,sp—1 be the
simple reflections in S,,. Then, as elements of Har, ,

gXM — q7M7LX5182"'57L71Hg — q7ﬂ7LX(M'rL)H1y~~-7lln71)gv

and
t3 — 2
T,XF = (; X" Ty + —————(1—s;)X", forie{l,...,n—1}.
1= XX,
Proof. Start with X, 1 = T; X;T; and use T[l =T — (t% — t*%) to get
X, - X,
TX; = Xen T, ' = Ko (T — (8 = 073) = XUOT 4 (18 — 17 9) =0
11— XX
1 1
t3 — =%
_xeer e BP0 Gk,
1= XiX; 5
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and

T, Xi = TPXT; = ((t% - t_%)Ti + 1) X,T; = X;T; + (t% - t_%>Xi+1

= xsEn T 4 () -y S = X
- XX}
X4+ 2ot ax
= (37, z+1) it 1— XiX;‘rll< — 81) i1
and, for j & {i,i+ 1},
t5 —t3
Ty = X = (55T, +0 = (siX0) T (1 500
If
13 — 43
T, XF = (; X")T; + —(1—s;)X" and
1— X, X,
TiX" = (s:X")T, o (1—s)X
i XY = (5 X")T; + s;) XY
1—- XX
then
t% —t72

T, XFY = T, XFXY = ((SiXN)Ti +

(5:X7) (( X+ 2= >X”> L R A
= (8 Si it T o o1 TS P — —\Si
1-— XiXi+11 1- XiXi+11
= (siXMJrV)E + tz2 —t> (XstrV — xsilety) o xoptv Xsm+u)
1- X, X4
1 1
t2 —t732
= (siX‘H_V)TZ- +—(1- Si)X’H'V.
1- XiXi+11

Since gX,g ! = ¢ ' X; and gX;97! = X;;1 then
gX(;Ll ..... Hn) — ngl . X’tltn — Xé“ . X;thn_ngf:n — q*#nXétl . X#n_leng' 0

5.5. INTERTWINERS. Structurally, the elements X' ... X are playing the role of
generators of a polynomial ring inside of the double affine Hecke algebra H; L, The
next key point is that we can produce elements 7’,...,7Y_; and 77 which are “re-
placements” for the generators T1,...,T, and g, and which move past the elements
Yel, ..., Y% in the best possible way, by permuting the Y;, as seen in (75).

Define Y; for i € Z by setting

(70) Y, =Y forie{l,....,n} and  Yj., =qY; forj€Z
Letting YX = ¢~ and ¢ = ¢ + K then
(71) Yo=Y =yatK —yKyen — ¢7ly,,.
Let
t72(1—t)

(72) ™ =g’ and ) =T+

T

2 forie{l,...,n—1
; v, { }

(the 7)Y lie in a localization of the double affine Hecke algebra Hgy, which allows the
denominators 1 — Yinfl for i,5 € {1,...,n} with ¢ # j). For w € W define

vV oV Vv — G ...g:
Tw = Tiy " Tiy for a reduced word w = s;, - - - 54,
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The following proposition establishes that the 7,¥ satisfy the braid relations so that

the element 7,/ does not depend on the choice of reduced word for w. The 7" do not
quite generate a symmetric group, because (7,)? is not the identity.

PROPOSITION 5.5. Fori € {1,...,n—2} and j,k € {1,...,n—1} withk & {j+1,j—1},

V.V _ NV V.V .V _ N V.V V.V V.V,
(73) TrTi = Tit1Trs Ti Tit1Ti = Tit1Ti Tit1 and T Ty =T Tk

(1 =Y, 'Yi)(1 - Y3V, )

(14) (2 n))? = forie{l,....n—1};

' (1 =Y i) (1 = YY)
(75) Yity = Tu Y10, forweW andi€Z.

Proof. Using T; = T, + (17 —t72),

1 1
31—t 31—t
7/ :E+#1)Z(Ti_l+(t% ft*%)Jr#l)
1 =Y Yin e
(76) _rly (YW — 1+ 1)t 2(1 —t) I 31— t)Yi_1Yi+1.
' 1YY ' 1-Y, Vi,

To prove (75), prove that

(77) ity =q¢ 7YY, and Yty =7)Y;, foric{2,...n}, and

Yt =17V, Yigr' =7Y,  and Y1) =7V,
forie{l,...,n—1}and k € {1,...,n} with k & {i,i+ 1}. By (63) and (20),
VY = qYeirY gives YiTY =7Yq¢ 'Y, =1)Y, = 7 Ye-101).-

T

and YeirgY = gVYe forie{l,...,n—1}. Using Yiyq = T, 'V, L,

1 1
31 =YY t73(1 — )Yy
VY, = [ T7! i il )\ y Y T ———— )y Y
T ( it 1— Yi_lm+1 +14i + 1— Y +17; 5

and

t73(1—1)Yip R - YT,
Y= [T+ ———— | =V [T, + i — v,
i Litl ( +1 1_1/;+1 i 1_}/;71)/;+1 i

If k & {i,i+ 1} then T;Yy, = Y, T; and Y;Yy, = YY; and Y; 1Y, = Yi Y41 and so

1 1
t72(1—1¢ t72(1—1¢
Yy = THr# Y =Yk THF% = Y7y
1-Y7 Y 1-Y7Yi
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Using (76),
t72(1—t) t72(1—t)
(Tz\/)Q = (Tl + 1 Y_1Y' ) zv _717,7-7,\/ +T7,\/1 Y—ly
— 4 Ll it
_1 -1 _1 _1
ot -y t73(1—t) \ t73(1—t
—r (7 (_ 212. S I P _(_1 4) _(_1)
1 =Y Yin 1YY ) 1-Y Y
B 1+T.t_%(1 — )Y, Y T‘t—%(l—t) N t7r(1—t) \ 3 (1—1)
C1-Y Y -YnY \1-Y W ) 1-YY
(1-Y W) - YY)+t — 2+t

(1 =Y, Yi)(1 = Y 1Y5)
(7 =Y i) (7 - YY)
(1 =Y, Y1) (1 — VY1)

The proof of the relations in (73) can be done by comparing the brute force expansion
of each side using the relations in (62) and (63). An alternative, often used, argument
is to note that the action of each side on the polynomial representation (which is a

faithful representation of H) produces the same output (see Proposition 2.14(e) of
[17]). O

5.6. THE POLYNOMIAL REPRESENTATION. In this section we build the action of the
double affine Hecke algebra on Laurent polynomials in X7i,...,X,. The elements
Y1,...,Y, are then a large family of commuting elements acting on the polynomial
ring C[X fl, ..., X;1]. The Macdonald polynomials are the simultaneous eigenvectors
for the family of commuting elements Yi,...,Y,,.

Let ¢,t € C* such that 1 ¢ {¢°t* | a,b € Z and a and b not both 0} (alternatively,
one may let ¢ and ¢ be formal parameters). The polynomial representation is

C[X]=C[X{!,..., XF] = C-span{X*"1 | p € Z"}
with the action of DAHA determined by T;1 = 21 and g1 = 1 so that, by (55),
(78) Y1 =¢:""D1  and Y&l =¢3(D720-D51 — - G-DEs(n-D)g

Following the notation of [14, Ch. VI (3.1)], let T,-1 x, be the operator on
C[XT!,..., XF!] given by

(T x, W) (X1,..., Xp) = h(X1,..., Xy 1,47 ' X)),
PROPOSITION 5.6. As operators on the polynomial representation

(t - 1X; — Xit1
X — Xin

[N

(1 — 87;)),

g=s5182"8p_1141 x, and T, =t

forie{l,...,n—1}.
Proof. The first statement in Proposition 5.4 gives

gX'u]. = (8182 R S.,L_lqu—an)('u)]_7
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since T;,-1 x, X# = ¢ #» X*. Using the second statement in Proposition 5.4,

L tT 173
(79) T,X'1 = ((siX“)tf + 2721( - si)X“)l
Xi X1+1
=t —t3(1—s)+ i(l ~s) | XM
1—- X X724
1 1 1
=1 "‘ = (Xz‘Xi_11t§ —t72)(1 - 51')) X"
< - X; Xz—i—l "
= (t;—f—X XH_l( XtQ +XZ+1t 2)(1—Sl)> X*1
—1 tX; — Xit
= t— 1—s;) ) X*1.
He-Rota-s)

O

5.7. CONSTRUCTING THE NONSYMMETRIC MACDONALD POLYNOMIALS E,. The

Macdonald polynomials are the simultaneous eigenvectors for the action of Y7,...,Y,
on the polynomial ring C[X7?,..., XF!]. Because the intertwiners 7y’,..., 7", 7V

move past Y7, ...,Y, in the best possible way, they are the perfect tools for explicitly
computing the Macdonald polynomials F,,.

PROPOSITION 5.7. Let p € Z%, and let u, and v, be as in (33) and let £(v,) be the

number of inversions of v,. Choose a reduced word @, = s;, --- s;, (wherei1,...,ip €
{m1,....,n—=1}) and let 7/ =7, ---7,. Define

E, = L v 1. Then Y;E, = q*#it*(vu(i)71)+%("71)E/“

forie{l,...,n}, and the coefficient of " in E,, is 1.
Proof. Compute the eigenvalue as follows:
VB, = m—%f(v;%uv“l (by definition of E,,)
=120y a1 (by (75)
= f%f(v;l)TLYvut;l(i)l (by (33))
=t 30nY y, 1 (by (22
| (by (19
= t‘%e(vll)ﬁ“q_“iﬁm(nl (by (70))
= ¢ i (e @O=DHR D (=30 Y 1) (by (78))
— g it @u(=D+3(n-1) E, (by definition of E,,).

w(E—np;

)
— 45l ) A
=t 2 7—uui/v,t(z)f ))

Using (67) and (5.3), the top term of the expansion of in t_%e(”H)Tuvul is
EAED € B LD G B A S G

= ¢~ 300 ) xrgstn D = X#1 = g,
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5.8. STEPS AND SYMMETRIES OF E,,. The following Proposition establishes the in-
ductive construction of the E,, and the symmetries in (3.3). For examples of the E,
see Proposition 3.5, which provides explicit formulas for the cases when p has 1 or 2
boxes.

PROPOSITION 5.8. Let it = (1, .- -, fin) € Z™.
(a) Ifie{l,...,n—1} and p; > piy1 then B, = t%TiVE#.
(b) E = t#{i€{17“'7n} | /‘i>ﬂn}_%(n—l)T¥E
(c) E

(d) E
(e) E
Proof. (a) Let uw = (p1,...,un) and let @ be such that p; > pi41.
By Proposition 2.1(e), £(vs,,) — ¢(v,) = —1, giving

Hn+101 s —1) (15 am) -

. -1
fint Lt yeopin—) = " T1E (T2, T, g 1),
it Lyt 1) = L1 B
. _ 1 -1,
=) (@15 Ty g t) = B2 2y g0 t).

By =t~ 3" 0edry 1= 7300y 1 =43 (0= g, — (137 B,

Sipt

(b) The left hand side is Er, and

_ @D v

The result then follows from Proposition 2.1(b).

(c) The second relation in (54) and the second relation in (63) give X19 = ¢"¥,,.
Beginning with the right hand side of (b) and using ¢gVY,, = X;g gives

t*(vu(n)*lJr%("*l)TT\r/EM — t*(vu(n)*lﬂé(n*l)gVEu — quu"YnEu
=g"a1gE, = ¢" 2181 sp1Ty-1 4, By = " a1 Ey(2a, ... 20, q ' 21).
(d) By (58), (17)" = (9¥)" = X1 --- X, and so
E(#1+17--~,l~bn+1) = (T;/)HE(HL‘H’H'&) =Ty an(H’lvuvﬂn).

(e) Let n: Hgr, — Hgr, be the involution in (69). Let wy be the longest element of
Sp so that wo(i) =n —i+ 1 for i € {1,...,n}. Using the last relation in (56),

Yin(Eu(X1,... . Xn)) 1 =Y, 1 Eu(Xa, .., X))
= gD (B (L X))
= g (oo o (DT =3y (BL(X L X)),
_ qf(fwo#)it(wov—wo,t(i)fl)f%(nfl)n(Eu(Xl’ LX),
— qf(fwo#)it(nfv—wou(i)+1)717%(nfl)n(EH(Xl, LX)

= g o= (e M=y (B (X, X)L,

)

so that n(E,(X1,...,X,))1 = E,(z;',..., 21 ") satisfies the conditions (from Theo-
rem 5.7) determining E_, (21, ..., Zn). O
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