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K-theoretic crystals for set-valued tableaux
of rectangular shapes

Oliver Pechenik & Travis Scrimshaw

Abstract In earlier work with C. Monical, we introduced the notion of a K-crystal, with
applications to K-theoretic Schubert calculus and the study of Lascoux polynomials. We con-
jectured that such a K-crystal structure existed on the set of semistandard set-valued tableaux
of any fixed rectangular shape. Here, we establish this conjecture by explicitly constructing the
K-crystal operators. As a consequence, we establish the first combinatorial formula for Las-
coux polynomials Lwλ when λ is a multiple of a fundamental weight as the sum over flagged
set-valued tableaux. Using this result, we then prove corresponding cases of conjectures of Ross–
Yong (2015) and Monical (2016) by constructing bijections with the respective combinatorial
objects.

1. Introduction
In classical Schubert calculus, we can study the cohomology ring of the Grassmannian
Gr(k, n), the parameter space for k-dimensional subspaces of Cn, with respect to
the basis given by the Poincaré duals of the Schubert varieties Xλ that decompose
Gr(k, n). In this context, the cohomology classes [Xλ] can be represented by Schur
polynomials sλ, where the partition λ sits inside a k×(n−k) rectangle. A more modern
approach is to study Gr(k, n) via connective K-theory, where the Schubert class [Xλ]
is given as the push-forward of the class for any Bott–Samelson resolution of Xλ.
Here, polynomial representatives are given by symmetric (or stable) β-Grothendieck
polynomials [10, 14].

The Schur polynomial sλ can be described combinatorially as a generating function
for semistandard (Young) tableaux of shape λ (see e.g. [49, Ch. 7]). In addition, sλ
has a representation-theoretic interpretation as the character of the highest weight
representation V (λ) of the Lie algebra sln of traceless n × n matrices (see e.g. [11,
Ch. 8]). One way to compute sλ is by applying a product of Demazure operators
πw0 corresponding to the reverse permutation w0 to the monomial xλ := xλ1

1 · · ·xλnn .
Generalizing this formula refines Schur polynomials to the key polynomials κwλ :=
πwxλ, which may be understood as characters of a Demazure modules Vw(λ) [9]
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(hence, κwλ is also known as a Demazure character); geometrically, Vm(λ) may be
constructed as global sections of a line bundle on a flag variety [1, 26].

For the symmetric Grothendieck polynomial Gλ, A. Buch [5] gave a combinato-
rial interpretation as the generating function for semistandard set-valued tableaux
of shape λ. A. Lascoux [28] gave a deformation of the Demazure operators, called
Demazure–Lascoux operators $w, such that Gλ = $w0xλ. The analogous defor-
mation of key polynomials, the so-called Lascoux polynomials Lwλ = $wxλ, remain
mysterious as currently there is no known geometric, representation-theoretic, or com-
binatorial interpretation, despite recent attention [23, 38, 40, 45]. Yet, combinatorial
formulas for Lascoux polynomials have been conjectured by C. Monical [38, Conj. 5.3]
and by C. Ross and A. Yong [45, Conj. 1.4] (with the generic β version by A. Kir-
illov [23, Fn. 14]).

One way to connect the combinatorial and representation-theoretic interpretations
of key polynomials is through M. Kashiwara’s theory of crystal bases for represen-
tations of quantum groups [19, 20]. Indeed, Kashiwara showed that the Demazure
module Vw(λ) has a crystal basis and could be described as a subcrystal Bw(λ),
called a Demazure crystal, of the highest weight crystal B(λ) [21, 34]. For Uq(sln),
the crystal B(λ) may be realized as the set of semistandard tableaux of shape λ, and
the tableaux for the subcrystal Bw(λ) are characterized by a combinatorial condition
on their corresponding key tableaux [31].

In our previous paper with C. Monical [39], we initiated an analogous approach to
Demazure crystals for Lascoux polynomials. We first gave a Uq(sln)-crystal structure
to the set of semistandard set-valued tableaux. Then we proposed an enriched crystal
structure with the property that the Lascoux polynomials appear as the characters of
our K-theoretic analogs of Demazure subcrystals. We coined this enriched structure
a K-crystal. We established the existence of K-crystals for single rows and columns,
but we discovered that no such structure exists for general shapes. Nonetheless, we
conjectured [39, Conj. 7.12] that K-crystals exist for all rectangular shapes. Our first
main result is a proof of this conjecture. Our proof gives rise to a combinatorial
formula for the class of Lascoux polynomials indexed by a weight in the Weyl group
orbit of a multiple of a fundamental weight i.e. a rectangular shape partition). We
then use this formula to establish the corresponding cases of the Ross–Yong–Kirillov
and Monical conjectures. To our knowledge, these are the only proven combinatorial
formulas for any class of Lascoux polynomials.(1)

Let us remark on why our proposed K-crystal structure exists for a rectangular
shape λ, but not for general shapes. In our work with C. Monical [39], we proposed
a slightly weaker structure for general λ that depends on a choice of a reduced ex-
pression for w0. The key distinction appears to be that, in the rectangular case, the
minimal-length coset representatives (such as the relevant parabolic w0) that index
Lascoux polynomials are all fully-commutative i.e. all reduced expressions differ only
by commutations) [50]. However, for more general shapes, such as λ = (2, 1) described
in [39, Fig. 6,7], one needs to apply the braid relations sisi+1si = si+1sisi+1 to get
all possible reduced expressions. Subsequently, we believe that, in general, K-crystal
structures depend on choosing a commutation class of the reduced words for the ap-
propriate parabolic w0 (see also [39, §7.3]). This fact seems related to an analogous
dependence for Schubert classes in cohomology theories more general than connective
K-theory (see e.g. [4, 12, 33]). Moreover, in the rectangular case, we have a flagging

(1)After this paper appeared as a preprint, subsequent work of V. Buciumas, the second author,
and K. Weber [6] gave another combinatorial formula for Lascoux polynomials. In particular, they
proved the formula proposed here in our Conjecture 6.1.
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condition to characterize the tableaux in the K-Demazure crystal, and we expect an
analogous key tableau condition to work for general shapes.

This paper is organized as follows. In Section 2, we recall the necessary background.
In Section 3, we construct a K-crystal structure on set-valued tableaux of rectangular
shapes. In Section 4 (resp. Section 5), we prove the conjectural combinatorial inter-
pretation of Lascoux polynomials for rectangular shapes due to Ross–Yong–Kirillov
(resp. Monical). In Section 6, we describe our conjecture for key tableaux of set-valued
tableaux and their relationship with Lascoux polynomials.

2. Background
In this section, we give background for the symmetric group, the crystal structures
on semistandard set-valued tableaux, Lascoux and Grothendieck polynomials, and
the related conjectures. Let x = (x1, x2, x3, . . .) be a countable vector of commuting
indeterminates. For a tuple α = (α1, α2, . . .), define xα = xα1

1 xα2
2 · · · . We use the

English orientation convention for both partitions and tableaux.

2.1. Properties of symmetric groups. Let Sn denote the symmetric group on
{1, . . . , n} with simple transpositions {si | 1 6 i < n}, where si interchanges i and
i+1. Let w0 ∈ Sn be the reverse permutation n(n−1) · · · 21. A reduced expression for
a permutation w ∈ Sn is an expression for w as a minimal-length product of simple
transpositions. The length of a permutation is the length of any reduced expression
for it; the element w0 is the element with greatest length in Sn. We recall that (strong)
Bruhat order on Sn is defined by v 6 w if there exists a reduced expression for v that
is a subword of a reduced expression for w.

Consider a partition λ (of length at most n) as a word of length n by appending
0’s as necessary. Note that Sn has a natural action on words of length n, which
corresponds to the natural action on Zn of the Weyl group of sln (which we can
identify with the group of permutation matrices). Let Stabn(λ) = {w ∈ Sn | wλ = λ}
denote the stabilizer of λ. Recall that Stabn(λ) is a parabolic subgroup of Sn and that
every coset in the quotient of a Coxeter group by a parabolic subgroup has a unique
minimal length representative. Thus, let Sλn denote the set of minimal length coset
representatives of Sn/ Stabn(λ), and for any w ∈ Sn, let bwc denote the corresponding
minimal length coset representative of w in Sn/ Stabn(λ). For more on Coxeter groups,
we refer the reader to e.g. [3, 8, 17, 18].

2.2. Set-valued tableaux and their crystal structure. Let λ be a partition,
which we often consider as a Young diagram. A (semistandard) set-valued tableau of
shape λ is a filling T of the boxes of λ by finite nonempty sets of positive integers so
that for every set A to the left of a set B in the same row, we have maxA 6 minB,
and for C below A in the same column, we have maxA < minC. (This is a set-valued
generalization of the usual semistandard condition on tableaux.) For an integer a, we
write a ∈ T if there exists a box of T containing a set A with a ∈ A. A semistandard
set-valued tableau is a semistandard Young tableau if all sets have size 1. Let SVn(λ)
denote the set of all set-valued tableaux of shape λ with entries at most n.

Next we recall the crystal structure on SVn(λ) from [39]. We first recall the crystal
operators ei, fi : SVn(λ)→ SVn(λ)t {0}, where i ∈ I := {1, . . . , n− 1}. We draw the
crystals as a directed graph, where we have an i-colored edge T i−→ U if and only if
fi(T ) = U . For more details on crystals, we refer the reader to [7, 20].

The crystal operator fi acts on T ∈ SVn(λ) as follows: Write + above each column
of T containing i but not i+ 1, and write − above each column containing i+ 1 but
not i. Now cancel signs in ordered pairs −+. If every + thereby cancels, then fiT = 0.
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Otherwise let b correspond to the box of the rightmost uncanceled +. Then fiT is
given by one of the following:

• if there exists an adjacent box b→ immediately to the right of b that contains
an i, then remove the i from b→ and add an i+ 1 to b;

• otherwise replace the i in b with an i+ 1.
The action of ei is defined as follows: Construct the sequence + · · ·+− · · ·− as

above. If there is not an uncanceled −, then eiT = 0. Otherwise let b correspond to
the box of the leftmost uncanceled −. Then eiT is given by one of the following:

• if there exists an adjacent box b← immediately to the left of b that contains
an i+ 1, then remove the i+ 1 from b← and add an i to b;

• otherwise replace the i+ 1 in b with an i.
Identifying Zn with the multiplicative group generated by (x1, . . . , xn), we define

the weight function wt: SVn(λ)→ Zn by wt(T ) =
∏n
i=1 x

ci
i , where ci is the number

of A ∈ T such that i ∈ A. Define |wt(T )| =
∑n
i=1 ci. Let Uq(sln) denote the Drinfel’d–

Jimbo quantum group of the type An−1 Lie algebra sln, the Lie algebra of traceless n×
n matrices over C. Let B(λ) be the highest weight Uq(sln)-crystal of all semistandard
Young tableaux of shape λ [19, 20, 22].

Theorem 2.1 ([39, Thm. 3.9]). Let λ be a partition. Then

SVn(λ) ∼=
⊕
λ⊆µ

B(µ)⊕M
µ
λ ,

where the Mµ
λ = |{T ∈ SVn(λ) | wt(T ) = µ and eiT = 0 for all i ∈ I}|.

See Figure 1 for an example.

1 1

2 2

1 1

2 3

1 1

3 3

1 2

2 3

1 2

3 3

2 2

3 3

2

21

2 1

1

1 1

2 2,3

1 1

2,3 3

1 2

2,3 3

2

1

1 1,2

2 3

1 1,2
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1 1,2

2,3 3

Figure 1. The Uq(sl3)-crystal structure on SV3(2, 2).
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2.3. Lascoux polynomials and symmetric Grothendieck polynomials. For
1 6 i < n, the Demazure operator πi acts on Z[β][x1, . . . , xn] by

πif = xi · f − xi+1 · sif
xi − xi+1

,

where sif(. . . , xi, xi+1, . . .) = f(. . . xi+1, xi, . . .), and the Demazure–Lascoux operator
$i acts by

$if = πi
(
(1 + βxi+1) · f

)
= πif + β · πi(xi+1 · f).

The Demazure–Lascoux operators (and Demazure operators) are known to satisfy the
braid relations:

$i$j = $j$i for |i− j| > 1,
$i$i+1$i = $i+1$i$i+1

(and similarly for πi) [28]. Thus for any permutation w ∈ Sn, one may unambiguously
define $w := $i1$i2 · · ·$i` , where si1si2 · · · si` is some reduced expression for w.

Since $w does not depend on the choice of reduced expression, we can define the
Lascoux polynomials [28] as

La(x;β) := $wxλ

for any a ∈ Zn>0, where λ is the sorting of a into a partition and w ∈ Sλn is the unique
element such that wλ = a. The symmetric Grothendieck polynomial can be defined
as the n variable truncation(2) of Lw0λ(x;β) and is known [5, Thm. 3.1] to be given
combinatorially by

(1) Lw0λ(x;β) =
∑

T∈SVn(λ)

wtβ(T ),

where

wtβ(T ) := βex(T ) wt(T ), ex(T ) := |wt(T )| − |λ| =
∑
A∈T

(
|A| − 1

)
,

where A ranges over the entries of T . The statistic ex : SVn(λ) → Z is known as
excess, and we call wtβ(T ) the β-weight. There is currently no known geometric
or representation-theoretic interpretation for general Lascoux polynomials. However,
there are two conjectural combinatorial descriptions, which we now recall.

The first conjectural combinatorial rule was introduced in [45]. To state it, we begin
by recalling the notion of a K-Kohnert diagram to be a subset D of Z2

>0, which we
realize as boxes, and a subsetM ⊆ D of boxes that are marked. The conjectural rule to
compute the Lascoux polynomial is as follows. Start with some a = (a1, . . . , an) ∈ Zn>0
and draw the initial K-Kohnert diagram as a skyline diagram by putting a box at each
position {(i, y) | i ∈ [n], 1 6 y 6 ai} (in Cartesian coordinates), marking no boxes.
Then we successively apply any sequence of the following operations.
Kohnert move: Move any unmarked box at the top of a column into the rightmost

open position to its left and in the same row such that it does not pass through
a marked box.(3)

K-Kohnert move: Perform a Kohnert move but leave a marked box behind.

(2)The untruncated version is called a stable Grothendieck polynomial as it is the stable limit n→
∞ of the original Grothendieck polynomials (with β = −1) of A. Lascoux–M.-P. Schützenberger [29,
30].

(3)In the published version of [45], it is misstated that a Kohnert move could move the unmarked
box through a marked box. See [44, 46].
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Let Da denote the resulting set of K-Kohnert diagrams obtainable from the original
skyline diagram for a. Define the β-weight of a K-Kohnert diagram D by wtβ(D) =
βe
∏n
i=1 x

ci
i , where e (resp. ci) is the number of marked boxes (resp. boxes in column i)

in D.
Conjecture 2.2 ([45, Conj. 1.4], [23, Fn. 14]). We have

La(x;β) =
∑
D∈Da

wtβ(D).

Example 2.3. Consider λ = 22 being a 2 × 2 rectangle and w = s1s2, so that a =
(0, 2, 2). Then the set of K-Kohnert diagrams for a is

Hence, Conjecture 2.2 (correctly) predicts that
L(0,2,2)(x;β) = x022 + x112 + βx122 + x121 + βx122

+ x202 + x211 + βx212 + x220 + βx221

+ βx212 + βx221 + β2x222.

Conjecture 2.2 specializes at β = 0 to A. Kohnert’s combinatorial formula for the
monomial expansion of Demazure characters [25].

The second conjectural combinatorial rule is from [38]. We fill a skyline diagram
with finite nonempty sets of positive integers that satisfy the following conditions.
Call the largest entry in a box the anchor and the other entries free.
(S.1) Entries do not repeat in a row.
(S.2) If B is below A, then minB > maxA i.e. the columns are weakly increasing

top-to-bottom in the set-valued sense).
(S.3) For every triple of boxes of the form

A · · · C
B

A
C · · · B

left column weakly taller right column strictly taller

the anchors a, b, c of A,B,C, respectively, must satisfy either c < a or b < c.(4)

(S.4) Every free entry is in the leftmost cell of its row such that the entry remains
free and (S.2) is not violated.

(S.5) Anchors in the bottom row equal their column index.
We call such a tableau a (semistandard) set-valued skyline tableau. For a a weak
composition (e.g. a finite string of nonnegative integers), let SLTa denote the set of
set-valued skyline tableaux with shape a. We define the weight, excess, and β-weight
for a set-valued skyline tableau in the same way as for a set-valued tableau.

Let $i = $i − 1. Define the Lascoux atom to be
Lwλ(x;β) := $wxλ.

(4)Such triples were originally called inversion triples and required to satisfy c < a 6 b or
a 6 b < c, but in our case a 6 b is immediate by (S.2).
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Conjecture 2.4 ([38, Conj. 5.2]). We have

Lwλ =
∑

S∈SLTwλ

wtβ(S).

From [38, Thm. 5.1], we have

(2) Lwλ(x;β) =
∑
v6w

Lvλ(x;β),

where the sum is taken over all permutations v less than or equal to w in Bruhat order.
Thus, if Conjecture 2.4 holds, then we have another combinatorial interpretation of
the Lascoux polynomial as

Lwλ(x;β) =
∑
v6w

∑
S∈SLTvλ

wtβ(S).

By [40], this interpretation of Lascoux polynomials is equivalent to [38, Conj. 5.3] .

2.4. K-crystals. We recall a proposed K-theory analog of crystals that was intro-
duced in [39]. For a nilpotent operator ψ, we write ψmax(x) to mean ψm(x), where
m = max{h ∈ Z>0 | ψh(x) 6= 0}.

We call a connected Uq(sln)-crystal B a connected K-crystal if it is enhanced with
K-crystal operators, eKi , fKi : B → B t {0} that satisfy the following properties:
(K.1) The set B is generated by a unique element u ∈ B that satisfies eiu = 0 and

eKi u = 0 for all i ∈ I. That is to say, we can reach every element in B by
applying a sequence of (K-)crystal operators from u. The element u is called
the minimal highest weight element.

(K.2) Let w = si1 · · · si` ∈ Sn be a reduced expression. The K-Demazure crystal
Bw :=

{
b ∈ B | (eKi` )maxemax

i`
· · · (eKi1 )maxemax

i1 b = u
}

does not depend on the choice of reduced expression of w. Moreover, we have
Bw0 = B.

(K.3) Let λ = wt(u) be the weight of the minimal highest weight element from (K.1).
The β-character of Bw

chβ(Bw) :=
∑
b∈Bw

β|wt(b)|−|λ| wt(b)

is equal to the Lascoux polynomial Lwλ(x;β).
A K-crystal is just a disjoint union of connected K-crystals. It is also strongly desirable
for these operators to also satisfy eKi b = b′ if and only if b = fKi b

′ for all b, b′ ∈ B and
wt(fKi b) = xi+1 wt(b).

Remark 2.5. This definition of a K-crystal is slightly more general than that given
in [39], which was directly based on the combinatorics of set-valued tableaux. In
particular, the extra condition that Bw0 = B in (K.2) is implicit in the K-crystal
definition given in [39] as chβ(Bw0) = Lw0λ(x;β) = chβ(B) by Equation (1).

In [39], such K-crystals were constructed for the cases that λ is a single-row [39,
Thm. 7.5] or single-column [39, Thm. 7.9].

Open Problem 2.6 ([39, Open Prob. 7.1]). Construct an appropriate K-theory analog
of crystals for general λ.

It was shown in [39] that there is no K-crystal (as defined here) solving Open
Problem 2.6. Rather, in general, we believe that (K.2) should be relaxed, so that the
K-crystal operators can depend on a choice of reduced word, giving a structure that
we coined a weak K-crystal. Our main result is to prove [39, Conj. 7.12], thus giving
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an answer to Open Problem 2.6 for rectangular shapes, extending the single row and
column results of [39]. In this rectangular case, the relevant Weyl group elements
Sλn are all fully-commutative, so the expected dependence on reduced word does not
appear.

3. K-crystals for rectangular shapes
In this section, we prove our main result: when λ is a rectangle, then SVn(λ) has
a K-crystal structure. Thereby, we establish [39, Conj. 7.12], providing a solution to
Open Problem 2.6 for rectangular shapes.

Our construction of the K-crystal operators is motivated by the heuristics given
in [39], which come from the following K-theory analog of the decomposition of a
crystal into i-strings i.e. restricting to the action of ei and fi for a fixed i ∈ I) based
on the definition of the Demazure–Lusztig operators. Indeed, by considering only the
action of a fixed i ∈ I, we predicted in [39] that the K-crystal should decompose into
(maximal) subcrystals of the form

b • • · · · • •

• • • · · · •

i i i i i

i i i i

i

where the solid (resp. dashed) arrow represents the fi (resp. fKi ) action and the top
i-string has length one more than the bottom i-string. Such a subcrystal was coined
an i-K-string in [39]. We say an i-K-string has length

` := max{k | fki b 6= 0}.
Note that f `−1

i fKi b 6= 0 and f `i fKi b = 0. It is easy to see that for b such that eib = 0
(which implies for wt(b) = xa1

1 · · ·xann we have ai > ai+1), the β-character of the
i-K-string starting at b equals $i wt(b).

For the remainder of this section, we consider λ = sr to be an r × s rectangle.
The following lemma is straightforward after recalling that

Stabn(λ) = Sr × Sn−r,
and

Sλn = {w ∈ Sn | w(1) < · · · < w(r) and w(r + 1) < · · · < w(n)}.

Lemma 3.1. Let λ = sr be an r × s rectangle. For any w ∈ Sλn, there exists a reduced
expression of w of the form

(sik · · · sr−k+1sr−k) · · · (si1 · · · srsr−1)(si0 · · · sr+1sr)
for some −1 6 k < r and 1 6 ik < · · · < i1 < i0 6 n. (The case k = −1 means there
are no terms in the product, so w = 1.)

Example 3.2. To clarify our notation and symmetric group conventions, consider
w = 2357146, so n = 7 and r = 4. Then the reduced expression for w in the form
given by Lemma 3.1 is

w = (s1)(s2)(s4s3)(s6s5s4).
In particular, we have k = 3, i0 = 6, i1 = 4, i2 = 2, and i3 = ik = 1.

Definition 3.3. Let T ∈ SVn(λ), and fix some i ∈ I. We say a box b of T is bridged
(for i) if there exists an i strictly to the right of b paired with an i+ 1 strictly to the
left of b. Otherwise b is unbridged.
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fKi : If i /∈ T or fiT = 0 or eiT 6= 0, then fKi T = 0. Otherwise, let b be the rightmost
box that contains an i corresponding to an uncanceled +. If i and i + 1 are
both in an unbridged box to the right of b, then fKi T = 0. Otherwise, define
fKi T by adding an i+ 1 to b.

eKi : If there does not exist an unbridged box with both an i and i + 1 or eiT 6= 0,
then eKi T = 0. Otherwise, let b be the rightmost unbridged box that contains
both an i and i + 1. If there exists an i to the right of b corresponding to an
uncanceled +, then eKi T = 0. Otherwise, define eKi T by removing the i + 1
from b.

For examples of these operators, see Figure 2; additional examples may be found
in [39]. It is clear that if fKi T 6= 0 (resp. eKi T 6= 0), then fKi T ∈ SVn(λ) (resp. eKi T ∈
SVn(λ)). We give an example to illustrate the bridging condition.

Example 3.4. We apply the K-crystal operator eK4 , which acts on the left box con-
taining {4,5}, which is unbridged, as the right box containing {4, 5} is bridged:

1 1 1 1 1 4
2 2 2 2 4,5 9
3 3 3 5 9 10
4 4 4,5 9 10 11
5 7 9 10 11 12

eK4−−−−−→

1 1 1 1 1 4
2 2 2 2 4,5 9
3 3 3 5 9 10
4 4 4 9 10 11
5 7 9 10 11 12

.

Lemma 3.5. Let T, T ′ ∈ SVn(λ). We have eKi T ′ = T if and only if T ′ = fKi T .

Proof. We first show eKi T
′ = T implies T ′ = fKi T . From our assumption, we have

eiT
′ = 0 and for the rightmost unbridged box b with i, i+ 1 ∈ b (note b exists by our

assumption), there does not exist an i to the right of b that is either an uncanceled +
or one paired with an i+1 to the left of b. Therefore, when we remove the i+1 from b
to obtain T , we create an uncanceled + for b. So eiT = 0 and fiT 6= 0. Furthermore,
this added uncanceled + is the rightmost such uncanceled + and there are no other
unbridged boxes to the right of b that contain i, i + 1 in T . Hence the action of fKi
on T adds i+ 1 to b, and thus T ′ = fKi T .

Now we show T ′ = fKi T implies eKi T ′ = T . From our assumption, we have eiT = 0
and there does not exist an unbridged box of T containing both i and i + 1 to the
right of the rightmost box b corresponding to a uncanceled +. Since the + in b was
uncanceled, removing it to form T ′ does not affect any other cancelations. Hence, it
follows that eiT ′ = 0 as well since eiT = 0. The effect of adding an i+ 1 to b cancels
the + corresponding to b. Since b corresponded to the rightmost uncanceled +, there
is no uncanceled + to the right of b in T . Moreover, there is not an i to the right of
b that pairs with an i+ 1 to the left of b as otherwise such an i+ 1 would pair with
the i in b. Hence eKi acts on T ′ by removing i+ 1 from b, and thus eKi T ′ = T . �

Lemma 3.6. Let λ = sr be an r × s rectangle. The restriction to any fixed i ∈ I
decomposes SVn(λ) into i-K-strings.

Proof. Let T ∈ SVn(λ). Since fKi T = 0 and eKi T = 0 whenever eiT 6= 0, we cannot
have the local situations around T

T · · ·

• · · ·

· · · i

i

i

i

T · · ·

• · · ·· · ·

i

ii

i
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1 1

2 2

1 1

2 3

1 1

3 3

1 2

2 3

1 2

3 3

2 2

3 3

2

21

2 1

1

1 1

2 2,3

1 1

2,3 3

1 2

2,3 3

2

1

1 1,2

2 3

1 1,2

3 3

1,2 2

3 3

2

1

1 1,2

2,3 3

2

1

12

2

1

Figure 2. The K-crystal for SV3
( )

with the K-crystal opera-
tors depicted by dashed lines. The K-Demazure crystal Bs2 is the
restriction to the subset of shaded tableaux.

respectively. Next if fKi T 6= 0, then we have fKi fKi T = 0 from the fact that we added
an i+ 1 to the box b corresponding to the rightmost uncanceled +, which means the
rightmost uncanceled + in fKi T is to the left of b, which is necessarily unbridged in
fKi T as otherwise the + in b would be paired.

We need to show that if eiT = 0 and fiT 6= 0, we have either fKi T 6= 0 or eKi T 6= 0.
Since fiT 6= 0, there exists at least one uncanceled +. Let b be the box corresponding
to the rightmost uncanceled +. If there are no unbridged boxes containing i and i+ 1
to the right of b, then we have fKi T 6= 0. Otherwise let b′ be such an unbridged box,
and since b contains the rightmost uncanceled +, there are no uncanceled + to the
right of b′. Hence, we have eKi T 6= 0.

Now we assume fKi T 6= 0. We have f `i T = 0 if and only if f `−1
i fKi T = 0 from

the fact that to obtain fKi T , we removed the rightmost uncanceled + in T from
b, which leaves the other uncanceled + and − unchanged. Consequently, we have
ϕi(fKi T ) = ϕi(T ) − 1. Finally, we have fki T 6= fmi f

K
i T for all 0 6 k 6 ` and

0 6 m 6 `− 1 since ex(fKi T ) = ex(T ) + 1. �

Consider some w ∈ Sλn , and let ik < · · · < i0 be from the reduced expression of w
given by Lemma 3.1. For all k < j < r, define ij = r− j− 1. Define F (λ;w) to be the
subset of SVn(λ) such that row r − j has all entries at most ij + 1. Equivalently, the
entries in row j are at most w(j) for all 1 6 j 6 r. We call such a set-valued tableau
a flagged set-valued tableau. Diagrammatically, the flagging in each row is given by
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the labels on the right

∗ ∗ · · · ∗ 1
...

...
. . .

...
...

∗ ∗ · · · ∗ r − k − 1
∗ ∗ · · · ∗ ik + 1
...

...
. . .

...
...

∗ ∗ · · · ∗ i0 + 1

Example 3.7. Suppose w = s2 and λ = 2× 2. Then the flagged tableaux in F (λ;w)
are those set-valued tableaux with shape 2× 2 satisfying the flagging condition that
entries of the first row are bounded by 1 and entries of the second row are bounded
by 3. These bounds can be seen from the fact that

s2{1, 2} = {s2(1), s2(2)} = {1, 3}.

The tableaux of F (λ;w) are precisely the shaded tableaux illustrated in Figure 2.

As the next lemma indicates, the flagging conditions characterize K-Demazure
crystals. Recall that SVn

w(λ) denotes the K-Demazure crystal of SVn(λ) corresponding
to w ∈ Sn.

Lemma 3.8. Let λ = sr be an r × s rectangle. For w ∈ Sn, we have

SVn
w(λ) = SVn

bwc(λ) = F (λ; bwc).

Proof. Let u be the minimal highest weight tableau of shape λ. That

SVn
w(λ) = SVn

bwc(λ)

is immediate from the fact that we have fiu = 0 for all i ∈ I r {r}, i.e. whenever
si ∈ Stabn(λ). Hence, for the remainder of the proof we assume w = bwc.

Using Lemma 3.1, write w as a reduced expression

(3) (sik · · · sr−k+1sr−k) · · · (si1 · · · srsr−1)(si0 · · · sr+1sr)

for some −1 6 k < r and 1 6 ik < · · · < i1 < i0 6 n.
We prove the lemma by induction on k. The base case of k = −1 (so w = 1) is

trivial since clearly

SVn
1 (λ) = F (λ; 1) = {u}.

Otherwise, k > 0 and let

w′ = (sik−1 · · · sr−k+1sr−(k−1)) · · · (si1 · · · srsr−1)(si0 · · · sr+1sr) ∈ Sλn

be the product of all but the leftmost factor in our reduced expression (3) for w.
Inductively, we assume

SVn
w′(λ) = F (λ;w′).

By the flagging and semistandard conditions, for any tableau T ∈ SVn
w′(λ) and

j 6 r − k, the entries in row j of T are all exactly j. Furthermore, every tableau
U ∈ SVn

w(λ) r SVn
w′(λ) merely differs from an element in SVn

w′(λ) by changing one
or more entries in row r − k.
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It remains to check that the tableaux U ∈ SVn
w(λ) r SVn

w′(λ) differ from the
elements of SVn

w′(λ) exactly by the appropriate change in the flagging condition on
row r − k. This check is identical to the proof of [39, Lemma 7.4] (which is the r = 1
case of the current lemma), except for being notationally more cumbersome. It is
a straightforward induction on the length ik − (r − k) of the leftmost factor of the
reduced expression (3). �

The following theorem confirms [39, Conj. 7.12].

Theorem 3.9. Let λ = sr be an r × s rectangle. Then SVn(λ) is a K-crystal.

Proof. (K.1) is immediate from Lemma 3.8. (K.3) follows from Lemma 3.8 and
that the properties of the Demazure–Lascoux operators imply $wxλ = $bwcxλ. To
show (K.2), note that Lemma 3.8 implies SVn

w(λ) only depends on the minimal length
coset representative. By [50, Thm. 6.1], every minimal length coset representative of
Sλn is fully-commutative (see also [50, Prop. 2.4]); in other words, they differ only by
the commutation relations sisj = sjsi for |i − j| > 1. It is clear that the (K-)crystal
operators fi, fKi commute with fj , f

K
j for |i − j| > 1, and hence the K-Demazure

crystal is independent of the choice of reduced expression. �

We also have the following K-theoretic analog of [21, Prop. 3.3.4].

Corollary 3.10. Let λ = sr be an r × s rectangle. Consider an i-K-string S of
SVn(λ), and let b be the highest weight element of S. Then, the set SVn

w(λ) ∩ S is
either empty, S, or {b}.

Proof. This follows immediately from Lemma 3.8, the semistandardness, and that the
flagging on the rows is strictly increasing. �

We also have the following interpretation of certain Lascoux polynomials as in-
stances of (nonsymmetric) Grothendieck polynomials, indexed by some w ∈ Sn. Re-
call from [10, 27, 29, 30] that the (nonsymmetric) (β-)Grothendieck polynomial is
defined by

Gw0si1 ···si` := ∂βi1 · · · ∂
β
i`
xn−1

1 · · ·x1
n−1x

0
n, ∂βi f = (1 + βxi+1) · f − (1 + βxi) · sif

xi − xi+1
,

where si1 · · · si` is a reduced expression.

Corollary 3.11. Let λ = sr be an r × s rectangle. Let
w = (sk · · · s2s1)(sk+1 · · · s3s2) · · · (sk+r−1 · · · sr+1sr)

for some k > 1, and let
w̃ = sm−1(sm−2sm−1) · · · (sr+1 · · · sm−1)(sr · · · sk−1) · · · (s1 · · · sk−1) ∈ Sm

where m = s+ k + 1. Then, we have
Lwλ(x;β) = G

w0w̃−1(x;β).

Proof. Theorem 3.9 shows that Lwλ(x;β) is the character of the K-Demazure crystal
and Lemma 3.8 shows that this character is a generating function for a class of flagged
set-valued tableaux. The identification with a Grothendieck polynomial then follows
from the formula of [36, Thm. 3.3] (alternatively [24, Thm. 5.8]). �

It is clear that the permutations w0w̃
−1 appearing in Corollary 3.11 are vexillary

(i.e. 2143-avoiding). Since the greatest term of Lwλ(x; 0) in reverse lexicographic order
is xwλ and the greatest term of G

w0w̃−1(x; 0) in the same order is the Lehmer code of
w0w̃

−1, we find that wλ is the Lehmer code of w0w̃
−1. Hence, the permutations w0w̃

−1

are Grassmannian, and so the Grothendieck polynomials appearing in Corollary 3.11
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are actually symmetric Grothendieck polynomials, but symmetric only in some initial
segment of the variables x.

Example 3.12. Let λ = 22 be a 2× 2 rectangle. We have

Ls1s2λ(x;β) = Gw0(s2s1)s2(s4s3)s4(x1, x2, x3, x4, x5;β),
Ls2s1s3s2λ(x;β) = Gw0(s3s2s1)(s3s2)(s5s4s3)(s5s4)s5(x1, x2, x3, x4, x5, x6;β).

The Lascoux polynomials given by Corollary 3.11 are not the only ones that are
equal to a Grothendieck polynomial. For example, if λ = 42 = , then

Ls2λ(x;β) = Gw0(s2s4s3s4)(x1, x2, x3, x4, x5;β).

They are however the only Lascoux polynomials equal to a Grothendieck polynomial
for which λ is a rectangle.

T. Matsumura and S. Sugimoto have informed the authors that every flagged
Grothendieck polynomial is a Lascoux polynomial by extending the proof of [36,
Thm. 3.3], which appears in their work [37]. (This is the K-theoretic analog of the
fact that every flagged Schur function is a Demazure character [43].) Thus in partic-
ular, for w a vexillary permutation, the Grothendieck polynomial Gw is known to be
a flagged Grothendieck polynomial [24, Thm. 5.8], so Gw is also the Lascoux poly-
nomial La for a the Lehmer code of w. In the special case β = 0, A. Postnikov and
R. Stanley showed that a Demazure character πwxλ is a flagged Schur function if and
only if w ∈ Sλn is 312-avoiding [41]. These facts motivate the following conjecture.

Conjecture 3.13. Let λ be any partition and w ∈ Sλn. Then the Lascoux polynomial
Lwλ(x;β) is a flagged Grothendieck polynomial if and only if w is 312-avoiding.

Consider an arbitrary flagging condition with Lemma 3.8. Then we can interpret
these Lascoux polynomials as a Jacobi–Trudi-type determinant, where each part is
the Segre class of a vector bundle [15, 16]. (Although flagged set-valued tableaux also
appear in [13], that use appears unrelated to ours, as the weights considered in the
two contexts seem to be irreconcilable.)

4. Bijection with K-Kohnert diagrams
Recall that there is a natural bijection between the set of semistandard Young
tableaux of shape 1r with entries at most n and the collection of subsets of {1, . . . , n}
of size r. For row i (starting from the bottom row and going up) of a K-Kohnert
diagram D, consider the subset of {1, . . . , n} given by the horizontal coordinates
of the unmarked boxes. Construct column i (from right to left) of a (a priori non-
necessarily semistandard) tableau T by applying the natural bijection given above to
this subset. Now, for every marked box in position (x, i) of D, there is a rightmost
unmarked box (x′, i) to the left of (x, i). Insert x into the cell of column i containing
x′. In other words, we insert x into the topmost (i.e. highest) possible cell of column
i such that the resulting column is semistandard. (Note that a priori the rows may
not be semistandard.) Write φ(D) for the resulting tableau T .

It is straightforward to see that the map φ is invertible and β-weight preserving.
We will show below that φ(D) is in fact always a semistandard set-valued tableau.
Indeed, our main effort in this section is to establish the following. Recall that Dwλ
is the set of K-Kohnert diagrams obtained from wλ.
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Proposition 4.1. Let λ = sr be an r × s rectangle. For any w ∈ Sλn, φ restricts to a
β-weight preserving bijection

φ : Dwλ → SVn
w(λ).

Example 4.2. Consider λ = 22 be a 2 × 2 square and w = s2. Under φ described
above, we have

1 1

3 3

1 1

2 3

1 1

2,3 3

1 1

2 2

1 1

2 2,3

where we have shaded in the selected boxes and put a • in the marked boxes. Observe
that these tableaux are exactly SVn

w(λ).

Example 4.3. We continue Example 4.2 to w′ = s1s2 and obtain all of SV3
w′(λ) =

SV3(λ). We show the bijection φ on the remaining elements.

2 2

3 3

1 2

3 3

1,2 2

3 3

1 2

2 3

1 2

2,3 3

1 1,2

3 3

1 1,2

2 3

1 1,2

2,3 3

In order to prove Proposition 4.1, we first construct the equivalent (K-)Kohnert
moves on (semistandard) set-valued tableaux.

Definition 4.4 ((K-)Kohnert moves on set-valued tableaux). Let T ∈ SVn(λ). Con-
sider an entry x ∈ Z such that x ∈ T . Let C be the leftmost column of T containing an
x. Let b be the box in C containing x. Let x′ be minimal such that x′+1, x′+2, . . . , x ∈
C, and let b′ be the box in C containing x′ + 1.

If x′ = 0 or if x 6= min b or if {x′ + 1}, . . . , {x − 1} are not in C (i.e. if any of
x′ + 1, x′ + 2, . . . , x − 1 is not the only entry of its box in C), then we do not have a
(K-)Kohnert move corresponding to x. Otherwise define the Kohnert move on T to

(1) remove x from b;
(2) if x′ < x−1, then move all entries x′+1, . . . , x−1 in C down one row (which

in particular moves x− 1 into b); and
(3) insert x′ into b′.
A K-Kohnert move is the same as a Kohnert move except we leave x ∈ b.

Lemma 4.5. Let T ∈ SVn(λ), and denote by T ′ the result of applying any (K-)Kohnert
move to T . Then T ′ ∈ SVn(λ).

Proof. We consider only the Kohnert move as the K-Kohnert move is similar. We will
use the notation from Definition 4.4.
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The column increasingness condition for T ′ is satisfied since we only altered C and
we took x′ to be minimal i.e. any entries in or below b′ must not contain an x′). For
the row increasingness condition of T ′, we note that we are decreasing some entries in
C, so it is sufficient to just consider the entries in the column C← directly to the left of
C. Let b← be the box immediately to the left of b. By choice of C as leftmost, we must
have x /∈ C← and hence by the row semistandardness of T , we must have max b← < x.
This implies that the box above b← must have all entries strictly less than x − 1 by
column semistandardness of T . By iterating this argument, the analogous statement
holds for all boxes in C weakly between b and b′. Thus, T ′ ∈ SVn(λ). �

Now we prove Proposition 4.1 by using our flagging characterization of K-Demazure
crystals from Lemma 3.8 and showing that φ intertwines the (K-)Kohnert moves on
K-Kohnert diagrams with the (K-)Kohnert moves on set-valued tableaux.

Proof of Proposition 4.1. By Lemma 3.8, we have SVn
w(λ) = F (λ;w), so it is sufficient

to show φ(Dwλ) = F (λ;w).
Let D ∈ Dwλ and T = φ(D). It is straightforward to see that a Kohnert move

moving x in column y of T corresponds under φ to the Kohnert move on D that
moves an unmarked box (x, y) to (x′, y). Note that taking the leftmost column in T
is equivalent to taking a box in the top of the x-th column of D. We claim these are
all possible Kohnert moves. Indeed, the condition that x′ + 1, . . . , x− 1 are the only
entry in their boxes corresponds to the fact that we did not cross a marked box in D.
That x′ > 1 is equivalent to the moved box in D staying within Z2

>0 after the move.
That x = min b is equivalent to the box at (x, y) in D being unmarked. Hence, we
obtain all possible Kohnert moves. The claim for K-Kohnert moves is similar.

For any T ∈ F (λ;w), any possible Kohnert or K-Kohnert move applied to T yields
another element in F (λ;w) as entries in a particular row decrease. Thus we have
φ(Dwλ) ⊆ F (λ;w) as the initial skyline diagram corresponds to the tableau Twλ with
all entries in row r − k being {ik}.

To show φ(Dwλ) ⊇ F (λ;w), we will show that every set-valued tableau in F (λ;w)
can be obtained from Twλ by applying (K-)Kohnert moves. For a given flagged set-
valued tableau T ∈ F (λ;w), we start by applying (K-)Kohnert moves on the upper
left box of Twλ until we get the entry in the upper left box of T . Recall that the
corresponding (K-)Kohnert move acts on this entry/column since it acts on the left-
most applicable column. We repeat this process moving across the first i.e. topmost)
row. As such, there will be no interactions between the different Kohnert moves.
We then repeat this for the second row, then the third, and so on until all entries
have been changed to T . All the tableaux produced along the way lie in SVn(λ) by
Lemma 4.5.

We claim this procedure always generates a sequence of (K-)Kohnert moves in
Dwλ. Indeed, what we are doing is moving the first column from the skyline diagram
to its appropriate spots for the final K-Kohnert diagram φ−1(T ) starting from the
top. It is easy to see that by doing this process, we are never moving a box across
another box.(5) Hence, such (K-)Kohnert moves are always valid. Thus, φ(Dwλ) =
F (λ;w). �

Example 4.6. Let λ = 32 be a 2 × 3 rectangle and consider n = 4. We exhibit the
sequence of (K-)Kohnert moves described in the proof of Proposition 4.1 to obtain

(5)One can also see this process as a set-valued variation of the Kohnert tableaux of [2] by doing
the same labeling procedure on unmarked boxes and labeling any marked box b with an x′, where x
is the label of the rightmost unmarked box to the left of b.
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the element 1 1,2 2

2,3 3 3,4
∈ SV4

s1s3s2
(λ) from the initial tableau 2 2 2

4 4 4
:

1 1,2 2

2,3 3 3,4
K←−−

1 1,2 2

2,3 3 4
←−−

1 1,2 2

2,3 4 4
K←−−

1 1,2 2

3 4 4
←−−

K←−− ←−− K←−− ←−−

←−−
1 1,2 2

4 4 4
K←−−

1 2 2

4 4 4
←−−

2 2 2

4 4 4

←−− K←−− ←−−

where the diagrams under φ−1 are given below the set-valued tableaux.

Remark 4.7. We note that the proof of the intertwining of (K-)Kohnert moves did
not require λ to be a rectangle. However, that φ is a bijection does require that λ is
a rectangle as otherwise the image of the skyline diagram will not be a partition. For
example,

7−→
2 2

3
.

Theorem 4.8. For λ = sr an r × s rectangle, we have

La(x;β) =
∑
D∈Da

wtβ(D);

Hence, the Ross–Yong–Kirillov Conjecture (Conjecture 2.2) holds for La when a is
any weak composition with a unique nonzero part size.

Proof. This follows from the definition of a K-crystal together with Lemma 3.8, The-
orem 3.9, and Proposition 4.1. �

To the best of our knowledge, no other cases of Conjecture 2.2 have been previously
established.

5. Bijection with set-valued skyline tableaux
Consider a partition λ and permutation w. Define

(4) SVn

w(λ) := SVn
w(λ) r

⋃
v<w

SVn
v (λ),

where the union is taken over all v strictly less than w in Bruhat order. We have

$wxλ =
∑
v6w

(−1)`(w)−`(v)$vxλ

by applying Möbius inversion on Bruhat order and Equation (2). Therefore, Conjec-
ture 2.4 is equivalent by inclusion-exclusion to showing that

(5) Lwλ = chβ
(

SVn

w(λ)
)
.
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Proposition 5.1. Let λ = sr be an r × s rectangle. For any w ∈ Sλn, there exists a
β-weight preserving bijection

ψ : SLTwλ → SVn

w(λ).

Proof. Let ik < · · · < i0 be from the reduced expression of w given by Lemma 3.1.
By Lemma 3.8, we can characterize SVn

w(λ) by T ∈ SVn

w(λ) if and only if, for all
0 6 k < r, row k of T has at least one ik + 1 in it and no number strictly greater
that ik + 1. By the fact that the rows of T are weakly increasing, an equivalent
characterization is that the largest entry of the rightmost box in row k of T must be
ik + 1.

Define a map ψ : SLTwλ → SVn

w(λ) as follows. Consider some S ∈ SLTwλ and
define T := ψ(S) by

(1) sorting the anchor entries in each row in increasing order left to right and join
the columns together;

(2) placing each free entry f in the leftmost box of its row such that f is less
than the anchor entry (i.e. so that the row is strictly increasing but the free
entries remain free);

(3) take the transpose of the result from the previous step; that is construct the
i-th column of T from the (r + 1− i)-th row as in Section 4.

To see that ψ is injective and that its image is contained in SVn(λ), we note that ψ
is a restriction of the bijection ρ̂ of [38, Thm. 2.4] from set-valued skyline tableaux
to reverse semistandard set-valued tableaux, except that we have reversed the rows
and columns of the image tableaux. Indeed, reversing the rows and the columns for
rectangular shapes is clearly a bijection from reverse semistandard set-valued tableaux
to (ordinary) semistandard set-valued tableaux.

To see that the image of ψ is SVn

w(λ), we note that the anchors of the first row of
S are already in increasing order. Thus, the anchor of the k-th column of S under ψ
is the largest entry in the k-th row of ψ(S). By construction, the largest entry of the
k-th column of S is ik + 1, and hence, ψ is surjective.

Finally, it is clear that ψ is β-weight preserving, so ψ is the desired bijection. �

Example 5.2. Let λ = 22 be a 2×2 rectangle and n = 3. Then the set-valued skyline
tableaux SLTs2λ and their corresponding element in SV3

s2
(λ) under ψ are given by

1 3

1 3
7−→

1 1

3 3
,

1 2

1 3
7−→

1 1

2 3
,

1 2,3

1 3
7−→

1 1

2,3 3
,

1 2

1 2,3
7−→

1 1

2 2,3
.

Example 5.3. Let λ = 43 be a 4× 3 rectangle, n = 10, and

w = (s4s3s2)(s5s4s3)(s8s7s6s5s4).

Consider the following is a set-valued skyline tableau in SLTwλ.

S :=

1 3 4 2

1 3 4,6 2,7

1 4,5 6 7,9
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Applying the steps of the bijection ψ, we obtain

S 7−→

1 2 3 4

1 3 6 7

1 5 6 9

7−→

1 2 3 4

1 2,3 4,6 7

1 4,5 6 7,9

7−→

1 1 1

2 2,3 4,5

3 4,6 6

4 7 7,9

∈ SVn

w(λ).

To the best of our knowledge, the following theorem is the first to prove any case
of Conjecture 2.4.

Theorem 5.4. For λ = sr an r × s rectangle, we have

Lwλ =
∑

S∈SLTwλ

wtβ(S).

Hence, Monical’s Skyline Conjecture (Conjecture 2.4) holds for La when a is any weak
composition with a unique nonzero part size.

Proof. This follows from the definition of a K-crystal together with Theorem 3.9,
Equation (5), and Proposition 5.1. �

6. K-key tableaux
A key tableau K is a semistandard tableau such that the entries in the j-th column
of K are a subset of those in the (j − 1)-st column of K. One method to compute
a Demazure character κwλ is by summing over all semistandard tableaux of shape λ
whose (right) key entries are less than corresponding entry in the unique key tableau
Kwλ of weight wλ [31]. (This fact explains why Demazure characters are also known
as key polynomials.)

Furthermore, every semistandard tableau T has a unique (right) key tableau k(T )
associated with it (we refer the reader to [51] for an algorithm), and a Demazure
atom can be computed as a generating function for all semistandard tableaux T
with k(T ) = Kwλ [31]. (See [42] for much further discussion of these (and related)
formulas.) Let ≺ denote the partial order on semistandard tableaux of shape λ such
that T � T ′ if and only if every entry of T is at most the corresponding entry in T ′.

Based on the bijection from Proposition 5.1 and the (K-)Kohnert moves on set-
valued tableaux (Definition 4.4), the following is a natural possible extension of key
tableaux to the K-theory setting. For T ∈ SVn(λ), define K(T ) := k

(
max(T )

)
, where

max(T ) is semistandard tableau obtained by taking the greatest entry in each box of
T . Thus Theorem 3.9 and Lemma 3.8 imply that for λ = rs

(6) Lwλ(x;β) =
∑

T∈SVn(λ)
K(T )�Kwλ

wtβ(T ), Lwλ(x;β) =
∑

T∈SVn(λ)
K(T )=Kwλ

wtβ(T ),

or equivalently summed over SVn
w(λ) and SVn

w(λ) respectively. However, these formu-
las do not work for general λ as, for example,

K

 1 1,2,3

2,3

 =
1 3

3
,

but it can only contribute to the Lascoux polynomial/atom corresponding to w0λ,
where λ = 21, as it has an excess of 3. Moreover, the weak K-crystal in [39, Fig. 7]

Algebraic Combinatorics, Vol. 5 #3 (2022) 532



Krystals for rectangular shapes

does not decompose the K-crystal into atoms as given by Equation (4) as 1 2,3
3

should
not be in the atom corresponding to w0.

Instead, we conjecture that Equation (6) should be modified by using the Lusztig
involution to obtain a combinatorial interpretation of general Lascoux polynomials
and atoms. Recall that the Lusztig involution on the highest weight crystal B(µ) is
defined by sending the highest weight element U to the lowest weight element U∗ and
extended to the remaining elements in B(µ) by
(7) (fn−iT )∗ = ei(T ∗), (en−iT )∗ = fi(T ∗), wt(T ∗) = w0 wt(T ).
We can extend this naively to SVn(λ) by acting on each irreducible component B(µ).
Define the (right) K-key tableau of a set-valued tableau T ∈ SVn(λ) by

K(T ) := k(min(T ∗)∗),
where min(T ) is the semistandard tableau obtained from T by taking the least entry
in each box of T .

Conjecture 6.1. Let λ be a partition. Define the sets
SVn

w(λ) := {T ∈ SVn(λ) | K(T ) � Kwλ},

SVn

w(λ) := {T ∈ SVn(λ) | K(T ) = Kwλ}.

Then we have
Lwλ(x;β) =

∑
T∈SVnw(λ)

wtβ(T ), Lwλ(x;β) =
∑

T∈SVnw(λ)

wtβ(T ),

Although at first glance Conjecture 6.1 looks rather different from our proved
formulas in the rectangular cases, we now will show that Equation (6) establishes
Conjecture 6.1 when λ is a rectangle.(6) To do so, we will construct a K-Lusztig
involution

? : SVn(λ)→ SVn(λ)
that also satisfies Equation (7), but is a twist of the Lusztig involution by an automor-
phism of the Uq(sln)-crystal SVn(λ) (i.e. it nontrivially permutes the irreducible com-
ponents). Let λ = rs be a rectangle and T ∈ SVn(λ). Define T ? to be the set-valued
tableau obtained by rotating the tableau 180◦ and then replacing each i 7→ n+ 1− i.
We note this is a well-known description of the Lusztig involution (also known as the
Schützenberger involution or evacuation [32]) on semistandard tableaux of shape λ.

Proposition 6.2. Let λ be a rectangle. The K-Lusztig involution ? satisfies Equa-
tion (7). Moreover, for T ∈ SVn(λ) as a tensor product of rows T = R1 ⊗ · · · ⊗ Rk,
we have

T ? = R∗k ⊗ · · · ⊗R∗1.

Proof. The first claim follows from the definition of the crystal operators. We leave the
details to the reader. For the second claim, we first note that T ? = R?k⊗· · ·⊗R?1, and
so it is sufficient to show R?1 = R∗1. This follows from a straightforward induction on
depth (i.e. the number of crystal operators applied from the highest weight element)
and Equation (7). �

Proposition 6.2 also suggests that Conjecture 6.1 holds for a definition of a (right)
K-key tableau by

K ′(T ) := k(min(T †)∗),

(6)Conjecture 6.1 has now been proven in [6].
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where T † is constructed from T according to any automorphism of SVn(λ) such that
wt(T †) = w0 wt(T ). However, given a (weak) K-crystal structure on SVn(λ), it would
be preferable to have a T † construction that matches the labeling of tableaux T by K-
keys K ′(T ) with the decomposition of the K-crystal by K-Demazure subcrystals, as is
the case with our K-Lusztig involution T ?. Furthermore, it is likely that in general we
want T ? = R∗k⊗ · · ·⊗R∗1 as in Proposition 6.2, but this would require an appropriate
K-rectification or insertion scheme in order to obtain a result back in SVn(λ).

We also believe there exists an insertion scheme analogous to the one given by
S. Mason in [35, Sec. 3.3] to construct a bijection between SVn

w(λ) and SLTwλ. This
will possibly be a variant of the insertion given in [5] similar to how Mason’s map is
a variant of the classical RSK algorithm.
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