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The rank enumeration of certain parabolic
non-crossing partitions

Christian Krattenthaler & Henri Mühle

Abstract We consider m-divisible non-crossing partitions of {1, 2, . . . ,mn} with the property
that for some t 6 n no block contains more than one of the integers 1, 2, . . . , t. We give a
closed formula for the number of multi-chains of such non-crossing partitions with prescribed
number of blocks. Building on this result, we compute Chapoton’s M -triangle in this setting
and conjecture a combinatorial interpretation for the H-triangle. This conjecture is proved for
m = 1.

1. Introduction
Non-crossing partitions have appeared in the combinatorial landscape in the early
1970s, and – despite their simple definition – have ever since served an important,
connecting purpose for many different aspects of algebraic combinatorics. Even though
they were considered under different names before (e.g. as planar rhyme schemes [6]),
their systematic study began only after Kreweras’ seminal article [26].

A (set) partition is a covering of the set [n] def= {1, 2, . . . , n} by non-empty, mutually
disjoint sets (so-called blocks) and it is non-crossing if there do not exist indices
1 6 i < j < k < l 6 n such that i, k belong to one block and j, l to another. We
obtain additional structure if we order non-crossing partitions by refinement, i.e. one
partition refines another if every block of the first partition is contained in some block
of the second. In fact, the resulting partial order (denoted by 6ref) endows the set of
non-crossing partitions with a rank function (where the rank is n minus the number
of blocks) and a lattice structure. This lattice of non-crossing partitions was studied
intensively from enumerative and structural points of view in [14, 15, 16, 34]. The
notion of m-divisible non-crossing partitions goes back to Edelman [14], and refers to
non-crossing partitions in which every block has size divisible by m.

A remarkable observation by Biane [9] (and independently Brady [10]) relates the
lattice of non-crossing partitions to a certain interval in the Cayley graph of the sym-
metric group with respect to the generating set of all transpositions. This construction
was generalised by Bessis [8] and by Brady and Watt [11] to finite irreducible Cox-
eter groups, for which combinatorial interpretations were given by Athanasiadis and
Reiner [4, 32]. Armstrong subsequently finished this stream of generalisation by de-
tailing how m-divisible non-crossing partitions are constructed for finite irreducible
Coxeter groups [1].
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Most recently, Williams introduced a generalisation of non-crossing partitions to
parabolic quotients of finite irreducible Coxeter groups [39], and this construction
was studied later for parabolic quotients of the symmetric group in [31, 30]. In this
article, we study a certain family of these parabolic non-crossing partitions, namely
those where one takes a parabolic quotient of the symmetric group with respect to
an initial segment of the list of adjacent transpositions. This particular family of
parabolic non-crossing partitions admits the following combinatorial interpretation.
We fix positive integers n, t such that t 6 n, and define a t-partition to be a partition
of [n] in which no block intersects the set [t] in more than one element. Such a t-
partition is non-crossing if there exist no four indices 1 6 i < j < k < l 6 n such that
either j 6 t and i, l belong to one block and j, k to another, or t < j and i, k belong
to one block and j, l to another. For t = 1 this construction reduces to the ordinary
non-crossing partitions introduced in the first two paragraphs.

Our main result provides a closed formula for the number of multi-chains of m-
divisible non-crossing t-partitions under refinement with prescribed ranks. For con-
venience, we denote the set of all m-divisible non-crossing t-partitions of [mn] by
NC(m)

n;t .

Theorem 1.1. Let m,n, t, l be positive integers, and let s1, s2, . . . , sl+1 be non-negative
integers with s1 + s2 + · · ·+ sl+1 = n− t. The number of multi-chains π1 6ref π2 6ref

· · · 6ref πl, where πi ∈ NC(m)
n;t and rk(πi) = s1 + s2 + · · ·+ si for i ∈ [l], is given by

(1) t(mn− t+ 1)− sl+1(t− 1)
n(mn− t+ 1)

(
n

s1

)(
mn

s2

)
· · ·
(
mn

sl

)(
mn− t+ 1

sl+1

)
.

The proof of Theorem 1.1 utilises generating functions and is carried out in Sec-
tion 3, after the necessary definitions have been recalled in Section 2.

As an application of Theorem 1.1 we compute a certain bivariate integer polyno-
mial, which can be seen as the generating function of the intervals of non-crossing
m-divisible t-partitions under refinement, weighted by the Möbius function. We call
this polynomial the M -triangle, denoted by M (m)

n;t . In the case t = 1, it was observed
by Chapoton (for m = 1) and Armstrong (for m > 1) that under certain substi-
tutions of the variables, one obtains two other bivariate integer polynomials, called
the F - and H-triangle, respectively [1, 12, 13]. These references also provide concrete
combinatorial realisations of those polynomials.

We show in Section 4 that the same substitutions – when applied to M (m)
n;t – yield

integer polynomials, too, see Theorem 4.3. In the last part of this article, Section 5,
we conjecture a combinatorial realisation of the H-triangle in terms of multi-chains of
filters in a certain partially ordered set on transpositions, see Conjecture 5.6. We con-
clude by proving this realisation in the case m = 1 (again with the help of generating
functions) using a lattice path model, see Theorem 5.13.

2. Preliminaries
2.1. Non-crossing partitions. Given an integer n > 0, a (set) partition is a fam-
ily of non-empty, mutually disjoint sets, called blocks, whose union is all of [n] def=
{1, 2, . . . , n}. For m > 0, a partition is m-divisible if every block has size divisible by
m. Given a partition π, we write bl(π) for the number of blocks of π, and define the
rank of π by rk(π) def= n− bl(π). A partition π refines a partition π′ if every block of
π is contained in some block of π′; we denote this relation by π 6ref π

′.
A partition is non-crossing if there are no indices i < j < k < l such that i, k

belong to one block and j, l belong to a different block. We denote the set of all
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m-divisible non-crossing partitions of [mn] by NC(m)
n . Non-crossing partitions were

introduced in [26], and the m-divisible case was studied in [14]. An excellent survey
on m-divisible non-crossing partitions and various related objects is [1].

For t ∈ [n], a t-partition is a partition where no block intersects the set [t] in
more than one element. A t-partition is non-crossing if there do not exist indices
i < j < k < l such that either j 6 t and i, l belong to one block and j, k belong
to a different block, or j > t and i, k belong to one block and j, l belong to another
block. We denote the set of allm-divisible non-crossing t-partitions of [mn] by NC(m)

n;t .
Clearly, we have NC(m)

n;1 = NC(m)
n .

The non-crossing condition can be visualised in terms of arc diagrams. Given a
t-partition π of [n], we draw n nodes, labelled by 1, 2, . . . , n, on a horizontal line,
where we colour the nodes in [t] in white and the remaining nodes in black. Then,
we connect two nodes i and j by an arc if and only if i and j are in the same block
of π and every k ∈ {i+1, i+2, . . . , j−1} is in a different block. This arc stays below
the nodes i+1, i+2, . . . , t and rises above the nodes max{i, t}+1,max{i, t}+2, . . . , j.
(If t = 1, then we use the convention that all nodes are black.) See Figure 1. Then,
an m-divisible t-partition of [mn] is non-crossing if and only if its arc diagram can be
drawn in such a way that no two arcs cross.

1 2 3

4 5 6 7 8 9 10 11 12 13 14

(a) The 2-divisible 3-partition
{

{1, 6, 7, 8}, {2, 9, 12, 13}, {3, 14}, {4, 5}, {10, 11}
}
is

non-crossing.

1 2 3

4 5 6 7 8 9 10 11 12 13 14

(b) The 2-divisible 3-partition
{

{1, 6, 7, 8}, {2, 9, 12, 13}, {3, 4, 5, 14}, {10, 11}
}

is
crossing.

Figure 1. Some arc diagrams of 2-divisible 3-partitions.
In this article, we want to study the poset(1) ofm-divisible non-crossing t-partitions

under refinement. The next lemma enables us to reuse many of the well-known prop-
erties of the case t = 1.

Lemma 2.1. The poset
(

NC(m)
n;t ,6ref

)
of m-divisible non-crossing t-partitions under

refinement is isomorphic to an order ideal(2) in
(

NC(m)
n ,6ref

)
.

Proof. If π is a t-partition, then we define the transformed partition π̃ via the map

i 7→

{
t+ 1− i, i 6 t,

i, i > t.

(1)Poset is short for partially ordered set.
(2)An order ideal in a poset is a collection of poset elements which is closed under going down in

the order.
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Essentially, π̃ is obtained by rotating all the white nodes by 180 degrees counter-
clockwise. It is then clear that π ∈ NC(m)

n;t if and only if π̃ ∈ NC(m)
n;1 , and the claim

follows. �

Corollary 2.2. The poset
(

NC(m)
n;t ,6ref

)
is graded of rank n − t, and the rank of

π ∈ NC(m)
n;t is n− bl(π).

Proof. The claim that
(

NC(m)
n;t ,6ref

)
is graded, and the claim that the rank of its

elements is n minus the number of blocks follows from Lemma 2.1 and [14, Section 4].
It remains to determine the maximal rank of elements of NC(m)

n;t , or equivalently the
minimal number of blocks. But this is clearly t, since by definition each element of [t]
must be in its own block, and this value is attained for instance by the partition{
{1, t+1, t+2, . . . , t+m−1}, {2, t+m, t+m+1, . . . , t+2m−2}, . . . ,
{t−1,(t−2)m+3,(t−2)m+4,. . . ,(t−1)m+1},{t, (t−1)m+2, (t−1)m+3,. . . ,mn}

}
. �

Remark 2.3. For m = 1, we recover a particular case of the parabolic non-crossing
partitions first considered in [31, 39], and later studied in [30].

Remark 2.4. We may view the elements of NC(m)
n;t as certain non-crossing parti-

tions on an annulus. To that end, we place t nodes, labelled by 1, 2, . . . , t, on the
inner boundary of an annulus (in clockwise order), and mn − t nodes, labelled by
t+1, t+2, . . . ,mn, on the outer boundary (in clockwise order, too).

Given an m-divisible partition π, we inscribe the convex hulls of the blocks of π
on this annulus. If none of these convex hulls touches the inner boundary more than
once, then π is in fact a t-partition. Modelling the non-crossing condition, however, is
a bit more intricate. One requirement, certainly, is that no two convex hulls intersect
in their interior. The other requirement is the following: if B is a non-singleton block
containing the node i for i ∈ [t], let j be the smallest node in Br{i}. This block casts
a shadow on the nodes t+1, t+2, . . . , j−1 which is impenetrable for blocks containing
i′ for i < i′ 6 t. Indeed, if we suppose that there is a block B′ containing i′ and
j′ ∈ {t+1, t+2, . . . , j−1}, then the blocks B and B′ would violate the non-crossing
condition for t-partitions.

6 1

6 2

6 3

1

2 3 4

5

6
7

8

9

10

11

12
13

14

(a) The annular diagram of the non-
crossing 3-partition from Figure 1a.

6 1

6 2

6 3

not satisfied, be-
cause the block
contains the white
node 3

1

2 3 4

5

6
7

8

9

10

11

12
13

14

(b) The annular diagram of the crossing 3-
partition from Figure 1b.

Figure 2. Some annular diagrams of 3-partitions.
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A t-partition is non-crossing if and only if it can be inscribed on an annulus in the
previously described manner. See Figure 2a for an illustration of this construction for
the non-crossing 3-partition{

{1, 6, 7, 8}, {2, 9, 12, 13}, {3, 14}, {4, 5}, {10, 11}
}
.

We may “unfold” this annular diagram into the arc diagram from Figure 1a by order-
ing the vertices from 1, 2, . . . , n and cutting the arc connecting the biggest with the
smallest element in each block.

Note that the crossing 3-partition{
{1, 6, 7, 8}, {2, 9, 12, 13}, {3, 4, 5, 14}, {10, 11}

}
can be inscribed on this annulus in a non-crossing fashion, too, see Figure 2b. However,
it violates the shadow-condition: the block containing 1 and 6 casts a shadow on
the nodes 4 and 5 which makes them invisible to node 3, while 3, 4 and 5 are in
the same block. Indeed, if we unfold the annular diagram to an arc diagram, then
the arc sequences representing the block {1, 6, 7, 8} and {3, 4, 5, 14} would cross. See
Figure 1b.

For work on non-crossing partitions on an annulus without the shadow-condition
see [21] and the references contained therein.

2.2. Weighted generating functions and Lagrange Inversion. Let
x1, x2, . . . be formal variables, and set x0

def= 1. We define the weight of π ∈ NC(m)
n by

w(m)(π) def=
∞∏
i=1

x
#(blocks of π of size mi)
i .

For example, the partition displayed in Figure 1a has weight x3
1x

2
2, the one in Fig-

ure 1b has weight x1x
3
2. Moreover, we write |π| for the size of π, i.e. for the number

of elements of the set which is partitioned by π.
We first study the case t = 1, and define

NC(m)
•

def=
∞⋃
n=0

NC(m)
n ,

where, again by definition, NC(m)
0 consists of just one element, namely the empty

partition. Moreover, we define the generating function of m-divisible non-crossing
partitions according to weight by

C(m)(z) def=
∑

π∈NC(m)
•

w(m)(π)z|π|.

Lemma 2.5. For m > 1, we have

(2) C(m)(z) =
∞∑
i=0

xiz
miC(m)(z)mi.

Proof. Node 1 must be in one of the blocks, say in a block of size mi. If v1 =
1, v2, . . . , vmi are all the nodes in this block in linear order, then the nodes between
vj and vj+1, for j ∈ [mi], (where we identify vmi+1 with v1) are involved in a smaller
m-divisible non-crossing partition. Equation (2) then follows by standard generat-
ing function calculus: the block containing 1 contributes the term xiz

mi, and the
“small” m-divisible non-crossing partitions between vj and vj+1 each contribute a
term C(m)(z) for j ∈ [mi]. �

Before we can move on to the case t > 1 we need to recall the Lagrange Inversion
formula.
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Lemma 2.6. Let f(z) be a formal power series with f(0) = 0 and f ′(0) 6= 0, and let
F (z) be its compositional inverse. Then, for all integers a and b,

(3)
〈
z0〉 zaF (z)b−1 =

〈
z0〉 zbf(z)a−1f ′(z),

and

(4) a
〈
z0〉 zaF (z)b = −b

〈
z0〉 zbf(z)a.

Proof. Equation (4) is equivalent to [20, Theorem 1.9b] or [35, Theorem 5.4.2]. The
form (3) is not easy to find explicitly in standard books. However, it can be derived
without great effort by “partial integration” from (4):

b
〈
z0〉 zbf(z)a =

〈
z−1〉( d

d z z
b

)
f(z)a

=
〈
z−1〉( d

d z

(
zbf(z)a

)
− zb

(
d

d z f(z)a
))

= −
〈
z−1〉 zb( d

d z f(z)a
)

= −a
〈
z−1〉 zbf(z)a−1f ′(z).

The coefficient of z−1 in the derivative of a Laurent series must necessarily be zero,
which explains the third equality above. �

From now on, let

(5) F (z) def= z∑∞
i=0 xiz

mi
,

and let f(z) denote its compositional inverse. Slightly rewriting (2), we see that it is
equivalent to

z = zC(m)(z)∑∞
i=0 xi

(
zC(m)(z)

)mi = F
(
zC(m)(z)

)
.

Thus we have zC(m)(z) = f(z).

Lemma 2.7. For m,n, t > 1 the generating function
∑
π∈NC(m)

n;t
w(m)(π) equals

(6) − 1
mn− t+ 1

〈
zt−2〉 (zF (z)−1 − 1

)t d
d z
(
F (z)−mn+t−1) .

Proof. Let π ∈ NC(m)
n;t . For j ∈ [t], the element j is contained in a block of size mij

of π, for some ij > 1. These blocks contribute a weight of xijzmij , for j ∈ [t], to the
generating function of m-divisible non-crossing t-partitions by weight.

Similar to the argument in the proof of Lemma 2.5, between the elements of these
blocks in the range {t+1, . . . ,mn} we find m(i1 + · · ·+ it)− t+ 1 “small” m-divisible
non-crossing t-partitions, each contributing a term C(m)(z) to the generating function.
We thus have∑
π∈NC(m)

n;t

w(m)(π) = 〈zmn〉
∑

i1+···+it>1
xi1 · · ·xitzm(i1+···+it)C(m)(z)m(i1+···+it)−t+1

=
〈
z0〉 ∑

i1+···+it>1
xi1 · · ·xitz−mn+t−1f(z)m(i1+···+it)−t+1.
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If we use (3) with b = m(i1 + · · ·+ it)− t+ 2, a = −mn+ t− 1 and the roles of f
and F interchanged, then this expression becomes〈

z0〉 ∑
i1+···+it>1

xi1 · · ·xitzm(i1+···+it)−t+2F (z)−mn+t−2F ′(z)

=
〈
z0〉 (zF (z)−1 − 1

)t
z−t+2F (z)−mn+t−2F ′(z),

which is equivalent to the expression in the statement of the lemma. �

3. Rank enumeration in
(
NC(m)

n;t ,6ref
)

In this section we eventually prove Theorem 1.1, and we prepare this proof with a
series of auxiliary results each touching a different aspect of the chain-enumeration in
the poset

(
NC(m)

n;t ,6ref

)
. We start with the enumeration of the elements in NC(m)

n;t

with respect to block structure and rank, and conclude the cardinality of NC(m)
n;t .

Theorem 3.1. Let m,n, t be positive integers, and let s, b1, b2, . . . , bn be non-negative
integers. The number of m-divisible non-crossing partitions in NC(m)

n;t with exactly bi
blocks of size mi, for i ∈ [n], equals

(7) (mn− t+ 1)(b1 + b2 + · · ·+ bn)−mn(b1 + b2 + · · ·+ bn − t)
(mn− t+ 1)(b1 + b2 + · · ·+ bn)

×
(

mn− t+ 1
b1 + b2 + · · ·+ bn − t

)(
b1 + b2 + · · ·+ bn
b1, b2, . . . , bn

)
.

Furthermore, the number of m-divisible non-crossing partitions in NC(m)
n;t of rank s

equals

(8) mnt− (n− s)(t− 1)
n(mn− t+ 1)

(
mn− t+ 1
n− s− t

)(
n

s

)
,

and the total number of m-divisible non-crossing partitions in NC(m)
n;t is

(9) mt+ 1
mn+ 1

(
(m+ 1)n− t

n− t

)
.

Proof. For proving (7), we must extract the coefficient of

(10)
n∏
i=1

xbi
i

in
∑
π∈NC(m)

n;t
w(m)(π). We substitute the definition (5) of F (z) in (6) to obtain

− 1
mn− t+ 1

〈
zt−2〉( ∞∑

i=1
xiz

mi

)t
d

d z

z−mn+t−1

(
1 +

∞∑
i=1

xiz
mi

)mn−t+1


(11)

=
〈
zt−2〉( ∞∑

i=1
xiz

mi

)t
z−mn+t−2

(
1 +

∞∑
i=1

xiz
mi

)mn−t+1

−
〈
zt−2〉( ∞∑

i=1
xiz

mi

)t
z−mn+t−1

·

(
1 +

∞∑
i=0

xiz
mi

)mn−t
d

d z

( ∞∑
i=1

xiz
mi

)
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= 〈zmn〉
mn−t+1∑
`=0

(
mn− t+ 1

`

)( ∞∑
i=1

xiz
mi

)t+`

−
〈
z−1〉 z−mn mn−t∑

`=0

(
mn− t

`

)( ∞∑
i=1

xiz
mi

)t+`
d

d z

( ∞∑
i=1

xiz
mi

)

= 〈zmn〉
mn−t+1∑
`=0

(
mn− t+ 1

`

)( ∞∑
i=1

xiz
mi

)t+`

−
〈
z−1〉 z−mn mn−t∑

`=0

1
t+ `+ 1

(
mn− t

`

)
d

d z

( ∞∑
i=1

xiz
mi

)t+`+1

.

To the last term, we apply the easily verified fact

(12)
〈
z−1〉 f(z) d

d z

(
g(z)

)
= −

〈
z−1〉 d

d z

(
f(z)

)
g(z).

Thus, the above expression is turned into

〈zmn〉
mn−t+1∑
`=0

(
mn− t+ 1

`

)( ∞∑
i=1

xiz
mi

)t+`

−
〈
z−1〉 z−mn−1

mn−t∑
`=0

(
mn− t

`

)
mn

t+ `+ 1

( ∞∑
i=1

xiz
mi

)t+`+1

= 〈zmn〉
mn−t+1∑
`=0

((
mn− t+ 1

`

)
−
(
mn− t
`− 1

)
mn

t+ `

)( ∞∑
i=1

xiz
mi

)t+`

= 〈zmn〉
mn−t+1∑
`=0

(
mn− t+ 1

`

)
(mn− t+ 1)(t+ `)−mn`

(mn− t+ 1)(t+ `)

( ∞∑
i=1

xiz
mi

)t+`
.

As we said in the beginning, we must extract the coefficient of (10) in this expres-
sion. There is a single summand (in the sum over ` above) where we find this term:
the one with ` = b1 + b2 + · · ·+ bn − t, and its coefficient is (7).

In order to establish (8) we use Corollary 2.2 to see that the rank of π ∈ NC(m)
n;t

with block structure described in the statement of the theorem is

(13) rk(π) = n− (b1 + b2 + · · ·+ bn).

Thus, what we have to do is to set all xi’s equal to x and extract the coefficient of xn−s
in (6). We start with the equivalent expression (11), with the xi’s specialised to x:

− 1
mn− t+ 1

〈
zt−2〉( ∞∑

i=1
xzmi

)t
d

d z

z−mn+t−1

(
1 +

∞∑
i=1

xzmi

)mn−t+1


= − 1
mn− t+ 1

〈
zt−2〉xt( zm

1− zm

)t d
d z

(
z−mn+t−1

(
1 + x

zm

1− zm

)mn−t+1
)
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The coefficient of xn−s in this expression is

− 1
mn− t+ 1

〈
zt−2〉( zm

1− zm

)t d
d z

(
z−mn+t−1

(
mn− t+ 1
n− s− t

)(
zm

1− zm

)n−s−t)

=
〈
zt−2〉 z−mn+t−2

(
mn− t+ 1
n− s− t

)(
zm

1− zm

)n−s
− n− s− t
mn− t+ 1

〈
zt−2〉 z−mn+t−1

(
mn− t+ 1
n− s− t

)(
zm

1− zm

)n−s−1
mzm−1

(1− zm)2

= 〈zms〉
(
mn− t+ 1
n− s− t

)(
1

1− zm

)n−s
−m 〈zms〉

(
mn− t

n− s− t− 1

)(
1

1− zm

)n−s+1

=
(
mn− t+ 1
n− s− t

)(
n− 1
s

)
−m

(
mn− t

n− s− t− 1

)(
n

s

)
.

This is equivalent to the expression in (8). In order to obtain (9), one has to sum this
expression over all s using the Chu–Vandermonde summation formula, see e.g. [19,
Section 1, (5.27)], which is then followed by some simplification. �

Next we compute the generating function for the completions of elements in NC(m)
n;t

by multi-chains of fixed length.

Proposition 3.2. Let l > 2 be a positive integer, and let s′2, s3, . . . , sl+1 be non-
negative integers with s′2 + s3 + · · ·+ sl+1 = n− t. The generating function

(14)
∑′w(m)(π1),

where the sum is over multi-chains π1 6ref π2 6ref · · · 6ref πl of m-divisible non-
crossing partitions in NC(m)

n;t , where the rank of πi is s′2 + s3 + · · · + si, for i ∈
{2, 3, . . . , l}, is given by

(15) t(mn− t+ 1)− sl+1(t− 1)
mn− t+ 1

(
mn

s3

)
· · ·
(
mn

sl

)(
mn− t+ 1

sl+1

)
×
s3+···+sl+1+t−1∑

k=0

1
mn+ k + 1(−1)k+s3+···+sl+1+t−1

(
s3 + · · ·+ sl+1 + t− 1

k

)
·
〈
z0〉 zk+1F (z)−mn−k−1.

If l = 2, the empty product
(
mn
s3

)
· · ·
(
mn
sl

)
of binomial coefficients has to be interpreted

as 1.

Proof. We prove the assertion by induction on l.
For the start of the induction, we let l = 2 and we return to (6), which provides

the generating function for m-divisible non-crossing partitions π2 in NC(m)
n;t .

We consider the relation π1 6ref π2. How does π1 arise from π2? Clearly, what we
have to do is to split some of the blocks of π2 (possibly all) into smaller blocks to
obtain π1. More precisely, each block of π2 of size mb is replaced by an m-divisible
non-crossing partition ofmb elements. Hence, to model this in the generating function,
we will replace in (6) the variable xb by the coefficient of umb in xC(m)(u). (Recall
that C(m)(u) is the generating function for m-divisible non-crossing partitions.) Here,
the variable x keeps track of the number of blocks of π2 and, thus, by the equation

n− bl(π2) = rk(π2) = s′2,
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respectively equivalently,
bl(π2) = s3 + t

of the rank of π2. From the result we will then extract the coefficient of xs3+t to
obtain the generating function (14).

Now, the substitution of
〈
umb

〉
xC(m)(u) for xb, for b > 1, in the series F (z) yields

the expression

z

(
1 +

∞∑
b=1

zmb
〈
umb

〉
xC(m)(u)

)−1

= z
(

1 + x(C(m)(z)− 1)
)−1

= z

(
1 + x

(
f(z)
z
− 1
))−1

.(16)

Therefore, doing this substitution in (6), we arrive at

− 1
mn− t+ 1

〈
zt−2〉xt(f(z)

z
− 1
)t d

d z

(
z−mn+t−1

(
1 + x

(
f(z)
z
− 1
))mn−t+1

)
.

Extracting the coefficient of xs3+t, we obtain

− 1
mn− t+ 1

〈
zt−2〉(f(z)

z
− 1
)t d

d z

((
mn− t+ 1

s3

)
z−mn+t−1

(
f(z)
z
− 1
)s3)

=
〈
zt−2〉(mn− t+ 1

s3

)
z−mn+t−2

(
f(z)
z
− 1
)s3+t

− s3

mn− t+ 1
〈
zt−2〉(mn− t+ 1

s3

)
z−mn+t−1

(
f(z)
z
−1
)s3+t−1 d

d z

(
f(z)
z
−1
)

= 〈zmn〉
(
mn− t+ 1

s3

)(
f(z)
z
− 1
)s3+t

− s3

(mn− t+ 1)(s3 + t)
〈
z−1〉(mn− t+ 1

s3

)
z−mn

d
d z

(
f(z)
z
− 1
)s3+t

.

At this point, we use again (12) to see that the above expression can be rewritten as

〈zmn〉
(
mn− t+ 1

s3

)(
f(z)
z
− 1
)s3+t

− mns3

(mn− t+ 1)(s3 + t)
〈
z−1〉(mn− t+ 1

s3

)
z−mn−1

(
f(z)
z
− 1
)s3+t

= t(mn− t+ 1)− s3(t− 1)
(mn− t+ 1)(s3 + t)

(
mn− t+ 1

s3

)
〈zmn〉

(
f(z)
z
− 1
)s3+t

= t(mn− t+ 1)− s3(t− 1)
(mn− t+ 1)(s3 + t)

(
mn− t+ 1

s3

)
×
s3+t∑
k=0

(−1)s3+t+k
(
s3 + t

k

)
〈zmn〉

(
f(z)
z

)k
,

which is seen to be equivalent to (15) with l = 2, once we use (4) with a = k and
b = −mn− k and subsequently replace the summation index k by k + 1.

Next we perform the induction step. We assume that the assertion is true for
multi-chains consisting of l−1 elements and consider the multi-chain π1 6ref π2 6ref
· · · 6ref πl. The induction hypothesis implies that the generating function∑′w(m)(π2),
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where the sum is over all multi-chains π2 6ref · · · 6ref πl of m-divisible non-crossing
t-partitions, where the rank of πi is (s′2+s3)+s4+· · ·+si, for i ∈ {3, . . . , l}, is given by

(17) t(mn− t+ 1)− sl+1(t− 1)
mn− t+ 1

(
mn

s4

)
· · ·
(
mn

sl

)(
mn− t+ 1

sl+1

)
×
s4+···+sl+1+t−1∑

k=0

1
mn+ k + 1(−1)k+s4+···+sl+1+t−1

(
s4 + · · ·+ sl+1 + t− 1

k

)
·
〈
z0〉 zk+1F (z)−mn−k−1.

We now consider the relation π1 6ref π2. We already saw that, in order to model
this relation in the generating function, we have to replace the variable xb by the
coefficient of umb in xC(m)(u) everywhere. Again, the variable x keeps track of the
number of blocks of π2. By Corollary 2.2 we have

n− bl(π2) = rk(π2) = s′2,

respectively equivalently,

bl(π2) = s3 + s4 + · · ·+ sl+1 + t.

Hence, from the result of the substitution we will then extract the coefficient of
xs3+s4+···+sl+1+t to obtain the generating function (14).

Using (16), we see that the substitution of
〈
ub
〉
xC(m)(u) for xb in (17) leads to

t(mn− t+ 1)− sl+1(t− 1)
mn− t+ 1

(
mn

s4

)
· · ·
(
mn

sl

)(
mn− t+ 1

sl+1

)
×
s4+···+sl+1+t−1∑

k=0

1
mn+ k + 1(−1)k+s4+···+sl+1+t−1

(
s4 + · · ·+ sl+1 + t− 1

k

)

·
〈
z0〉 z−mn(1 + x

(
f(z)
z
− 1
))mn+k+1

.

The coefficient of xs3+s4+···+sl+1+t in this expression equals
t(mn− t+ 1)− sl+1(t− 1)

mn− t+ 1

(
mn

s4

)
· · ·
(
mn

sl

)(
mn− t+ 1

sl+1

)
×
s4+···+sl+1+t−1∑

k=0

1
mn+ k + 1(−1)k+s4+···+sl+1+t−1

(
s4 + · · ·+ sl+1 + t− 1

k

)

·
〈
z0〉 z−mn( mn+ k + 1

s3 +s4 + · · ·+sl+1 + t

)(
f(z)
z
− 1
)s3+s4+···+sl+1+t

= t(mn− t+ 1)− sl+1(t− 1)
(mn− t+ 1)(s3 + s4 + · · ·+ sl+1 + t)

(
mn

s4

)
· · ·
(
mn

sl

)(
mn− t+ 1

sl+1

)
×
s4+···+sl+1+t−1∑

k=0
(−1)k+1

(
mn+ k

s3 +s4 + · · ·+sl+1 + t−1

)(
s4 + · · ·+ sl+1 + t− 1

k

)

·
s3+s4+···+sl+1+t∑

`=0
(−1)s3+`

(
s3 +s4 + · · ·+sl+1 + t

`

)
·
〈
z0〉 z−mn−`f(z)`.

(18)

At this point we should note that the sums over k and ` have become com-
pletely independent. Moreover, the sum over k can be evaluated by means of the
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Chu–Vandermonde summation formula. Namely, we have
s4+···+sl+1+t−1∑

k=0
(−1)k

(
mn+ k

s3 + · · ·+ sl+1 + t− 1

)(
s4 + · · ·+ sl+1 + t− 1

k

)

= (−1)mn−s3−···−sl+1−t+1
s4+···+sl+1+t−1∑

k=0

(
−s3 − · · · − sl+1 − t

mn+ k − s3 − · · · − sl+1 − t+ 1

)
·
(

s4 + · · ·+ sl+1 + t− 1
s4 + · · ·+ sl+1 + t− 1− k

)
= (−1)mn−s3−···−sl+1−t+1

(
−s3 − 1
mn− s3

)
= (−1)s4+···+sl+1+t−1

(
mn

mn− s3

)
.

If we substitute this in (18) and use (4) with a = ` and b = −mn−`, and subsequently
replace the summation index k by k + 1, then we obtain exactly (15). �

We are now in the position to prove the rank enumeration with prescribed block
structure of the first element in the multi-chain.

Theorem 3.3. Let m,n, t, l be positive integers, and let s1, s2, . . . , sl+1, b1, b2, . . . , bn
be non-negative integers with s1 + s2 + · · ·+ sl+1 = n− t. The number of multi-chains
π1 6ref π2 6ref · · · 6ref πl in the poset of m-divisible non-crossing t-partitions with
the property that rk(πi) = s1 + s2 + · · ·+ si, for i ∈ [l], and that the number of blocks
of size mi of π1 is bi, for i ∈ [n], is given by

(19) t(mn− t+ 1)− sl+1(t− 1)
(mn− t+ 1)(b1 + b2 + · · ·+ bn)

(
b1 + b2 + · · ·+ bn
b1, b2, . . . , bn

)
×
(
mn

s2

)(
mn

s3

)
· · ·
(
mn

sl

)(
mn− t+ 1

sl+1

)
,

if b1 + 2b2 + · · ·+ nbn = n and s1 + b1 + b2 + · · ·+ bn = n, and 0 otherwise.

Proof. We use Proposition 3.2 with s′2 = s1 + s2. We have

n− bl(π1) = rk(π1) = s1,

or equivalently,
bl(π1) = s2 + s3 + · · ·+ sl+1 + t.

Hence, we must replace xb by xxb in (15) and extract the coefficient of

xs2+s3+···+sl+1+txb1
1 x

b2
2 · · ·xbn

n .

Doing the substitution xb → xxb in (15), we obtain

t(mn− t+ 1)− sl+1(t− 1)
mn− t+ 1

(
mn

s3

)
· · ·
(
mn

sl

)(
mn− t+ 1

sl+1

)
×
s3+···+sl+1+t−1∑

k=0

1
mn+ k + 1(−1)k+s3+···+sl+1+t−1

(
s3 + · · ·+ sl+1 + t− 1

k

)

· 〈zmn〉

(
1 + x

∞∑
i=1

xiz
mi

)mn+k+1

.
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Here we have to extract the coefficient of xs2+s3+···+sl+1+t. This is
t(mn− t+ 1)− sl+1(t− 1)

mn− t+ 1

(
mn

s3

)
· · ·
(
mn

sl

)(
mn− t+ 1

sl+1

)
×
s3+···+sl+1+t−1∑

k=0

1
mn+ k + 1(−1)k+s3+···+sl+1+t−1

(
s3 + · · ·+ sl+1 + t− 1

k

)

· 〈zmn〉
(

mn+ k + 1
s2 + s3 + · · ·+ sl+1 + t

)( ∞∑
i=1

xiz
mi

)s2+s3+···+sl+1+t

.

The sum over k is completely analogous to the sum over k in the proof of Propo-
sition 3.2 and, hence, can as well be evaluated by means of the Chu–Vandermonde
summation formula. In this way, the above expression turns into

(20) t(mn− t+ 1)− sl+1(t− 1)
(mn− t+ 1)(s2 + s3 + · · ·+ sl+1 + t)

(
mn

s3

)
· · ·
(
mn

sl

)(
mn− t+ 1

sl+1

)

×
(
mn

s2

)
〈zmn〉

( ∞∑
i=1

xiz
mi

)s2+s3+···+sl+1+t

.

Now we must extract the coefficient of xb1
1 x

b2
2 · · ·xbn

n in this expression. The result is

t(mn− t+ 1)− sl+1(t− 1)
(mn− t+ 1)(s2 + s3 + · · ·+ sl+1 + t)

(
mn

s3

)
· · ·
(
mn

sl

)(
mn− t+ 1

sl+1

)
×
(
mn

s2

)(
s2 + s3 + · · ·+ sl+1 + t

b1, b2, . . . , bn

)
,

or zero if s2 + s3 + · · · + sl+1 + t 6= b1 + b2 + · · · + bn. However, our assumptions do
indeed imply this relation. Little manipulation then leads to the expression (19). �

We may now embark on the proof of Theorem 1.1.

Proof of Theorem 1.1. We reuse (20). Since, at this point, all rank conditions of the
multi-chain π1 6ref π2 6ref · · · 6ref πl are already built in the calculation, it suffices
to put all the xi’s equal to 1 and then finish the calculation. Consequently, we get

t(mn− t+ 1)− sl+1(t− 1)
(mn− t+ 1)(s2 + s3 + · · ·+ sl+1 + t)

(
mn

s3

)
· · ·
(
mn

sl

)(
mn− t+ 1

sl+1

)

×
(
mn

s2

)
〈zmn〉

( ∞∑
i=1

zmi

)s2+s3+···+sl+1+t

= t(mn− t+ 1)− sl+1(t− 1)
(mn− t+ 1)(s2 + s3 + · · ·+ sl+1 + t)

(
mn

s3

)
· · ·
(
mn

sl

)(
mn− t+ 1

sl+1

)
×
(
mn

s2

)
〈zmn〉

(
zm

1− zm

)n−s1

= t(mn− t+ 1)− sl+1(t− 1)
(mn− t+ 1)(n− s1)

(
mn

s3

)
· · ·
(
mn

sl

)(
mn− t+ 1

sl+1

)
×
(
mn

s2

)
〈zms1〉

(
1

1− zm

)n−s1

.

Now the extraction of the coefficient of zms1 in the binomial series and little simpli-
fication finishes the proof. �

We record two corollaries of Theorem 1.1. The first corollary provides a simple
formula for the number of maximal chains in

(
NC(m)

n;t ,6ref

)
.
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Corollary 3.4. The number of maximal chains in the poset of m-divisible non-
crossing t-partitions equals mt(mn)n−t−1.

Proof. Choose l = n − t + 1, s1 = 0, s2 = s3 = · · · = sn−t+1 = 1, and sn−t+2 = 0 in
Theorem 1.1. �

The second corollary allows us to compute the zeta polynomial of
(

NC(m)
n;t ,6ref

)
,

i.e. the polynomial whose evaluation at l yields the total number of multi-chains of
length l − 1.

Corollary 3.5. For l > 1, the number of multi-chains π1 6ref π2 6ref · · · 6ref πl−1

in the poset
(

NC(m)
n;t ,6ref

)
equals

(21) Z(m)
n;t (l) def= (l − 1)mt+ 1

(l − 1)mn+ 1

(
n+ (l − 1)mn− t

n− t

)
.

Proof. In Theorem 1.1, we replace l by l − 1. What we have to do is to sum the
expression (1) over all possible s1, s2, . . . , sl. We have∑
s1+s2+···+sl=n−t

t(mn− t+ 1)− sl(t− 1)
n(mn− t+ 1)

(
n

s1

)(
mn

s2

)
· · ·
(
mn

sl−1

)(
mn− t+ 1

sl

)
=

∑
s1+s2+···+sl=n−t

t

n

(
n

s1

)(
mn

s2

)
· · ·
(
mn

sl−1

)(
mn− t+ 1

sl

)
−

∑
s1+s2+···+sl=n−t

t− 1
n

(
n

s1

)(
mn

s2

)
· · ·
(
mn

sl−1

)(
mn− t
sl − 1

)
.

Both multiple sums are iterated Chu–Vandermonde convolutions. Thus, we obtain

t

n

(
n+ (l − 1)mn− t+ 1

n− t

)
− t− 1

n

(
n+ (l − 1)mn− t

n− t− 1

)
= t

n

(
n+ (l − 1)mn− t

n− t

)
+ 1
n

(
n+ (l − 1)mn− t

n− t− 1

)
,

which can be simplified to the right-hand side of (21). �

4. The M-triangle of NC(m)
n;t

We now consider the (bivariate) generating function of the Möbius function in(
NC(m)

n;t ,6ref

)
; see [36, Section 3.7] for a definition of and some background on the

Möbius function of posets in general.

Definition 4.1. For positive integers m,n, t, we define the M -triangle of NC(m)
n;t by

(22) M
(m)
n;t (x, y) def=

∑
π1,π2∈NC(m)

n;t

µ(π1, π2)xrk(π1)yrk(π2),

where µ denotes the Möbius function of
(
NC(m)

n;t ,6ref
)
.

If t = 1, then we recover the type-A case of [1, Definition 5.3.1]. We may use
Theorem 1.1 to explicitly compute M (m)

n;t .
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Theorem 4.2. For positive integers m,n, t, the M -triangle of NC(m)
n;t equals

(23) M
(m)
n;t (x, y) =

n−t∑
r=0

n−t∑
s=r

(−1)s−r t(mn− t+ 1)− (n− t− s)(t− 1)
n(mn− t+ 1)

·
(
n

r

)(
mn− t+ 1
n− t− s

)(
mn+ s− r − 1

s− r

)
xrys.

Proof. We follow a strategy that has been applied earlier in [22, Section 8] and [25,
Section 9], and which exploits the equality

µ(π1, π2) = Z(m)
n;t (π1, π2;−1),

where Z(m)
n;t (π1, π2; z) is the polynomial whose evaluation at positive z yields the

number of multi-chains of length z − 1 which lie weakly between π1 and π2. This
equality is [36, Proposition 3.12.1(c)] tailored to our current situation.

In order to compute the coefficient of xrys of M (m)
n;t , we sum the zeta polynomials

Z(m)
n;t (π1, π2; z) over all π1, π2 ∈ NC(m)

n;t with rk(π1) = r and rk(π2) = s, and evaluate
the resulting expression at z = −1.

The zeta polynomials we require can be obtained from Theorem 1.1 by setting
l = z + 1, s1 = r, n − t − sl+1 = s, s2 + s3 + · · · + sl = s − r, and then summing
over all possible s2, s3, . . . , sl. By using the Chu–Vandermonde summation formula,
one obtains

t(mn− t+ 1)− (n− t− s)(t− 1)
n(mn− t+ 1)

(
n

r

)(
mn− t+ 1
n− t− s

)(
zmn

s− r

)
.

If we evaluate this expression at z = −1, then we obtain

(−1)s−r t(mn− t+ 1)− (n− t− s)(t− 1)
n(mn− t+ 1)

(
n

r

)(
mn− t+ 1
n− t− s

)(
mn+ s− r − 1

s− r

)
as desired. �

The main purpose of our consideration of the M -triangle of NC(m)
n;t is a surprising

connection conjectured in the case t = 1 by Chapoton in [12, 13] for m = 1, and
generalised by Armstrong in [1, Section 5.3] to m > 1.

This connection predicts the existence of two polynomials, denoted by F (m)
n;t and

H
(m)
n;t , with non-negative integer coefficients, that can be obtained from M

(m)
n;t by

certain substitutions of the variables. In the case t = 1, explicit combinatorial expla-
nations of these polynomials (as generating functions of certain combinatorial objects)
are known. For t > 1, we conjecture a combinatorial description of one of these poly-
nomials in Section 5.

Theorem 4.3. For positive integers m,n, t, there exist polynomials F (m)
n;t , H

(m)
n;t ∈

Z[x, y] with non-negative integer coefficients such that the following equalities hold:

F
(m)
n;t (x, y) = yn−tM

(m)
n;t

(
y + 1
y − x

,
y − x
y

)
= xn−tH

(m)
n;t

(
x+ 1
x

,
y + 1
x+ 1

)
,

H
(m)
n;t (x, y) =

(
x(y − 1) + 1

)n−t
M

(m)
n;t

(
y

y − 1 ,
x(y − 1)

x(y − 1) + 1

)
= (x− 1)n−tF (m)

n;t

(
1

x− 1 ,
x(y − 1) + 1

x− 1

)
,
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M
(m)
n;t (x, y) = (xy − 1)n−tF (m)

n;t

(
1− y
xy − 1 ,

1
xy − 1

)
= (1− y)n−tH(m)

n;t

(
y(x− 1)

1− y ,
x

x− 1

)
.

Proof. By Theorem 4.2, we have

H
(m)
n;t (x, y) def=

(
x(y − 1) + 1

)n−t
M

(m)
n;t

(
y

y − 1 ,
x(y − 1)

1 + x(y − 1)

)
=

∑
06r6s6n−t

(−1)s−r t(mn− t+ 1)− (n− t− s)(t− 1)
n(mn− t+ 1)

·
(
n

r

)(
mn− t+ 1
n− t− s

)(
mn+ s− r − 1

s− r

)
xsyr(y − 1)s−r

(
1 + x(y − 1)

)n−t−s
=

∑
06r6s6n−t

(−1)s−r t(mn− t+ 1)− (n− t− s)(t− 1)
n(mn− t+ 1)

·
(
n

r

)(
mn− t+ 1
n− t− s

)(
mn+ s− r − 1

s− r

)
xsyr(y − 1)s−r

·
n−t−s∑
k=0

(
n− t− s

k

)
xn−t−k−s(y − 1)n−t−k−s

=
∑

06r,k6n−t

(
n

r

)(
mn− t+ 1

k

)
xn−t−kyr(y − 1)n−t−k−r

×
n−t−k∑
s=r

(
t(mn− t+ 1)− k(t− 1)

n(mn− t+ 1) − (n− t− k − s)(t− 1)
n(mn− t+ 1)

)
·
(
−mn
s− r

)(
mn− t− k + 1
n− t− k − s

)
.

The sum over s can be evaluated by means of the Chu–Vandermonde summation
formula. This yields

H
(m)
n;t (x, y) =

∑
06r,k6n−t

(
n

r

)(
mn− t+ 1

k

)
xn−t−kyr(y − 1)n−t−k−r

·
(
t(mn− t+ 1)− k(t− 1)

n(mn− t+ 1)

(
−t− k + 1
n− t− k − r

)
− (mn− t− k + 1)(t− 1)

n(mn− t+ 1)

(
−t− k

n− t− k − r − 1

))

=
∑

06r,k6n−t

(
n

r

)(
mn− t+1

k

)
xn−t−kyr

n−t−k−r∑
h=0

(
n− t−k−r

h

)
(−1)hyn−t−k−r−h

·
(
t(mn− t+ 1)− k(t− 1)

n(mn− t+ 1)

(
−t− k + 1
n− t− k − r

)

− (mn− t− k + 1)(t− 1)
n(mn− t+ 1)

(
−t− k

n− t− k − r − 1

))

=
n−t∑
k=0

n−t−k∑
h=0

(−1)h
(
mn− t+ 1

k

)
xn−t−kyn−t−k−h

n−t−k−h∑
r=0

(
n

r

)
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·
(
t(mn− t+ 1)− k(t− 1)

n(mn− t+ 1)

(
−t− k + 1

h

)(
−t− k − h+ 1
n− t− k − r − h

)
− (mn− t−k+1)(t− 1)(n− t−k−r)

n(mn− t+ 1)h

(
−t− k
h− 1

)(
−t− k − h+ 1
n− t− k − r − h

))
=

n−t∑
k=0

n−t−k∑
h=0

(−1)h
(
mn− t+ 1

k

)(
−t− k + 1

h

)
xn−t−kyn−t−k−h

×
n−t−k−h∑

r=0

(
t(mn− t+ 1)− k(t− 1)

n(mn− t+ 1)

(
n

r

)(
−t− k − h+ 1
n− t− k − r − h

)
− (mn− t− k + 1)(t− 1)(n− t− k)

n(mn− t+ 1)(−t− k + 1)

(
n

r

)(
−t− k − h+ 1
n− t− k − r − h

)
− (mn− t− k + 1)(t− 1)n
n(mn− t+ 1)(t+ k − 1)

(
n− 1
r − 1

)(
−t− k − h+ 1
n− t−k−r−h

))
.

Now the sum over r can be evaluated by means of the Chu–Vandermonde summation
formula. Consequently, we obtain

H
(m)
n;t (x, y) =

n−t∑
k=0

n−t−k∑
h=0

(−1)h
(
mn− t+ 1

k

)(
−t− k + 1

h

)
xn−t−kyn−t−k−h

·
(
t(mn− t+ 1)− k(t− 1)

n(mn− t+ 1)

(
n− t− k − h+ 1
n− t− k − h

)
+ (mn− t− k + 1)(t− 1)(n− t− k)

n(mn− t+ 1)(t+ k − 1)

(
n− t− k − h+ 1
n− t− k − h

)
− (mn− t− k + 1)(t− 1)n
n(mn− t+ 1)(t+ k − 1)

(
n− t− k − h

n− t− k − h− 1

))
=

n−t∑
k=0

n−t−k∑
h=0

(
mn− t+ 1

k

)(
t+ k + h− 2

h

)
xn−t−kyn−t−k−h

·
(
m(n− k)− t+ 1
mn− t+ 1 − mhk

(mn− t+ 1)(t+ k − 1)

)
=

n−t∑
k=0

n−t−k∑
h=0

(
mn− t+ 1

k

)(
t+ k + h− 2

h

)
xn−t−kyn−t−k−h

·
(

1− mk(t+ k + h− 1)
(mn− t+ 1)(t+ k − 1)

)
=

n−t∑
k=0

n−t−k∑
h=0

((
mn− t+ 1

k

)(
t+ k + h− 2

h

)
−m

(
mn− t
k − 1

)(
t+ k + h− 1

h

))
xn−t−kyn−t−k−h.(24)

Using the restriction h 6 n− t− k, we see that

(mn− t+ 1)(t+ k − 1)−mk(t+ k + h− 1) > (mn− t+ 1)(t+ k − 1)−mk(n− 1)
> mk + (t− 1)(mn− k − t+ 1).

Since t > 1 by assumption and k 6 n − t due to the restriction on the first sum,
the above expression is evidently positive. This shows that the coefficients of this
polynomial are indeed positive integers.
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Now, using the expression for H(m)
n;t (x, y) found in (24), we compute

F
(m)
n;t (x, y) def= xn−tH

(m)
n;t

(
x+ 1
x

,
y + 1
x+ 1

)
=

n−t∑
k=0

n−t−k∑
h=0

((
mn− t+ 1

k

)(
t+ k + h− 2

h

)
−m

(
mn− t
k − 1

)(
t+ k + h− 1

h

))
(x+ 1)hxk(y + 1)n−t−k−h

=
n−t∑
k=0

n−t−k∑
h=0

((
mn− t+ 1

k

)(
t+ k + h− 2

h

)
−m

(
mn− t
k − 1

)(
t+ k + h− 1

h

))

·
h∑
a=0

n−t−k−h∑
b=0

(
h

a

)
xa+k

(
n− t− k − h

b

)
yb

=
n−t∑
a=0

n−t−a∑
b=0

n−t−a−b∑
k=0

n−t−k−b∑
h=a

(−1)n−t−k−b
(
mn− t+ 1

k

)
·
(
−t− k + 1

h

)(
h

a

)(
−b− 1

n− t− k − h− b

)
xa+kyb

−
n−t∑
a=0

n−t−a∑
b=0

n−t−a−b∑
k=0

n−t−k−b∑
h=a

(−1)n−t−k−bm
(
mn− t
k − 1

)
·
(
−t− k
h

)(
h

a

)(
−b− 1

n− t− k − h− b

)
xa+kyb

=
n−t∑
a=0

n−t−a∑
b=0

n−t−a−b∑
k=0

n−t−k−b∑
h=a

(−1)n−t−k−b
(
mn− t+ 1

k

)
·
(
−t−k+1

a

)(
−t−k−a+1

h− a

)(
−b− 1

n− t− k − h− b

)
xa+kyb

− (−1)n−t−k−bm
(
mn− t
k − 1

)
·
(
−t− k
a

)(
−t− k − a
h− a

)(
−b− 1

n− t− k − h− b

)
xa+kyb.

The sum over h can be evaluated by means of the Chu–Vandermonde summation
formula. If we additionally replace a by a− k, then we obtain

F
(m)
n;t (x, y) =

n−t∑
a=0

n−t−a∑
b=0

a∑
k=0

(
mn− t+ 1

k

)(
t+ a− 2
a− k

)(
n− 1

n− t− a− b

)
xayb

−
n−t∑
a=0

n−t−a∑
b=0

a∑
k=1

m

(
mn− t
k − 1

)(
t+ a− 1
a− k

)(
n

n− t− a− b

)
xayb.

Algebraic Combinatorics, Vol. 5 #3 (2022) 454



The rank enumeration of certain parabolic non-crossing partitions

Here, the sums over k can be evaluated by means of the Chu–Vandermonde summation
formula. Thus, we arrive at

F
(m)
n;t (x, y) =

n−t∑
a=0

n−t−a∑
b=0

((
mn+ a− 1

a

)(
n− 1

n− t− a− b

)
−m

(
mn+ a− 1

a− 1

)(
n

n− t− a− b

))
xayb

=
n−t∑
a=0

n−t−a∑
b=0

(
mn+ a− 1

a

)(
n

t+ a+ b

)
t+ b

n
xayb.(25)

The coefficient of xayb in F (m)
n;t (x, y) is clearly positive. The remaining equalities follow

easily. �

Let us call the polynomials F (m)
n;t and H(m)

n;t the F -triangle and the H-triangle, re-
spectively. Since Theorem 4.3 states that these polynomials have non-negative integer
coefficients, it is an intriguing challenge to explain these polynomials combinatorially.

For t = 1, such explanations were given in [1, Section 5.3], generalising the case
m = 1 from [12, 13]. The F -triangle is the generating function for faces of the m-
divisible cluster complex, where x marks the coloured positive roots, and y marks the
coloured negative simple roots. The H-triangle is the generating function for positive
chambers in the extended Shi arrangement, where x marks coloured floors and y
marks coloured ceilings.

Starting from these concrete definitions of the F -, H-, andM -triangle, it is far from
obvious that the relations from Theorem 4.3 hold; they were shown to be satisfied in
several papers [3, 22, 23, 25, 37, 38]. (These papers address a more general definition
of those triangles for finite Coxeter groups.)

Surprisingly, [18] defines F -, H-, and M -triangles in the context of yet another
generalisation of non-crossing partitions. Conjecture 1.2 and Corollary 5.5 in [18]
suggest that the relations from Theorem 4.3 should hold in their setting, too.

5. A conjectural combinatorial description of the H-triangle
5.1. Geometric multi-chains of filters of the triangular poset. For n > 1,
let

Tn
def=
{

(i, j) | 1 6 i < j 6 n}
be the set of ordered pairs of integers between 1 and n. We define a partial order on
Tn by setting

(26) (i, j) � (k, l) if and only if i > k and j 6 l

for all (i, j), (k, l) ∈ Tn. The poset (Tn,�) is the triangular poset of degree n. For
(i, j), (k, l) ∈ Tn we define their formal sum by

(i, j) + (k, l) def=
{

(i, l), if j = k,

⊥, otherwise,

which extends to subsets of Tn as follows:

A+B
def= {a+ b | a ∈ A, b ∈ B, a+ b 6= ⊥}.

A filter (of Tn) is a set X ⊆ Tn such that (i, j) ∈ X and (i, j) � (k, l) together
imply (k, l) ∈ X. A multi-chain of filters (of Tn) is a tuple (Vm, Vm−1, . . . , V1) of filters
with Vm ⊆ Vm−1 ⊆ · · · ⊆ V1 ⊆ Tn. The next definition is adapted from [2, page 180].
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Definition 5.1. Let V0 = Tn. A multi-chain of filters (Vm, Vm−1, . . . , V1) is geomet-
ric if
(27) Vi + Vj ⊆ Vi+j
holds for all indices i, j > 1 (where we set Vk = Vm for k > m), and
(28)

(
Tn r Vi

)
+
(
Tn r Vj

)
⊆ (Tn r Vi+j)

holds for all i, j > 1 with i+ j 6 m.

Now, for t ∈ [n], consider the filter

Tn;t
def=
{

(i, j) ∈ Tn | j > t
}
.

A t-filter is a filter of the poset (Tn;t,�), and a multi-chain of t-filters is a tuple
(Vm, Vm−1, . . . , V1) of t-filters with Vm ⊆ Vm−1 ⊆ · · · ⊆ V1.

By definition, every multi-chain of t-filters is a multi-chain of filters. We call a
multi-chain of t-filters geometric if it satisfies both (27) and (28).

Conjecture 5.2. The number of geometric multi-chains of t-filters (Vm,Vm−1, . . . ,V1)
is

mt+ 1
mn+ 1

(
(m+ 1)n− t

n− t

)
.

In fact, it may appear more natural to generalise the notion of geometric multi-
chains to Tn;t by adapting (28) so that we take complements with respect to Tn;t. This
definition, however, does not produce the desired number of geometric multi-chains
as the next example shows. The number that appears in Conjecture 5.2 is desirable,
because it is precisely the cardinality of NC(m)

n;t , see Theorem 3.1.

Example 5.3. Let m = 2, n = 3, and t = 2. Then, we have T3;2 =
{

(1, 3), (2, 3)
}
,

and the three 2-filters are ∅,
{

(1, 3)
}
, and

{
(1, 3), (2, 3)

}
. There exist the following

six multi-chains of 2-filters of length 2:(
∅,∅

)
,

(
∅,
{

(1, 3)
})
,

(
∅,
{

(1, 3), (2, 3)
})
,({

(1, 3)
}
,
{

(1, 3)
})
,
({

(1, 3)
}
,
{

(1, 3), (2, 3)
})
,
({

(1, 3), (2, 3)
}
,
{

(1, 3), (2, 3)
})
.

Since we have
(1, 3) + (1, 3) = (1, 3) + (2, 3) = (2, 3) + (2, 3) = ⊥,

we conclude that each of these multi-chains satisfies (27), and the adapted variant
of (28), where complements are taken in T3;2. If we take (28) as stated, however, then
we observe that

({
(1, 3)

}
,
{

(1, 3)
})

does not satisfy this condition, because

A = T3 r
{

(1, 3)
}

=
{

(1, 2), (2, 3)
}
,

and A+A =
{

(1, 3)
}
6⊆ A.

It follows that there are 5 = 2·2+1
2·3+1

(3·3−2
3−2

)
geometric multi-chains of 2-filters of

length 2.

Let us denote by NN(m)
n the set of all geometric multi-chains of filters of length m,

and let us denote by NN(m)
n;t the set of all geometric multi-chains of t-filters of

length m. As noted before, we have NN(m)
n;t ⊆ NN(m)

n with equality if and only if
t = 1.

Remark 5.4. One way to prove Conjecture 5.2 is by exhibiting an explicit bijection
from NC(m)

n;t to NN(m)
n;t .
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Moreover, we denote by
(
NN(m)

n;t ,⊆
)
the set NN(m)

n;t ordered by componentwise
inclusion.

Lemma 5.5. Let (Vm, Vm−1, . . . , V1) and (Wm,Wm−1, . . . ,W1) be two geometric multi-
chains of t-filters that form a covering pair in

(
NN(m)

n;t ,⊆
)
. Then, there exists a unique

index j ∈ [m] such that Vi = Wi for i 6= j and Vj andWj differ in exactly one element.

Proof. For t = 1, the claim follows from [2, Theorem 3.6], which states that the
geometric multi-chains of filters correspond bijectively to regions in the fundamental
chamber of the extended Shi arrangement. Moreover, the adjacency graph of these
regions corresponds to the poset diagram of

(
NN(m)

n ,⊆
)
. Then, crossing a wall in

the fundamental chamber corresponds to a covering pair in
(
NN(m)

n;t ,⊆
)
; the colour

of this wall determines the index j from the statement, and the normal vector of
the hyperplane supporting this wall determines the unique element in which the j-th
components of the multi-chains in question differ.

For t > 1, the claim follows from the fact that Tn;t is a filter of Tn, which implies
that covering pairs in

(
NN(m)

n;t ,⊆
)
are covering pairs in

(
NN(m)

n ,⊆
)
. �

Now, let V = (Vm, Vm−1, . . . , V1),W = (Wm,Wm−1, . . . ,W1) ∈ NN(m)
n;t be such

that W covers V in
(
NN(m)

n;t ,⊆
)
. We define

(29) flm(V,W) def= Wm r Vm,

which by Lemma 5.5 is either the empty set or a set consisting of a single pair (i, j).
For W ∈ NN(m)

n;t , we set

(30) FLm(W) def=
⋃

V∈NN(m)
n;t

V is covered byW

flm(V,W).

Finally, we denote by

Sn;t
def=
{

(t, t+1), (t+1, t+2), . . . , (n−1, n)
}

the set of minimal elements of
(
Tn;t,�

)
.

We may now use these definitions to conjecture a combinatorial explanation of the
H-triangle. For positive integers m,n, t we define

(31) H̃
(m)
n;t (x, y) def=

∑
V∈NN(m)

n;t

x|FL(V)|y|FL(V)∩Sn;t|.

Note that, for t = 1, we recover exactly the type-A case of [1, Definition 5.3.1].

Conjecture 5.6. For positive integers m,n, t we have H̃(m)
n;t (x, y) = H

(m)
n;t (x, y), i.e.

H̃
(m)
n;t (x, y) =

n−t∑
k=0

n−t−k∑
h=0

((
mn− t+ 1

k

)(
t+ k + h− 2

h

)
−m

(
mn− t
k − 1

)(
t+ k + h− 1

h

))
xn−t−kyn−t−k−h.

Example 5.7. Let us continue Example 5.3. Figure 3 shows
(
NN(2)

3;2,⊆
)
, where the

covering pairs are labelled by the map fl2 from (29). With S3;2 =
{

(2, 3)
}
, we compute

H
(2)
3;2 (x, y) = xy + x+ 3

in agreement with Theorem 4.3.
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(
∅,∅

)

(
∅,
{

(1, 3)
})

(
∅,
{

(1, 3), (2, 3)
})

({
(1, 3)

}
,
{

(1, 3), (2, 3)
})

({
(1, 3), (2, 3)

}
,
{

(1, 3), (2, 3)
})

∅

∅

{
(1, 3)

}

{
(2, 3)

}

Figure 3. The poset
(
NN(2)

3;2,⊆
)
.

5.2. A Dyck path model for m = 1. Let us now focus on the case m = 1.
In particular, we observe that now the “geometric” condition from Definition 5.1 is
vacuous, and the set NN(1)

n;t consists simply of the t-filters of Tn;t. We will think of
these filters equivalently as certain lattice paths.

A Dyck path is a lattice path starting at the origin, ending on the x-axis, and which
consists only of steps of the form (1, 1) (up-steps) and (1,−1) (down-steps) while never
going below the x-axis. The length of a Dyck path P is its number of steps, denoted
by `(P ). A t-Dyck path is a Dyck path that starts with t up-steps. Let Dn;t denote
the set of all t-Dyck paths of length 2n.

A valley of a Dyck path is a coordinate on this path which is preceded by a down-
step, and followed by an up-step.

Lemma 5.8. For positive integers n, t, the sets NN(1)
n;t and Dn;t are in bijection.

Proof. Such a bijection, say Θ, can be constructed by fitting a t-Dyck path below
the t-filter such that the minimal elements of V ∈ NN(1)

n;t correspond to the valleys of
Θ(V) ∈ Dn;t. �

See Figure 4 for an illustration.

Corollary 5.9. For m = 1, Conjecture 5.2 holds, i.e. the cardinality of NN(1)
n;t is

t+1
n+1

(2n−t
n−t

)
.

Proof. By Lemma 5.8 the cardinality of NN(1)
n;t equals the cardinality of Dn;t, which

by [24, Corollary 10.3.2] equals the desired quantity. �

Let us now describe what the map FL1 from (30) counts, when composed with the
bijection from Lemma 5.8.
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Figure 4. Illustration of Lemma 5.8. The green path belongs to D12;5,
the black dots represent the corresponding element of NN(1)

12;5.

A peak of a Dyck path is a coordinate on this path which is preceded by an up-step,
and followed by a down-step. We note that the set of peaks (or respectively, valleys)
uniquely determines a Dyck path. The height of a peak (or respectively a valley) is
its ordinate. For P ∈ Dn;t, we write v(P ) for the number of valleys of P , we write
p(P ) for the number of peaks of P , and we write r(P ) for the number of valleys of P
of height 0.

For P1, P2 ∈ Dn;t we say that P1 dominates P2 if P2 lies weakly below P1 (as a
lattice path). We denote(3) this relation by P1 6ddom P2. The partially ordered set(
Dn;t,6ddom

)
is isomorphic to

(
NN(1)

n;t,⊆
)
via the bijection from Lemma 5.8, and its

dual was for instance studied in [5, 7, 17, 27, 28]. Figure 5 shows
(
D4;2,6ddom

)
.

Proposition 5.10. For positive integers n, t we have

(32) H̃
(1)
n;t (x, y) =

∑
P∈Dn;t

xv(P )yr(P ).

Proof. Observe that, since we are in the case m = 1, the empty set is not in the
range of the map fl1. Now let W ∈ NN(1)

n;t and Q = Θ(W) ∈ Dn;t be the t-Dyck path
corresponding to W via the bijection from Lemma 5.8.

By construction, if V is covered by W, then there exists a unique valley of Q,
say at coordinate (p, q), such that Θ(V) agrees with Q except that it runs through
(p, q+2) instead of (p, q). More precisely, the path Θ(V) arises from Q by changing
the down-step before (p, q) into an up-step, and by changing the up-step after (p, q)
into a down-step. This establishes

∣∣FL1(W)
∣∣ = v(Q).

Now, let V be an element in
(
NN(1)

n;t,⊆
)
covered by W, and let P = Θ(V) be the

corresponding t-Dyck path. Again by construction, we find that fl1(V,W) ∈ Sn;t if
and only if P has a peak (p, 2) and Q has a valley (p, 0). Therefore

∣∣FL1(W)∩Sn;t
∣∣ =

r(Q). �

In Figure 5, we have labelled the elements of the poset additionally by the term
they contribute to H̃(1)

4;2 . The readers may convince themselves that Proposition 5.10

(3)Note that if a path dominates another, then it is smaller than the other path in this partial
order. Hence the subscript “ddom” for “dual domination”.
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{
(1, 4)

}

{
(1, 3)

} {
(2, 4)

}

{
(2, 4)

} {
(1, 3)

} {
(3, 4)

}

{
(2, 3)

} {
(3, 4)

} {
(1, 3)

}

{
(3, 4)

} {
(2, 3)

}

1

x

x x

x2 xy

xy x2y

x2y2

Figure 5. The poset
(
D4;2,6ddom

)
, overlaid by the poset

(
NN(1)

4;2,⊆
)
.

The edges are labelled by the map fl1 from (29). Next to each 2-filter
(respectively 2-Dyck path), in dark red, is the term it contributes to
H̃

(1)
4;2 (x, y).

holds. We obtain

H̃
(1)
4;2 (x, y) = x2y2 + x2y + x2 + 2xy + 3x+ 1,

which confirms Conjecture 5.6 in this case.

Remark 5.11. The combinatorial description of H̃(1)
n;t (x, y) described in Proposi-

tion 5.10 was found with the help of FindStat [33]. In [29, Section 5], a combinatorial
description of H(1)

n;t (x, y) is conjectured, which counts t-Dyck paths according to
various kinds of peaks. We leave it as a challenge for the readers to give a bijection
on Dn;t that exchanges the corresponding pairs of statistics.
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Before we conclude this article with the proof of Conjecture 5.6 in the case m = 1,
we recall the Lagrange–Bürmann formula.

Lemma 5.12 ([20, Theorem 1.9b]). Let f(z) and g(z) be formal power series with
f(0) = 0, and let F (z) be the compositional inverse of f(z). Then, for all non-zero
integers a,

〈za〉 g
(
F (z)

)
= 1
a

〈
z−1〉 g′(z)f−a(z).

Theorem 5.13. For m = 1, Conjecture 5.6 holds, i.e. H(1)
n;t (x, y) = H̃

(1)
n;t (x, y) for all

positive integers n and t.

Proof. We first determine the generating function for (all) Dyck paths, where z keeps
track of the length and x keeps track of the number of valleys, see (33) below. Based
on that equation, we then determine the generating function for t-Dyck paths, where
again z keeps track of the length and x keeps track of the number of valleys, but
where also y keeps track of the valleys at height 0, see (36).

A Dyck path can either be empty, it may have no valleys of height 0, or it may
have a valley of height 0. In the latter case, such a Dyck path may be decomposed
as uP1dP2, where u denotes an up-step, d denotes a down-step, and P1 and P2 stand
for Dyck paths, of which P1 can possibly be empty.

Let us abbreviate
D•

def=
⋃
n>0
Dn,

and let
D1(x; z) def=

∑
P∈D•

xv(P )z`(P )/2

denote the generating function for Dyck paths by the number of valleys. According
to the reasoning in the first paragraph of this proof, we obtain the equation

(33) D1(x; z) = 1 + zD1(x; z) + xzD1(x; z)
(
D1(x; z)− 1

)
.

Equivalently, writing D(x; z) def= D1(x; z)− 1, this can be rewritten as

(34) D(x; z)(
1 +D(x; z)

)(
1 + xD(x; z)

) = z.

In fact, we want to consider t-Dyck paths, which are precisely the Dyck paths that
start with t up-steps. Let us write

D•;t
def=

⋃
n>0
Dn;t,

and
D1,t(x, y; z) def=

∑
P∈D•;t

xv(P )yr(P )z`(P )/2.

A t-Dyck path may be decomposed in the form

(35) u . . . u︸ ︷︷ ︸
t times

(P1d) . . . (Ptd)(uP̄1d) . . . (uP̄sd),
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for some non-negative integer s, where the Pi’s and P̄i’s again stand for (possibly
empty) Dyck paths. In D1,t(x, y; z), the path P1 contributes a factor zD1(x; z), be-
cause it cannot be preceded by a valley. If i > 1, then the path Pi is preceded by
a valley (of height > 0) if and only if it is not empty, and therefore contributes a
factor z

(
1 +x

(
D1(x; z)− 1

))
. The collection of the P̄i’s forms an ordinary Dyck path

separated by its valleys of height 0, and therefore, this piece contributes a factor
∞∑
s=0

(
xyzD1(x; z)

)s = 1
1− xyzD1(x; z) .

We have just explained the following form for the generating function:

(36) D1,t(x, y; z) =
∞∑
s=0

(xy)s
(
zD1(x; z)

)s+1(
z
(
1 + x

(
D1(x; z)− 1

)))t−1
.

Proposition 5.10 then implies

H̃
(1)
n;t (x, y) = 〈zn〉D1,t(x, y; z)

= 〈zn〉
∞∑
s=0

(xy)s
(
zD1(x; z)

)s+1(
z
(
1 + x

(
D1(x; z)− 1

)))t−1

=
∞∑
s=0

(xy)s
〈
zn−t−s

〉 (
1 +D(x; z)

)s+1(1 + xD(x; z)
)t−1

.

By (34), the compositional inverse of D(x; z) is z
(1+z)(1+xz) . Lemma 5.12 with

F (z) = D(x; z) and g(z) = (1 + z)s+1(1 + xz)t−1 therefore yields

H̃
(1)
n;t (x, y) =

∞∑
s=0

(xy)s
〈
zn−t−s

〉
g
(
D(x; z)

)
= (xy)n−t +

n−t−1∑
s=0

(xy)s

n− t− s
〈
z−1〉((s+ 1)(1 + z)s(1 + xz)t−1

+ (t− 1)(1 + z)s+1x(1 + xz)t−2
)(

z

(1 + z)(1 + xz)

)−(n−t−s)

= (xy)n−t +
n−t−1∑
s=0

(xy)s

n− t− s
〈
zn−t−s−1〉((s+ 1)(1 + z)n−t(1 + xz)n−s−1

+ (t− 1)(1 + z)n−t+1x(1 + xz)n−s−2
)

= (xy)n−t +
n−t−1∑
s=0

(xy)s

n− t− s

·
〈
zn−t−s−1〉((s+ 1)

n−t∑
a=0

n−s−1∑
b=0

(
n− t
a

)(
n− s− 1

b

)
xbza+b

+(t− 1)
n−t+1∑
a=0

n−s−2∑
b=0

(
n− t+ 1

a

)(
n− s− 2

b

)
xb+1za+b

)
.

At this point, we read off the coefficient of zn−t−s−1 in the inner expression, that
is, the terms that correspond to za+b = zn−t−s−1. The underlying equation yields
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a = n− t− s− 1− b. Thus, we obtain

H̃
(1)
n;t (x, y) = (xy)n−t +

n−t−1∑
s=0

(xy)s

n− t− s

·

(
(s+ 1)

n−s−1∑
b=0

(
n− t

n− t− s− 1− b

)(
n− s− 1

b

)
xb

+(t− 1)
n−s−2∑
b=0

(
n− t+ 1

n− t− s− 1− b

)(
n− s− 2

b

)
xb+1

)
.

In the second sum, we replace the summation index b by b− 1, to get

H̃
(1)
n;t (x, y) = (xy)n−t +

n−t−1∑
s=0

(xy)s

n− t− s

·

(
(s+ 1)

n−s−1∑
b=0

(
n− t

n− t− s− 1− b

)(
n− s− 1

b

)
xb

+(t− 1)
n−s−1∑
b=0

(
n− t+ 1

n− t− s− b

)(
n− s− 2
b− 1

)
xb

)

= (xy)n−t+
n−t−1∑
s=0

n−s−1∑
b=0

xs+bys

n− t− s

(
(s+1)

(
n− t

n− t−s−1−b

)(
n−s−1

b

)
+(t− 1)

(
n− t+ 1

n− t− s− b

)(
n− s− 2
b− 1

))
.

Next we put b = r − s. Then the above expression becomes

H̃
(1)
n;t (x, y) = (xy)n−t +

n−t−1∑
s=0

n−1∑
r=s

xrys

n− t− s

(
(s+ 1)

(
n− t

n− t− r − 1

)(
n− s− 1
r − s

)
+(t− 1)

(
n− t+ 1
n− t− r

)(
n− s− 2
r − s− 1

))
= (xy)n−t +

n−t−1∑
s=0

n−t∑
r=s

xrys

n− t− s

(
(s+ 1)

(
n− t
r + 1

)(
n− s− 1
r − s

)
+(t− 1)

(
n− t+ 1
r + 1

)(
n− s− 2
r − s− 1

))
= (xy)n−t +

n−t−1∑
s=0

n−t∑
r=s

xrys
(n− t)! (n− s− 2)!

(r + 1)! (n− r − 1)! (r − s)! (n− t− r)!

·
(

(s+ 1)(n− s− 1)(n− t− r) + (t− 1)(n− t+ 1)(r − s)
n− t− s

)
= (xy)n−t +

n−t−1∑
s=0

n−t∑
r=s

xrys
(n− t)! (n− s− 2)!

(r + 1)! (n− r − 1)! (r − s)! (n− t− r)!

·
(
ns− sr + rt− 1 + n− 2r − st

)
.

The “running” denominator n − t − s has cancelled! We see by inspection that for
r = s = n− t the summand in the above double sum equals (xy)n−t, which is exactly
the separate term in the above expression. We may therefore integrate it into the
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double sum. Consequently, we have

H̃
(1)
n;t (x, y) =

n−t∑
r=0

r∑
s=0

xrys
(n− t)! (n− s− 2)!

(r + 1)! (n− r − 1)! (r − s)! (n− t− r)!

·
(

(n− t+ 1)(n− r − 1)− (n− s− 1)(n− t− r)
)

=
n−t∑
r=0

r∑
s=0

xrys
((

n− t+ 1
r + 1

)(
n− s− 2
r − s

)
−
(
n− t
r + 1

)(
n− s− 1
r − s

))
.

In the final step, we replace r by n− t− r and s by n− t− r− s. Thereby, we arrive
at

H̃
(1)
n;t (x, y) =

n−t∑
r=0

n−t−r∑
s=0

xn−t−ryn−t−r−s
((

n− t+ 1
r

)(
t+ r + s− 2

s

)
−
(
n− t
r − 1

)(
t+ r + s− 1

s

))
= H

(1)
n;t (x, y),

where the last line follows from the expression for H(m)
n;t (x, y) that we derived in (24).

�

Remark 5.14. By construction, it is obvious that multi-chains of t-filters correspond
to multi-chains of t-Dyck paths with respect to 6ddom. It remains to understand how
Conditions (27) and (28) translate to t-Dyck paths.

6. An extension to Coxeter groups
In this last section, we outline a possible construction of F -, H- and M -triangles, for
m = 1, in the setting of parabolic quotients of finite Coxeter groups. We wish to keep
this part brief and explain this extension only in the case of the symmetric group.
The general definitions for finite Coxeter groups can be found in [31, Section 6] or [39,
Chapter 5].

We fix a composition α = (α1, α2, . . . , αr) of n > 0 and colour a collection of nodes
labelled by 1, 2, . . . , n according to the components of α, that is, the nodes 1, 2, . . . , α1
are assigned the first colour, the nodes α1 + 1, . . . , α1 + α2 are assigned the second
colour, etc. An α-partition is a set partition of [n] for which no block contains two
nodes of the same colour. The arc diagram of an α-partition π is obtained as follows:
if i and j are adjacent members of some block of π, then we connect the nodes
labelled by i and j by an arc which leaves the node i (which has colour ci, say) to
the bottom, passes below all nodes of colour ci, passes above subsequent nodes, and
finally enters the node labelled j from above. An α-partition is non-crossing if its
diagram can be drawn such that no two arcs cross. Let NCα denote the set of all
non-crossing α-partitions. Figure 6 shows the refinement order on NC(2,2). Clearly, if
α = (t, 1, 1, . . . , 1) is a composition of n, then NCα = NC(1)

n;t.
We may thus define the M -triangle of NCα, denoted by Mα(x, y), analogously to

Definition 4.1. By inspection of Figure 6, we obtain

M(2,2)(x, y) = x2y2 − 2xy2 + 4xy + y2 − 4y + 1.

Note that, by construction, the rank of
(

NC(m)
n;t ,6ref

)
is n− t which is precisely the

exponent of the “correction factor” in the transformations of Theorem 4.3. The rank
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Figure 6. The poset
(

NC(2,2),6ref

)
.

of
(

NC(2,2),6ref

)
is 2, and we obtain

H(2,2)(x, y) =
(
x(y − 1) + 1

)2
M(2,2)

(
y

y − 1 ,
x(y − 1)

x(y − 1) + 1

)
= x2y2 + 2x2y−2x2 + 2xy + 2x+ 1,

F(2,2)(x, y) = y2M(2,2)

(
y + 1
y − x

,
y − x
y

)
= x2 + 4xy + y2 + 2x+ 4y + 1.

Note that H(2,2)(x, y) has a negative coefficient, and can therefore not arise in the
spirit of Proposition 5.10 as the sum over some lattice paths with respect to certain
statistics.

Conversely, consider the Dyck path Pα
def= Uα1Dα1Uα2Dα2 · · ·UαrDαr and de-

note by Dα the set of all Dyck paths of length 2n which stay weakly above Pα. It
follows from [31, Theorem 29] that NCα and Dα are in bijection, and, clearly, if
α = (t, 1, 1, . . . , 1) is a composition of n, then Dα = Dn;t. Figure 7 lists the elements
of D(2,1,2).

We may thus define the H̃-triangle of Dα, denoted by H̃α(x, y), analogously to
Proposition 5.10. By inspection of Figure 7, we obtain

H̃(2,1,2)(x, y) = x2y2 + x3 + 2x2y + 6x2 + 2xy + 6x+ 1.

Note that, by construction, the maximal number of valleys among the members of
Dn;t is n − t, which again is precisely the exponent of the “correction factor” in the
transformations of Theorem 4.3. The maximal number of valleys among members of
D(2,1,2) is 3, and we obtain

M̃(2,1,2)(x, y) = (1− y)3H̃(2,1,2)

(
y(x− 1)

1− y ,
x

x− 1

)
= x3y3−12x2y3 +9x2y2 +25xy3−30xy2−14y3 +8xy+21y2−9y+1,

F̃(2,1,2)(x, y) = x3H̃(2,1,2)

(
x+ 1
x

,
y + 1
x+ 1

)
= 14x3 + 4x2y + xy2 + 25x2 + 4xy + 12x+ 1.

We observe that the polynomial M̃(2,1,2)(x, y) cannot arise from some graded poset
P in the manner described in Definition 4.1. Indeed, if this were the case, then the
constant term of M̃(2,1,2)(x, y) forces P to have a unique minimal element which must
be covered by nine elements, because the coefficient of y is −9. However, the coefficient
of xy is 8, implying that P has only eight elements of rank 1 which is a contradiction.

We leave it as an exercise to the reader (perhaps using [30, Figure 7]) to verify that

M(2,1,2)(x, y) = x3y3 − 4x2y3 + 9x2y2 + 5xy3 − 22xy2 − 2y3 + 8xy + 13y2 − 8y + 1.
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x2y2 x2y xy x2y

x3 x2 x2 x2

x xy x2 x

x2 x2 x x

x x 1

Figure 7. The nineteen elements of D(2,1,2).

Using the transformations from Theorem 4.3, once again with correction exponent 3,
we obtain

H(2,1,2)(x, y) =
(
x(y − 1) + 1

)3
M(2,1,2)

(
y

y − 1 ,
x(y − 1)

x(y − 1) + 1

)
= x3y3 + x3y2 + 3x3y + 3x2y2−4x3 + 6x2y + 3xy + 5x+ 1,

F(2,1,2)(x, y) = y3M(2,1,2)

(
y + 1
y − x

,
y − x
y

)
= 2x3 + 12x2y + 4xy2 + y3 + 5x2 + 20xy + 4y2 + 4x+ 8y + 1.

Once again, H(2,1,2)(x, y) has a negative coefficient.
The previous examples show that the correspondence between F -, H- and M -

triangles is not so well-behaved for arbitrary parabolic quotients of the symmetric
group. Conjectures 5.3 and 5.4 in [30] claim that this correspondence holds precisely
when α has at most one component larger than 1. Computer experiments suggest that
this behaviour carries over similarly to Coxeter groups of other types. Remarkably,
the various F -triangles so obtained seem to always have non-negative coefficients,
maybe hinting at interesting combinatorics to be discovered.

Acknowledgements. The authors would like to thank Xun-Tuan Su for making us
aware of a mistake in a previous version of Corollary 3.4.
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