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Grothendieck polynomials and skew dual

stable Grothendieck polynomials

Fiona Abney-McPeek, Serena An & Jakin S. Ng

Abstract The Schur polynomials sλ are essential in understanding the representation theory
of the general linear group. They also describe the cohomology ring of the Grassmannians. For
ρ = (n, n− 1, . . . , 1) a staircase shape and µ ⊆ ρ a subpartition, the Stembridge equality states
that sρ/µ = sρ/µT . This equality provides information about the symmetry of the cohomology
ring. The stable Grothendieck polynomials Gλ, and the dual stable Grothendieck polynomials
gλ, developed by Buch, Lam, and Pylyavskyy, are variants of the Schur polynomials and describe
the K-theory of the Grassmannians. Using the Hopf algebra structure of the ring of symmetric
functions and a generalized Littlewood–Richardson rule, we prove that Gρ/µ = Gρ/µT and
gρ/µ = gρ/µT , the analogues of the Stembridge equality for the skew stable and skew dual
stable Grothendieck polynomials.

1. Introduction
In this paper, we prove a Stembridge-type equality for skew stable Grothendieck
polynomials and skew dual stable Grothendieck polynomials, namely

Gρ/µ = Gρ/µT , gρ/µ = gρ/µT ,

where ρ = (n, n− 1, . . . , 1) is the staircase partition.
The stable Grothendieck polynomials Gλ are K-theoretic analogues of the Schur

polynomials sλ, i.e. they provide information about the K-theory of the Grassmanian.
These formal power series were introduced by Fomin and Kirillov [3].

In [2], Buch gave a combinatorial definition of the skew stable Grothendieck poly-
nomials Gλ/µ using set-valued tableaux of shape λ/µ, which are certain fillings of the
skew Young diagram of the shape λ/µ with sets of positive integers. The dual stable
Grothendieck polynomials gλ, first introduced by Lam and Pylyavskyy in [6], are dual
to the Gλ’s under the Hall inner product. The formal power series gλ/µ is defined
using reverse plane partitions, which are certain fillings of the skew Young diagram
of the shape λ/µ with positive integers.

The skew stable and skew dual stable Grothendieck polynomials can be viewed as
deformations of the Schur polynomials in that their lowest and highest degree parts,
respectively, are the Schur polynomials. Thus, it is natural to ask whether certain
identities for the Schur polynomials can be extended to this context. For instance, it
was conjectured in [1, Conjecture 6.2] that there are analogues for gρ/µ and Gρ/µ of
the Stembridge equality [7, Corollary 7.32], which states that

sρ/µ = sρ/µT ,

Manuscript received 23rd March 2021, revised 2nd October 2021, accepted 6th October 2021.
Keywords. Stembridge equality, Grothendieck polynomial, Young tableau, Hopf algebra.

ISSN: 2589-5486 http://algebraic-combinatorics.org/

https://doi.org/10.5802/alco.199
http://algebraic-combinatorics.org/


Fiona Abney-McPeek, Serena An & Jakin S. Ng

for ρ = (n, n − 1, . . . , 1). In this paper, we verify that the conjectures hold. More
precisely, we prove that there is a Stembridge-type equality for the skew stable and
skew dual stable Grothendieck polynomials, thereby exhibiting additional symmetries
on the K-theory of the Grassmanians.

1.1. Outline of the paper. In Section 2, we begin by going over the basics
of symmetric functions, Schur polynomials, and skew stable and skew dual stable
Grothendieck polynomials. Then, we state the problem and introduce the Hopf
algebraic structure of the ring of symmetric functions Λ.

In Section 3.1, we give a combinatorial proof of Lemma 1.1, the Stembridge equal-
ity for skew dual stable Grothendieck polynomials gρ/µ in the special case where
µ = (k), using a generalized Littlewood–Richardson rule for the stable Grothendieck
polynomials proven by Buch [2].

Lemma 1.1. Let ρ = (n, n − 1, . . . , 1) be the staircase partition, and µ = (k) where
k 6 n. Then,

gρ/µ = gρ/µT .

In Section 3.2, we prove the Stembridge equality for skew dual stable Grothendieck
polynomials for general µ, as stated in the following theorem.

Theorem 1.2. Let ρ = (n, n − 1, . . . , 1) be the staircase partition, and µ ⊆ ρ any
subpartition. Then

gρ/µ = gρ/µT .

We extend Lemma 1.1, the case for µ = (k), to Theorem 1.2, the general case, by
utilizing the skewing operator ⊥ coming from the Hopf algebraic structure of Λ, along
with an involution τ of the completion Λ̂ constructed by Yelliusizov in [9, Theorem 1.1]
sending Gµ to GµT .

In Section 4, we use a similar strategy to prove the Stembridge equality for skew
stable Grothendieck polynomials Gρ/µ.

Theorem 1.3. Let ρ = (n, n − 1, . . . , 1) be the staircase partition, and µ ⊆ ρ any
subpartition. Then

Gρ/µ = Gρ/µT .

First, we prove the identity combinatorially for the case µ = (k) in Section 4.1,
and then generalize it to arbitrary µ in Section 4.1 using the skewing operator and an
involution τ of Λ, an analogue of τ sending gµ to gµT , introduced by Yelliusizov [9].

Remark 1.4. In Section 2.8, we prove that the converses of Theorem 1.2 and Theo-
rem 1.3 are true. That is, if Gρ/µ = Gρ/µT (respectively, gρ/µ = gρ/µT ) for all µ ⊆ ρ,
then ρ = (n, n − 1, . . . , 1) for some nonnegative integer n. This follows from Corol-
lary 2.30, the converse statement in the case of Schur polynomials, since sλ/µ is the
bottom degree component of Gλ/µ and the top degree component of gλ/µ.

2. Preliminaries
2.1. Partitions and Diagrams. A partition λ of a nonnegative integer n is a weakly
decreasing sequence of positive integers (λ1, λ2, . . . , λ`) whose sum is n. The integer
λi is the ith part of λ. The number of parts of λ is the length of λ, denoted `(λ). We
define |λ| = λ1 + λ2 + · · · + λ`. Denote the set of all partitions of n by Par(n), and
let Par :=

⋃
n>0 Par(n).

Definition 2.1. The Young diagram of a partition λ, denoted Y (λ), is a left-aligned
array with λi cells in the ith row from the top.
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For example,

is the Young diagram of λ = (5, 3, 3, 1).
If λ and µ are two partitions such that µi 6 λi for all i, then we write µ ⊆ λ and

say that µ is a subpartition of λ. We may additionally consider the skew partition λ/µ
whose skew Young diagram consists of the cells belonging to Y (λ) but not to Y (µ).
For example,

is the Young diagram of λ/µ = (5, 4, 2, 1)/(2, 1, 1). For a skew partition λ/µ, we define
|λ/µ| = |λ| − |µ|. We also identify the partition λ with the skew partition λ/∅.

The conjugate of a partition λ, denoted λT , is the partition whose ith part is
the number of entries of λ that are at least i. Equivalently, Y (λT ) is obtained from
Y (λ) by a reflection over the main diagonal. For example, (4, 2, 1) and (3, 2, 1, 1) are
conjugates, as seen from their Young diagrams below.

⇐⇒

Definition 2.2. Let ρn denote the staircase partition (n, n−1, . . . , 1) for some n > 1.
We may use ρ (omitting the n) to denote a general staircase partition of unspecified
size.

2.2. Symmetric Functions. A weak composition of n, for n ∈ N, is an infinite
sequence of nonegative integers α = (α1, α2, . . . ) with

∑
αi = n. Define xα :=

xα1
1 xα2

2 · · · . A homogeneous symmetric function of degree n is a formal power series

f(x) =
∑
α

cαx
α

such that α ranges over all weak composition of n, the cα are elements of some com-
mutative ring R, and for each permutation ω of the positive integers, f(x1, x2, . . . ) =
f(xω(1), xω(2), . . . ). For our purposes, we will take R = Q and let Λn denote the
set of all homogeneous symmetric functions of degree n over Q. Additionally, Λ =
Λ0 ⊕ Λ1 ⊕ · · · , the set of all symmetric functions, is a graded algebra over Q.

Definition 2.3. The elementary symmetric function en is given by

en :=
∑

i1<···<in

xi1 · · ·xin .

For a partition λ = (λ1, λ2, . . . ), let
eλ := eλ1eλ2 · · · .

The set {eλ} for all partitions λ forms a basis for Λ.
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Definition 2.4. The complete homogeneous symmetric function hn is given by

hn :=
∑

i16···6in

xi1 · · ·xin .

In particular, hn is the sum of all monomials with degree n. For a partition λ =
(λ1, λ2, . . . ), let

hλ = hλ1hλ2 · · · .

The set {hλ} for all partitions λ forms a basis for Λ.

2.3. Schur Polynomials.

Definition 2.5. A semistandard Young tableau (SSYT) of shape λ/µ is a filling of
the cells of Y (λ/µ) with positive integers such that the entries weakly increase within
each row and strictly increase within each column. A semistandard Young tableau T
has type α = (α1, α2, . . . ) where αi is the number of entries of T equal to i.

For example,
2 4

1 1 4
1 2 2
3 4
6

is a SSYT of shape (5, 4, 3, 2, 1)/(3, 1) and type (3, 3, 1, 3, 0, 1).
For a SSYT T of type α = (α1, α2, . . . ), let xT denote xα1

1 xα2
2 · · · .

Definition 2.6. For a skew shape λ/µ, the skew Schur polynomial sλ/µ in the vari-
ables x = (x1, x2, . . . ) is given by

sλ/µ =
∑
T

xT ,

where the sum is over all SSYT T of shape λ/µ. When µ = ∅, then sλ is the Schur
polynomial of λ.

Example 2.7. Every SSYT T of shape λ/µ = (2, 1, 1)/(1) is of one of the following
forms for some positive integers i < j < k.

i

i

j

j

i

j

i

j

k

j

i

k

k

i

j

Thus,

s(2,1,1)/(1) =
∑
i<j

x2
ixj +

∑
i<j

xix
2
j + 3

∑
i<j<k

xixjxk.

Next, we state two well-known properties of Schur polynomials (see [8, Chapter 7]).

Theorem 2.8. For all skew partitions λ/µ, the skew Schur polynomial sλ/µ is a sym-
metric function.

Theorem 2.9. The set {sλ : λ ∈ Par(n)} forms a basis for Λn, and the set {sλ : λ ∈
Par} forms a basis for Λ.

Definition 2.10. The Hall inner product 〈·, ·〉 on Λ is defined so that the Schur
polynomials are orthonormal; that is, 〈sλ, sµ〉 = δλµ, the Kronecker delta.

Algebraic Combinatorics, Vol. 5 #2 (2022) 190



The Stembridge equality for skew (dual) stable Grothendieck polynomials

2.4. Dual Stable Grothendieck Polynomials.

Definition 2.11. A reverse plane partition of shape λ/µ is a filling of the cells of
Y (λ/µ) with positive integers such that the entries weakly increase within each row
and column. A reverse plane partition P has weight w = (w1, w2, . . . ), where wi is
the number of columns of P containing i.

For example,

1 2 2 4
1 2 5

1 2 2

is a reverse plane partition of shape (5, 4, 3)/(1, 1) and weight (2, 3, 0, 1, 1).
For a reverse plane partition P of weight w = (w1, w2, . . . ), let xP denote

xw1
1 xw2

2 · · · .

Definition 2.12. For a skew shape λ/µ, define the skew dual stable Grothendieck
polynomial gλ/µ to be

gλ/µ =
∑
P

xP ,

where the sum is over all reverse plane partitions P of shape λ/µ. When µ = ∅, then
gλ is the dual stable Grothendieck polynomial of λ.

Example 2.13. Every reverse plane partition P of shape λ/µ = (2, 2)/(1) takes on
one of the following forms, for some positive integers i < j < k.

i

i i

i

i j

j

i j

i

j j

i

j k

j

i k

Thus,

g(2,2)/(1) =
∑
i

x2
i +

∑
i<j

x2
ixj +

∑
i<j

xixj +
∑
i<j

xix
2
j + 2

∑
i<j<k

xixjxk.

As shown in [6], the dual stable Grothendieck polynomials gλ are symmetric func-
tions and form a basis for Λ.

Remark 2.14. The terms of highest degree in gλ/µ are achieved by reverse plane
partitions in which there are no numbers repeated in any column; that is, the columns
are strictly increasing. In other words, the reverse plane partition must also be a semi-
standard Young tableau. Thus, the terms of highest degree in gλ/µ form sλ/µ.

2.5. Stable Grothendieck Polynomials.

Definition 2.15. For two nonempty sets A and B of positive integers, we say that
A 6 B if maxA 6 minB and A < B if maxA < minB. A set-valued tableau of shape
λ/µ is then a filling of the boxes of Y (λ/µ) with nonempty sets of positive integers
such that the sets weakly increase along rows and strictly increase along columns.

Definition 2.16. Let the size of T , denoted by |T |, be the sum of the sizes of the sets
appearing in T .
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Example 2.17. The following is a set-valued tableau of shape (5, 4, 3)/(2, 1) and
size 15.

1, 2 2, 3, 4 7

3 3, 5 5

2 4, 5, 6 6

Definition 2.18. Let mi be the number of times that i appears in the set-valued
tableau T , and let xT = xm1

1 xm2
2 · · · . Then the skew stable Grothendieck polynomial

Gλ/µ is a formal power series given by

Gλ/µ :=
∑
T

(−1)|T |−|λ/µ|xT ,

where the sum is over all set-valued tableaux T of shape λ/µ. When µ = ∅, then Gλ
is the stable Grothendieck polynomial of λ.

Remark 2.19. A set-valued tableau of shape λ/µ filled with sets of size one is a
semi-standard Young tableau, corresponding to the monomials in Gλ/µ of lowest de-
gree. Thus, the terms of lowest degree in Gλ/µ form sλ/µ. The stable Grothendieck
polynomial has terms of arbitrarily large degree if |λ/µ| > 0.

Remark 2.20. Let Λ̂ be the completion of Λ, given by allowing infinite linear combi-
nations of a given basis (e.g. the Schur polynomials). The Hall inner product 〈·, ·〉 :
Λ× Λ→ Q can be extended to a pairing

〈·, ·〉 : Λ̂× Λ→ Q

by linearly extending 〈sλ, sµ〉 = δλµ as in [9]. The Gλ are symmetric functions, and
any symmetric formal power series f ∈ Λ̂ can be uniquely represented as an infinite
sum

∑
λ∈Par αλGλ with aλ ∈ Q. The Gλ are also dual to the gλ under the (extended)

Hall inner product; that is, 〈Gλ, gµ〉 = δλµ.

2.6. Hopf Algebras. The ring of symmetric functions Λ has a Hopf algebraic struc-
ture, as described in [3]. To compute ∆(f) for a symmetric function f ∈ Λ, we intro-
duce new indeterminates y1, y2, . . . and write the power series f(x1, x2, . . . , y1, y2, . . . )
as a finite sum

f(x1, x2, . . . , y1, y2, . . . ) =
k∑
i=1

pi(x1, x2, . . . )qi(y1, y2, . . . ),

for pi, qi ∈ Λ. Then

∆(f) =
k∑
i=1

pi ⊗ qi.

Lemma 2.21. The comultiplication acts on gλ as follows:

∆(gλ) =
∑
µ⊆λ

gµ ⊗ gλ/µ.

Proof. From the combinatorial definition,

gλ(x1, x2, . . . , y1, y2, . . . ) =
∑
P

xP ,
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summed over all reverse plane partitions P of shape λ with entries in the alphabet
x1 < x2 < · · · < y1 < y2 < · · · . Since the rows and columns of P are weakly increasing,
the restriction of the reverse plane partition to the alphabet x gives a reverse plane
partition Px of shape µ ⊆ λ, and the restriction to the alphabet y gives a reverse
plane partition Py of shape λ/µ.

Then,

gλ(x, y) =
∑
P

xPx · yPy =
∑
µ⊆λ

(∑
Px

xPx

)∑
Py

yPy

 =
∑
µ⊆λ

gµ(x)gλ/µ(y).

Thus, we indeed have that

∆(gλ) =
∑
µ⊆λ

gµ ⊗ gλ/µ. �

We next define the skewing operator ⊥ (see for instance [3], Section 2.8) which we
will use throughout the paper.

Definition 2.22. Let f ∈ Λ or f ∈ Λ̂. The skewing operator f⊥ : Λ→ Λ is defined by

f⊥(a) :=
k∑
i=1
〈f, bi〉ci,

where ∆(a) is written as ∆(a) =
∑k
i=1 bi ⊗ ci.

Theorem 2.23. For any partition µ ⊆ λ,

G⊥µ gλ = gλ/µ.

Proof. Recall from Lemma 2.21 that ∆(gλ) =
∑
µ⊆λ gµ⊗gλ/µ. Then by the definition

of the skewing operator,

G⊥µ gλ =
∑
ν

〈Gµ, gν〉gλ/ν

=
∑
ν

δµ,νgλ/ν

= gλ/µ. �

The skewing operator also has the following useful properties.

Lemma 2.24. For f, g ∈ Λ̂ and a ∈ Λ, we have

〈g, f⊥(a)〉 = 〈fg, a〉,

where 〈·, ·〉 denotes the extended Hall inner product.

Proof. For f = sλ, g = sν ∈ Λ, the equation reduces to Proposition 2.8.2 of [3], which
gives us that 〈sν , s⊥λ (a)〉 = 〈sλsν , a〉. Now, for any f =

∑
λ aλsλ, g =

∑
ν bνsν ∈ Λ̂,

the skewing operator distributes linearly, and the inner product is bilinear. Since a is
a finite linear combination of Schur polynomials, the terms of large degree in f and g
do not contribute to the final sum, since the inner product of a higher-degree Schur
polynomial with a will be zero. As a result, both inner products are sums of finitely
many terms. Thus since the Schur polynomials form a basis for Λ̂, the equation holds
true for general f, g. �

Algebraic Combinatorics, Vol. 5 #2 (2022) 193



Fiona Abney-McPeek, Serena An & Jakin S. Ng

Lemma 2.25. For f, g ∈ Λ and a ∈ Λ̂, we have

〈g, f⊥(a)〉 = 〈fg, a〉.

The proof for this lemma follows in a way analogous to that of Lemma 2.24, since
the terms of large degree in a can now be ignored. Here the Hall inner product is
linearly extended in the second coordinate.

2.7. The Stembridge Equality. The Stembridge equality describes an important
symmetry for the Schur polynomials and can be proved in a number of different ways
(e.g. Corollary 7.32 in [7] and Exercise 2.9.25 in [3]).

Theorem 2.26 (Stembridge Equality). Let ρ = (n, n− 1, . . . , 1) be the staircase par-
tition, and µ ⊆ ρ. Then

sρ/µ = sρ/µT .

In this paper, we extend the Stembridge equality to the skew stable and skew dual
stable Grothendieck polynomials.

In addition, the converse is true. That is, if sλ/µ = sλ/µT for all µ ⊆ λ, then
λ = (n, n−1, . . . , 1) for some nonnegative integer n. To prove this, we use Pieri’s rule,
a well-known fact described in [8, Theorem 7.15.7], for example.

Definition 2.27. A skew shape λ/ν is a horizontal strip if it has no two squares in
the same column, or a vertical strip if no two squares are in the same row.

Theorem 2.28 (Pieri’s Rule). We have

sλ/(k) =
∑
ν

sν ,

where ν ranges over all partitions ν ⊆ λ for which λ/ν is a horizontal strip of size k.
Similarly,

sλ/(1k) =
∑
ν

sν ,

where ν ranges over all partitions ν ⊆ λ for which λ/ν is a vertical strip of size k.

Theorem 2.29. If sλ/(k) = sλ/(1k) for all nonnegative integers k, then λ = ρn =
(n, n− 1, . . . , 1) for some nonnegative integer n.

Proof. Note that sλ/(k) is zero if and only if k is greater than the number of columns
in the Young diagram of λ, and sλ/(1k) is zero if and only if k is greater than the
number of rows in the Young diagram of λ. So we require that Y (λ) has the same
number of rows as columns; let this number be n.

We then require that λ/ν referenced in Theorem 2.28 (Pieri’s Rule) is a horizontal
strip of size k if and only if it is a vertical strip of size k, since the sν form a basis of Λ.

For the sake of contradiction, suppose that λ contains two consecutive parts of
the same size. Then there exists some ν such that λ/ν consists of the rightmost box
of these two rows. However, then λ/ν forms a vertical strip of length 2 but not a
horizontal strip, which is a contradiction.

Combining the fact that λ has n rows and n columns and that no two rows have
the same size, we have that λ must be ρn = (n, n − 1, . . . , 1) for some nonnegative
integer n, as desired. �
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Corollary 2.30. If for some partition λ, sλ/µ = sλ/µT for all partitions µ, then
λ = ρn = (n, n− 1, . . . , 1) for some nonnegative integer n.

In Section 2.8, we will extend this converse to the skew stable and skew dual stable
Grothendieck polynomials.

2.8. Statement of the Problem. Now, we are ready to introduce our first main
result, Theorem 1.2, an analogue of the Stembridge equality for the dual stable
Grothendieck polynomials, which states that for ρ = (n, n− 1, . . . , 1),

gρ/µ = gρ/µT .

We first prove a special case of this theorem, Lemma 1.1, for when µ is the partition
(k) or (k)T = (1k), in Section 3.1 using a bijection between set-valued tableaux. Then
we extend this to general µ using the stable Grothendieck polynomials and Hopf
algebraic structure of the symmetric functions in Section 3.2.

Our second main result, Theorem 1.3, is an analogue of the Stembridge equality
for the stable Grothendieck polynomials, stating that

Gρ/µ = Gρ/µT .

Similar to the dual stable Grothendieck polynomial case, we will first prove this the-
orem for µ = (k) or (1k) in Section 4.1 by finding a bijection between set-valued
tableaux. Then, we use the Hopf algebraic structure to extend to general µ in Sec-
tion 4.2.

Example 2.31. Consider ρ = (3, 2, 1) and µ = (2). The diagrams for ρ/µ and ρ/µT
are below.

⇐⇒

.

For ρ/µ, the top right section does not share any columns with the rest of the dia-
gram, so the number occupying the top right square is unconstrained by the remainder
of the diagram. Then

gρ/µ = g21 · g1,

the product of the two symmetric functions. The same argument holds for ρ/µT , since
the bottom left section is independent of the top right section, and so

gρ/µT = g1 · g21,

and the two polynomials are equal.

We can also prove the converses of our main results (Theorems 1.3 and 1.2) by
extending Corollary 2.30.

Theorem 2.32. If gρ/µ = gρ/µT or Gρ/µ = Gρ/µT , for all µ, then ρ = (n, n−1, . . . , 1)
for some nonnegative integer n.

Proof. As stated in Remarks 2.14 and 2.19, the equalities gρ/µ = gρ/µT and Gρ/µ =
Gρ/µT both require the Stembridge equality sρ/µ = sρ/µT , which in turn requires
ρ = (n, n− 1, . . . , 1) for some nonnegative integer n. �
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3. Proof for Dual Stable Grothendieck Polynomials
In this section we prove Theorem 1.2, by first proving with the special case when
µ = (k) or (1k) combinatorially, and then generalizing to arbitrary µ using the Hopf
algebraic structure of the symmetric functions.

3.1. Proof for µ = (k) or (1k). Our proof for Lemma 1.1 makes use of the skewing
operator ⊥, described in Section 2.6, and Theorem 3.4 by Buch [2].

Definition 3.1. Let w(T ) denote the reverse reading word of a set-valued tableau T ,
read top to bottom along a column, starting with the rightmost column and moving
left, and with the elements within a box read largest to smallest.(1)

For example, the following set-valued tableau has a reverse reading word of
743252153636542.

1, 2 2, 3, 4 7

3 3, 5 5

2 4, 5, 6 6

Definition 3.2. A reverse reading word is a lattice word if the ith instance of a+ 1
comes after the ith instance of a for all positive integers i and a. The content of a
word is (w1, w2, . . . ) where wi is the number of times that i appears in the word.

For example, 1121322 is a lattice word, but 121221 is not.

Definition 3.3. Let ν ∗ µ denote the skew shape formed by joining the partitions ν
and µ such that the top right corner of µ touches the bottom left corner of ν.(2)

For example, we have (2, 1) ∗ (4) = (6, 5, 4)/(4, 4).

∗ =

Next, we have the following theorem, a Littlewood–Richardson rule for stable
Grothendieck polynomials, as shown by Buch ([2], Theorem 5.4).

Theorem 3.4 (Buch). Let ν and µ be two partitions. Then,

GνGµ =
∑
λ

(−1)|λ|−|ν|−|µ|cλνµGλ,

where cλνµ is the number of set-valued tableaux T of shape µ ∗ ν such that w(T ) is a
lattice word with content λ.(3)

A valid filling of a set-valued tableau T is a filling such that w(T ) is a lattice word
with content ρn = (n, n− 1, . . . , 1) for some n.

Lemma 3.5. In a valid filling of ν ∗µ, all boxes in the ith row of ν contain the set {i}.

(1)Here our definition of w(T ) is the reverse of the w(T ) as defined in [2].
(2)Our ν ∗ µ is the µ ∗ ν of [2].
(3)Here our cλνµ is in fact (−1)|λ|−|ν|−|µ|cλνµ as defined in [2]. Our Theorem 3.4 as stated here is

equivalent to Theorem 5.4 in [2], as our w(T ) is the reverse and our ν ∗ µ is flipped.
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Proof. The rightmost box in the first row of ν must contain the set {1}, because a
lattice word must begin with 1, so all boxes in the first row contain the set {1}, as rows
are increasing left to right. The rightmost box in the second row may only contain
numbers greater than 1, and in order for ν’s reading word to be a lattice word, this
box must contain the set {2}. Thus, all boxes of the second row contain the set {2}.
Analogously, we may inductively show that all boxes in the ith row of ν contain the
set {i}. �

If w(T ) = ρn, the integer j appears in the filling n− j+ 1 times. Since the columns
in a set-valued tableau are strictly increasing, there is at most one j in each column
of ν ∗ µ. In particular, in a valid filling of ν ∗ (1k), (1k) contains at most one of each
of the numbers 1, 2, . . . , n. In fact, the same holds for a valid filling of ν ∗ (k).

Lemma 3.6. In a valid filling of ν ∗ (k) with content ρn, the filling of (k) contains at
most one of each of the numbers 1, 2, . . . , n.

Proof. For the sake of contradiction, suppose that the filling of the shape (k) contains
at least two i’s. Note that i 6 n− 1 because the valid filling with content ρn contains
only one n. Then in the reverse reading word of the filling, all i+ 1’s are listed before
the second-to-last i. In other words, the (n − i)th i + 1 is listed before the (n − i)th
i, contradicting the assumption that the reverse reading word of the filling of ν ∗ (k)
is a lattice word. �

Theorem 3.7. We have cρ(k)ν = cρ(1k)ν for all positive integers k 6 n.

Proof. Considering Lemma 3.5 and Lemma 3.6, there is at most one i in the filling of
(k) (resp. (1k)) in a valid filling of ν ∗ (k) (resp. ν ∗ (1k)) with content ρn. This means
that filling of the ith row of ν contains exactly n− i+ 1 or n− i i’s. If i+ 1 is in the
filling (k) or (1k), it must be the (n − i)th occurrence of the value i + 1 in the valid
filling of ν ∗ (k) or ν ∗ (1k), respectively. Since there are at least n− i occurrences of
the value i found in ν, any arrangement of the numbers in (k) concatenated after the
reverse reading word of ν will form a lattice word.

So given a valid filling of ν ∗ (k), we can obtain a corresponding valid filling of
ν ∗ (1k) upon rotating (k) by 90 degrees clockwise. Similarly, given a valid filling of
ν ∗ (1k), we can obtain a corresponding valid filling of ν ∗ (k) upon rotating (1k) by
90 degrees counterclockwise. Therefore, there is a bijection between valid fillings of
ν ∗ (k) and ν ∗ (1k), and cρ(k)ν = cρ(1k)ν . �

For example, the following are corresponding set-valued tableaux under this bijec-
tion, for ρ = (5, 4, 3, 2, 1), ν = (4, 4, 2, 1), and (k) = (3).

1 1 1 1
2 2 2 2
3 3
4

1, 3 4 5

⇐⇒ 1 1 1 1
2 2 2 2
3 3
4

1, 3
4
5

Lemma 3.8. Fix ρ = (n, n− 1, . . . , 1) and some partition µ ⊆ ρ. If cρµν = cρ
µT ν

for all
partitions ν, then gρ/µ = gρ/µT .
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Proof. Assume that cρµν = cρ
µT ν

for all partitions ν. Recall from Theorem 3.4 that

GνGµ =
∑
ρ

(−1)|ρ|−|ν|−|µ|cρµνGρ,

so

〈GνGµ, gρ〉 = (−1)|ρ|−|ν|−|µ|cρµν
= (−1)|ρ|−|ν|−|µ

t|cρ
µT ν

= 〈GνGµT , gρ〉.

Combining with Lemma 2.24 and Theorem 2.23, we have

〈GνGµ, gρ〉 = 〈GνGµT , gρ〉

=⇒ 〈Gν , G⊥µ gρ〉 = 〈Gν , G⊥µT gρ〉
=⇒ 〈Gν , gρ/µ〉 = 〈Gν , gρ/µT 〉

for all partitions ν. Since theGν form a basis for Λ̂, we conclude that gρ/µ = gρ/µT . �

Now, we give the proof of Lemma 1.1.

Proof. By Theorem 3.7, we have that cρν(k) = cρ
ν(1k). Then Lemma 3.8 gives gρ/(k) =

gρ/(1k). �

3.2. Proof for All Partitions. Recall from Section 2.5 that Λ̂ is the completion
of Λ, the ring of symmetric functions.

We take the linear map τ : Λ̂ → Λ̂, given by continuously and linearly extending
Gλ 7→ GλT ; see for instance [9] or Corollary 6.7 of [2]. This map is a continuous ring
endomorphism and an involution of Λ̂.

We will begin by proving the following theorem.

Theorem 3.9. For ρ = (n, n− 1, . . . , 1) and all positive integers k, we have

e⊥k gρ = τ(ek)⊥gρ.

In order to do so, we shall first prove the following lemmas and propositions.

Lemma 3.10. The stable Grothendieck polynomial of shape (1k) can be written as

G(1k) =
∑
n>k

(−1)n−k
(
n− 1
k − 1

)
en.

Proof. The stable Grothendieck polynomial G(1k) is a sum over set-valued tableaux
T of shape (1k). All set-valued tableaux are strictly increasing along the columns, so
all entries are distinct in a set-valued tableau of shape (1k). Therefore, the monomial
xT for each set-valued tableau T is of the form xi1xi2 · · ·xin for positive integers
i1 < · · · < in, where n = |T |. Given n distinct entries, the number of ways to fill in T
is equal to the number of compositions of n into k nonempty parts, which is

(
n−1
k−1
)
.
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Therefore,

G(1k) =
∑
T

(−1)|T |−|1
k|xT

=
∑
n

∑
|T |=n

(−1)n−kxT

=
∑
n>k

(−1)n−k
(
n− 1
k − 1

) ∑
i1<···<in

xi1 · · ·xin

=
∑
n>k

(−1)n−k
(
n− 1
k − 1

)
en,

as desired. �

Proposition 3.11. We can write the elementary symmetric function ek as an infinite
sum of stable Grothendieck polynomials:

ek =
∑
n>k

(
n− 1
k − 1

)
G(1n).

Proof. By Lemma 3.10,∑
n>k

(
n− 1
k − 1

)
G(1n) =

∑
k6n

∑
n6j

(−1)j−n
(
n− 1
k − 1

)(
j − 1
n− 1

)
ej .(1)

For a given j > k, the coefficient of ej on the right hand side of (1) is

∑
k6n6j

(−1)j−n
(
n− 1
k − 1

)(
j − 1
n− 1

)
=

∑
k6n6j

(−1)j−n
(
j − 1
k − 1

)(
j − k
n− k

)

=
(
j − 1
k − 1

)
δkj = δkj ,

where the first simplification comes from trinomial revision and the second comes
from the fact that the alternating sum of a row of binomial coefficients (besides the
first row) is 0. This means that the coefficient of ej in (1) is 0 for all j 6= k and 1 for
j = k, so

ek =
∑
n>k

(
n− 1
k − 1

)
G(1n). �

Lemma 3.12. The skewing operator ⊥ distributes over well-defined infinite sums; that
is, for any a ∈ Λ and f1, f2, · · · ∈ Λ̂,(∑

i>1
fi

)⊥
(a) =

∑
i>1

f⊥i (a).

Proof. Let ∆(a) =
∑

(a) a(1) ⊗ a(2). Then(∑
i>1

fi

)⊥
(a) =

∑
(a)

〈∑
i>1

fi, a(1)

〉
a(2).
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Since the Hall inner product on Λ̂ × Λ 7→ Z is bilinear and continuous in its first
argument, we expand to get(∑

i>1
fi

)⊥
(a) =

∑
(a)

∑
i>1
〈fi, a(1)〉a(2)

=
∑
i>1

∑
(a)

〈fi, a(1)〉a(2)

=
∑
i>1

f⊥i (a). �

Finally, we can give the proof of Theorem 3.9.

Proof. Observe that τ is a continuous ring endomorphism of Λ̂, as is the skewing
operator by Lemma 3.12. Applying Proposition 3.11 to decompose ek as a linear
combination of G(1n), and applying Lemma 1.1 to write G⊥(1n)(gρ) = G⊥(n)(gρ) gives:

τ(ek)⊥(gρ) = τ
(∑
n>k

(
n− 1
k − 1

)
G(1n)

)⊥
(gρ)

=
∑
n>k

(
n− 1
k − 1

)
τ(G(1n))⊥(gρ)

=
∑
n>k

(
n− 1
k − 1

)
G⊥(n)(gρ)

=
∑
n>k

(
n− 1
k − 1

)
G⊥(1n)(gρ)

=
(∑
n>k

(
n− 1
k − 1

)
G(1n)

)⊥
(gρ)

= e⊥k gρ. �

Now, in order to prove Theorem 1.2, we need the following lemmas, which are
inspired by Exercises 2.9.24 and 2.9.25 in [3].

Lemma 3.13. Let ψ be an arbitrary continuous ring endomorphism of Λ̂. Then for
any given a ∈ Λ, the set A = {f ∈ Λ̂ : f⊥(a) = ψ(f)⊥(a)} is closed under finite
multiplication and (possibly infinite) addition of its elements.

Proof. First, we show that if f1, f2, · · · ∈ A, then
∑
i>1 fi ∈ A. By considering

Lemma 3.12 and using the fact that ψ is a continuous ring endomorphism of Λ̂,
we have (

ψ
(∑
i>1

fi

))⊥
(a) =

(∑
i>1

ψ(fi)
)⊥

(a)

=
∑
i>1

ψ(fi)⊥(a)

=
∑
i>1

f⊥i (a)

=
(∑
i>1

fi

)⊥
(a),

so indeed,
∑
i>1 fi ∈ A.
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Next, we show that if f1, f2 ∈ A, then f1f2 ∈ A. First, notice that if 〈k, f1〉 = 〈k, f2〉
for all k ∈ Λ, then f1 = f2. This is because each f1 and f2 can be written uniquely as
a (possibly infinite) linear combination of Schur polynomials sλ, and taking k to be
sλ for all λ in turn, gives us that f1 and f2 have the same coefficient for all sλ. Thus,
it suffices to show that 〈k, (f1f2)⊥(a)〉 = 〈k, (ψ(f1f2))⊥(a)〉 for all k ∈ Λ.

Repeatedly applying the property from Lemma 2.24, and using the fact that
f1, f2 ∈ A, we can do the following manipulation:

〈k, (f1f2)⊥(a)〉 = 〈f1f2k, a〉

= 〈f2k, f
⊥
1 (a)〉

= 〈f2k, ψ(f1)⊥(a)〉
= 〈ψ(f1)f2k, a〉
= 〈f2ψ(f1)k, a〉
= 〈ψ(f1)k, f⊥2 (a)〉
= 〈ψ(f1)k, ψ(f2)⊥(a)〉
= 〈ψ(f2)ψ(f1)k, a〉
= 〈ψ(f1f2)k, a〉
= 〈k, ψ(f1f2)⊥(a)〉.

This means that (f1f2)⊥(a) = ψ(f1f2)⊥(a), so indeed f1f2 ∈ A. Thus A is closed
under finite multiplication and (possibly infinite) addition. �

Corollary 3.14. The set A = {f ∈ Λ̂ : f⊥(gρ) = τ(f)⊥(gρ)}, where τ is the ring
homomorphism defined earlier by linearly extending Gλ 7→ GλT , is closed under finite
multiplication and infinite addition.

Now we are ready to prove Theorem 1.2.

Proof. By Theorem 3.9, we have e⊥k gρ = τ(ek)⊥gρ, so this means ek ∈ A = {f ∈
Λ̂ : f⊥(gρ) = τ(f)⊥(gρ)}. By Corollary 3.14, A is closed under multiplication and
possibly infinite sums, so for all λ we have eλ = eλ1eλ2 · · · eλn ∈ A. Since the eλ
form a basis for Λ̂ (if we allow infinite linear combinations), any symmetric function
f =

∑
λ aλeλ is in A. In particular, Gµ ∈ A, so

gρ/µ = G⊥µ gρ

= τ(Gµ)⊥gρ
= G⊥µT gρ

= gρ/µT . �

4. Proof for Stable Grothendieck Polynomials
In this section we prove Theorem 1.3, by first proving with the special case when
µ = (k) or (1k) combinatorially, and then generalizing to arbitrary µ using the Hopf
algebraic structure of the symmetric functions.

4.1. Proof for µ = (k) or (1k). Throughout this section, we denote the partition
(n, n − 1, . . . , 1) by ρn. The following theorem by Buch ([2], Theorem 6.9) allows us
to prove the special case when µ = (k) or (1k) combinatorially.
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Theorem 4.1 (Buch). For a skew partition λ/µ,

Gλ/µ =
∑
ν

(−1)|ν|−|λ/µ|αλ/µ,νGν ,

where the coefficient αλ/µ,ν is the number of set-valued tableaux T of shape λ/µ such
that w(T ) is a lattice word with content ν.

Now, we have the following recurrence for the αλ/µ,ν coefficients when λ = ρn and
µ = (k) for some positive integer k.

Lemma 4.2. Fix a partition ν = (ν1, ν2, . . . , νm), and let ν− = (ν2, . . . , νm). For given
positive integers k, n with k < n, we have

αρn/(k),ν = αρn−1/(k),ν− + 2αρn−1/(k−1),ν− .

Proof. Consider a set-valued tableau T of shape ρn/(k) such that w(T ) is a lattice
word with content ν. The rightmost box in the first row of T must contain the set {1},
so all boxes in the first row contain the set {1}. The rightmost box in the second row
must contain the set {2}, and similarly the rightmost n − k − 1 boxes in the second
row must all contain the set {2}.

1 1 1
B 2 2

Since rows are weakly increasing, there are three cases for the contents of the kth
box B in the second row: {1}, {2}, or {1, 2}.

Let the function f map the tableau T to the tableau T− by deleting all 1’s from
the boxes of T , deleting all now-empty boxes, and subtracting 1 from all remaining
numbers. Assuming that w(T ) is a lattice word, w(T−) is also a lattice word: the ith
a+1 coming before the ith a+2 in w(T ) corresponds to the ith a, which comes before
the ith a+ 1 in w(T−).

Case 1: B contains {1}.
Then, the leftmost k boxes in the second row must all contain the set {1}, since

the rows are weakly increasing.

1 1 1
1 1 1 2 2
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Applying f gives a tableau T− of shape ρn−1/(k) and content ν−, as illustrated
below.

1 1 1
1 1 1 2 2
2 2 2, 3 3
3 4 4
4 5
6

⇐⇒ 1 1
1 1 1, 2 2
2 3 3
3 4
5

Notice that if a tableau T− of shape ρn−1/(k − 1) has lattice reverse reading word,
then it necessarily corresponds to exactly one tableau T of shape ρn/(k) with lattice
reverse reading word where B contains {1}. Then these two sets are in bijection, so
there are αρn−1/(k),ν− tableaux T of shape ρn/(k) with lattice reverse reading word
where B contains {1}.

Case 2: B contains {2}.
Then the (k − 1)th leftmost box in the second row must contain {1}, as otherwise

the (n− k + 1)th 2 would come before the (n− k + 1)th 1 in w(T ) and it would not
be a lattice word.

1 1 1
1 1 2 2 2

Applying f gives a tableau T− of shape ρn−1/(k − 1) with content ν−, as shown
below.

1 1 1
1 1 2 2 2
2 3 3 3
3 4 4
4 5
6

⇐⇒ 1 1 1
1 2 2 2
2 3 3
3 4
5

Notice that as in case 1, f is a bijection here, so there are αρn−1/(k−1),ν− tableaux
T such that B contains {2}.

Case 3: B contains {1, 2}.
Then the leftmost k − 1 boxes in the second row must all contain the set {1}.

1 1 1
1 1 1, 2 2 2

The map f gives a tableau of shape ρn−1/(k−1) with content ν− which has reverse
column word a lattice word. Note that in this case, the inverse map will additionally
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insert an extra 1 in the kth box of the second row, as illustrated below.

1 1 1
1 1 1, 2 2 2
2 2 3 3
3 4 4
4 5
6

⇐⇒ 1 1 1
1 1 2 2
2 3 3
3 4
5

As above, we have a bijection, and so there are αρn−1/(k−1),ν− tableaux T such
that B contains {1, 2}.

Combining all three cases, we have

αρn/(k),ν = αρn−1/(k),ν− + 2αρn−1/(k−1),ν− . �

There exists a similar recurrence for the αλ/µ,ν coefficients when λ = ρn and
µ = (1k) for some positive integer k.

Lemma 4.3. Fix a partition ν = (ν1, ν2, . . . , νm), and let ν− = (ν2, . . . , νm). For a
given positive integer n, we have

αρn/(1k),ν = αρn−1/(1k),ν− + 2αρn−1/(1k−1),ν− .

Proof. Consider a set-valued tableau T of shape ρn/(1k) such that w(T ) is a lattice
word with content ν. The rightmost box in the first row of T must contain the set
{1}, so all boxes in the first row contain the set {1}. The rightmost box in the second
row must contain the set {2}, so all boxes in the second row must contain the set {2}.
Analogously, all boxes in the jth row for 1 6 j 6 k must contain the set {j}.

There are three possibilities for the leftmost box B in the k+ 1th row: B contains
{1}, a set without a 1, or a set containing 1 of size at least 2, as illustrated below.
Define f as in the previous lemma.

1 1 1 1 1
2 2 2 2
3 3 3

B

Case 1: B contains {1}.
There is a single 1 in each column, so applying f gives a tableau T− of shape

ρn−1/(k), as illustrated below.
Notice that if a tableau T− of shape ρn−1/(1k) has lattice reverse reading word,

then it necessarily corresponds to exactly one tableau T of shape ρn/(1k) with lattice
reverse reading word where B contains {1} (given by adding 1 to each number and
adding a box containing 1 to the top of each column). Then these two sets are in
bijection, so there are αρn−1/(1k),ν− tableaux T of shape ρn/(1k) with lattice reverse
reading word where B contains {1}.
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Then this case contributes αρn−1/(1k),ν− tableaux.

1 1 1 1 1
2 2 2 2
3 3 3

1 4 4
3, 4 5
6

⇐⇒ 1 1 1 1
2 2 2
3 3

2, 3 4
5

Case 2: B does not contain a 1.
Then the only 1’s in the entire set-valued tableau are in the first row, so f takes T

to a tableau of shape ρn−1/(k−1), as illustrated below. Notice that this is a bijection,
so there are αρn−1/(1k−1),ν− tableaux T where B does not contain a 1.

1 1 1 1 1
2 2 2 2
3 3 3

2, 3 4 4
5 5
6

⇐⇒ 1 1 1 1
2 2 2

1, 2 3 3
4 4
5

Case 3: B contains a set of size > 2 with a 1.
The 1’s in the tableau lie either in the top row or in B. Since the box containing

B is not deleted by f , T is mapped to a tableau of shape ρn−1/(k− 1), as illustrated
below. So there are αρn−1/(1k−1),ν− tableaux for this case, since f provides a bijection.

1 1 1 1 1
2 2 2 2
3 3 3

1, 3 4 4
5 5
6

⇐⇒ 1 1 1 1
2 2 2

2 3 3
3 4
5

Combining all three cases,
αρn/(1k),ν = αρn−1/(1k),ν− + 2αρn−1/(1k−1),ν− . �

Using induction and combining the two previous lemmas, we have the following
equality between α coefficients.

Lemma 4.4. We have αρn/(k),ν = αρn/(1k),ν for all positive integers n and nonnegative
integers k.

Proof. We use induction on n and only consider k 6 n, because otherwise αρn/(k),ν =
αρn/(1k),ν = 0. The base case of n = 1 is true because ρ1/(k) = ρ1/(1k) for k =
0, 1. Now suppose that for a given n, αρn/(k),ν = αρn/1k,ν for all k 6 n. Note that
ρn+1/(k) = ρn+1 = ρn+1/(1k) for k = 0. For 1 6 k 6 n,

αρn+1/(k),ν = αρn/(k),ν− + 2αρn/(k−1),ν−

= αρn/(1k),ν− + 2αρn/(1k−1),ν−

= αρn+1/(1k),ν .
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In addition, for k = n+ 1, we have ρn+1/(n+ 1) = ρn = ρn+1/(1n+1) by a trans-
lation. All together, αρn+1/(k),ν = αρn+1/(1k),ν for all k 6 n + 1. Thus, by induction,
αρn/(k),ν = αρn/(1k),ν for all positive integers n and nonnegative integers k. �

As a result of this relation between the α coefficients, we can now prove a
Stembridge-type equality for Gρ/µ in the special case where µ = (k) for some
nonnegative integer k.

Theorem 4.5. There is a Stembridge-type equality for the skew stable Grothendieck
polynomial in the case µ = (k), i.e.

Gρ/(k) = Gρ/(1k).

Proof. Combining Lemma 4.4 with Theorem 4.1,

Gρ/(k) =
∑
ν

(−1)|ν|−|ρ/(k)|αρ/(k),νGν

=
∑
ν

(−1)|ν|−|ρ/(1k)|αρ/(1k),νGν

= Gρ/(1k). �

4.2. Proof for All Partitions. Now, we will use the Hopf algebraic structure
to extend this result to all µ, proving Theorem 1.3, an analogue of the Stembridge
equality for Gρ/µ. First, we introduce two definitions and a useful theorem from
Buch [2].

Definition 4.6. A rook strip is a skew partition µ/σ that contains at most one box
in each row and column.

The following definition ([2, Equation 6.4]), will allow us to utilize the Hopf alge-
braic structure of Λ.

Definition 4.7 (Buch). Define Gλ//µ as

Gλ//µ =
∑
σ

(−1)|µ/σ|Gλ/σ,

where the sum is over all σ such that µ/σ is a rook strip.

The polynomials Gλ/µ are related to the polynomials Gλ//µ by the following the-
orem, as characterized by Buch ([2], Equation 7.4).

Theorem 4.8 (Buch). We have

Gλ/µ =
∑
σ⊆µ

Gλ//σ.

From the above definitions and theorem, we may prove the following lemma.

Lemma 4.9. If ρ is a staircase shape ρ = (n, n− 1, . . . , 1), then Gρ//(k) = Gρ//(1k).

Proof. In order for (k)/σ to be a rook strip, we need σ = (k) or (k − 1), so

Gρ//(k) = Gρ/(k) −Gρ/(k−1).

Similarly,
Gρ//(1k) = Gρ/(1k) −Gρ/(1k−1).

Combining with Theorem 4.5, we have Gρ//(k) = Gρ//(1k). �
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Buch ([2], Example 6.8) states that ∆(Gρ) =
∑
ν⊆ρGν ⊗ Gρ//ν . Then, using the

skewing operator from Definition 2.22 and the identity 〈gλ, Gµ〉 = δλµ, we have

g⊥µ (Gρ) =
∑
ν

〈gµ, Gν〉Gρ//ν

= 〈gµ, Gµ〉Gρ//µ
= Gρ//µ.

In [9], Yeliussizov constructs τ by linearly extending gλ 7→ gλT , and he shows that
τ is a ring homomorphism and an involution. We use τ in order to extend Lemma 4.9
to all µ.

Lemma 4.10. Let ψ be an arbitrary ring homomorphism of Λ. Then the set A = {f ∈
Λ : f⊥(a) = ψ(f)⊥(a) for a ∈ Λ̂} is a subalgebra of Λ.

Proof. From a similar argument as Lemma 3.13, using Lemma 2.25, we can show that
for f1, f2 ∈ A, we have f1 + f2 ∈ A and f1f2 ∈ A. �

Corollary 4.11. The set A = {f ∈ Λ : f⊥(Gρ) = τ(f)⊥(Gρ)} is a subalgebra of Λ.

Lemma 4.12. We have Gρ//µ = Gρ//µT .

Proof. Let A = {f ∈ Λ : f⊥(Gρ) = τ(f)⊥(Gρ)}. The polynomials g(k) are elements
of A, since

g⊥(k)(Gρ) = Gρ//(k) = Gρ//(1k) = g⊥(1k)(Gρ) = τ(g(k))⊥(Gρ).

By definition,

g(k) =
∑
P

xP ,

summed over reverse plane partitions P of shape (k). For a given reverse plane par-
tition P, the horizontal strip of length k is filled with numbers i1 6 · · · 6 ik.

i1 i2 · · · ik

Then, since each number appears once in each column,

g(k) =
∑
P

xP =
∑

i16···6ik

xi1 · · ·xik = hk.

Now, since g(k) = hk, we have that hk ∈ A. The set A is closed under addition and
multiplication by Lemma 4.11, so this means hλ = hλ1hλ2 · · ·hλi ∈ A. Since the hλ
form a basis for Λ, any symmetric function f =

∑
aλhλ is in A as well. In particular,

gµ ∈ A for any partition µ. Therefore,

Gρ//µ = g⊥µ (Gρ)
= τ(gµ)⊥(Gρ)
= g⊥µT (Gρ)
= Gρ//µT . �

Lastly, we can use these results from the Hopf algebraic structure of Λ to prove
Theorem 1.3.

Algebraic Combinatorics, Vol. 5 #2 (2022) 207



Fiona Abney-McPeek, Serena An & Jakin S. Ng

Proof. Combining all the above results, we have

Gρ/µ =
∑
σ⊆µ

Gρ//σ

=
∑
σ⊆µ

Gρ//σT

=
∑

σT⊆µT

Gρ//σT

= Gρ/µT . �
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