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SPHERICAL SUMMATION :
A PROBLEM OF E. M. STEIN

by A. CORDOBA and B. LOPEZ-MELERO

In this paper we present a proof of a conjecture formulated
by E.M. Stein [I] , page 5, about the spherical summation operators.
We obtain a stronger version of the Carleson-Sjolin theorem [2] and,
as a corollary, we obtain a.e. convergence for lacunary Bochner-Riesz
means.

With X > 0 let T^ denote the Fourier multiplier operator
given by

(T^ / ) ' a )==( l - m'/R^/O) for /eS(R2) , and let
{ Ry} be any sequence of positive numbers.

4 4
THEOREM 1. — Given X > 0 and ———- < p < ———— there

3 + 2X 1 — 2X
exists some positive constant C^p such that

^ nnX f 2 1 /2 || <- p || | V f 2 1/2s T^- Uphill1 f'
Let T^/= sup | T\-/|. The methods developed to prove

Theorem 1 yield, as an easy consequence, the following result.

4 4
THEOREM 2. - For \> 0 and _——— <p < -——— there

3 + 2A 1 — 2A
exists some constant C^p such that

lIT^/llp <C^||/1|^.
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As a result we have, for / G If (R 2 )

f(x) == lim T\. f(x) for a.e. x G R2 .
/ 27

As part of the machinery in the proofs of Theorems 1 and 2
we shall make use of the two following results, whose proofs can
be found in [3] and [4].

Given a real number N > 1 consider the family B of all
rectangles with eccentricity N and arbitrary direction, and let M
be the associated maximal operator

M/(x)= sup —— f |/0c)| Ac.
jcGRGB | R[ ^R

THEOREM 3. — There exist constants C , a independent of N
such that

I IM/11, < C | l o g N r 11/H, .

Consider a disjoint covering of R" by a lattice of congruent
parallelepipeds { Q y } „ and the associated multiplier operators

(p, / r=xQ,/ .
THEOREM 4. — For each s > 1 there exists a constant C, suchs

that, for every non negative, locally integrable function a; and
every /G§(R") we have

fn H IP./WI2 ^(x)dx^C, y\ |/(jc)|2 \^x)dx
R y R

v^here Ayg = [M^)]175 and M denotes the strong maximal
function in R ^ .

Proof of Theorem 1. — Suppose that 0 : R —> R is a smooth
function supported in [— 1 , +1 ], and consider the family of
multipliers SJ defined by

(S| /)' (S) = 0(5- '(R,-1 I Sl - 1)) /O)
and also, for a fixed § > 0, consider the family

(T;/ra)=^(arg(£))(S;/)'a)

where the V/^ are a smooth partition of the unity on the circle,
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N
1=1: ^ ;

n=l

0^ is supported on -N-
27T

0 - n <1 and N = [5-172], so that

the support of (TJ1/)^ is much Uke a rectangle with dimensions
D ^ ^ D 3?1/2Ry5 x R^.5172.

There are three main steps in our proof.
a) The same argument of ret. [3] allows us to reduce theorem 1

to prove the following inequality

i2i^W^^Cilog^^^f,^^. (i)ii4 H I T 1 " I i|4
b) With adequate decompositions of the multipliers and geo-

metric arguments, we prove

IlS^.I2 ^l) ^C' l logSIKJ^IT^. I2 )1 /2

/',"
(2)

c) An estimate of the kernels of T/", together with theorems 3
and 4 yields,

llT;^.!2 ^n <C"|log6n||Sl/,|2 l'2
, n 4 1 1 I -• -I l,n

(3)

We refer to [3] for a) and begin with part b).

Fixed 5 > 0, we select just one dyadic interval 2^ < R < 2 fc+l

out of each | log^ 6 | correlative intervals, and we allow in the left
hand side of (2) only those indices / for which R .̂ lays in a selected
interval. Also we only take one T/1 for each 4 correlative indices
n, and only those supported in the angular sector | s i n 0 f < 1/2.

All these operations will contribute with the factor 24 (log, 8| to
the inequality (2).

The left hand side of (2) is less than the 4th rooth of twice

Vl^')^)'R^
(4)

and now we only have two kinds of pairs (/ , k) : either R. < R^ < 2R.
or R,.<6R^. Let's denote 21 and S" the two corresponding
halves of (4). We have
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S'-S1 / ^ (T^.r^T^/,)'2
n,m

<421 S (T;f.r*(T"'/,r7 ̂
I n < m

Now an easy geometric argument shows that, for fixed /, k ,
the supports of (Tj1 f,V * (T^"/^)* are disjoint for different pairs
n < m, so that we have

with

S'^/S' ^ 1(T^.)^(T^4)'|2<4A
n< OT

A =
11/2 ||4

1; |T,"^.|21 / •'/• 1
;,"

(5)

For the pairs (/, k) in 2" we have

0 = supp |(T;\.r * (T^ri n supp |(T;2^.)' * (T^A)'

if m^ •^ m^, because Ry < 5R^, so that

2"=2"/2:|(ZT;/,)T,"'42

W I «

/(s s ^"^ )2^2 1/2

[/(SITT/J2)2

I fc, w

2 1/2

<V^" I^+S11]1/^172. (6)
From (5) and (6) we obtain (2).
Now we come into part c).

First we observe that for each fixed / it is possible to choose
two grids of parallelepipeds as the one in theorem 3 and such that each
of the multipliers Tj1 is supported within one of the parallelepipeds,
let's call it Qj1. If (Pj1/)^ = \^n f is the corresponding multiplier
operator, we have /

T" •f — T" D" •f
"J J] " A/ i/ J/ •

Furthermore, an integration by parts arguments shows that
each of the kernels of the Tj1 is majorized by a sum

1
C H 2- xnW

y , /R:

where the R^. are rectangles with dimensions V 6~1 x V 5"172

and C is independent of n, / or 6 > 0. Therefore in order to
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estimate A we only have to estimate uniformly in v the I^-norm of

y —!—v *n^n 2 1/2
^ I R" I ^R" VI/• //;
f,n l^./l V/ / /

Or, what amounts to the same, the I^-norm of its square.
If a? > 0 is in L^R2) we have

?/ \y~\ x<; * ^f/)W 2 ^(x)dx

<1 /i^wfrR^v l̂
1^ LI^/I V/ J

< S / |P;//(^)12 M<^(^)^
/ .M

^ZC^/I^^^^A^MQ;)^)^

J.n

„—— X n * (̂  (^) dy
i/./I Y/

^ I IT ' ^ '
2|l/2p

I IMcolL

^ciiogsfc:!!! Si^.i2 ^ l ^ i i ^ n ^
by successive applications of theorems 4 and 3. This estimate
proves(3).

Proof of Theorem 2. - With the same notations of the preceding
proof, let now Ry = 27 . We have

T^/00 <sup \Tff(x)\ + sup |(T^ - T^/Oc)!

< l:n?/Mi2 ^croc)
/

where TJ1 - T^ stands for a C°° central core of the multiplier T.̂
and /* is the Hardy -Littlewood maximal function.

By the same arguments of part a) in the preceding proof we
may reduce ourselves to prove

EIS;/I^,2|V2 <c nog 6 m/m (7)

for some constants C, a, independent of 8 > 0 .
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We define the operators U. by

U;/(^ , y ) == x ̂ -i ̂ ^ f(x , y ) ,

and apply the methods in parts b) and c) above to obtain the
inequality

[I I:!S;/|2 1/2 ^Cl logf i l - ||l:IU,/|2 1/2 ^

which yields (7) by the classical Little wo od-Paley theory.
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