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RATIONAL HOMOTOPY
OF SERRE FIBRATIONS

par Jean-Claude THOMAS

1. Preliminaries.

In this paper we adopt the terminology of [8] and [9].
Let A denote the Sullivan functor [16] from topological path

connected spaces with base point to commutative graded differential
augmented algebras over a field k of characteristic zero :

A : Top —> C.G.D.A.

To each sequence of base point perserving continuous maps,
in particular to each Serre fibration,

(*) F—> E -"̂  M

D. Sullivan [16] associated a commutative diagram (in C.G.D.A.)

(A(M),^) Aw^ (ACE),^)^^ (A(F),rfp)
(D) T m t ^ \ 0

(B,^) ———-^ (B®AX,d)—^ (AX,J)
where :

•) AX is the free c.g.a over the graded space X = 0 X*i>o
and m*:H(B,d^)—> H(A(M), d^) (^ H(M,k)) is an isomor-
phism.

••) t(b) = b ® 1 , p = e^ ® Id^x » where 63 is the aug-
mentation of B.

•••) 0* : H(B ® AX,d) —> H(A(E),d^) is an isomorphism.
•v) There exists an homogeneous basis (^)aeK °^ X indexed

by a well ordered set K such that
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6 / ( 1 ® ^ ) G B ® A(X<J

where we denote by X^ the graded vector space generated by the
e^ with j8 < a.

The sequence

^(B,^) —^ (B®AX,rf)-^-> (AX.rf)

is called a K.S-extension ([8]), the pair (<^ ,0 ) a KS-model of the
sequence (*), (^)^eK a V^S-basis.

If there exists a K.S basis such that

(^eX^EX7,^/) =^ (a<p)

for all a and j3 in K and all degrees i and / , the K.S-extension
S (resp.the K.S-model (<^,0)) is called minimal.

When, in the diagram (D), 0 induces an isomorphism 0*
between cohomologies, the sequence (*) is called rational flbration.

When the base M of (*) is a point, then ((AX,d),$) is a
K.S-model of E = F (resp. ((AX, fit), 0)) is a minimal K.S model
of E = F if € is minimal).

For all rational fibration (*), with base M, if (<^,0) is a
minimal K.S model of (*) then ( ( A X , r f ) , 0 ) is minimal K.S
model of the fiber F.

Theorem 20.3 of [8] asserts that rational fibrations include
Serre fibrations of path connected spaces when one of H*(M,k)
or H*(F,k) is a graded space of finite type and n^(M) acts nil-
potently in each H^F, k).

It can be easily deduced from definitions that if M, E, F
are nilpotent spaces with H(M,Q) , H(E,Q) , H(F,Q) graded
spaces of finite type then («) is a rational fibration if and only
the rationalized sequence

/Q riQ
(**) FQ ——> EQ ——> MQ

is a rational fibration.
If ( (AX,rf) ,0) is a K.S minimal model of the topological

space M, the graded vector space 11̂  (M) = C H^ (M) of inde-
composable elements of AX is called the ^-homotopy of M.

Every rational fibration have a long V/-homotopy sequence,
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. . . —^ n^(M)^ I^(E)-^-> n^(F) ̂  n^M)—^ . . .
Following [10], if dim n^ (M) < 4-oo, we call the Euler

homotopy characteristic and the rank of the space M the integers

Xn(M)= ^ (- l /d imn^M)
i=l

and
rk(U) = +^ dimn^^M).

1=1
If the spaces n^ (M) and H*(M,k) are finite dimensional,

M is called a space of type F ([7]).

2. Main results.

A rational fibration (*) is called pure if there exists a K.S-
minimal model (< f ,0 ) such that

^even ^ Q ^ ^odd ^ g ̂  A(Xeven).

In this case (B ® ACX^6") ® ACX0^),^) is a Koszul complex
[12] and from [5] when k = R , and [17] for k = Q, we have :

THEOREM 1. — // G is a compact connected Lie group and
H a closed connected subgroup, then every fibre bundle with
standard fiber G/H, associated to a G-principal bundle via the
standard action of G on G/H is a pure fibration.

In this paper we prove the following results.

THEOREM 2. — For any rational fibration such that the fibre
F is a space of type F with X^(.F) = 0 the following assertions
are equivalent :

i) (*) is totally non cohomologeous to zero (T.N.C.Z)
ii) (*) is a pure fibration.
Recall that (+) is called T.N.C.Z if /* : H^F, Q) —^ H*(E, Q)

is subjective, which is equivalent [15] when H*(F, Q) and H*(M, Q)
are of finite type and (*) is Serre fibration, to :

iii) The Serre Spectral sequence collapses at the E^ term
(d, = 0 r > 2).
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In particular the hypothesis of theorem 2 are satisfied when
F is a homogeneous space G/H with rkG = rkH, for example
if F is a real oriented or complex or quaternionic grassmann
manifold, or F = G/T when T is a maximal torus of G or F is
a finite product of such spaces. It is proved in [10] that a space M
of type F has a \^ zero iff H0^ (M, Q) = 0.

THEOREM 3. — Every rational fibration such that the fibre F
is a space of type F with X^(F) = 0 and rk(F) < 2 is a pure
fibration.

This result can be applied when

F = S2", CP", HP", S2" x S2'7, Cy x HP', SP(2)/U(2),
SO(4)/U(2), U(2)/U(1) x U( l ) , SO(5)/SO(1) x S0(3), . . .

It is a particular case of a conjecture of S. Halperin.
Every rational fibration with fibre of type F and X^ = 0 is

T.N.C.Z.

COROLLARY 4. — // F is a path connected topological space
of type F and x^ == 0 and if G is a compact connected Lie group
operating on F then the total space FQ of the fiber bundle

F —> EG x F -^ Bo
G

associated with the operation is intrinsically formal and the Krull
dimension of H^CF, Q) = H(FG , Q) equals the rank of G.

COROLLARY 5 (compare with [2]). - There do not exist Serre
fibrations (*) if one of the following conditions is satisfied:

i) H^E,^) = 0.
ii) E is a connected Lie group.
iii) E = S2" except for H*(F, Q) = H*(S2" , Q))

and if ¥ is a non contractile space of type F with X^(F) == 0 and
rk(¥) < 2.

From the Leray-Hirsh theorem we get, that if (*) is T.N.C.Z.,
then there exists a graded vector space isomorphism

/: H(M;Q)0 H(F,Q) -^ H(E,Q)
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preserving base and fiber cohomology. When / can be chosen to
be an algebra isomorphism the fibration (*) is called cohomologi-
cally trivial (C.T.).

When E, F, M are nilpotent spaces, with rational cohomo-
logy algebras of finite type, the rational fibration (*) is called

(•) homo topically trivial (H.T), or
(••) weakly homotopically trivial (W.H.T), or

(•••) a a-fibration (o-F)
if the rational fibration (**)

(•) is trivial or,
(••)has a long homotopy exact sequence with a connecting

homomorphism 3^ identically zero
(n^ (E)=n^ (M)® II^(F)), or

(•••) admits a section.
Naturally we have the following diagram

(C.T) ==>(T.N.C.Z) => (n* injective)

(H.T)

(o r .F ) > (W.H.T)

with all the reversed implications false. We do not know if in the
general case (C.T) ====» (W.H.T), but we obtain the following
results. (For all fibrations F —> E —> M the spaces are assumed
to have cohomology of finite type).

PROPOSITION 6. - a) Every T.N.C.Z rational fibration with
fibre F such that H*(F,k) is a free commutative graded algebra
is H.T.

b) Every C.T rational fibration with fibre F a space of type
F and Xw = 0 is H.T.

PROPOSITION 7. - a) Every a-fibration (*) such that M is
^.'connected and n^(F) = 0 for i < r and i > r 4- fi is H.T.
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b) £'y^ry rational fibration such that dim H*(F, k) < + oo
and M ^ a coformal space [13], [14] with spherical cohomology
zero in dimension 2p if n^-^F) ̂  0 ^ W.H.T.

3. Some examples and counter examples.

Example 1. - Even if a rational fibration (*) is pure not every
KS minimal model (*) need verify

^en = o and dX0^ C B ® ACX^") .
Indeed the minimal K.S-extension

S: (A&i,0) —^ (A&i ® A(x^ ,X3,X4,^7) , r f ) -p-^ (AO:2,A:3,X4,^),rf)
with rf6i = 0

6/^:3 = JCJ fif^7 = .V^ + 26^3^4

d^:^ = 0 ^4 = 6i^i

is a K.S-minimal model of a pure fibration

(*) S2 x S4 -^ E J^ S1.

Example 2. — As a particular case of pure fibration we get the
notion of pure space. Evidently in a pure fibration the fiber is a pure
space; the converse however is false. In [10] it is proved that a space
of type F with x^r zero ls a P111^ space, but the conjecture and
theorem 2 fail if we replace the hypothesis "F is a space of type
F with Xyr(F) = 0" by the hypothesis "F is a pure space of type
F". Indeed consider the rational fibration

FQ -^ E JL^ S3

with F = (S^S^ Ue7 where (S^S4^ is the 7th Posnikov
stage of the space ^VS4 and 0 = [S4 , [S2 , S2]] - [S^S2, S4]]
defined by its K.S-minimal model

8: (A&3,0)—> (A&3 x A(^2,^3,^4,^5,^7) , r f )—> (A(x,), d)

db^ = 0
dx^ = = 0 dx-4 = 63^2
dx^ = JCJ , ^5 = ^2 JC4 + ^3 ̂ 3 » ^7 == x^ + 263X5,
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Then xJF) = -1 and H^E.k)^, and (*) is neither
a pure fibration nor a T.N.C.Z. fibration.

Example 3. — There exists one (unique up to rational homotopy
equivalence) Serre fibration

(S2VS2)Q-L->' E -^ S3

which is C.T. but not H.T., as it can be easily seen from the cal-
culations of [11].

Example 4. — The universal fiber bundle
c;2yi ___. p ___. ri
^ £)SO(2«) DSO(2M+1)

is T.N.C.Z. and W.H.T. but not C.T.

Example 5. — Let a vector bundle
7 7 : R2^ —> E —^ M

and p^(i?) its /^th Pontryagin class, and
7?s : S2" ——> Eg —> M

its associated sphere bundle. Suppose that 173 is T.N.C.Z. then
PnW = 0 if and only if 173 is H.T.

Example 6. — If a fibration admits a section then it is a a fibr-
ation. The converse is false indeed, consider the a-fibration

S4 x S3 -^ E -^ S5

of orthonormal two frames on S5.

4. Proof of theorem 2.

A K.S-extension &: (B, d^) —> (B ® AX , d) ——> (AX, ~d)
is called pure if there exists a K.S-extension

&' : (B,^)—^ (B ® AX\^)-^-> (AX'.d')

and an isomorphism of K.S extension (Idg , /, /) (b ^ ^ with
^eyen ^ Q ̂  ̂ o^ ^g ̂  A(X'even).

In view of proposition 1.11 of [8], theorem 2 follows from
the following algebraic version.
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THEOREM 2\ — Let & be a K.S-minimal extension with connec-
ted base B and dim H(AX, d) < oo, dim X0^ = dim X6^" < + oo
^A^! ^/^ two assertions are equivalent:

i) p* is surjective
ii) E is pure.

A) First suppose that S is pure then ACX^6") maps into
H(B ® AX, d) and from [7] H(AX, d ) = ACX^" )ldX°^ • ACX^")
so p* is surjective.
B) The converse is in two steps. First we prove that ^ is isomor-
phic to <sf' with rf'X^6" = 0 and then we show S 9 isomorphic
to <^ with dV^ = 0 and d9^ C B ® AX^".
Bl) First step. — From [10] we can suppose that d satisfies

j^even ^ Q and rfX0^ C ACX^611).

Since p and p* are surjective for all x E x^®" there exists
$^ e (B «) AX) H ker d such that p(^) = x .

Then
$, = x + n,

with ^ GB"^ ® AX = ker p. Let x run through a K.S-minimal
basis and define a linear map g : X —^ B ® AX by

g(x) = jc if jc G X0^

^( jc)=jc+n^ if JCEX^"

^ extends uniquely to a B-linear algebra isomorphism.
g : B ® AX —^ B ® AX. It can be easily proved than g is an
isomorphism.

Let <T:(B,^)—> (B® A X , < r 1 ^ ) — ^ ( A X , r f ) so that
(IdB,^,IdAx) is an isomorphism of K.S-extensions between S and
<?' and d^X^) = ^-^^(X^") = 0.
B2) Second step. - Suppose S is a K.S-minimal extension such that

dX^ = 0
/TLI \ ^

B dX^ C (B x ACX^6")) ® (B^6 ® (A^0") ® A(Xeven))
and let (Bg ® AX, d) be the quotient c.g.d.a.

(B ® AX,cf)/(B>B+l ® AX,rf).
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LEMMA 1. - In (Bg ® AX , d) we obtain
a) (kerrf) H (B8 0 AX) = (B8 ® A(Xeven))

+ (d^ 0 AW^) ® ACX^")))
b) (kerd) H (B' ® A^X0^) ® ACX6^"))

C d^ 0 AW^") 0 A(Xodd))),

Proof. — a) One inclusion in a) is immediate, the second results
from the relation H+(AX, d ) = 0 where H,(AX, d) is the homo-
logy of the Koszul complex

• • • —^ (A(Xeven) ® A'^CX0^)) -^

A(Xeven) ® A^X0^) -^ ACX^") 0 A'-^X0^)—^
and from the relation

d0, = (1 ® rf) 0, for 0, G B6 ® AW^) ® ACX^").

b) is true for the same reason.
Clearly if S satisfies the hypothesis of theorem 2' then S satis-

fies hypothesis (H^), and since X is a finite dimensional vector
space, theorem 2f results from

LEMMA2.- / / S satisfies hypothesis (Hg) there exists a
minimal K.S-extension S 1 isomorphic to S which satisfies (H^).

Proof. - 1) Suppose S. = 2£\ so for each x G X0^ , in
(Be ® AX , d ) we have

^ = <&, + ^ 0,̂ ,
S>1

with ^ GBfi ® ACX^"), 0^^, EB6 ® A^CX0^) 0 ACX^611).
From relation d o dx = 0 we deduce

0 = d^ 4- d /^ ^ A = (^ ® id) ̂  +
5>1 (frf 0 d) ( ̂  $^;c) e Bodd ® AX C B5 0 AX .

S>i ' /

Hence 0 = fME^ = d ( ^ <^^ .
^^Si ' /

By lemma 1, dx = 4>^ + ^ j^ ^^.^
5>i

with ^.2.+i E Bfi ® A'^^X0^) ® ACX^611).
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Thus d (x - ^ ^,2,+i) = ̂  + ̂  with ̂  E B^^ ® AX .
v s>l f

The linear map g : X —> B ® AX defined by g ( x ) = x if

x £ X^®" ^(x^) = x^ — ̂  ^a,2s+i ^ (-^a) ls a minimal K.S basis of
s>\ f

^odd nrdquely extends to a c.g.d.a isomorphism B ® AX —s-^ B ® AX
with ^/B = Idg .

Define <^' by (B , d^) —> (B ® AX , ̂ -l dg) —^ (AX, d)
then <2f' satisfies hypothesis (Hg+i ) .

2) Suppose S. = 2J2' + 1 . In the same way as in the preceding
case we get a K.S minimal extension € ^ and an isomorphism
^B^ ^i . ^Ax) between S and <^ such that,

<^ : ( B , d B ) — > ( B ® AX,^) -^ (AX,d)

with
c ? i ( ^ ) = 0 if ^EX6^"
^(^(B^611 ® ACX^611)) 0 (B6 ® A'X0^ ® AX^611)

C C B ^ ^ ' ^ A X ) if jcEX0^.
We put

B6 = K6 C dB^-1 if 02
B1 = K1 if £ = 1 .

Using only degree argument, we prove that there exists a
minimal K.S-extension <^ and an isomorphism (Ids, ,§2» Hvx)
between <^i and <^ such that

<^2 : (B ,dB) J-^ ( B ® AX,^)-^ (AX,d)
with

^ O c ) = 0 , if JCGX^"
^(^)^(B ® AX^") 0 (K6 ® A^X0^) ® ACX^"))

0 (B>fi+l ® A^" ® AX^"), if x E X^

so that in the quotient algebra (Bg ® AX , d^), we write

d^ = d^ + ^ $ ,̂, + a^ <t>^ x,
r>l s=l

with (x^) a K.S-minimal basis of ^ and ^EX0'1'1,
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^,2r E B2' ® A(Xeven) ^ E K' ® ACX6^").

From the relation d o d x^ = 0 and lemma 1 we obtain for
each a,

^a-Qa)=dx,+ Z ^,2«+"a
r>\

with
n^GB^^ 1 0 A^X0^) ® ACX^")
^ E B5 ® A^X0^) ® ACX^611)

and so there exists a minimal K.S-extension ^' and an isomorphism
(IdB,^' ,Id^x) between ^3 and S ^ such that

< ^ ' : ( B , r f B ) — > ( B ® AX,fO-^ (AX,d)

and ^' satisfies Hg+i . This ends the proof of lemma 2 .

5. Derivations in Poincare duality algebras and proof of theorem 3.

Let (A,d) = (A(^i , . . . , ^ ,>4 , . . . ,^),d) a K.S complex
such that the ,̂. and x^ have respectively even degree \Y{\ and
odd degree | x• \ and

\Vi\ < l^l ̂  " • ̂  1 ^ 1

l ^ i K I ^ K ' - ' ^ I ^ J -
Suppose

dy, = 0 / = 1 , . . . , n
dx^ = f, E A(.yi , . . . , y ^ ) f = 1 , . . . , n

then (A, d) is a pure K.S complex and from [ 10] if dim H(A, d) < + oo
then H(A,rfA) =: A(^i , . . . , ̂ )/(/^ , . . . , /^) is a Poincare duality
algebra of formal dimension

N= | / J+ . . .+ | / J - | ^ J - . . . - | ^ J
(i.e.)

i) H'CA,^ 0 if i >N
ii) H^A,^ k^

iii) the bilinear form < , ) : HP(A,rf) x HN~'p(A,rf) —^ k
defined by ( a , & > e ^ a. b is non degenerate.
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Since dim H(A, d) < + oo and H°(A, d ) = k , one verifies
immediately:

LEMMA 1. -Any derivation 6 G Der<o(H(A), d) satisfies
\^ 0 0 H° (A, d) = 0 and hence maps H+ (A, d) to itself.

Wej)ut ~Yi the class of y , in H(A, d) and we say that a deri-
vation 6 of H(A,rf^) is nilpotent with respect to O7!,...,;^) if
00,) is polynomial in ^ i , . . . , ̂ _i . We denote by Der<o(H(A), d)
the subspace of Der<o (H(A), d) of such derivations.

^ LEMMA 2. - ̂ ^ derivation 1) E Der<o(H(A, rf)) ^te/?^
eCH^A,^))^.

Proo/ - Let ^i be the largest integer such that ^ml ^ 0
and^i^o.

Let w, be the largest integer such that (j^11,..., 7W/~1) 7'" ^= o
, ,—w, —m. ,. —w.+l / — ! /

and (^i .. . ̂  ( 1)^, 1 = 0 , then we obtain an element
,, —Wi —in/) —w
^ = Yi 1 ^2 • • • Yn such ^at for every a E H'^CA, rf) a . $ = 0.

Necessarily | ̂  | = N and we may put e == v"'"1 z^^"
-^ /̂ />^ - - ' \ ' * ' ^ M •

Then 0(^) = 0, since 9 is nilpotent with respect to CFi,...,j^) .
From lemmas 1 and 2 we deduce,

COROLLARY.- / / ' 0G Der<o(H(A,rf)) then

i) ( e ( a ) , b ) = - ( a ^ ( b ) )

ii) ImPc^1 H^ .
1=1

LEMMA 3. -If ?€ Der<o(H(A, d)) then

(i(7i)=^)== •••=^(7n-i)=0)—^ (?=0).
Proof. - Suppose that ^(j^,) = <&' ^ 0 and let

PI be the largest integer such that $'7^ ^ 0 and ^'j^14'1 = 0

P, be the largest integer such that $'7f1 ... y^ ... 'y^1 ^= 0
and $'j^1 ... ^PI+1 = 0 .
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So we obtain an element ^ = ^f~ypl ... y^ such that

^GH^A^) and ^(-p-^-f ^pl • • • ^^y1)^ which
contradicts part (ii) of the corollary above.

In particular if n = 2 since 0(^i) is always zero,
Der<o(H(A,d))=0.

This is what we will need to prove theorem 3.

Proof of Theorem 3.
A) Suppose dim H^ (F) = 2 then theorem 3 is equivalent to the
following.

THEOREM 3'. - Let 8 a K.S-minimal extension

(B,d^)—^ (B®A(^,^),rf)-^ (A(x,y),~d)

such that B is a connected algebra, dim H((x , jQ, ~d) < + oo ^rf
I x | odd , |^| even then p* ^ surf ec five.

Proof. - Since dim H(A(^ , y ) , d) < + oo ^ we have rfx = X)^
with X G k - {0} and m > 2 . Thus

Ac = X^ 4- b^y"1-1 + . . . 4- 6 ,̂
with |6,| = i \y\, whence

<y+^^=o

"(^^x61)'^
and p* : H(B ® A(x,.»/)) —>• A(y)/(y'") = H(AX, ̂ ) is surjective.

B) Suppose d imn^(F)=4 then theorem 3 ,is equivalent to the
following.

THEOREM 3". -Let S a K.S-minimal extension

(B, dy) —^(B^AX,^)-^ (AX, d)

such that B is a connected algebra. dimH(AX,d) < + oo,
dim X0*" = dim X^6" = 2 rten S is pure.
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We prove theorem 3" by induction on C , in the following manner

H^ ==tt ^ ==^ H^ ==> ̂ i
where the hypothesis H'g are defined by:

dxGB^AX, ifxeX6"6"
i dx £ (B ® ACX6^")) C (B"6 ® A+ (X0'"1) ® A(Xeven)),

if x £ X^
I dx £ (B^ ® A(Xeven)) C (B^* ® A+(Xodd)® ACX"6")) ,
) if xG.if x £ X6^"H2 =

s ^ dx e (B ® ACX^")) ® (B>£ ® A+(Xodd) ® ACX^6")) ,
\ if x £ X^"

dx £ (B^2 ® ACX0^")) ® (B><^+1 ® A-^CX^) ® ACX^6") ,
y3 = , if x £ X6^"

s i dx £ (B ® ACX^")) ® (B" ® A4 (X011*1) ® ACX^")
©B-'^1 ®AX) , ifxGX0 4 '1

To prove H^ ==»• H^ and Hj "̂  H^, we use lemma 1 of
IV which again follows from the relation d o d = 0.

In the case fi = 26' for degree reasons H^ = H^ . When
S. = 2C' + 1 we prove H^ °=^ H^ .

First, we can assume that

dx £ (K6 ® ACX'^") ® (B>2+1 ® A'-CX0'1") ® ACX"6")),
if x £ X^6"

dx £ (B ® AX^'") C (K6 ® A* (X^) ® ACX^"))
® (B><^+1 ® A'^CX0"'1) ® ACX"6")), if x £ X044

with
B8 = K'edB8-1 if e >1
B* = K1 if S. = 1 .

In the quotient algebra (B ® AX , d) (4, B^), we have

^s = ̂ f i = 1, 2
— /'-j

dx, = dx, + ̂  $,̂  + ̂  0, ,̂  / = 1 , 2
'• 5=1
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fora K.S-minimal basis (y,,x,) of X with \y,\ even and | x, | odd,

with
V/ iGK 8 , i^eK6 ® A(^i)

•^SB2''® AC^ i , ^ )
^eK6 ® A(^i ,^2) .

And from the relation d ° rf = 0 we obtain

d(dx,) = ^ 0;A.
2 = 1

Let (&<,) a base of K8 and put for each $£A(.>'i ,j^)

d($) = ^ &, ® e6^).'6
€

This defines a degree 1^ derivation 0' on A(>' i ,^) whi^h res-
pects the ideal ( d x ^ d x ^ ) . So_ ^ induces a derivation ^ on
A( y i , ̂ /(^i > ̂ 2) = ̂ ^' d ) which is nilPotent with F6^^
to ( y , , y ' i ) . From our results on such derivations, 06 = 0 and
necessarily _

Q^(y^) = Q Q^y^) == dy $e £ AX"6" ® A^"111

thus,
^2 + I ^ ® $£) = °

d 3 ( ^ i ) = 0 .

A standard argument now ends the proof.

6. Proof of the corollaries 4 and 5.

A) COROLLARY 4. - Since H^F, k) = H^BG , k) = 0, the
Serre spectral sequence collapses at the E^ term so that the fibration

(*) F -^ EG x F —^ Bo
G

is T.N.C.Z. By [ I ] , H ( B G , Q ) = = A Z , 2=2^" and so (AZ,0)
is the minimal model for BQ. From theorem 2 there exists a K.S.-
minimal model of (*)

^:(AZ,0)—^ (AZ® AX,d)-^ (AX,d)
with
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dX^ == 0

^odd c AZ ® AX^6".

So we have the Koszul complex,

——> A(Z C X^") ® A^OC0^) -^ A(Z CX^811)® A^X^
—L^ A(Z e X^") ® A'-'X0^ ——>

and we easily verify that H+(A(Z ® X),d) = 0. Thus if ;c, is a
homogeneous basis of X0^ and if we put Ac, = .̂ then

H(A(Z C X),d) = Ho(A(Z ® X ) , d ) = A(Z C X^")/^,, .. . ,^)

where (^i, . . . ,^) is a regular sequence of A(Z C X^8"). This
proves directly from commutative algebra that H(FQ, k) is a Cohen
Macaulay ring of Krull dimension dim Z equal to the rank of G
and minimalizing (A(Z C X), d) we obtain the brigaded model
of H(F^, k) in the sense of [11]. This is two stage, and so PQ is
intrinsically formal (i.e. FQ is formal and there is no space M ^ F^
such that H(FG , k) = H(M, k)). Q

B) COROLLARY 5. - i) Since H'^F, k) and H'^E, k) = 0
the condition /* surjective is impossible.

ii) From the long exact sequence of V/-homotopy we deduce
that in a pure fibration we have

rfc(n,JF))<^(n^(E))

which is impossible if F non contractible and E a Lie group.
iii) A fibration satisfying the hypothesis is pure by Theorem 3

and hence has a K.S minimal model of the form

(B,^)—> (B® AX,d)——> (AX. r f )
with

dX^ = 0 dim X^ = dim X0^
dX0^ = B ® AX6^".

Necessarily dimX^81^! and if we choice JcEX 0 ^-^}
dx =^ +6i.)^~1 + • • . + bp with p > 2 , yEX^ - {0}.
Since /'* is surjective p = 2 then FQ ^ S2" .
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7. Proof of propositions 6 and 7.

PROPOSITION 6. — TTze two following lemmas are easily proved
and the first is well known.

LEMMA 1.-A Serre fibration (*) is T.N.C.Z. (resp. CT) if
and only if there exists a graded vector space homomorphism (resp.
a graded algebra homomorphism)

r : H * ( F , k ) —> H*(E,k)
such that

/ * T = IdH-(F.k) •

LEMMA 2. — A rational fibration (*) is H.T. if and only if
there exists a K.S-minimal model (<^, 0) and a graded differential
algebra homomorphism

a : (AX, d ) ——> (A(M) ® A(X), d)
such that

p o a == Id^ .

Remarks. — i) These two lemmas prove in particular that the
notions of T.N.C.Z, C.T or H.T fibration are invariant by pull back.

ii) Every T.N.C.Z. Serre fibration is a rational fibration, when
base or fibre has finite type.

Proof of a). - Since H(F, k) = AX, the fibration (*) admits
a K.S-minimal model

S\ (A(M), d^) —> (A(M) ® AX, d) -^ (AX, 0)

with p* surjective. Choose a homogeneous basis of X, (x^)^ and
for each a, an element c^ G (A(M) ® AX) H kerd such that
P*^^]) :==xoi so ^a^ ° m ^emmsi 2 is defined by o(x^) = c^.

Proof of b). — By Theorem 2 there is a K.S minimal model
€ of (*) :

^.-(B.^)—^ ( B ® AX.d)-^ (AX.d)

with dim X0^ = dim X^ , dX^" = 0, dX0^ C B ® AX^".
From [10], we have H(AX, d) = AXeven/d(Xodd). (A(Xeven)).
Let r be as in lemma 1; then for each ^EX^8", there exists
ay C (B ® AX) U ker d such that
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r(h])=[^L
One verifies that

P(^) =

Hence
^ =

Put

then

P(^) = V + d^y with j8^ E AX^611 ® A^1 X0^.

Oy = ̂  + d^ 4- ̂  with ^ E B'' ® AX.

o(j.) == a^ - ̂ ;

p o a = Id l^eve^ and a* = r.

On the other hand, from the formulas
r[dx] = [a(dx)} = 0 and p ( a d x ) = dx , x G X0^

we deduce
a(Ac) =Ac + ̂  = rf^

with

Thus
^ G B'' C8) AX and ^ G B ® AX.

a(dx) = rix + dA." .

with ^ € B'' ® AX so we put
o r ( x ) = x + ^ .

This defines a as required in lemma 2.

PROPOSITION 7. — 77^ ^ex^ lemma is straightforward.

LEMMA 3. — A rational fibration (*) ^ a a-fibration (resp.
W.H.TJ if and only if there exists a K.S -minimal model

S : (B, dg) -—> (B ® AX, rf) -^ (AX, rf)

w?7/2 B a connected algebra (resp. with B = AZ ̂  minimal model
of M) such that :

V x G X , dx-dxC^ (^ A+(X)

(resp., V ^ - e X , dx - rfxe(A+Z •A + Z) C (A^'Z ® A'^'X)).

Proof of a). — This results directly from lemma 3.
Proof of b). -Let (AZ,^) be a K.S-minimal model of M

and € : (AZ,^) —^ (AZ ® AX,d)~-^ (AX, d) a K.S-minimal
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model of (*). Since M is coformal deZCA2Z and since
dim H(F) < + oo, from [6] we deduce that ^(X^011) = 0.

Suppose that there exists x G X0^ such that Q^x = b ̂  0
then

d x = A c + 6 4 - 0 4 - S 2
with

bC^Z, ^EA^ 0$) A"X, nEA^Z ® AX.

We can suppose x = e^ where OQ is the smallest index in
Aa K.S-minimal basis such that 3 e^ •^ 0. A simple calculation from

d 2 x = 0 and the fact that db^/^Z gives db = 0. Hence [b]
lives in the spherical cohomology of M and from our hypothesis,
b is coboundary which is impossible. This proves 3^ == 0 .

/ v^ould like to take this opportunity to thank Professors S.
Halperin and D. Lehmann for their helpful advice.
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