JEAN-CLAUDE THOMAS Rational homotopy of Serre fibrations

Annales de l'institut Fourier, tome 31, nº 3 (1981), p. 71-90 <http://www.numdam.org/item?id=AIF_1981__31_3_71_0>

© Annales de l'institut Fourier, 1981, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 31,3 (1981), 71-90

RATIONAL HOMOTOPY OF SERRE FIBRATIONS

par Jean-Claude THOMAS

1. Preliminaries.

In this paper we adopt the terminology of [8] and [9].

Let A denote the Sullivan functor [16] from topological path connected spaces with base point to commutative graded differential augmented algebras over a field \mathbf{k} of characteristic zero :

$$A: Top \longrightarrow C.G.D.A.$$

To each sequence of base point perserving continuous maps, in particular to each Serre fibration,

$$(*) \ \mathbf{F} \xrightarrow{i} \mathbf{E} \xrightarrow{\Pi} \mathbf{M}$$

D. Sullivan [16] associated a commutative diagram (in C.G.D.A.)

(D)
$$(A(M), d_{M}) \xrightarrow{A(\pi)} (A(E), d_{E}) \xrightarrow{A(f)} (A(F), d_{F})$$
$$(D) \qquad \uparrow^{m} \qquad \uparrow^{\phi} \qquad \uparrow^{\overline{\phi}} \\(B, d_{B}) \xrightarrow{\iota} (B \otimes \Lambda X, d) \xrightarrow{\rho} (\Lambda X, \overline{d})$$

where :

•) ΛX is the free c.g.a over the graded space $X = \bigoplus_{i>0} X^i$ and $m^* : H(B, d_B) \longrightarrow H(A(M), d_M) (\cong H(M, k))$ is an isomorphism.

••) $\iota(b) = b \otimes 1$, $\rho = \epsilon_{\rm B} \otimes {\rm Id}_{\Lambda \rm X}$, where $\epsilon_{\rm B}$ is the augmentation of B.

•••) $\phi^* : H(B \otimes \Lambda X, d) \longrightarrow H(A(E), d_E)$ is an isomorphism.

•v) There exists an homogeneous basis $(e_{\alpha})_{\alpha \in K}$ of X indexed by a well ordered set K such that

$$d(1 \otimes e_{\alpha}) \in \mathbf{B} \otimes \Lambda(\mathbf{X}_{<\alpha})$$

where we denote by $X_{<\alpha}$ the graded vector space generated by the e_{β} with $\beta < \alpha$.

The sequence

$$\mathscr{E}: (\mathbf{B}, d_{\mathbf{B}}) \xrightarrow{\iota} (\mathbf{B} \otimes \Lambda \mathbf{X}, d) \xrightarrow{\rho} (\Lambda \mathbf{X}, \overline{d})$$

is called a K.S-extension ([8]), the pair (\mathscr{E}, ϕ) a KS-model of the sequence (*), $(e_{\alpha})_{\alpha \in K}$ a KS-basis.

If there exists a K.S basis such that

$$(e_{\alpha} \in \mathbf{X}^{i}, e_{\beta} \in \mathbf{X}^{j}, i < j) \implies (\alpha < \beta)$$

for all α and β in K and all degrees *i* and *j*, the K.S-extension \mathscr{E} (resp. the K.S-model (\mathscr{E}, ϕ)) is called *minimal*.

When, in the diagram (D), $\overline{\phi}$ induces an isomorphism $\overline{\phi}^*$ between cohomologies, the sequence (*) is called *rational fibration*.

When the base M of (*) is a point, then $((\Lambda X, d), \Phi)$ is a K.S-model of E = F (resp. $((\Lambda X, d), \phi)$) is a minimal K.S model of E = F if \mathscr{E} is minimal).

For all rational fibration (*), with base M, if (\mathscr{E}, ϕ) is a minimal K.S model of (*) then $((\Lambda X, \overline{d}), \overline{\phi})$ is minimal K.S model of the fiber F.

Theorem 20.3 of [8] asserts that rational fibrations include Serre fibrations of path connected spaces when one of $H^*(M, \mathbf{k})$ or $H^*(F, \mathbf{k})$ is a graded space of finite type and $\Pi_1(M)$ acts nilpotently in each $H^p(F, \mathbf{k})$.

It can be easily deduced from definitions that if M, E, F are nilpotent spaces with H(M, Q), H(E, Q), H(F, Q) graded spaces of finite type then (*) is a rational fibration if and only the rationalized sequence

$$(**) \quad F_{\mathbf{Q}} \xrightarrow{j_{\mathbf{Q}}} E_{\mathbf{Q}} \xrightarrow{\Pi_{\mathbf{Q}}} M_{\mathbf{Q}}$$

is a rational fibration.

If $((\Lambda X, d), \phi)$ is a K.S minimal model of the topological space M, the graded vector space $\Pi_{\psi}(M) = \bigoplus_{i \ge 1} \Pi_{\psi}^{i}(M)$ of indecomposable elements of ΛX is called the ψ -homotopy of M.

Every rational fibration have a long ψ -homotopy sequence,

$$\cdots \longrightarrow \Pi^{i}_{\psi}(\mathbf{M}) \xrightarrow{\pi^{\#}} \Pi^{i}_{\psi}(\mathbf{E}) \xrightarrow{j^{\#}} \Pi_{\psi}(\mathbf{F}) \xrightarrow{\mathfrak{d}^{\#}} \Pi^{i+1}_{\psi}(\mathbf{M}) \longrightarrow \cdots$$

Following [10], if dim $\Pi_{\psi}^{*}(M) < +\infty$, we call the *Euler* homotopy characteristic and the rank of the space M the integers

$$\chi_{\Pi}(\mathbf{M}) = \sum_{i=1}^{+\infty} (-1)^i \dim \Pi^i_{\psi}(\mathbf{M})$$

and

$$rk(\mathbf{M}) = \sum_{i=1}^{+\infty} \dim \Pi_{\psi}^{2i+1}(\mathbf{M}).$$

If the spaces $\Pi_{\psi}^{*}(M)$ and $H^{*}(M, \mathbf{k})$ are finite dimensional, M is called a space of type F ([7]).

2. Main results.

A rational fibration (*) is called *pure* if there exists a K.Sminimal model (\mathscr{E}, ϕ) such that

$$d\mathbf{X}^{\mathsf{even}} = 0, \ d\mathbf{X}^{\mathsf{odd}} \subset \mathbf{B} \otimes \Lambda(\mathbf{X}^{\mathsf{even}}).$$

In this case $(B \otimes \Lambda(X^{even}) \otimes \Lambda(X^{odd}), d)$ is a Koszul complex [12] and from [5] when $\mathbf{k} = \mathbf{R}$, and [17] for $\mathbf{k} = \mathbf{Q}$, we have :

THEOREM 1. – If G is a compact connected Lie group and H a closed connected subgroup, then every fibre bundle with standard fiber G/H, associated to a G-principal bundle via the standard action of G on G/H is a pure fibration.

In this paper we prove the following results.

THEOREM 2. – For any rational fibration such that the fibre F is a space of type F with $\chi_{\pi}(F) = 0$ the following assertions are equivalent:

i) (*) is totally non cohomologeous to zero (T.N.C.Z)

ii) (*) is a pure fibration.

Recall that (*) is called T.N.C.Z if $j^* : H^*(F, \mathbf{Q}) \longrightarrow H^*(E, \mathbf{Q})$ is surjective, which is equivalent [15] when $H^*(F, \mathbf{Q})$ and $H^*(M, \mathbf{Q})$ are of finite type and (*) is Serre fibration, to :

iii) The Serre Spectral sequence collapses at the E_2 term $(d_r = 0 \ r \ge 2)$.

In particular the hypothesis of theorem 2 are satisfied when F is a homogeneous space G/H with rkG = rkH, for example if F is a real oriented or complex or quaternionic grassmann manifold, or F = G/T when T is a maximal torus of G or F is a finite product of such spaces. It is proved in [10] that a space M of type F has a χ_{π} zero iff $H^{odd}(M, Q) = 0$.

THEOREM 3. – Every rational fibration such that the fibre F is a space of type F with $\chi_{\pi}(F) = 0$ and $rk(F) \leq 2$ is a pure fibration.

This result can be applied when

 $F = S^{2n}, CP^{n}, HP^{n}, S^{2n} \times S^{2q}, CP^{q} \times HP^{r}, SP(2)/U(2), SO(4)/U(2), U(2)/U(1) \times U(1), SO(5)/SO(1) \times SO(3), \dots$

It is a particular case of a conjecture of S. Halperin.

Every rational fibration with fibre of type F and $\chi_{\pi} = 0$ is T.N.C.Z.

COROLLARY 4. – If F is a path connected topological space of type F and $\chi_{\pi} = 0$ and if G is a compact connected Lie group operating on F then the total space F_G of the fiber bundle

 $F \longrightarrow E_G \underset{G}{\times} F \longrightarrow B_G$

associated with the operation is intrinsically formal and the Krull dimension of $H_G(F, \mathbf{Q}) = H(F_G, \mathbf{Q})$ equals the rank of G.

COROLLARY 5 (compare with [2]). – There do not exist Serre fibrations (*) if one of the following conditions is satisfied:

i) $H^{even}(E, \mathbf{Q}) = 0.$

ii) E is a connected Lie group.

iii) $E = S^{2n}$ except for $H^*(F, Q) = H^*(S^{2n}, Q)$

and if F is a non contractile space of type F with $\chi_{\pi}(F) = 0$ and $rk(F) \leq 2$.

From the Leray-Hirsh theorem we get, that if (*) is T.N.C.Z., then there exists a graded vector space isomorphism

 $f: H(M; \mathbf{Q}) \otimes H(F, \mathbf{Q}) \longrightarrow H(E, \mathbf{Q})$

74

preserving base and fiber cohomology. When f can be chosen to be an algebra isomorphism the fibration (*) is called *cohomologically trivial* (C.T.).

When E, F, M are nilpotent spaces, with rational cohomology algebras of finite type, the rational fibration (*) is called

(•) homotopically trivial (H.T), or

(••) weakly homotopically trivial (W.H.T), or

(•••) a σ -fibration ($\sigma \cdot F$) if the rational fibration (**)

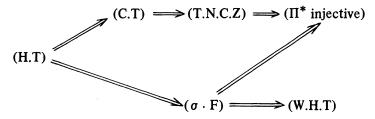
(•) is trivial or,

(••) has a long homotopy exact sequence with a connecting homomorphism $\partial^{\#}$ identically zero

$$(\Pi_{\psi}(\mathbf{E}) = \Pi_{\psi}(\mathbf{M}) \otimes \Pi_{\psi}(\mathbf{F})), \text{ or }$$

 $(\bullet \bullet \bullet)$ admits a section.

Naturally we have the following diagram



with all the reversed implications false. We do not know if in the general case $(C.T) \longrightarrow (W.H.T)$, but we obtain the following results. (For all fibrations $F \longrightarrow E \longrightarrow M$ the spaces are assumed to have cohomology of finite type).

PROPOSITION 6. – a) Every T.N.C.Z rational fibration with fibre F such that $H^*(F, \mathbf{k})$ is a free commutative graded algebra is H.T.

b) Every C.T rational fibration with fibre F a space of type F and $\chi_{\pi} = 0$ is H.T.

PROPOSITION 7. - a) Every σ -fibration (*) such that M is ℓ -connected and $\Pi^i_{\psi}(\mathbf{F}) = 0$ for i < r and $i \ge r + \ell$ is H.T.

b) Every rational fibration such that dim $H^*(F, \mathbf{k}) < +\infty$ and M is a coformal space [13], [14] with spherical cohomology zero in dimension 2p if $\Pi^{2p-1}_{+}(F) \neq 0$ is W.H.T.

3. Some examples and counter examples.

Example 1. – Even if a rational fibration (*) is pure not every KS minimal model (*) need verify

$$d\mathbf{X}^{\text{even}} = 0$$
 and $d\mathbf{X}^{\text{odd}} \subset \mathbf{B} \otimes \Lambda(\mathbf{X}^{\text{even}})$.

Indeed the minimal K.S-extension

$$\begin{aligned} & \&: (\Lambda b_1, 0) \stackrel{\iota}{\longrightarrow} (\Lambda b_1 \otimes \Lambda (x_2, x_3, x_4, x_7), d) \stackrel{\rho}{\longrightarrow} (\Lambda (x_2, x_3, x_4, x_7), \overline{d}) \\ & \text{with} \qquad db_1 = 0 \\ & dx_3 = x_2^2 \quad dx_7 = x_4^2 + 2b_1 x_3 x_4 \\ & dx_2 = 0 \qquad dx_4 = b_1 x_2^2 \end{aligned}$$

is a K.S-minimal model of a pure fibration

(*)
$$S^2 \times S^4 \xrightarrow{j} E \xrightarrow{\Pi} S^1$$
.

Example 2. – As a particular case of pure fibration we get the notion of pure space. Evidently in a pure fibration the fiber is a pure space; the converse however is false. In [10] it is proved that a space of type F with χ_{π} zero is a pure space, but the conjecture and theorem 2 fail if we replace the hypothesis "F is a space of type F with $\chi_{\pi}(F) = 0$ " by the hypothesis "F is a pure space of type F". Indeed consider the rational fibration

$$F_{\mathbf{Q}} \xrightarrow{j} E \xrightarrow{\Pi} S^{3}$$

with $F = (S^2 VS^4)_7 \cup e^7$ where $(S^2 VS^4)_7$ is the 7th Posnikov stage of the space $S^2 VS^4$ and $\phi = [S^4, [S^2, S^2]] - [S^2[S^2, S^4]]$ defined by its K.S-minimal model

$$\begin{aligned} & \& : (\Lambda b_3, 0) \longrightarrow (\Lambda b_3 \times \Lambda (x_2, x_3, x_4, x_5, x_7), d) \longrightarrow (\Lambda (x_i), \overline{d}) \\ & db_3 = 0 \\ & dx_2 = 0 \\ & dx_4 = b_3 x_2 \\ & dx_3 = x_2^2, \quad dx_5 = x_2 x_4 + b_3 x_3, \quad dx_7 = x_4^2 + 2b_3 x_5. \end{aligned}$$

Then $\chi_{\pi}(F) = -1$ and $H^{4}(E, \mathbf{k}) = 0$, and (*) is neither a pure fibration nor a T.N.C.Z. fibration.

Example 3. – There exists one (unique up to rational homotopy equivalence) Serre fibration

$$(S^2 VS^2)_{\mathbf{Q}} \xrightarrow{j} E \xrightarrow{\pi} S^3$$

which is C.T. but not H.T., as it can be easily seen from the calculations of [11].

Example 4. — The universal fiber bundle

$$S^{2n} \longrightarrow B_{SO(2n)} \longrightarrow B_{SO(2n+1)}$$

is T.N.C.Z. and W.H.T. but not C.T.

Example 5. – Let a vector bundle
$$\eta : \mathbf{R}^{2n+1} \longrightarrow \mathbf{E} \longrightarrow \mathbf{M}$$

and $p_n(\eta)$ its n^{th} Pontryagin class, and

$$\eta_{\rm S}:{\rm S}^{2n}\longrightarrow {\rm E}_{\rm S}\longrightarrow {\rm M}$$

its associated sphere bundle. Suppose that η_S is T.N.C.Z. then $p_n(\eta) = 0$ if and only if η_S is H.T.

Example 6. – If a fibration admits a section then it is a σ fibration. The converse is false indeed, consider the σ -fibration

$$S^4 \times S^3 \xrightarrow{j} E \xrightarrow{\pi} S^5$$

of orthonormal two frames on S^5 .

4. Proof of theorem 2.

A K.S-extension $\mathscr{E}: (B, d_B) \xrightarrow{\iota} (B \otimes \Lambda X, d) \xrightarrow{\rho} (\Lambda X, \overline{d})$ is called pure if there exists a K.S-extension

$$\mathscr{E}': (\mathbf{B}, d_{\mathbf{B}}) \xrightarrow{\iota} (\mathbf{B} \otimes \Lambda \mathbf{X}', d') \xrightarrow{\rho'} (\Lambda \mathbf{X}', \overline{d}')$$

and an isomorphism of K.S extension $(\mathrm{Id}_{B}, f, \overline{f}) \& \simeq \&'$ with $d'X'^{\mathrm{even}} = 0$ and $d'X'^{\mathrm{odd}} \subset B \otimes \Lambda(X'^{\mathrm{even}})$.

In view of proposition 1.11 of [8], theorem 2 follows from the following algebraic version.

THEOREM 2'. – Let & be a K.S-minimal extension with connected base B and dim $H(\Lambda X, d) < \infty$, dim $X^{odd} = \dim X^{even} < +\infty$ then the two assertions are equivalent:

i) ρ^* is surjective

ii) E is pure.

A) First suppose that \mathscr{E} is pure then $\Lambda(X^{\text{even}})$ maps into $H(B \otimes \Lambda X, d)$ and from [7] $H(\Lambda X, \overline{d}) = \Lambda(X^{\text{even}})/\overline{d}X^{\text{odd}} \cdot \Lambda(X^{\text{even}})$ so ρ^* is surjective.

B) The converse is in two steps. First we prove that \mathscr{E} is isomorphic to \mathscr{E}' with $d'X^{\text{even}} = 0$ and then we show \mathscr{E}' isomorphic to \mathscr{E}'' with $d''X^{\text{even}} = 0$ and $d''X^{\text{odd}} \subset B \otimes \Lambda X^{\text{even}}$.

B1) First step. – From [10] we can suppose that \overline{d} satisfies

$$\overline{d} X^{\text{even}} = 0$$
 and $\overline{d} X^{\text{odd}} \subset \Lambda(X^{\text{even}})$.

Since ρ and ρ^* are surjective for all $x \in X^{\text{even}}$ there exists $\Phi_x \in (B \otimes \Lambda X) \cap \ker d$ such that $\rho(\Phi_x) = x$.

Then

$$\Phi_{\star} = x + \Omega_{\star}$$

with $\Omega_x \in B^+ \otimes \Lambda X = \ker \rho$. Let x run through a K.S-minimal basis and define a linear map $g: X \longrightarrow B \otimes \Lambda X$ by

$$g(x) = x$$
 if $x \in X^{\text{odd}}$
 $g(x) = x + \Omega_x$ if $x \in X^{\text{even}}$

g extends uniquely to a B-linear algebra isomorphism. $g: B \otimes \Lambda X \longrightarrow B \otimes \Lambda X$. It can be easily proved than g is an isomorphism.

Let $\mathscr{E}': (B, d_B) \longrightarrow (B \otimes \Lambda X, g^{-1}dg) \longrightarrow (\Lambda X, \overline{d})$ so that $(\mathrm{Id}_B, g, \mathrm{Id}_{\Lambda X})$ is an isomorphism of K.S-extensions between \mathscr{E} and \mathscr{E}' and $d'(X^{\mathrm{even}}) = g^{-1}dg(X^{\mathrm{even}}) = 0$.

B2) Second step. – Suppose & is a K.S-minimal extension such that $(H_2) = \begin{cases} dX^{\text{even}} = 0\\ dX^{\text{odd}} \subset (B \times \Lambda(X^{\text{even}})) \otimes (B^{\geq 2} \otimes (\Lambda^+ X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})) \end{cases}$

and let $(\hat{B}_{\varrho} \otimes \Lambda X, \hat{d})$ be the quotient c.g.d.a.

$$(\mathbf{B} \otimes \Lambda \mathbf{X}, d)/(\mathbf{B}^{> \ell+1} \otimes \Lambda \mathbf{X}, d).$$

LEMMA 1. – In $(\hat{B}_0 \otimes \Lambda X, \hat{d})$ we obtain a) $(\ker \hat{d}) \cap (B^{\ell} \otimes \Lambda X) = (B^{\ell} \otimes \Lambda (X^{even}))$ + $(d(B^{\varrho} \otimes \Lambda^+(X^{odd}) \otimes \Lambda(X^{even})))$ b) (ker \hat{d}) \cap (B^{ϱ} \otimes Λ^+ (X^{odd}) \otimes Λ (X^{even})) $\subset \hat{d}(B^{\varrho} \otimes \Lambda^{+}(X^{even}) \otimes \Lambda(X^{odd}))).$

Proof. -a) One inclusion in a) is immediate, the second results from the relation $H_{+}(\Lambda X, \overline{d}) = 0$ where $H_{i}(\Lambda X, \overline{d})$ is the homology of the Koszul complex

and from the relation

$$\hat{d}\phi_i = (1 \otimes \overline{d})\phi_i$$
 for $\phi_i \in B^{\varrho} \otimes \Lambda^i(X^{odd}) \otimes \Lambda(X^{even})$.

b) is true for the same reason.

Clearly if & satisfies the hypothesis of theorem 2' then & satisfies hypothesis (H_1) , and since X is a finite dimensional vector space, theorem 2' results from

LEMMA 2. – If \mathscr{E} satisfies hypothesis (H₀) there exists a minimal K.S. extension \mathscr{E}' isomorphic to \mathscr{E} which satisfies (H_{0+1}) .

Proof. -1) Suppose $\ell = 2\ell'$, so for each $x \in X^{odd}$, in $(\hat{B}_{o} \otimes \Lambda X, \hat{d})$ we have

$$\hat{dx} = \Phi_x + \sum_{s \ge 1} \phi_{x,2s}$$

with $\Phi_x \in \hat{B}_{\varrho} \otimes \Lambda(X^{even}), \phi_{x,2s} \in B^{\varrho} \otimes \Lambda^{2s}(X^{odd}) \otimes \Lambda(X^{even}).$

From relation $\hat{d} \circ \hat{d}x = 0$ we deduce

$$0 = \hat{d}\Phi_x + \hat{d}\left(\sum_{s>1} \Phi_{2s,x}\right) = (d_B \otimes id)\Phi_x + (id \otimes \overline{d})\left(\sum_{s>1} \Phi_{2s,x}\right) \in B^{odd} \otimes \Lambda X \oplus \hat{B}^{\mathfrak{g}} \otimes \Lambda X.$$

Hence
$$0 = \hat{d}\Phi_x = \hat{d}\left(\sum_{s>1} \Phi_{2s,x}\right).$$

 $\Psi_{x,2s+1} \in B^{\varrho} \otimes \Lambda^{2s+1}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}}).$

Hence

By lemma 1,
$$\hat{dx} = \Phi_x + \sum_{s \ge 1} \hat{d}\Psi_{x,2s+1}$$

with

Thus $d\left(x - \sum_{s \ge 1} \Psi_{x,2s+1}\right) = \Phi_x + \Omega_x$ with $\Omega_x \in B^{\ge \ell+1} \otimes \Lambda X$. The linear map $g: X \longrightarrow B \otimes \Lambda X$ defined by g(x) = x if $x \in X^{\text{even}} g(x_{\alpha}) = x_{\alpha} - \sum_{s \ge 1} \psi_{\alpha,2s+1}$ if (x_{α}) is a minimal K.S basis of X^{odd} uniquely extends to a c.g.d.a isomorphism $B \otimes \Lambda X \xrightarrow{\simeq} B \otimes \Lambda X$ with $g/B = \text{Id}_B$.

Define \mathscr{E}' by $(B, d_B) \xrightarrow{\iota} (B \otimes \Lambda X, g^{-1}dg) \xrightarrow{\iota} (\Lambda X, \overline{d})$ then \mathscr{E}' satisfies hypothesis (H_{g+1}) .

2) Suppose $\ell = 2\ell' + 1$. In the same way as in the preceding case we get a K.S minimal extension \mathscr{E}_1 and an isomorphism $(\mathrm{Id}_B, g_1, \mathrm{Id}_{\Lambda X})$ between \mathscr{E} and \mathscr{E}_1 such that,

$$\mathscr{E}_{1}: (\mathbf{B}, d_{\mathbf{B}}) \xrightarrow{\iota} (\mathbf{B} \otimes \Lambda \mathbf{X}, d_{1}) \xrightarrow{\rho} (\Lambda \mathbf{X}, \overline{d})$$

with

$$\begin{cases} d_1(x) = 0 & \text{if } x \in X^{\text{even}} \\ d_1(x) \in (B^{\text{even}} \otimes \Lambda(X^{\text{even}})) \oplus (B^{\ell} \otimes \Lambda^1 X^{\text{odd}} \otimes \Lambda X^{\text{even}}) \\ \oplus (B^{\geq \ell+1} \otimes \Lambda X) & \text{if } x \in X^{\text{odd}}. \end{cases}$$

We put

$$B^{\ell} = K^{\ell} \oplus dB^{\ell-1} \quad \text{if} \quad \ell \ge 2$$
$$B^{1} = K^{1} \qquad \text{if} \quad \ell = 1.$$

Using only degree argument, we prove that there exists a minimal K.S-extension \mathscr{E}_2 and an isomorphism $(\mathrm{Id}_B, g_2, \mathrm{Id}_{\Lambda X})$ between \mathscr{E}_1 and \mathscr{E}_2 such that

$$\mathscr{E}_{2}: (\mathbf{B}, d_{\mathbf{B}}) \xrightarrow{\iota} (\mathbf{B} \otimes \Lambda \mathbf{X}, d_{2}) \xrightarrow{\rho} (\Lambda \mathbf{X}, \overline{d})$$

with

$$\begin{pmatrix} d_2(x) = 0, & \text{if } x \in X^{\text{even}} \\ d_2(x) \in (B \otimes \Lambda X^{\text{even}}) \oplus (K^{\emptyset} \otimes \Lambda^1(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})) \\ \oplus (B^{\geq \ell+1} \otimes \Lambda^+ X^{\text{odd}} \otimes \Lambda X^{\text{even}}), & \text{if } x \in X^{\text{odd}} \end{cases}$$

so that in the quotient algebra $(\hat{B}_{\varrho} \otimes \Lambda X, \hat{d}_{2})$, we write

$$\hat{d}_2 x_{\alpha} = \overline{d} x_{\alpha} + \sum_{r \ge 1} \Phi_{\alpha, 2r} + \sum_{s=1}^{\alpha-1} \phi_{\alpha, s} x_s$$

with (x_{α}) a K.S-minimal basis of \mathscr{E}_2 and $x_{\alpha} \in X^{\text{odd}}$,

$$\Phi_{\alpha,2r} \in \mathbf{B}^{2r} \otimes \Lambda(\mathbf{X}^{\text{even}}) \quad \phi_{\alpha,s} \in \mathbf{K}^{2} \otimes \Lambda(\mathbf{X}^{\text{even}}).$$

From the relation $\hat{d} \circ \hat{d} x_{\alpha} = 0$ and lemma 1 we obtain for each α ,

$$d_{2}(x_{\alpha}-\theta_{\alpha})=\overline{d} x_{\alpha}+\sum_{r\geq 1} \Phi_{\alpha,2n}+\Omega_{\alpha}$$

with

$$\Omega_{\alpha} \in B^{\geq \ell+1} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})$$
$$\theta_{\alpha} \in B^{\ell} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})$$

and so there exists a minimal K.S-extension \mathscr{E}' and an isomorphism $(\mathrm{Id}_{B}, g', \mathrm{Id}_{\Lambda X})$ between \mathscr{E}_{2} and \mathscr{E}' such that

$$\mathscr{E}': (\mathbf{B}, d_{\mathbf{B}}) \xrightarrow{\iota} (\mathbf{B} \otimes \Lambda \mathbf{X}, d') \xrightarrow{\rho} (\Lambda \mathbf{X}, \overline{d})$$

and \mathscr{E}' satisfies H_{g+1} . This ends the proof of lemma 2.

5. Derivations in Poincaré duality algebras and proof of theorem 3.

Let $(A, d) = (\Lambda(x_1, \ldots, x_n, y_1, \ldots, y_n), d)$ a K.S complex such that the y_i and x_j have respectively even degree $|y_i|$ and odd degree $|x_i|$ and

$$|y_1| \le |y_2| \le \dots \le |y_n|$$
$$|x_1| \le |x_2| \le \dots \le |x_n|.$$

Suppose

$$dy_i = 0 \quad i = 1, \dots, n$$

$$dx_i = f_j \in \Lambda(y_1, \dots, y_n) \quad j = 1, \dots, n$$

then (A, d) is a pure K.S complex and from [10] if dim $H(A, d) < +\infty$ then $H(A, d_A) = \Lambda(y_1, \ldots, y_n)/(f_1, \ldots, f_n)$ is a Poincaré duality algebra of formal dimension

$$N = |f_1| + \ldots + |f_n| - |y_1| - \ldots - |y_n|$$

(i.e.)

i)
$$H^{i}(A, d) = 0$$
 if $i > N$

ii) $H^{N}(A, d) = ke$

iii) the bilinear form $\langle , \rangle \colon \operatorname{H}^{\operatorname{P}}(\operatorname{A}, d) \times \operatorname{H}^{\operatorname{N}-p}(\operatorname{A}, d) \longrightarrow \mathbf{k}$ defined by $\langle a, b \rangle e = a \cdot b$ is non degenerate.

Since dim H(A, d) $< +\infty$ and H⁰(A, d) = k, one verifies immediately:

LEMMA 1. – Any derivation $\theta \in \text{Der}_{\leq 0}(H(A), d)$ satisfies $I_m \theta \cap H^0(A, d) = 0$ and hence maps $H^+(A, d)$ to itself.

We put $\overline{y_i}$ the class of y_i in H(A, d) and we say that a derivation $\tilde{\theta}$ of H(A, d_A) is nilpotent with respect to $(\overline{y_1}, \ldots, \overline{y_n})$ if $\tilde{\theta}(y_i)$ is polynomial in $\overline{y_1}, \ldots, \overline{y_{i-1}}$. We denote by $\tilde{Der}_{<0}(H(A), d)$ the subspace of $Der_{<0}(H(A), d)$ of such derivations.

LEMMA 2. – Any derivation $\tilde{\theta} \in \widetilde{Der}_{\leq 0}(H(A, d))$ satisfies $\tilde{\theta}(H^{N}(A, d)) = 0$.

Proof. - Let m_1 be the largest integer such that $\overline{y}_1^{m_1} \neq 0$ and $\overline{y}_1^{m_1+1} = 0$.

Let m_i be the largest integer such that $(\overline{y}_1^{m_1}, \dots, \overline{y}_{i-1}^{m_i-1}) \overline{y}_i^m \neq 0$ and $(\overline{y}_1^{m_1} \dots \overline{y}_i^{m_{i-1}}) \overline{y}_i^{m_i+1} = 0$, then we obtain an element $\Phi = \overline{y}_1^{m_1} \overline{y}_2^{m_2} \dots \overline{y}_n^{m_n}$ such that for every $a \in H^+(A, d) a \cdot \Phi = 0$.

Necessarily $|\Phi| = N$ and we may put $e = \overline{y_1}_1 \dots \overline{y_n}_n$. Then $\tilde{\theta}(e) = 0$, since $\tilde{\theta}$ is nilpotent with respect to $(\overline{y_1}, \dots, \overline{y_n})$. From lemmas 1 and 2 we deduce,

COROLLARY. - If $\tilde{\theta} \in \widetilde{\text{Der}}_{\leq 0}(\mathcal{H}(\mathcal{A}, d))$ then

- i) $\langle \widetilde{\theta}(a), b \rangle = -\langle a, \widetilde{\theta}(b) \rangle$
- ii) Im $\widetilde{\theta} \subset \bigoplus_{i=1}^{N-1} H^i$.

LEMMA 3. - If $\tilde{\theta} \in \widetilde{\mathrm{Der}}_{<0}(\mathrm{H}(\mathrm{A}, d))$ then

$$(\widetilde{\theta}(\overline{y_1}) = \widetilde{\theta}(\overline{y_2}) = \ldots = \widetilde{\theta}(\overline{y_{n-1}}) = 0) \Longrightarrow (\widetilde{\theta} \equiv 0).$$

Proof. – Suppose that $\tilde{\theta}(\overline{y}_n) = \Phi' \neq 0$ and let

P₁ be the largest integer such that $\Phi' \overline{y_1}^{P_1} \neq 0$ and $\Phi' \overline{y_1}^{P_{1+1}} = 0$ P_i be the largest integer such that $\Phi' \overline{y_1}^{P_1} \dots \overline{y_i}^{P_i} \dots \overline{y_i}^{P_i} \neq 0$ and $\Phi' \overline{y_1}^{P_1} \dots \overline{y_i}^{P_{i+1}} = 0$.

82

So we obtain an element $\Psi = \Phi' \overline{y}_1^{P_1} \dots \overline{y}_n^{P_n}$ such that $\Psi \in H^N(A, d)$ and $\tilde{\theta} \left(\frac{1}{P_n + 1} \overline{y}_1^{P_1} \dots \overline{y}_{n-1}^{P_{n-1}}, \overline{y}_n^{P_{n+1}} \right) = \Psi$ which contradicts part (ii) of the corollary above.

In particular if n = 2 since $\hat{\theta}(y_1)$ is always zero,

 $\operatorname{Der}_{\leq 0}(\operatorname{H}(\operatorname{A}, d)) = 0.$

This is what we will need to prove theorem 3.

Proof of Theorem 3.

A) Suppose dim $\Pi_{\psi}(F) = 2$ then theorem 3 is equivalent to the following.

THEOREM 3'. – Let & a K.S-minimal extension

$$(\mathbf{B}, d_{\mathbf{B}}) \stackrel{\iota}{\longrightarrow} (\mathbf{B} \otimes \Lambda(x, y), d) \stackrel{\rho}{\longrightarrow} (\Lambda(x, y), \overline{d})$$

such that B is a connected algebra, dim $H((x, y), \overline{d}) < +\infty$ and |x| odd, |y| even then ρ^* is surjective.

Proof. – Since dim $H(\Lambda(x, y), \overline{d}) < +\infty$, we have $\overline{dx} = \lambda y^m$ with $\lambda \in \mathbf{k} - \{0\}$ and $m \ge 2$. Thus

$$dx = \lambda y^m + b_1 y^{m-1} + \ldots + b_m$$

with $|b_i| = i |y|$, whence

$$d\left(y + \frac{1}{m\lambda} b_{1}\right) = 0$$
$$\rho\left(y + \frac{1}{m\lambda} b_{1}\right) = y$$

and ρ^* : H(B $\otimes \Lambda(x, y)$) $\longrightarrow \Lambda(y)/(y^m) = H(\Lambda X, \overline{d})$ is surjective.

B) Suppose dim $\Pi_{\psi}(F) = 4$ then theorem 3 is equivalent to the following.

THEOREM 3". - Let & a K.S-minimal extension

$$(\mathbf{B}, d_{\mathbf{B}}) \xrightarrow{\iota} (\mathbf{B} \otimes \Lambda \mathbf{X}, d) \xrightarrow{\rho} (\Lambda \mathbf{X}, d)$$

such that B is a connected algebra, dim $H(\Lambda X, d) < +\infty$, dim $X^{\text{odd}} = \dim X^{\text{even}} = 2$ then & is pure. We prove theorem 3'' by induction on ℓ , in the following manner

$$H^{1}_{\varrho} \xrightarrow{\longrightarrow} H^{2}_{\varrho} \xrightarrow{\longrightarrow} H^{3}_{\varrho} \xrightarrow{\longrightarrow} H^{1}_{\varrho+1}$$

where the hypothesis H^i_{ℓ} are defined by:

$$\begin{split} H^{1}_{\varrho} &= \begin{cases} dx \in B^{\geqslant \varrho} \otimes \Lambda X, & \text{if } x \in X^{\text{even}} \\ dx \in (B \otimes \Lambda(X^{\text{even}})) \oplus (B^{\geqslant \varrho} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})), & \text{if } x \in X^{\text{odd}} \end{cases} \\ H^{2}_{\varrho} &= \begin{cases} dx \in (B^{\geqslant \varrho} \otimes \Lambda(X^{\text{even}})) \oplus (B^{\geqslant \varrho+1} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})), & \text{if } x \in X^{\text{even}} \\ dx \in (B \otimes \Lambda(X^{\text{even}})) \oplus (B^{\geqslant \varrho} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})), & \text{if } x \in X^{\text{odd}} \end{cases} \\ H^{3}_{\varrho} &= \begin{cases} dx \in (B^{\geqslant \varrho} \otimes \Lambda(X^{\text{even}})) \oplus (B^{\geqslant \varrho+1} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})), & \text{if } x \in X^{\text{odd}} \\ & \text{if } x \in X^{\text{even}} \end{cases} \\ dx \in (B \otimes \Lambda(X^{\text{even}})) \oplus (B^{\geqslant \varrho+1} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}}), & \text{if } x \in X^{\text{even}} \end{cases} \\ & \oplus B^{\geqslant \varrho+1} \otimes \Lambda X), & \text{if } x \in X^{\text{odd}} \end{cases} \end{cases} \end{split}$$

To prove $H^1_{\varrho} \longrightarrow H^2_{\varrho}$ and $H^2_{\varrho} \longrightarrow H^3_{\varrho}$, we use lemma 1 of IV which again follows from the relation $d \circ d = 0$.

In the case $\ell = 2\ell'$ for degree reasons $H^3_{\ell} = H^1_{\ell+1}$. When $\ell = 2\ell' + 1$ we prove $H^3_{\ell} \implies H^1_{\ell+1}$.

First, we can assume that

$$\begin{cases} dx \in (K^{\varrho} \otimes \Lambda(X^{even}) \oplus (B^{\geqslant \varrho+1} \otimes \Lambda^{+}(X^{odd}) \otimes \Lambda(X^{even})), & \text{if } x \in X^{even} \\ dx \in (B \otimes \Lambda X^{even}) \oplus (K^{\varrho} \otimes \Lambda^{1}(X^{odd}) \otimes \Lambda(X^{even})) & \\ \oplus (B^{\geqslant \varrho+1} \otimes \Lambda^{+}(X^{odd}) \otimes \Lambda(X^{even})), & \text{if } x \in X^{odd} \end{cases}$$

with

$$B^{\ell} = K^{\ell} \oplus dB^{\ell-1} \quad \text{if} \quad \ell > 1$$

$$B^{1} = K^{1} \qquad \text{if} \quad \ell = 1.$$

In the quotient algebra $(\hat{B} \otimes \Lambda X, \hat{d})$ (4, B₂), we have

$$\begin{cases} dy_{i} = \psi_{i} & i = 1, 2 \\ dx_{j} = \overline{d}x_{j} + \sum_{r} \Phi_{j,2r} + \sum_{s=1}^{j-1} \phi_{j,s} x_{s} & j = 1, 2 \end{cases}$$

for a K.S-minimal basis (y_i, x_j) of X with $|y_i|$ even and $|x_j|$ odd, with

$$\begin{split} \psi_1 &\in \mathbf{K}^{\varrho}, \ \psi_2 \in \mathbf{K}^{\varrho} \otimes \Lambda(y_1) \\ \Phi_{j,2r} &\in \mathbf{B}^{2r} \otimes \Lambda(y_1, y_2) \\ \phi_{j,s} &\in \mathbf{K}^{\varrho} \otimes \Lambda(y_1, y_2). \end{split}$$

And from the relation $\hat{d} \circ \hat{d} = 0$ we obtain

$$\hat{d}(\overline{d}x_j) = \sum_{s=1}^{j-1} \phi_{js} \, dx_s$$

Let (b_{ϵ}) a base of K^{ℓ} and put for each $\Phi \in \Lambda(y_1, y_2)$

$$\hat{d}(\Phi) = \sum_{\epsilon} b_{\epsilon} \otimes \theta^{\epsilon}(\Phi).$$

This defines a degree 1- ℓ derivation θ^{ϵ} on $\Lambda(y_1, y_2)$ which respects the ideal (dx_1, dx_2) . So θ^{ϵ} induces a derivation $\tilde{\theta}^{\epsilon}$ on $\Lambda(y_1, y_2)/(dx_1, dx_2) = H(\Lambda X, d)$ which is nilpotent with respect to $(\overline{y_1}, \overline{y_2})$. From our results on such derivations, $\tilde{\theta}^{\epsilon} \equiv 0$ and necessarily

thus, $\begin{aligned} \theta^{\epsilon}(y_1) &= 0 \quad \theta^{\epsilon}(y_2) = \overline{d} \Phi^{\epsilon} \quad \Phi^{\epsilon} \in \Lambda X^{\text{even}} \otimes \Lambda^1 X^{\text{odd}} \\ & \left(\hat{d}_3 \left(y_2 + \sum b_{\epsilon} \otimes \Phi^{\epsilon} \right) = 0 \right) \end{aligned}$

$$\begin{cases} d_3(y_1) = 0 \\ d_3(y_1) = 0 \end{cases}$$

A standard argument now ends the proof.

6. Proof of the corollaries 4 and 5.

A) COROLLARY 4. – Since $H^{odd}(F, k) = H^{odd}(B_G, k) = 0$, the Serre spectral sequence collapses at the E_2 term so that the fibration

$$(*) \quad F \longrightarrow E_G \underset{G}{\times} F \longrightarrow B_G$$

is T.N.C.Z. By [1], $H(B_G, \mathbf{Q}) = \Lambda Z$, $Z = Z^{even}$ and so $(\Lambda Z, 0)$ is the minimal model for B_G . From theorem 2 there exists a K.S.-minimal model of (*)

$$\mathscr{E}: (\Lambda Z, 0) \xrightarrow{\iota} (\Lambda Z \otimes \Lambda X, d) \xrightarrow{\rho} (\Lambda X, \overline{d})$$

with

7

$$dX^{\text{even}} = 0$$
$$dX^{\text{odd}} \subset \Lambda Z \otimes \Lambda X^{\text{even}}.$$

So we have the Koszul complex,

$$\longrightarrow \Lambda(Z \oplus X^{\text{even}}) \otimes \Lambda^{i+1}(X^{\text{odd}}) \xrightarrow{d} \Lambda(Z \oplus X^{\text{even}}) \otimes \Lambda^{i}X^{\text{odd}}$$
$$\xrightarrow{d} \Lambda(Z \oplus X^{\text{even}}) \otimes \Lambda^{i-1}X^{\text{odd}} \longrightarrow$$

and we easily verify that $H_+(\Lambda(Z \oplus X), d) = 0$. Thus if x_i is a homogeneous basis of X^{odd} and if we put $dx_i = g_i$ then

 $H(\Lambda(Z \oplus X), d) = H_0(\Lambda(Z \oplus X), d) = \Lambda(Z \oplus X^{even})/(g_1, \dots, g_n)$

where (g_1, \ldots, g_n) is a regular sequence of $\Lambda(Z \oplus X^{even})$. This proves directly from commutative algebra that $H(F_G, k)$ is a Cohen Macaulay ring of Krull dimension dim Z equal to the rank of G and minimalizing $(\Lambda(Z \oplus X), d)$ we obtain the brigaded model of $H(F_G, k)$ in the sense of [11]. This is two stage, and so F_G is intrinsically formal (i.e. F_G is formal and there is no space $M \neq F_G$ such that $H(F_G, k) = H(M, k)$).

B) COROLLARY 5. - i) Since $H^{even}(F, \mathbf{k})$ and $H^{even}(E, \mathbf{k}) = 0$ the condition j^* surjective is impossible.

ii) From the long exact sequence of ψ -homotopy we deduce that in a pure fibration we have

$$rk(\Pi_{2n}(\mathbf{F})) \leq rk(\Pi_{2n}(\mathbf{E}))$$

which is impossible if F non contractible and E a Lie group.

iii) A fibration satisfying the hypothesis is pure by Theorem 3 and hence has a K.S minimal model of the form

$$(\mathbf{B}, d_{\mathbf{B}}) \longrightarrow (\mathbf{B} \otimes \Lambda \mathbf{X}, d) \longrightarrow (\Lambda \mathbf{X}, \overline{d})$$

with

 $dX^{\text{even}} = 0 \qquad \dim X^{\text{even}} = \dim X^{\text{odd}}$ $dX^{\text{odd}} = B \otimes \Lambda X^{\text{even}}.$

Necessarily dim $X^{even} = 1$ and if we choice $x \in X^{odd} - \{0\}$ $dx = y^p + b_1 y^{p-1} + \dots + b_p$ with $p \ge 2$, $y \in X^{even} - \{0\}$. Since j^* is surjective p = 2 then $F_{\mathbf{Q}} \sim S^{2n}$.

7. Proof of propositions 6 and 7.

PROPOSITION 6. – The two following lemmas are easily proved and the first is well known.

LEMMA 1. – A Serre fibration (*) is T.N.C.Z. (resp. CT) if and only if there exists a graded vector space homomorphism (resp. a graded algebra homomorphism)

$$\tau: \mathrm{H}^{*}(\mathrm{F}, \mathsf{k}) \longrightarrow \mathrm{H}^{*}(\mathrm{E}, \mathsf{k})$$

such that

$$j^* \tau = \mathrm{Id}_{\mathrm{H}^*(\mathrm{F},\mathbf{k})} \; .$$

LEMMA 2. – A rational fibration (*) is H.T. if and only if there exists a K.S.minimal model (\mathscr{E}, ϕ) and a graded differential algebra homomorphism

$$\sigma: (\Lambda X, \overline{d}) \longrightarrow (A(M) \otimes \Lambda(X), d)$$

such that

$$\rho \circ \sigma = \mathrm{Id}_{\Lambda X} \, .$$

Remarks. - i) These two lemmas prove in particular that the notions of T.N.C.Z, C.T or H.T fibration are invariant by pull back.

ii) Every T.N.C.Z. Serre fibration is a rational fibration, when base or fibre has finite type.

Proof of a). – Since $H(F, k) = \Lambda X$, the fibration (*) admits a K.S-minimal model

$$\mathscr{E}: (\mathbf{A}(\mathbf{M}), d_{\mathbf{M}}) \xrightarrow{\iota} (\mathbf{A}(\mathbf{M}) \otimes \Lambda \mathbf{X}, d) \xrightarrow{\rho} (\Lambda \mathbf{X}, 0)$$

with ρ^* surjective. Choose a homogeneous basis of X, $(x_{\alpha})_{\alpha}$ and for each α , an element $c_{\alpha} \in (A(M) \otimes \Lambda X) \cap \ker d$ such that $\rho^*([c_{\alpha}]) = x_{\alpha}$ so that σ in lemma 2 is defined by $\sigma(x_{\lambda}) = c_{\alpha}$.

Proof of b). – By Theorem 2 there is a K.S minimal model \mathscr{E} of (*):

$$\mathscr{E}: (\mathbf{B}, d_{\mathbf{B}}) \xrightarrow{\iota} (\mathbf{B} \otimes \Lambda \mathbf{X}, d) \xrightarrow{\rho} (\Lambda \mathbf{X}, \overline{d})$$

with dim $X^{odd} = \dim X^{even}$, $dX^{even} = 0$, $dX^{odd} \subseteq B \otimes \Lambda X^{even}$. From [10], we have $H(\Lambda X, \overline{d}) = \Lambda X^{even}/\overline{d}(X^{odd}) \cdot (\Lambda(X^{even}))$. Let τ be as in lemma 1; then for each $y \in X^{even}$, there exists $\alpha_y \in (B \otimes \Lambda X) \cap \ker d$ such that

$$\tau([y]) = [\alpha_y].$$

One verifies that

 $\rho(\alpha_y) = y + \overline{d}\beta_y^+ \quad \text{with} \quad \beta_y^+ \in \Lambda X^{\text{even}} \otimes \Lambda^{\ge 1} X^{\text{odd}}.$ Hence

$$\alpha_y = y + d\beta_y^+ + \Omega_y$$
 with $\Omega_y \in B^+ \otimes \Lambda X$.

Put

$$\sigma(y) = \alpha_y - d\beta_y^+$$

then

$$\rho \circ \sigma = \mathrm{Id} \mid_{\Lambda(X^{\mathrm{even}})} \text{ and } \sigma^* = \tau.$$

On the other hand, from the formulas

 $\tau[\overline{d}x] = [\sigma(\overline{d}x)] = 0$ and $\rho(\sigma \overline{d}x) = \overline{d}x$, $x \in X^{\text{odd}}$, we deduce

$$\sigma(\overline{d}x) = \overline{d}x + \Omega_x^+ = d\beta_x$$

with

 $\Omega_x^+ \in B^+ \otimes \Lambda X$ and $\beta_x \in B \otimes \Lambda X$.

Thus

$$\sigma(\overline{d}x) = dx + d\hat{\Omega}_x^+ \; .$$

with $\hat{\Omega}_{\mathbf{x}}^{+} \in \mathbf{B}^{+} \otimes \Lambda \mathbf{X}$ so we put

$$\sigma(x) = x + \hat{\Omega}_x^+ \, .$$

This defines σ as required in lemma 2.

PROPOSITION 7. – The next lemma is straightforward.

LEMMA 3. – A rational fibration (*) is a σ -fibration (resp. W.H.T.) if and only if there exists a K.S-minimal model

 $\mathscr{E}: (\mathbf{B}, d_{\mathbf{B}}) \xrightarrow{\iota} (\mathbf{B} \otimes \Lambda \mathbf{X}, d) \xrightarrow{\rho} (\Lambda \mathbf{X}, \overline{d})$

with B a connected algebra (resp. with $B = \Lambda Z$ the minimal model of M) such that :

 $\forall x \in \mathbf{X}, \ dx - \overline{d}x \in \mathbf{B}^+ \otimes \Lambda^+(\mathbf{X})$

(resp., $\forall x \in X$, $dx - \overline{dx} \in (\Lambda^+ Z \cdot \Lambda^+ Z) \oplus (\Lambda^+ Z \otimes \Lambda^+ X)$).

Proof of a). - This results directly from lemma 3.

Proof of b). – Let $(\Lambda Z, d_B)$ be a K.S-minimal model of M and $\mathscr{E} : (\Lambda Z, d_B) \xrightarrow{\iota} (\Lambda Z \otimes \Lambda X, d) \xrightarrow{\rho} (\Lambda X, \overline{d})$ a K.S-minimal model of (*). Since M is coformal $d_B Z \subset \Lambda^2 Z$ and since dim H(F) $< +\infty$, from [6] we deduce that $\partial^{\#}(X^{\text{even}}) = 0$.

Suppose that there exists $x \in X^{odd}$ such that $\partial^{\#} x = b \neq 0$ then

$$dx = \overline{d}x + b + \Phi + \Omega$$

with

$$b \in \Lambda^1 \mathbb{Z}$$
, $\Phi \in \Lambda^1 \mathbb{Z} \otimes \Lambda^+ \mathbb{X}$, $\Omega \in \Lambda^{\geq 2} \mathbb{Z} \otimes \Lambda \mathbb{X}$.

We can suppose $x = e_{\alpha_0}$ where α_0 is the smallest index in a K.S-minimal basis such that $\partial^{\#} e_{\alpha} \neq 0$. A simple calculation from $d^2x = 0$ and the fact that $db \in \Lambda^2 Z$ gives db = 0. Hence [b] lives in the spherical cohomology of M and from our hypothesis, b is coboundary which is impossible. This proves $\partial^{\#} = 0$.

I would like to take this opportunity to thank Professors S. Halperin and D. Lehmann for their helpful advice.

BIBLIOGRAPHY

- A. BOREL, Sur la cohomologie des espaces fibrés..., Ann. of Math., vol. 57, n° 1 (1953), 115-207.
- [2] A. BOREL and J.P. SERRE, Impossibilité de fibrer... C.R.A.S., (1950), 2258 et 943-945.
- [3] H.J. BAUES, J.M. LEMAIRE, Minimal model in homotopy theory, Math. Ann., 225 (1977), 219-242.
- [4] H. CARTAN, La transgression dans un groupe de Lie... Colloque de Topologie, Masson, Paris, (1951) 51-71.
- [5] W. GREUB et al., Connection curvative and cohomology, Vol. III, Academic Press (1976).
- [6] Y. FELIX, Classification homotopique des espaces rationnels à cohomogie fixée, Nouveaux Mémoires de la S.M.F., (1980).
- [7] J.B. FRIEDLANDER and S. HALPERIN. An arithmetic Characterization of the rational homotopy groups of certain spaces, *Invent. Math.*, 53 (1979), 117-133.

- [8] S. HALPERIN, Lecture notes on minimal models, Preprint 111, Université de Lille I, (1977).
- [9] S. HALPERIN, Rational fibration, minimal models..., Trans of the A.M.S., vol. 244 (1978), 199-223.
- [10] S. HALPERIN, Finiteness in the minimal model of Sullivan, Trans. of the A.M.S., vol. 230 (1977), 173-199.
- [11] S. HALPERIN and J. STASHEFF, Obstruction to homotopy equivalences, Advances in Math., 32 (1979), 233-279.
- [12] J.L. KOSZUL, Homologie et cohomologie des algèbres de Lie, Bull. S.M.F., 78 (1950).
- [13] J.M. LEMAIRE, "Autopsie d'un meurtre"..., Ann. Sc. E.N.S. $4^{\text{ème}}$ série, t. 1.1 (1978), 93-100.
- [14] J. NEISENDORFER, Formal and coformal spaces, *Illinois Journal* of *Mathematics*, vol. 22, Number 4 (1978), 565-580.
- [15] J.P. SERRE, Homologie singulière des espaces fibrés, Ann. of Math., Vol. 54 (1951), 425-505.
- [16] D. SULLIVAN, Infinitesimal computation in topology, *Publi. de l'I.H.E.S.*, n° 47 (1977).
- [17] J.C. THOMAS, Homotopie rationnelle des fibrés de Serre, Thèse Université de Lille I (1980) et C.R.A.S., n° 290 (1980), 811-813.

Mansucrit reçu le 29 décembre 1980.

Jean-Claude THOMAS, ERA au CNRS 07 590 Université des Sciences & Techniques U.E.R. de Mathématiques Pures & Appliquées B.P. 36 59650 Villeneuve d'Ascq.