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ON CERTAIN BARRELLED NORMED SPACES

by Manuel VALDIVIA

Let & be a o-algebra on a set X. If A belongsto & let e(A)
be the function defined on X taking value 1 in every point of A
and vanishing in every point of X ~ A. Let £5(X,s) be the linear
space over the field K of real or complex numbers generated by
{e(A): A€} endowed with the topology of the uniform conver-
gence. We shall prove that if (E,) is an increasing sequence of sub-
spaces of £5(X,/) covering £,(X ,#) there is a positive integer
p such that E, is a dense barrelled subspace of 245(X ,#), and we
shall deduce some new results in measure theory from this fact.

1. The space £,(X,¥).

If z€(X,s#) and if z(j) denotes its value in the point j of
X we define the norm of z in the following way :

izl = sup {Iz(N]:jEX}.

Given a member A of & we denote by £5(A ,o/) the subspace
of £,5(X,sf) generated by {e(M): ME A, MCA}. We write
(Q:(X,.sd))' to denote the Banach space conjugate of R3(X,s).
If u€(Qy(X,s)),u(A) stands for restriction of u to 25(A,s).
The norm of u(A) is denoted by |[u(A)|l and the value of u at
the point z is written (u,z). If A,,A,,...,A, are disjoint
members of & and contained in A then

n

X llu) I <llul (1

e
p=1
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since if every any € > 0 we take z, in SZ‘;(AP ,4) with

€ —
"Zp”<1;(uazp>>”u(Ap)”—;9 p_lyz,""n'

n
Then z = 2 z, has norm less than or equal to 1, belongs to
p=1
2,(A , ) and
n
Nu(A) = Ku, 2212 Y lluA)Il —e

p=1
and (1) follows.

PROPOSITION 1. — Let B be the closed unit ball of real 25(X ,).

Then the absolutely convex hull of {e(A): AEHA} contains %B.

Proof. — If zE%—B and if z takes exactly two non vanishing
values, we obtain A, Ay, A; €L, A,NA =0, i#ji,j=1,2,3
such that A; U A, U A; = X and such that

z(N=a,j€A,;z(j))=B,]€A,;z(j) =0, jE€EA;.
Then || <7, [f] <% and

z =ae(A;) + fe(A,)
and therefore z belongs to the absolutely convex hull of {e(A): A€}

By recurrence we suppose that for a p =2 2 every vector of % B

taking exactly p non vanishing values belongs to the absolutely convex

hull of {e(A): AEL} . Ifz € % B taking p + 1 non vanishing values

we descompose X in A;,A,,..., Ap+2 members of & such that
z takes the value o; in Aj, j=1,2,...,p +1 and zero in Ap+2.
Since p is larger than or equal to 2, z takes two different values of
the same sign. We can suppose that 0 <o, <o, or o, <a; <O0.
If 0<a, <a, we consider the vectors z; and z, which coincide
with z in A, UA;U...UA,,, such that z, takes the value o,
in A, and z, takes the value zero in A,. Then z, and z, take

p non zero different values and since z,,z, € % B they belong to

the absolutely convex hull M of {e(A): A€} . Since 0 <ﬂ <1
o,

- then
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& &%
—z,+ 1~——)zz=z
a, @,

belongs to M. If o, <a, <0 then 0<—a, <—a, and so
—z €M and therefore z € M.
q.e.d.

PROPOSITION 2. —Let B be the closed unit ball of complex
(X ,). Then the absolutely convex hull of {e(A): A€}

contains % B.

Proof — If z € %B we write
z=2z,+iz,

where z,, z, are real vectors of %B. According to Proposition 1

the vectors 2z, and 2z, belong to the absolutely convex hull of
{e(A) : AEs}. Then

1 .
z=>5 2z,) + —2L 2z,)

belongs also to the absolutely convex hull of {e(A): A E}.
q.e.d.

Notel. - If A€ A let # = {(ANB:BEA}. Then & is a
o-algebra and we can suppose that 2;(A ,%#) coincides with 25(A, &) .
Given an absolutely convex set T of £,(A ,s/) which is not a neigh-
bourhood of the origin and given any positive real number A we can
apply Proposition 1 or Proposition 2 to 2;(A,s) = 85(A ,#) to
obtain a member A, of & contained in A so that Ne(A)¢T.

Given a closed absolutely convex set U of £5(X,o/) we say
that the member A € & has property U if there is a finite set Q
in 25(X,s) such that if V is the absolutely convex hull of UU Q
then VNRJ(A,o) is a neighbourhood of the origin in 25(A ,sf).
Obviously, if A has property U, BCA, BE &, then B also
has property U.

ProposITION 3. — If A € & does not possess property U and if
A A,,. ..., A, areelements of o which are a partition of A there
isaninteger q, 1 < q < n, suchthat A, doesnot have property U.



42 M. VALDIVIA

Proof. — We suppose that A_, p =1,2,...,n, have property
U. There is a finite set Q, in £5(X,#) such that if U, is the
absolutely convex hull of UUQ, then V,=1U, N Q:(Ap , ) is a
neighourhood of the origin in Q:(Ap ,). Let V be the absolutely

convex hull of UU(pL:Jl Qp) . Since A does not have property

U, VNRJ(A,#) is not a neighbourhood of the origin in 25(A , ).
Since (A ,s) is the topological direct sum of £g(A, ,%),

(A, ) ,...,% (A, ,&), the absolutely convex hull W of pgl v,

is a neighbourhood of the origin in 25(A ,#/). On the other hand,
W is contained in V and we arrive at a contradiction.
q.e.d.

PROPOSITION 4. — Suppose that A € & does not have property
U. Given a positive integer p = 2, the elements x,,x,,...,x, of
(X ,) and a positive real number o, there are p elements
ALA,,. .., AIJ of & , which are a partition of A, and p vectors
Uy, Uy, .,y in (%X, o)) suchthat,if i=1,2,...,p,

n
Cu;, e(AD I >a, X Ky, x) <1, Ku;,x)|<1, Vx€U.
j=1

Proof. — Let Q be the absolutely convex hull of
{e(A),nx,,nx,,...,nx,}.

Since Q is compact, V= U + Q is a closed absolutely convex set
of 25(X,s). Since A does not have property U, VNLJ(A,s)
is not a neighbourhood of the origin in 25(A,#) and therefore,
according to Note 1, we can choose a subset P, in A, P, EH,
such that

P V.
' 1+« e(Pyy) ¢
If V° denotes the polar set of V in (25(X,%))’ we can find an
element u, € V° such that

1
(ul, 1—+a e(P“)) >1

and therefore
u,ePNI>1+a>a.
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On the other hand, if P, = A ~ P,;, we have

(ue(Py)) =<u,, e(A)) —(u,, e(Py,))
thus
uy, ePy ) < [{uy, e(A) ] + [{u,,e(P))]
and so

Ku, e = Ku, e — {u,e(AD | >1+a—1=a.

According to Proposition 3, P,; or P,, does not have property
U. We suppose that P;, does not have property U and we set
A, = P,,. We have that

{uj,e(ANI>a , {u,x)I<1, Vx€U,

n
Y Kuy,x)| =
j=1 Jj

Loy,
ln

l(ul,nxj)|<
1 j

s
3 |-

g s

(The same result is obtained if P,, does not have property U and
weset A, =P,,).

We apply the same method substituting P,, for A to obtain a
division of P,, into two subsets A, and P,, belonging to & and
an element u, € (25(X , %)) so that

i(uy,e(AN1>a , {u,,x)I<1 , Vxe€U,
> |(u2,xj)|<1
j=1
so that P,, does not have property U..

Following the same way we obtain a partition A,_,, P,_,), of
P(p_z)z and an element u, ; € (25(X , o))" such that

Kup_y,e(A_ NI >a , [(u,_, e, ) >a,
) n
Ku,_,,x)I<1 , ¥x€U , Y Kup_y, x| < 1.
j=1
Setting u, , = u,, P,_;), = A, the conclusion follows.

q.e.d.
Now we consider a sequence (U,) of closed absolutely convex
subsets of 25(X ,#) such that the member A€ & does not have

property U, for n=mn,,n,,...,n, and for an infinity of values
of n.

14
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PROPOSITION 5. — Given a positive real number o and the vectors
Xy, X3, ...,X, in (X , ) there are p pairwise disjoint subsets
M,.M,,..., Mp in A, belonging to &/ and p elements u,,u,,...,u

p
in (25(X,5))" so that, forevery i=1,2,...,p,
r
Kup, eM)) [ >a, X Ky, x) <1, Kup,x) <1, Vx€U,
i=1
P
and A~ .Ul M; does not have property U, for n =n;,n,,...,n,
i=

and for an infinity of values of n.

Proof. — According to Proposition 4 we can find a partition
Q,Q,...,Qu, €& of A and vy,v,,...,0,,, in (X))
such that,for i=1,2,...,p + 2,

r

v, e(@Q1>a , ¥ [y,

nd

x)<1 , |[{v;,,x)|<1 , VxEUnl.
i=1

1277

It is obvious that, for an infinity of values of n, some of the sets

Q19Q2y'~~’Qp+2 (2)

do not have property U, . We suppose that Q; does not have pro-
perty U, for an infinity of values of n. On the other hand, given a
positive integer g, 1<<q <p, some of the sets (2) do not have
property Un,. Since in (2) are p + 2 elements we can find an
element Q,, 1<Ah<p+ 2, such that A~ Q, does not have
property U, for n=mn,,n,,..., n,. Obviously A ~ Q, contains
Q, and therefore does not have property U, for an infinity of values
of n. Weset M; = Q,, u, =v,, and then

b
i=1

,
Ku,,eMN| >, > ](ul,xi)|<l , u,x)I<1, VxEUnl.

By recurrence we suppose that we already obtained elements
u; € Ry (X ,4)) , i=1,2,...,5s<p, and pairwise disjoint subsets
M,,M,,...,M, € suchthat,for i=1,2,...,s,

r
[{u;, eM)) [ >a , 2 Ku; , x)I<1 , [{y;,x)| <1, VxGU,,i
ji=1
§

and A~ iE__Jl M; does not have property U, forsn =Ry,0y, ..., 0,
and for an infinity of values of n. Since A ~ jlle M; does not have
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property U"s+1 , we apply Proposition 4 to obtain a partition
s

Ri,R;,..., Ry, of A~ iL=Jl M;, by members of &, and elements

Wi, Wy, Wy, in (2o (X ,4))" so that, for i=1,2,...,p+2,

[wi, eRI>a, Y Kw,x) ST, Kw,x) <1, Vx€U,
s+

i=1 !

Then some of the subsets
Rl,Rz,...,Rp+2 3)

do not have property U, for an infinity of values of n. We suppose
that R, does not have property U, for an infinity of values of ».
As we did before we find an element R,, 1 <k <p + 2, such that

i=1
Weset M,,, = Ry, ugyy = wy. Then,for i=1,2,...,s+1,

A~ ‘j Mi)~Rk does not have property Un'_, i=1,2,...,p.

r

Ky, eM)Y | >ea ,

dnd

Kuj, x) I <1, Ku,x)I<1, Vvx€U, ,
i=1 !

s+1
and A~ U M, does not have property U, for n =n,,n,,...,n
j= 1 14
and for an infinity of values of n.

q.e.d.
Now we consider a sequence (U,) of closed absolutely convex

subsets of £;(X,s) such that X does not property U, for
n=1,2,...

PROPOSITION 6. — There are : (i) a family {A;:i,j=1,2,...}
of pairwise disjoint members of o , (ii) a strictly increasing sequence

(n;) of positive integers and (iii) a set {u; - i,j = 1,2,...} in
(Lo (X , %)) so that, for i,j=1,2,...
Ky, e (A >0+ }
Y Kuy,e(A)) <1 (4)

h+k<itj

[{u

ij >

X<, Vx€U,

Proof. — We apply the preceding proposition to obtain an element
Uy €1 (X,«)) and anelement A, € & so that

iy, (A 1>2 , [Kuyy,x) <1, VxEU,
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and such that X ~ A,, does not have property U, for n =1 and
an infinity of values of n. By recurrence suppose we have obtained
q integers

1=nl<n2<...<nq,

and a family {A;:i+j<q +1} of pairwise disjoint elements of
A andaset {u;:i+j<q+1}in (85X ,#))" so that (4) is verified

for i+j<qg+1 and such that X~ U A does not have
i+j<q+1 Y

property U, for n=mn,,n,,..., n, and for an infinity of values

of n. Let n,,, be smallest integer larger than n, such that

X ~ i+qu+l A;; does not have property Unq+,~ We apply now

Proposition 5 to A=X~ U Ay, p=q+1l, a=q+2
i+j<q+1

and {x,;,x,,...,x,}={e(A,):h+k<q+1}. We obtain the

pairwise disjoints subsets

Al(qﬂ)’ A2q’ A3(Q—l)’ o A(q+1)1

in X ~ U A,;; belonging to & , and the elements
i+j<q+1

Uiq+1)s U2gs Us(g—1)s - - - > U(g+1)1
in (R(X,#)) suchthat,for i=1,2,...,q +1
I(ui(q+2—i)’ e(Ai(q+2_i))>I > q + 2
2 i<ui(q+2—i)’e(Ahk))|<1
h+k<gq+2
i(u,-(q,,z_,.),x)I <1, VxEU,,i
and X~ U Ay
i+j<q+2
n=ny,n,y,...,N, and for an infinity of values of n. Proceeding
this way we arrive at the desired conclusion.

does not have property U, for

q.e.d.

PropPoOSITION 7. — Let V be a closed absolutely convex subset
of (X ,s). If V is not a neighbourhood of the origin in its linear
hull L, then X does not have property V .

Proof. — Suppose first that the codimension of L in 25(X ,&)
is finite. Let {z,,2,,...,z,} be a cobasis of L in £5(X,&).
Let M be the absolutely convex hull of {z,,z,,... »Zp}. Then
W=V +M is a barrel in £5(X,sf) such that (V+M)NL=V
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and thus W is not a neighbourhood of the origin in 25(X,s#). Let
B be any finite subset of - £5(X ,s) and let Z be the absolutely
convex hull of VUB. We find a positive integer n such that
B CnW. Then

ZCV+nWCmn+1)W

and therefore Z is not a neighbourhood of the origin in 25(X,#),
ie. X does not have property V. If L has infinite codimension
in 2,(X,s#) and B is any finite subset of £;(X,s#) let Z be the
absolutely convex hull of VUB. Then Z is not absorbing in
2,(X ,54) and therefore X does not have property V.

q.e.d.

THEOREM 1. — Let (E,) be an increasing sequence of subspaces
of 25X, ) covering %,(X ,s). Then there is a positive integer p
such that Ep is a barrelled dense subspace of 2,(X , ).

Proof. — Suppose first that E, is not barrelled, n =1,2,...
Then, for every positive integer n we can find a barrel W, in E,
which is not a neighbourhood of the origin in E,. Let U, be the
closure of W, in 25(X,#). According to the preceding proposition,
X does not have property U, for every n positive integer. We
apply Proposition 6 to obtain the pairwise disjoints subsets
{Aii 1i,j=1,2,...} of X belonging to & , the strictly increasing
sequence of positive integers (n;) and the set {u; :i,j =1, 2,...}
in (25(X,#))" with conditions (4).

We order the pairs of all the positive integers in the following
way : given two of those pairs (p,,p,) and (q,,q,) we set
(p1,p,) <(q,,9q,) if either p, +p, <q, +q, orp, +p, =q, +q,
and p, <gq,. Setting G=U {A; i) = 1,2,...} we find a po-
sitive integer m such that [lu,,(G)|| <m. We make a partition of
the set of pairs of positive integers {(i,j):i +j > 2} in m parts
9’(1“),{27’(2“), . ,g’f,:”, so that, in each one, given any positive integer
i there are infinitely many elements whose first component is i.
According to (1)

S Ny (U A, G, DEPI DI < lluy, (B
h=1

and thus there is an integer £, 1 < k < m, such that

luy (UA{A;: G, DEPTVDI< 1.
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Setting 2 !V =21V and using recurrence suppose # (10 p™)
have already been constructed. If (r,s) is the pair following (w, )
we take in 2 ") an element of the form (r, r,) with rg>s+ 2.
We find a positive integer ¢q such that lu,, (G) | <g. We make a
partition of the set {(i,j) er™ i+ > r+r,} in g parts
A, P9 ,g’g’” so that, in every one, given any positive integer
i, there are infinitely many elements whose first component is i.
We have that

Q

(U 1A, 2 G, D ELTIDI<Nlu, G|

[

h
and therefore there is a positive integer £, 1< ¢ < g, such that
lu, (U{A;: G, DEPPNI<T. (5)

We set 29 =29 and we continue the construction in the same
way. We set A,,s = A, for r=s5=1 and H for

U{Am,m n,m=1,2,...}.

Since (E,) is an increasing sequence and covers 25(X ,s) there
is a positive integer r such that U, absorbs e(H) and therefore
there is a positive number A such that )\e(H) C U

On the other hand,

(U, , e (M) =(u,, ,e(A, ) + » e(Ann )

dd rr b
n+nm<r+rs

+ (u,,s,e(u {Ap,, ntn,>r+ rH)

and therefore, according to (4) and (5),

{u,,,, e(H))|
=y, e(A, 0= X Ku, ,e(A,, )
n+nm<r+rs
~I<u,,s, e(U {A""m n+n,>r+rd))|
Zr+r— X Ku, e(Ap)
itj<r+r

s

“Hu, (V{A,, tn+n,>r+r))|

Z>r+r,— 1= llu, (U{A;: G,)EPPD]
Zr+r,—1—12r+s
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and thus
lim I(u,,s ,e(H))| = oo, 6)
s —p OO
On the other hand, since Ae(H) € U"r’ we apply (4) to obtain
I(u,,s, Ae(H))| <1

which contradicts (6) and therefore there is a positive integer m,
such that Emo is a barrelled space.

Next we suppose that E, is not dense in 5(X,s) for

n
n=1,2,... Let E, be the closure of E, in £5(X,#). Let V,
be a closed absolutely convex neighbourhood of the origin in E,,.
Obviously, E, is of infinite codimension in £5(X,#/), hence X
does not have property V,, n=1,2,... Following the preceding
argument we arrive at contradiction and therefore there is a positive

integer n, sothat E, isdensein (X, ).

The sequence (E, .,) is increasing and rgl Eyp+r= (X, o)
and therefore there is a positive integer r, so that E, ,, is barrelled.
If p=ny +r,, E, isbarrelled and dense in £5(X , ).

q.e.d.

Note 2. — If we take natural number N for X in Theorem 1,
the set of the parts 2 (N) of N for & and E, = £;(X,o) we
obtain the well known result which asserts the barrelledness of
LN, 2 (N)) [3,p. 145].

2. Applications to the space of the bounded finite additive
measures on a o-algebra.

We denote by H(4) the linear space over K of the K-valued
finitely additive bounded measures on & such that if u € H(#) its
norm is the variation [u| of u. Aset M of H(#) is simply bounded
in a subset # of & if, forevery AEX,

sup {|u(A) | : pEM} < oo,

Let T be the linear mapping of H(#) into (23(X,s))" such
that, if u € H(#), then

(T(w), e(A)) = u(A), VAEL.
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It is obvious that T is a topological isomorphism between the
Banach spaces H(&) and (2,(X,s)) .

THEOREM 2. — Let (.9¢,,) be an increasing sequence of subsets of
o covering 4. Then, there is a positive integer p such that, if M
is a subset of H(s#) simply bounded in & p then M is bounded in
H(d).

Proof. — Let E, be the subspace of £,(X,sf) generated by
{e(A): AEH,}. The sequence (E,) is increasing and covers
(X , o). According to Theorem 1 there is a positive integer p
such that E, is a dense barrelled subspace of LX,d). If M is
simply bounded in .ylp then its image by T, T(M) is a bounded
subset of

R (X, ) [6((R5(X , #4))', E,)]

and, since Ep is barrelled, T(M) is bounded in (Q:(X,d))' and
therefore M is a bounded subset of H(df). ‘
g.e.d.

THEOREM 3. — If (d4,) is an increasing sequence of subsets of
A covering & there is a positive integer p such that, if (M,) isa
sequence in H(#) so that (u,(A)) is a Cauchy sequence for every
A€, , then (u,) is weakly convergent in H(d).

Proof. — Let p be the positive integer determined by the pre-
ceding theorem. Then (T(u,)) is a Cauchy sequence in

R (X, ) [6((R5(X , #))', E].

Since Ep is barrelled, then (T(u,)) converges to an element v

(X, 54)) [6((Rs(X , #))', L5(X , #))]

and thus (u,(A)) converges to T '(v) (A), for every AE S, and
therefore (u,) converges weakly in H(&) to T '), [2].
q.e.d.

- 3. Applications to certain locally convex spaces.

The linear spaces we shall use are defined over the field K of
the real or complex numbers. Given the dual pair (E,F), o(E, F)
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denotes the topology on E of the uniform convergence on every
finite subset of F. The word “‘space” will mean ‘‘separated locally
convex topological linear spaces”. Given a space E, its topological
dual is E' and its algebraic dual is E*. A finite additive measure
#  with values in E on a o-algebra o is bounded if the set
{u(A): A€} is bounded in E. The finite additive measure pu
is exhaustive if given any sequence (A,) of pairwise disjoints elements
of & the sequence (u(A,)) converges to the origin in E. If u is
a countably additive measure then u is bounded.

A sequence (x,) in a space E is subseries convergent if for

every subset J of the natural numbers N the series 3, x,

nelj
converges. A sequence is bounded multiplier convergent if for every

bounded sequence (¢,) in K the series %' a,x, converges. Given
n=1
a subseries convergent sequence it is possible to associate with it an

E-valued measure u on the g-algebra Z(N) so that
=Y x,, forevery JEP(N).
nel

In [5] we gave the following definition: a) E is a T ,-space
if every quasicomplete subspace of E*[o(E*,E)] intersecting
E'[0(E’, E)] in a dense subspace contains E'. The following results
are true [5] b)If f: E —> F is alinear mapping with closed graph,
fis continuous if E is a barrelled space and F is a T',-space. c) If F
is not a T',-space there is a barrelled space E and a non-continuous
linear mapping f: E —> F with closed graph. d)If f: E—F
is a continuous linear mapping, being E barrelled and F T',-space
then f can be extend in a continuous linear mapping of the comple-
tion E of E into F. ’

THEOREM 4. — Let u be a bounded additive measure from a
o-algebra & on X in a space E. Let (F,) be an increasing sequence
of l",—spaces covering a space F. If f: E —> F is alinear mapping
with closed graph there is a positive integer q such that fopu is a
F,-valued bounded finite additive measure on .

Proof. — Let S:9,(X,#)—> E be the linear mapping
defined by S(e(A)) = u(A) for every A €. Since u is bounded
S is continuous and therefore T = fo S is a linear mapping with
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closed graph. The increasing sequence (T~ '(F,)) covers %5(X,#)
and according to Theorem 1 there is a positive integer g such that
T~ '(F,) is barrelled and dense in £5(X ,#). Let T, = T|T '(F,)
elnd according to d) T, can be extended -continuously
T, : %X, &) —> F,. Since T has closed graph there is on F
a separated locally convex topology 7 (see 4) coarser than the original
topology such that T: &;(X ,s#) — F[J] is continuous. Then T
and Tq are continuous from (X ,#) in F[J] and coincide on
a dense subspace and thus are coincident on Q:(X ,d) from which
the conclusion follows.

q.e.d.

COROLLARY 1.4. — Let (F,) be an increasing sequence of T,-
spaces covering a space F and let f: E —> F be a linear mapping
with closed graph, being E a space. If (x,) is a subseries convergent
sequence in E there is a positive integer q such that (f(x,)) isa
bounded sequence of Fq .

Proof. — It is enough to consider the measure associated with
(x,) and to apply the preceding theorem.

q.e.d.

THEOREM 5. — Let (F,) be any increasing sequence of T',-spaces
covering a space F. If (x,) is a subseries convergent sequence in F
there is a positive integer q such that (x,) is a sequence of F, which
is bounded multiplier convergent.

Proof. — We set & to denote %;(N,#?(N)). Its completion
is 2% . Let f:8% — F be the linear mapping defined by

fle(A)= Y x, for every ACN. It is obvious that
neA

f: %Mo, 2] — F is continuous. Proceeding as we did in
Theorem 4 there is a positive integer g such that f‘l(Fq) is a
barrelled dense subspace of SZ:,". Let g be the restriction of f to
f "(Fq). According to result d) we extend g to a linear continuous
mapping g : 87 —> F_. Let f: 0@, 2] — F be the linear
extension of f, being F the completion of F. The functions f and
g coincide in f~ l(Fq) and therefore are equal.
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Given the bounded sequence (q,) in K we set v =(q,),
vvp=(b,.), b=a;, i=1,2,...,p and b;,=0, i=p+1,
p+2,... The sequence (v,) converges to v in £ [0(2”, ]

A P
and therefore the sequence (f(v,)) =< Y anx,,) converges to

foy=3 a,x, in F,.

n=1

n=1

q.e.d.

CoROLLARY 1.5. — Let (F,) be an increasing sequence of spaces
covering a space F . If for every positive integer n there is a topology
J, on F, finer than the original topology such that F,[J,] is a
B,-complete space, then given a subseries convergent sequence (x,)
in F there is a positive integer q such that (x,) is a bounded multi-
plier convergent series in F, .

Proof. — Since every B,-complete space is a I',-space [5] it
results that F,[7,] is a I',-space and applying c) it is easy to obtain
that F, isa I',-space. We apply now Theorem 5.

q.ed.

THEOREM 6. — Let (F,) be an increasing sequence of spaces
covering a space F . If for every positive integer n there is.a topology
g, on F, finer than the original topology of F,, such that F,[7,]
is a B,-complete space not containing 9”, then given a bounded
additive measure W on a o-algebra o into F there is a positive
integer q so that u is an additive exhaustive measure on & into

F,[9,].

Proof. — Let T: 8;(X ,#) — F be the linear mapping defined
by T(e(A)) = u(A) for every A€ . Since u is bounded, T is
continuous and following the argument of the proof of Theorem 4
there is a positive integer g such that the image of T is contained
in F,. Then T has closed graph in (X , o) x Fq[fq] and therefore
T: X ,o) — Fq[ﬂ'q] is- continuous and thus the set
{T(e(A) : A€o} = {u(A): AEJ} is bounded in F, [7,]. Since
u is bounded in Fq[%] and this space does not contain 2~ we
obtain that u is exhaustive in F,[7,] [4].

q.ed.
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In [1] the following result is proven and we shall need it later :
e) Let f: E — F be a linear mapping with closed graph being E
a space and F a B,-complete space. If F does not contain ",
f maps every subseries convergent sequence of E in a subseries
convergent sequence of F.

THEOREM 7. — Let (F,) be an increasing sequence of spaces
covering a space F . If for every positive integer n there is a topology
gn on F, finer than the original topology such that F,[J,] is a
B,-complete space not containing 27, then given a countably additive
measure u on a o-algebra # into F there is a positive integer q so
that p is countably additive measure on & into F,[J,].

Proof. — As we showed in Theorem 4, it is possible to find a
positive integer ¢ such that u: o —> F, is a countably additive
measure. Let (A,) be a sequence of pairwise disjoint elements of & .

Then Z u(A,) = u( G] A,,) in Fq. Obviously the sequence
n=1 n=

(4(A,)) is subseries convergent in Fq. If J is the canonical mapping

of F, onto Fq[ﬂ'q], J has closed graph in F, x Fq[ﬂ'q] and there-

fore, according to result e), the sequence (J(u(A,))) = (u(A,)) is

subseries convergent in F_(7) and thus Y ouA) = p( Gx An)
. n= n=
in F [7,]. 1

q.e.d.

COROLLARY 1.7. — Let (F,) be an increasing sequence of spaces
covering a space F . If for every positive integer n there is a topology
7" on F, finer than the original topology such that F,[J,] is a
B,-complete space not containing 2, then given a subseries convergent
sequence (x,) in F there is a positive integer q such that (x,) is
a subseries convergent sequence in F [J,].

Proof — 1t suffices to take in Theorem 7 # =#(N) and

u(A) = > x, forevery A€ .
n€A q.e.d.

Note 4. — Llet E be a space containing a subspace F topolo-
gically isomorphic to 2. Let u be an injective mapping of 2 into

E such that u is a topological isomorphism of {2 onto F. Let
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v:E — (®°) be its transposed mapping. We can find a closed
absolutely convex neighbourhood of the origin U in E such that
u~1(U) is contained in the closed unit ball of 2°. We consider &'
as subspace of (27)" in the natural way. We represent bt (e,) the
element of %' having zero components but the n-th which is 1.
If (u='(U))° is the polar of u~!'(U) in (27)' then e, € (u~1(U))°,

n=1,2,.... If U® is the polar set of U in E' then
v(U% = (w~'(U)°. Taking z,€U° such that w(z,)=e,,
n=1,2,..., we define P: E— F in the following way: given

x €E the sequence ({z,,,x)) isin £ and we write P(x) = u(({z,, x)).
Since U° is an equicontinuous set in E’ the mapping P is conti-
nuous. On the other hand, if x €F there is a sequence (¢,) =t in
K such that t €2 and u(f) = x. Then

(z,,x)=Az,,u@®))=(v(z,),t)={e,, t)=1t

n

and thus P(x) = x. Thus P is a continuous projection of E onto
F and thus F has a topological complement in E. As a consequence
2 can not be contained in any separable space G. The former pro-
perty is going to be used to show that “B,-complete space” can not
be substitued by “T',-space” in Corollary 1.7. Indeed, if Z is the
subspace of (27)" orthogonal to ¢, we take an element w in Z,
w#0. Then (w,e({n})>)=0, n=1,2,... Let H be the linear
hull of Q'U {w}. Since L =2"[0(®,8")] is- separable,
Q‘= 27[0(2", H)] is also separable [6]. Since Q has a topology
coarser than the topology of 27, Q is a TI',-space not containing
2”. Since ®, is dense in &~ there is a subset A in N such that
(w,e(A)) #¥ 0 which means that (e({n})) is a subseries convergent
sequence in L which is not subseries convergent in Q. If we subs-
titued in Theorem 7 ‘B,-complete space” by ‘“‘sequentially complete
I",-space” it can be shown to be valid.
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