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FRACTIONAL CARTESIAN PRODUCTS OF SETS
by Ron C. BLEI (*)

N-fold sums of «independent» sets serve in harmonic analysis as
prototypical examples of 2N/(N + l)-Sidon sets, and A(q) sets whose \(q)
constants' growth is (9 (^N/2). Moreover, these features are exact : N-fold sums
of independent sets are not (2N/(N - h i ) — e)-Sidon and to not have \(q)
constants' growth asymptotic to qW2-^, for any e > 0 (see [4], [6] and [2]).
In this paper, given any number p e (1, 2), we display a set that is p-Sidon but
not(p — e)-Sidon for any e > 0. The same pool of examples contains, for any
number a e [1/2, oo), a set whose A(q} constants' growth is ^(q") but not
^W -e) ^or anv £ > 0. This answers questions raised in [4] and [6], and a
question that is implicit in [2]. The type of sets displayed here exhibits
« combinatorial » and « analytic » properties that one would expect« fractio-
nal » cartesian products (sums) of sets to possess, and hence the title of the
paper. This class of sets naturally arises in the study of multidimensional
extensions of Grothendieck's inequality ([!]); it is that study that led to the
present work.

1. Definitions and main results.

We employ basic notation and facts of commutative harmonic analysis as
presented and followed in [10]. F will be a countable discrete abelian group
and G = r will denote its compact dual group. Throughout, group
operations in F and G will be designated by multiplicative notation.

We now define the type of sets that is the object of the present study. Let
J ^ K > 0 be arbitrary integers, and

^={1 , . . , J } .
(*) Author was supported partially by NSF grant MCS 76-07135, and enjoyed

also the hospitality and financial support of the Department of Mathematics at
Uppsala University, and the Institut Mittag-Leffler.
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For the sake of typographical convenience here and throughout the paper we

let N = (J). Let
v^/

{Si,...,S^}

be the collection of all K-subsets offsets containing K elements of^),where
each S^ <= ^ is enumerated as

S, = (ai, . . . ,0^) .

Let {Pi, .. ..P^} be the collection of projections from (Z^ into (Z^
defined as follows : For 1 ^ a ^ N, and; = (/\, .. .jj) e (Z^

^0') = (/^ •••Jo^) .
Next, let F c F and

F = {yJ^z^K
be a K-fold enumeration of F. Finally, define

(i.i) F,K = {(Yp^ . . . , yp,o))}^z^ <= FN c ^N.
Throughout this paper, a set that is subscripted by J, K will denote the set
defined by (1.1), for some fixed K-fold enumeration ofF.

DEFINITION 1.1. - LetM > 0 be a fixed integer. F = {y^}j=i c= FisM-
independent if for any L, L' > 0 the relation

w= rivjs;=i j= i
\vhere the .̂ 's and Vj 's ar^ integers in [ - M,M], implies that L = L' and
^j = Vj for j = 1, ..., L. If F is M-independent for every M, r/i^n F is said
to be independent, ^independent sets are referred to as dissociate sets.

DEFINITION 1.2 (1.6.2 and 1.6.3 in [9]). - Let F = {y^J°=i c: F, 5 e Z''
/ 00 \

and y e F. Writing (formally) the Fourier series h ^ ( ^ y . ) , \ve define
\j=l )

rs(^7)=h(y).

Equivalently, r^(F, y) is the number of ways to write y in the form of

(L2) y = Y., • • • y,,,
where y^, . . . , y, are (not necessarily distinct) 5 elements in F, and where
different permutations on the right hand side of (1.2) are counted as different
representations.
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For example, it is easy to see that if F c F is independent then, for all
s > 0, the J-fold cartesian product of F satisfies

(1.3) sup r,(Fj^, y) = (s !)J, for all s e Z + .
Y€P1

The following is an extension to (1.3) and is evidence that Fj ̂  could be viewed
as a J/K-fold cartesian product of F.

THEOREM 1.3. — Let F c F be an independent set. For all J ^ K > 0
and s > 0,

-(A
(1.4) 16 v / sw^ ^ sup r,(Fj K, y) ^ ^w5.

yer1^

We now list the «analytic» results that are based on the above
«fractional cartesian products ». For F <= F, Cp(G) and L{?(G),
1 ^ p ^ oo, will be the spaces of functions in C(G) and ^(G),
respectively, whose spectra lie in F. Recall that for 2 < ^ < o o F i s a A(^)
set if there is A > 0 so that for all /e U(G)

(1.5) AH/II, ^ 11/11,.

The « smallest » A for which (1.5) holds is the A(q) constant of F and is
denoted by A(^,F). Of particular interest are sets F c: F for which A((^,F)
is (^(q") for some a ^ 1/2. In fact, this growth condition can be neatly
understood as follows : A(^,F) is (^(q") if and only if every
/ e L^ (G) also satisfies

exp (^l/j1^) < oo, for all ^ > 0
Jo

(see Remarque on p. 350 of [2]).

DEFINITION 1.4. — Let pe[l,oo). F c F is a A^ set if A(^,F) 15
(9(q^2). F is said to be exactly A13 \vhen F is A° if and only if a e [P,oo). F
15 said to be exactly non-A^ when F 15 A° if and only if a e (P,oo).

DEFINITION 1.5. —Let pe[l,2). F c: F 15 a p-Sidon set if there is D > 0
50 that for all fe Cp(G)

(1.8) DH/IL ^ 11/11^

The « smallest » D for which (1.8) holds is the ̂ -Sidon constant of F and is
denoted by D(p,F). F is exactly p-Sidon when F is r-Sidon if and only if
r e [p,2). F is exactly non-p-Sidon when F is r-Sidon if and only if r e (p,2).
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J-fold cartesian products of dissociate sets are the classical examples of
sets that are exactly AJ. These and other similar constructions of sets which
are exactly ^ are studied extensively in [2]. The same J-fold products are
also the simplest examples of sets which are exactly 2J/(J -hl)-Sidon ([7],
[4] and [6]). The gaps left open between the J and (J+l)-fold products of
dissociate sets are filled by the « fractional cartesian products » that were
defined at the outset.

THEOREM 1.6. - Let F <= F be an independent set.
a) ^K c rN is exactly A^. Moreover, there is r|j ^ > 0 so that for all

q > 2

(L9) TI^^A^F^)^^.

b) F jK is exactly 2J/(K + J)- Sidon. Moreover,

(1•1(1) "((K^)'"")^"

(Recall that N == ( j . )

Constructions analogous to (1.1) can be carried out within F by replacing
the cartesian product operation with the group operation in r. Given (an
infinite set) F (= F, let ^ be a N-partition of F :

^={F , , . . . ,F^}

(that is, FI, .. .,FN <= F are mutually disjoint sets whose union is F), where
each F, is infinite. For each 1 ̂  a ^ N, endow F^ with a K-fold
enumeration

p _ f^)\
r- - \Vi h.(Z^'

Define

(1.11) F^ = {Y^ . . . Yp^.^-r.

In this work, a set that is superscripted by J, K and subscripted by ^ will be
the set defined in (1.11), where each member of ^ is understood to have a K-
fold enumeration. When ^ is fixed and understood from the context, we
write F^for F^. Observe that, for F c F, letting

F, =(!,..., I.F.I,... ) ( = r N

T
a-th coordinate
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and

we have

where

N

F = U ̂
Ot=l

F,K = F^ <= FN

^={F,, . . . ,F^}.

COROLLARY 1.7. - Z^r F <= r fee a dissociate set and ^ be any N-
partition of F.

a) F^ c F is exactly \]/K. Moreover, there are constants r|j^,
^j K > 0 so that for all q > 2

(1.12) n,^ ^ A(^F^) ^ ^/2K.

b) F^ is exactly 2J/(K 4- J)-Sidon.

c) Suppose that F contains element with arbitrarily large order. Then, for
every pe[l,oo) there are F^ , F^ <= F so that F^ is exactly A11 an^ F^ is
exactly non-A^

tif) L^t r be any discrete abelian group. Then, for every p e [1,2) there are
F^F^ c: r so that FI is exactly p-Sidon and F^ is exactly non-p-Sidon.

The organization of the paper is as follows. In section 2, we prove the right
hand inequality of (1.4) in Theorem 1.3. In section 3, fitted for F^,
appropriate Riesz products are developed for use in later sections. The Ap

property is treated in section 4 where Theorem 1.6 (a) and Corollary 1.7 (a), (c)
are proved. The left hand inequality of (1.9) in Theorem 1.6 is then used to
establish the left hand inequality of (1.4) in Theorem 1.3. p-Sidonicity is
treated in section 5, where the remaining parts of Theorem 1.6 and Corollary
1.7 are proved. We conclude in section 6 with some problems.

2. A combinatorial property of Fj ̂ .

Let F c r be an independent set. We prove here the right hand
inequality of (1.4) : For all s e Z4' and y e ^N

(2.1) ^(Fj,K,Y) ^ ^K)5.
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We shall use an extension of Holder's inequality which, to facilitate
referencing here and in section 5, we state below.

2.1. M-Holder's inequality. — Let X be a measure space, M > 1 bean
arbitrary integer and 1 < p^ < ' ' ' < p^ < oo be so that

M iz - = i .
i-l Pi

Then, for any /i, .. .,/M' measurable functions on X,

| f/l,...,/M <ll/lllp,,...,ll/Mll^.
I Jx

For typographical convenience, let

/J\ /J-l\
N=(J and N^J.

As usual, ^((Z^) denotes all functions x on (Z+)K so that
/ \I/NIIMIN= Z i^i,...^)r1 < ̂

LEMMA 2.2. - Let Xi, . . . , XN 6 ̂ ((Z"^). Then,

^ Xi(PiO)) . • . ̂ N(PN(/)) < IM .̂ • •JI^NllN,-
INZ^^

5'̂ tc^i of proof. — The key observation is that each k e { 1 , . . . ,J} appears

in precisely N^ == ( ) distinct K-subsets of {!,. . . ,J}. J successive
\K—1/

applications of the N-Holder inequality with pi = • • • = PN = VN^
yield the desired inequality. D

Remark. — Another form of Lemma 2.2 was used in [I], where it served as
a starting point for the study of the so-called « projectively bounded »
multilinear forms on a Hilbert space (Lemma 1.2 of [1]).

Proof of {2.1). — First, by virtue of the canonical correspondence between
(Z^y and FjK, for notational simplicity we designate elements of Fj^ as
follows :

(Z^s^y^eF^,
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where
70') = (YP,O), •••^o-))-

Let y(/\), . . . , y(/J be arbitrary elements of Fj ^ and write

(2.2) y = Y ( / i ) . . . Y(/J,

that is,

(2.2') y=(nyp,o,,...,nyp^))
\K — 1 k — 1 /

(Recall that j^ .. .,7, need not be distinct.)

Let
Li ={Pi(/i), ...,Pi(/J} ^(Z^

L N = { P N ( / I ) , . . . , P N ( / , ) } ^(Z^.

Next, define

V = {/^(Z^^P^eL, fora« 1 ^ a ^ N } .

By the independence of F, the only way that y can be obtained as a product
of s elements from Fj ̂  is for these elements to have in their 1st, . . . , N111

coordinates the members of F that appear in the 1st, . . . , N111 coordinates of
(2.2'), respectively. That is, if j\, .. .,j, e (Z^ are so that

y = y(/i), ...,y(/s).
then j\, . . . , ; ,eV. Therefore, the game plan is to estimate |V|, the
« volume » of V, and exploit the fact that

(2.3) ^(FwYXIVI5.

Let /i, . . . , /N be the characteristic functions of L^, . . . , L^ in (Z^.
Clearly,

|V|= Z xi(Pi(/)) ... XN(PNO')).
w^

By Lemma 2.2,

(2.4) |V|^||xJ|^ ... IbCNik

^ 5^1 = 5^ .

Combining (2.4) and (2.3), we obtain (2.1). D
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3. Riesz products for Fj ^.

Let F c r be a dissociate set. Let F^ = F^ be defined by (1.11) where
^ is an arbitrary N-partition of F (as usual, our convention is that

N = ( j ) . For any y e F and 9 e R , define
v^/

cos(y+9) = (^Y+e-16^.

Next, let (pi, . . . , (PN e ̂ ((Z^) be so that

H<PllL,...JI<PNlloo ^ 1 ,

and write, for 1 ̂  a ^ N,

<PaW= I^Wk'9^, ke(Z+)K.

We now consider the following Riesz product :

(3.1) u - | ]"[ (l+|(pl(0|cos(Ya)+9,(0)| . . .
L^z^ -1

| n (1+^(01^(7^+9^(0)1.
L(6(z+)K -I

As usual, [|u|| = 1 and the spectral analysis of u yields the following.

LEMMA 3.1. - Let ( p l , . . . , ( p N e / o o ( ( Z + ) K ) , ||(pJL, . . . , ||(pJL ^ 1 •
Then, there is u e M(G) so that

(3.2) ||u|| ^ 2^

and

(3.3) ^0) • • • YP^)) = ^Pi(Pia)) . . . <PN(PN(/)),

for all j e ( Z + ) s .

If a higher degree of independence is assumed for F c= F, then the norm
estimate in (3.2) can be correspondingly improved. We illustrate this in

N
F = Z. Let M > 1 and F = (J F^ c: Z bean M-independent set where

Ot= l

17 f\ W\r^ = \^ h^}^
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(as usual, the F^s are infinite and mutually disjoint). Let K^ e L^T) be the
M111 Fejer kernel :

M / I / ) \KM(O= z ^-—r-
/ = - M \ M+l /

Let (pi, . . ., <PN be unimodular functions in ^((Z^^) given by

(3.4) (p,(fc) = eW

for ^c e (Z"^. Replacing (3.1) by

H - f n KM(^+6,(0)1 . • . [ n KM(^+9^(0)1,
L^z"^ -i L^z^ J

we obtain

LEMMA 3.2. - Let (pi, . . . , (PN e ̂ ((Z^^ be given by (3.4). TTien, there is
H e M(T) so r/iar

(3.5) U H l l ^(1+1/M)1^

^Mfif

(3.6) W^ + • • • + ̂ ) = (pi(Pi(/-)) .. • <PN(PN(/)),

for all j e ( Z + Y .

DEFINITION 3.3. — FI , F^ c T are said to be harmonically separated if
there is [i e M(G) 50 that

, _ fl on Pi
^ ~ [ O o n F , \ F i .

LEMMA 3.4. - Let J > K > 0, J' > K' > 0, and N = ( j ,
V^/

N' = ( J. Z^t ¥ c. V be dissociate, and ^, ^/ be N,N'-partitions of F,
\K/

respectively. Then F^ OM^ F^ are harmonically separated.

Proof. — If N ^ N', then an application (whose details are left to the
reader) of a Riesz product such as the one given by (3.1) yields the desired
conclusion. Assume that N = N', and let

^ = { F , , . . . , F ^ }
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bean N-partition for F, where, as usual, F^ is enumerated
F _ ;v(anr" ~ Ui ^z^-

Let k = VC-1/ 0zk == Q(fc) wil1 denote the compact direct product of
Z^, and ® Z,, = Q^ will be its (discrete) dual group, the direct sum of Z^.
E(fc) = Wn^ will be the system of /c-Rademacher functions realized as
characters in Q^ ; The n^ /c-Rademacher function r^ is defined by

^(co) = exp(27cfco(n)//c),
for all

co e Q^ = {(co(/))^i :co(/-) e {0, 1, . . . , k - 1}}.

Observe that E^ is (k-1 ̂ independent and that for all r eE^ , rm = 1 iff
m = O(mod^). In the sequel below, k is fixed and, for the sake of simplicity,
will be omitted from all superscripts and subscripts. As usual for y e F and
9 e R , write

cos (74-6) = (^y 4- ^Y)^.

For each co = (c0i,.. .,o)j) e ̂  define the Riesz product

^ - \ n 1 + cos fy^ + 27i ^ co, (f(m)))1l . . .
W^L V ^=o m /JJ

. . . { n fl + cos (vS" + 2,r E(o^(^)))1l,
(-«6(Z+)K L \ m=\ m /JJ

where f = (f(l), . . ., f(K)) e (Z+)K, and (see Section 1)

Sa=(oq , . . . , aK) c= {!,. . . ,J},

for 1 ̂  a ^ N. Next, we integrate over fi1 the M(G)-valued function
whose value at co e ̂  is p, :

r
(3A1) H = ^dcoeM(G).

Jo-1

The spectral analysis of n yields the following :

(3.4.2) W . . . Y^= 2-N f fn^coji...
^^=1 "J

• • • n^^Nj \d^ . . . Jco,,
|_w= 1 _j

for all i-i, . . . , ^ • N e ( Z + ) K .
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Since every I e {1,. . .,J} appears in precisely k = ( ~~ ) S^s, and
\K— I/

F fl if m = 0 (mod k)\ ^ = < v /,
Jo [0 otherwise r e E^Jo [0 otherwise

we obtain from (3.4.2) that

r 2 -N if there is j e (Z+)] so that
W . . . yi^) = < P^-) = ^ for all 1 ̂  a ^ N ;

^ 0 otherwise.
D

4. The A3 property.

Proof of Theorem 1.6, part (a). - The right hand inequality in (1.9) follows
immediately from (2.1) via the following.

LEMMA 4.1. (Theoreme 3 in [2]). - Let s be a positive integer. Then, for
F c: r,

A(25,F)^ [supr^y)]1/25.
yer

We now prove that there is r|j ^ > 0 so that

TW^^A^F^),

where F c= r is independent (the idea for the argument that follows
originates — as far as we can determine — in [5]). Let n > 0 be arbitrary,
and denote

V n = {j = { ] „ . . . ̂ ^(Z^-.l ^ j ^ . . . J , ^ n } .

Let g be the trigonometric polynomial defined by

Q = Z (YP^ ••-YP^))
J^n

(as always, N = ( ) ) .
\ \^//

Clearly,

(4-!) 11^112 = ^J/2.
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Next, let h be the Riesz product defined by

h(h^ . .^) = ]-[ (1 + cos y,(^))| . . . []-[ (1 + cos y^))1,
L^ J LeU,. J

where U^ = {i = (f,,. . .^eiZ^ : 1 ̂  i\, . . . , IK ^ "},

cos y = (y+y)/2, and t^ . . . , ̂  e G. We observe that

(4^) P||, = 1 ,
and

(4-3) IN2 ^ ll^lloo ^ 2N<

Combining (4.2) and (4.3), we obtain for any 1 < R < 2

(4.4) p|^ ^ 2^^'

(1/R + 1/R' = 1).

Also, note that

(4.5) ? i = l / 2 N on {(Yp^...,Yp^}^.

Letting R' = n^ and applying (4.4) and (4.5), we deduce

2-W =g ^ h(0) ^ \\g\UW\^ ,

^ II^LK^N.

Therefore (from (4.1)),

(4^) 2-^11^11,̂  ^ 11^11^.

n was arbitrary, and the left hand inequality of (1.9) follows. D

Completion of the proof of Theorem 1.3. - The left hand inequality in (1.4)
follows from Lemma 4.1 and (4.6). Q

Exploiting (1.9) of Theorem 1.6 via an « averaging » procedure, we now
prove part (a) of Corollary 1.7 :

Let F c: r be a dissociate set, and F^ = F^ be defined by (1.11). Let
/ e L^j,K(G) be given by

f ̂  V n v^ v^)
J L ajVPl(^) ' - • YPN(/)-

W)1

We select E = {^}^+)K' an infinite independent set in some FQ (= Go),
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and «randomize» the Fourier coefficients of / as follows. Let
t = (^,...,^)eG?, and

ft- Z ^p î) ... e^(t^^ ... Yp^.
W^)1

For each t = ( t ^ . . ...r^) e G?, let u, e M(G) be so that

Ww • .. YP^O-)) = ep^i) . . . ^(^),

and

(4^) l lHj l ^ 2N

(Lemma 3.1).

Observe that
f= ft * ^«

Therefore, for all r e G^ and q > 2,

(4-8) 11/11̂  11/J^11^11^2^||/,||^.

It follows from (4.8) that

||/||̂  2^f f t |/̂ .
Joo \JG /

w
JGo \JG

Interchanging the order of integration, and applying the right hand inequality
of (1.9), we deduce that

(4-9) 1 1 / 1 1 . ^ 2^(^^)11/11,
^2V^||/||,.

(4.9) proves the right hand inequality in (1.12). To show the left hand
inequality, we follow a computation identical to the one used in showing the
left hand inequality of (1.9). The proof of 1.7 (a) is complete. D

We assume now that F is such that for every M ^ 1, F contains an
infinite M-independent set. In fact, for concreteness' sake, assume F = Z.

LEMMA 4.3. - Let ] > K > 0 be arbitrary. There exists F c= Z so that
for any ^, an ^-partition of F, r(j ̂ /2K ^ A(^F^) < 4^, for some
r | jK > 0 and all q > 2.

Proof. - Let M > 0 be so that
[(M+lVMp ^ 4
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( N = ( ) ) , and let F c: Z be an M-independent set. Run through the
\ Vs-//
argument leading to (4.9), where an application of Lemma 3.2 replaces that of
3.1. The result is an improved estimate (over (4.9)) :

A^.F^)^^. D

Proof of Corollary 1.7, part (c). — Again, without loss of generality, we
shall work in Z. Let pe[l,oo) be arbitrary, and J^ > K^ > 0,
n = 1, . . . , be so that (J^/KJ^i is a monotonically increasing sequence
converging to P. Predictably, the strategy is to let E^ c Z be the
« fractional » sum corresponding to J^ > K^ > 0 given by Lemma 4.3, and
then select finite sets F^ c: E^ with the following properties :

(i) A^, (J W^8^2,
\ k = l /

where ^+1 »^ > 0 are chosen appropriately

(/,F,={^:^6F^);
00

(ii) the F^s are sufficiently « thick » so that (J ^Fj^ is not A^8 for any
k=l

8 > 0.

We start with
F — n(U») L . . . i l^"'"^
^n - t^PiO) -r -r ^PN^J^z^"9

a « fractional» sum corresponding to J^ > K^ > 0 as in Lemma 4.3

(NH = ( " ) ) . Next, fix a positive sequence (£^)^°= i that is monotonically
V^n//

converging to 0. For each n>0 select L^eZ '^ so that

(4.10) L^" ^ ^16Y

Let

where
17 _ /^(1 '") -L . . . -L ^"'̂ l r- F
^n - I^PiC/) "r + ^PN^heV^ c:: b^

VL ={/•=(/\,.. .^)e(Z+)J . : l <7^4}.

Observe that by running through an argument identical to the one that led to
(4.6), we obtain

9n e L^(T)
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so that

(4.11) II^II^K^4-N.(L^||^||,.

We now determine by induction that « dilation » factors of the F^'s (/„ in (i)
above) : Let l^ = 1, and suppose that /i, . . . , ^ were determined so that

/ k \
(4.12) A (q, (JU\ ^ 8^,

\ n = l /

k
fo'r all 2 < q < oo. Observe that the cardinality of (J l^F^ u F^i is
k + l

^ (LJ^, and, therefore, however we choose ^+1, we will have
n=l

/ k+\ \ p4'1 ~V12

(4.13) A ^ .U^Fj^ ^(VJ ,
\ "=1 / Ln=l J

for all 2 < q < oo. Guided by (4.13), we choose M^ so that
p+l -jl/2

(4.14) ^ (4V J ^SM^1^1.

Finally, select ^+1 so that

(4.15) (^i ± • • • ± ^) + (Vi ± • • • ± v^) ^ 0
k

for all {?i,}^i c: (J /^ and {v,};.i c: l^,¥^,, where r, r' < IM^ (we
n= 1

allow repetitions in {^}^=i and {v^.}J=i).
/ k+i \

Claim. Mq, \J ^Fj ^ g^+i/^+i, for all 2 < q < oo.
\ n=l /

k + 1

Let / be a trigonometric polynomial with spectrum in (J ^F^ and write
n = l

/ = /i + /2 ^^e
k

spectrum (/,) c |J J^,

spectrum (/2) c ̂  p^i.

It follows from (4.15) that

(4.16) ||/, + / 2 l l ^ = l l l / l l 2 + l / 2 l 2 C ,
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for all m ^ M^2. Therefore, it follows from (4.16) that

ll/i +/2llL<ll/illL+ll/2llL.
Applying the induction hypothesis, and the monotonicity of (J^/KJ^ i , we
obtain

(4.17) ||/i + f^ < 8(2mW^)[[^ + y^.

Combining (4.14) and (4.17), we obtain the claim. Combining the « claim »,

(4.11) and (4.10), we obtain that (J^n is exactly A^.
n=r

By choosing J^ > K^ > 0, where (J^/K^^i is a monotonically
decreasing sequence converging to P, and following a procedure similar to
the above, we obtain a set in Z which is exactly non-A^. The details are left
to the reader. D

5. The p-Sidonicity property.

Proof of Theorem 1.6, part (b). — First, for the sake of economy in notation,
we adopt the following conventions : Let

U = { ^ . . . ^ M } c {!,...,J} =F, and P^ : (Z^ ̂  (Z^

be the projection defined by

Pu((/i»- - -Jj)) = (Ji^ ' -JJ-

^ will denote summation over PuftZ^. For example,

z^-.-jj" z ^••^•
u ^•••^M

Also, in what follows Ys wu! mean yp ^ whenever these occur in summands.
For example,

2^ Vpi<j) ' • • ^PN(/) = ^ ^^i • • ' ^SN-
y=(/p••.jJ)e(Z+) J A ' - ' ^ J

Let E <= F be an independent set, and Ej ^ <= ^N be as in (1.1) (as usual,

N - CV
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LEMMA 5.1. - Let f be a trigonometric polynomial in Cg (G^ given by

/= .Z ^•-A,—^).
yp.- . j j

Then,

2^11/11^111^, . ,^
\1/2

/ora/J a = 1, . . . , N .

Proof. - Let 1 ^ a ^ N be arbitrary. Since E is a 1-Sidon set with
Sidon constant = 1, it is easy to see that by a proper choice of ^ e G we
obtain

(5.1.1) 11/H, ^ sup ^ ^ ̂ ,.,̂ 1) • • • ^N)
t i , . . . .^_i ,^+i , . . . , tN S, |~S,

Since the sup-norm dominates the L^norm, it follows from (5.1.1) that

ll/lloo ^ ^...jj^Si^ • •^s,_,?Ys.,,,»- - •'rsJ

(we make the obvious modification for a = 1 and a = N). Since Ej ̂  is a
A (2) set whose A (2) constant is bounded by 2^ (this follows from part (a)
of Theorem 1.6), we obtain

<1/2
2^11/11^ E Zl^,.J2

D

In a previous version of this manuscript, by following a multidimensional
version of Littlewood's rearrangement argument (see p. 168 of [7] and
Lemma 3 of [6]) we proved that

N / V/2 1 / 2J \(K-J}-(5.n yy ( Y \ a . .i2 ^— y \a. .F^ZJ ^V 4 ' I J l ' • • • l / J I / K t \ ZJ l^l.•••«/J l /K /i.- .^ j

Then, combining Lemma 5.1 and (5.1), we deduce that Ej ^ is a 2J/(K-hJ)-
Sidon and that

(5.2)
D(^•E•-^2?QK'•

The estimate in (5.2), however, is not as tight as we would like it to be. In order
to obtain the existence of sets that are exactly p-Sidon, for any pe(l,2), we
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require the sharper Lemma 5.3 below. We are grateful to S. Kaijser at
Uppsala University for pointing out to us that Littlewo'ocTs classical
inequality (the case J = 2 and K = 1 in (5.1)) can be proved without
Littlewood's rearrangement argument. Indeed, this is a key observation in the
demonstration below. In the course of the proof of 5.3 we greatly benefited
also from stimulating conversations with M. Benedicks at the Institut Mittag-
Leffler.

We require two basic inequalities : MinkowskFs inequality which, to
facilitate referencing, we state below, and the M-Holder inequality that is
given in section 2 ((2.1)).

(5.2) Mmkowskfs inequality. — Let X and Y be measure spaces and g
be a measurable function on X x Y. For any 1 < r < oo,

(5.3) ([([ l̂ iVy ^ f (f I^T-
\Jx \JY / / JY \Jx /

LEMMA 5.3. - Let J > K > 0.

/ -^J-\[K2^1J- N |~ / \l/2ll/N(5.4) z K,.̂  ^ n i: zi^.j2
\/i,...jj, / ^=iLs, \~s, J / J

(-0))-
Proof. — We prove (5.4) by induction on J. We start with the case J = 2

and K = 1. Write

(5.3.1) zi^r^zi^i273!^3-
ij iJ

By applying 2-Holdefs inequality to the sum over j with p^ = 3/2 and
p^ = 3 for the first and second factors, respectively, in the summand of the
right side of (5.3.1), we obtain

/ \2/3 / \1/3

(5.3.2) El^l^E El^-l Sk,l2 .
ij i \j / \ J /

Next, applying 2-Holder's inequality to the sum over (' with p^ and p^ for
the second and first factors, respectively, in the summand of the right side of
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(5.3.2.), we obtain

[ / vn^r / v/2-p/3
(5.3.3) Ela,,!4/3^ Z I>,| Z E|a,|2 .

i,J i \ j / J L i \ j / J

From Minkowski's inequality, we have

/ / V\l/2 / \ 1 / 2

Z Zl^-l ^Z Zl^l2 ,
\ i \ j / / j \ i /

and, therefore (from (5.3.3)), we deduce

/ \3^ r / yi^l/2 r / M/2-J1/2(5.3.4) (zia,r3) ^ z(ziv z(zK-i2
\i,j / L i \ i / J L f V j / J

(5.3.4) starts the inductive proof of (5.4), and we now assume that J > 2 and
that (1.4) holds for all J^ < J . We write

(5.3.5) ^ |^,...J,FT= ^ l̂ ,...̂ ...!̂ ,.,̂ .
yi-.-.jj ;i,...jj

For notational reasons, we shall write

/n(/l,...Jj) = ^,...,^

for the n-th factor in the summand of the right hand side of (5.3.5) (even though
/i = • • • = /j), and whenever there is no confusion we shall write merely /„ :

(5.3.5') ^ |̂  jî v = ^ 1/iF^... 1/r^.
^'•••^ ' j 7i,.-.Jj

Now, apply J-Holder's inequality to the sum over j'j with

p , = p = ( K 4 - J ) / 2

for /i and p2 = • " = PJ = ^ = _ . , ^, for f^ ..., /j and obtain
(K + J — 2)

that the right side of (5.3.5') is majorized by

(5.3.6) y fy , . ̂ (̂ ) rr fv | f |(^T^)^(JKT^J)
. 2L. \ZL l^ll ; 1 1 \ Z, \Jn\ j
^'••• 'J j- l \^ / n=2 \Ji /
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Next, apply J-Holdcr's inequality to the sum over j,_^ with p for the factor
containing /; and q for the remaining factors in the summand of (5.3.6), and
obtain that (5.3.6) is majorized by

(5.3.7)

,. ĵfe(?^n^-[s(?^^n-: i/j W^. rv (y. i/̂ T^ I-'
j r 2(J-1) -1 (K+J-2) .• n z i/j^r^l.

n=3 Uj-i^j J J

We continue in this fashion : At then n-th step, n > 2, we apply the J-Holder
inequality to the sum over j,_^, with p for the factor that contains /, and
with q for the remaining factors. After J such operations we obtain that
(5.3.5') is majorized by

(5.3.8)

f z (zi/.i)Up.-.Jj-iU / _____(K+J-2) 2(J-1) (K+J-2)
r / / 2(J-1) \ ^-^ \(K+J-2)-,(J-1)(K+1)

Z Z Z l/J )̂ ) I
L j p - .^ j_^ \y j_^ i \^_^2,.. .jj / / J

r / 2(J-1) \ (K+J-2)-, 2_• • • E( z i/r^-21)2(J-1) r".
LA \ii,--.Ji / J

Now, apply Minkowki's inequality to each of the first (J -1) factors in (5.3.8)
as follows : To the first factor, apply Minkowski's inequality (as stated above)
with |<?| = |/J,

=. I: . f - Z .
-/! '•• •'/J-l JY J ]

2(J-1)and r =
Jx ^•••^-i JY 7 (K+J-2)

To the n-th factor, 1 < n < J, apply MinkowskFs inequality with

l^l = E l/̂ 1 ,̂
J l - n ^ - ' - J ]

f = z - f = s ,
•/x ^ • • •^ j -^ JY ^j-^i

, . - 2(J-1)and again with r = —-———•
(K+J-2)
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We therefore obtain

/ ^ \^ j / / ^^\tK^l\w
(5.3.9) ( Z la,,,,,̂  " < n Z E^..J(K+J-2)

Vl ' - . -^J / n=l \Jn \~Jn / /

( ̂  denotes summation with respect to indices in {/\,. . .jj}\{/J (.If K = 1,
\-Jn )

(5.3.9) reduces to (5.4) and the lemma is proved. We now assume K > 1 and
apply the induction hypothesis that (5.4) holds for J — 1 and K — 1 for
each of the J factors on the right hand side of (5.3.9). Namely, for each
1 ^ n ^ J we have

/ v (K4-J -2 ) N / /N! /_ /_ . .y^v^
k- J2(5.3.10) Z Z la,,..,,,̂  ^ < S ft £ Z ^,...J2

;" V^n / Jn «=1 \S; \~S;

[Recall that N^ = ( ) .{S?, . . .S^J denotes the collection of all
\K—1/

(K— l)-subsets of {1,. . .,J}\{n}; ^ denotes summation with respect to the
s^

indices 7^, .. .,j'a , where S^ = (a^,.. . ,a^_i); ^ denotes summation
~sS

with respect to the remaining indices (except ;'„).] We now apply N^-Holder
inequality, on the right hand side of (5.3.10), to the sum over j^ with

p^ = • • • = p^ = I/NI for each of the N^ = ( ) factors in the

summand. Combining this application with (5.3.9), we obtain that the left
hand side of (5.3.9) is majorized by

j N! r / \i/2-i;rNi(".ID n n z£(£i^,..j2
n=l «=1 U« S; \~S; / J

Finally, observe that

(5.3.12)

{{1} uS;,{l} uS^,..., {1 } uSj,,,...,{»} uS"i,.. .,{n} USN,, ...,
{J}uSl,...,{J}uS^,}={Si,...,SN}.
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Also, notice that each set in the enumeration of the collection on the left hand
side of (5.3.12) occurs precisely K times. Therefore, the expression in (5.3.11)
equals

N i - J / K / / V^N^S N / / M/2M/Nn z SK...J2) r ' -n z zi^,.,i2) ) ,
a= l \S, ^~S^ / / a = l \S, \~S, / /

and the proof of the Lemma is complete. Q

Combining Lemmas 5.1 and 5.3, we deduce that

D(2J/(K+J),E^)^/K.

We now proceed to show that

D([2J/(K+J)]-£,E^)= oo

for all £ > 0. The argument that follows is similar to the one used in
showing that Ej ̂  is not A^'6 for any e > 0 (and is an adaptation of a
proof used in 2.7 of [4]). We use the fact that if F c F is p-Sidon, then there is
B > 0 so that for all / e U(G)

(5-5) 11/11. ^ B^fc||/|L
for all 1 < b < oo, where

a = 2p/(3p - 2)

(see (9) in [3]). Let n > 0 be arbitrary, and let

V,, = {j = O'i,. • .^(Z^ : 1^\,.. .J^n}.
Let

9 = 2^ (^PI(/>- • '^P^{j)'
J^n

Clearly,

(5.6) I I^ IL = n^.

Next, let U. = {) '==0'i , . . ..^(Z^ : l^^'i, . . .,^0} and define

h(t,,.. .,^) = [ n (1 +cos y,(r,))1 . . . I n (1 + cos y,(^))1 •
i-ieU^ J LeU, J

As in section 4, we conclude (see (4.2)-(4.4)) that for any 1 < R < 2
N^

II^IR < 2 R' ,
and

h = 1/2^ on {(Yp^... ,Yp^-))}7ev^.
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Therefore, as in section 4,

(5.7) 2-^=1^^(0)1 <||<K|N^,

^ IKK-2^

If Ej K is p-Sidon, it follows from (5.5), (5.6) and (5.7) that

W ,-»,,, B^'O

But, (5.8) holds for all n > 0 only if p ^ ————> The proof of part b) of
(K-hJ)

Theorem 1.6 is complete. Q

Proof of Corollary 1.7, part (b). — Let F <= F be dissociate and
F^ = F^ be given by (1.11), for an arbitrary ̂ . Let / be a trigonometric
polynomial in Cpj,ic(G) given by

f _ v a v^ v^J ~ L a^p\^ ' ' ' ' P N O ) -
^(Z-^^

Select E = {^}^(^)K, an infinite independent set in some ro(= Go). Let
t = (^,. . .,t^) e G^ be arbitrary, and ^ e M(G) be so that

^(Yp1^) • • • YP^O-)) = ̂ (,^1) • • • ^PN^^N)

for^\je(Z+Y, and

11^11 ^ 2N

(Lemma 3.1).

Therefore,
sup | E a^(t,} . . . ̂ ^N)I = sup |</, a,>| ^ 2^1/IL.
teG^ y•e(Z+)J reG^

By Theorem 1.6, part (fc), we have

/ -^-\^
(5.9) ^ \a^) ^2^-2^1/H,.

\-e(Z+^ /

This proves that F^ is ——— - Sidon. To show that F^ is exactly
(K+J)

2J
-_—^ - Sidon we follow the same route that was used to prove the(K+J)
corresponding fact for Ej^. Q
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COROLLARY 5.4. - Let ] ^ K > 0 and J' > K' > 0 be arbitrary. Let-

F c F be dissociate and 9, 9' be Qj, (^} - partitions of F

respectively. Then F^ u F '̂ is exactly a p-Sidon set, where

f 2J 2J' •)p = max-s——— ____'>
l(K+J) ' (K'+J')J'

Proof. - Apply Lemma 3.4. r-,

Proof of Corollary 1.7, part (<Q. - We consider two cases.

I. r contains elements with arbitrarily large order. As usual, we shall
assume that F = Z. First, observe that for any J > K > 0 the (M-
independent) set F <= Z given in Lemma 4.3 has the property

(5-10) D(2J/(K+J), F^) ^ 16-2^.

(5.10) is achieved by applying, en route to (5.9), Lemmas 3.2 and 4.3 in place of
Lemma 3.1 and Theorem 1.6 (b), respectively, whence 21" is replaced by 4
and 2^ by 4-2^ in (5.9). Let pe[l. oo), and J_ > K, > 0 be so that
(•V^);̂  i is a monotonically increasing sequence converging to p/(2-p)
For each n > 0, let F,, c Z be the set given in Lemma 4.3 corresponding

to J, > K, > 0. Select finite sets £„ c F,, so that

(5.11) D([2J,/(J, + K,)] - l/n, E_) > n.

Next, determine <eZ+ with the following property : Whenever / is a
00

trigonometric polynomial with spectrum in (J d^, then
n=l

(5-12) CH/ILS. ^ ii/ji^,
n=l

oo

where/= ^ /„ and spectrum (/„)<=<£„. Combining (5.10), (5.11), and
00

(5.12), we conclude that (J ^,E, is exactly p-Sidon.
n=l

To obtain a set in Z which is exactly non p-Sidon, we choose
Jn > K" > ° sothat (VKXLi is a monotonically decreasing sequence to
P/(2-p), and carry out a construction similar to the one above. Details are left
to the reader.
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II. r contains ® Z^ for some a e Z'^. Clearly, we may assume that for
any given J > K > 0, there is a dissociate set

E = {Yj,e(Z-)K c C Z,

so that

(5.13) E^ = {(Yp,o-) , . . . ,Yp,(,))};e(z^ c © z. = (©^.

SUBLEMMA. - Z^r Ej^ c: © Z^ be given by (5.13). TTi^n,

A^.E^^B^W/2,

vv^r^ [J/K] = least integer equal to or greater than J/K, and B is the 1-
Sidon constant of E.

Pnw/: - Let^eUj®ZJ, \\g\\^ = 1, be given by

^ - Z ^-(YP^ •-.YP^O')).
ye(Z+)J

Observe that there are [J/K] subsets of {!,. . . ,J}, S^, . . . , S^j/iq, so that
[J/K]
(J S^ = {!,...,J}. Therefore, we may estimate the ^-norm of g as

follows :

J Z ^-Yp^^i) • • • W^N^^OI . • . d^ll^ll? = J E ^Yp.o^i) • • • W^N)!"^! ... rfo)N
J((0i,.. .,Q)N)e(®Z2) ic/z"1'^J((0i,.. .,Q)N)e(®Z2) j^Z"1"^

-L-""Lv»•£wp.t]•••7wl"^L-..(w"K""
^ (Bq^2

(the appearance of B above is explained by (2) of 5.7.7 in [10]). D

To prove Corollary 1.7 {d\ in the present context, we follow a route
identical to the one followed in Case I where the use of (5.10) is replaced by a
use of the Sublemma. Q

6. Problems.

The « J/K-fractional » product of a dissociate set E <= F was defined in

this work as a subset of the ( )-fold product of E. Subsequently, through
\K/
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the use of Riesz products, ( ) appeared in some of the estimates. The first
\K/

four problems focus on replacing ( j by J/K in the various computations.
\^/

Problem 6.1. — Improve the lower bound on sup ^(Fj^, y) in (1.4) of
yerN

Theorem 1.3. In particular, is there C > 0 so that for all s e Z^

C-J/KS(J/K). ^ sup r,(Fj K, 7),
yer^

where F c F is independent ?

Problem 6.2. — Improve the norm estimate in (3.2) of Lemma 3.1. In
particular, is there [i e M(G) fulfilling (3.3) and so that

^ C^,

for some (universal) C > 0 ?

Problem 6.3. — Given any rational P e [1, oo], we constructed in this
paper E c= r for which there are r|p, ^p > 0 so that for all q > 2

(6.4.1) Ti^^A^.E)^^2 .

While (6.4.1) is a stronger statement than « E is exactly A^ », in Corollary
1.7 (c) we deduced for all P e [1, oo) no more than the existence of sets that
are exactly A13. Given any pe[ l ,oo) , can we find sets (say in Z) for which
(6.4.1) holds ?

Problem 6.4. - Prove Corollary 1.7 (c) for F = ©Z^, a e Z^ .

Problem 6.5. — A classical theorem due to Rudin ([10]) states that every 1-
Sidon set is A1. The converse was recently established by Pisier ([9]). Could
it be that E c: r is a A^ set if and only if E is 2p/(l -h P)-Sidon ?

Problem 6.6. — In Section 5, an essentially probabilistic method was
employed to show that Ej^ is not (2J/(K+J)-£)-Sidonforany e > 0. In the
case J = 2 and K = 1, an explicit construction of trigonometric polyno-
mials (bounded bilinear forms) displaying this fact is given on p. 172 of [8].
Replace the probabilistic procedure in Section 5 by a constructive one.
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