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THE GENERIC DIMENSION
OF THE FIRST DERIVED SYSTEM

by Robert P. BUEMI

Introduction.

In this paper we study the so-called first derived system of a
subbundle of the cotangent bundle of a manifold, which we will
call here a Pfaffian system. The first derived system will be explained
in full detail in Section 1, but for now suffice it to say that it is a
set of subspaces of the Pfaffian system under consideration, one for
each point of the manifold, which measures the complete integra-
bility or lack of same of the system. For instance, in the case of a
completely integrable Pfaffian system, the first derived system equals
the Pfaffian system at each point of the manifold. Now, in general,
unlike the completely integrable case, the definition of the first derived
system allows the subspaces (giving the first derived system) to vary
in^dimension from point to point. A natural generalization of complete
integrability would be to require these subspaces to have a constant
dimension. This generalization of complete integrability is not at all
new. Such Pfaffian systems have been studied by E. Cartan (2) in
several papers in connection with the equivalence problem for Diffe-
rential Systems and more recently by myself (1) in a paper investigat-
ing the characteristic classes of such systems. One of the first ques-
tions which arises in connection with the first derived systems is:
What is the generic dimension of the first derived system? More
precisely, given any r-dimensional Pfaffian system on a manifold
M , we will have a partition of the manifold into subsets M() , . . . , M^ ,
where m is the minimum of r and C(n-r,2), with M .̂ giving
the set on which the first derived system has codimension i. The
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precise question, which we answer in this paper, is: What is the generic
dimension of the M/s ? As an example of the type of result which
we obtain our work will show that generically a 2-dimensional Pfaffian
system on a manifold of dimension n > 7 is completely non-
integrable, i.e. the first derived system is the zero subspace at each
point of the manifold.

1. The First Derived System.

In this section, given a Pfaffian system I , we define the first
derived system, I0^ of I .

For any vector bundle E on a manifold M we let F(E) denote
the module of sections of E.

The exterior derivative d gives a map

d : r(I)—^(A^CM))

which is not a module map. Let

TT: T*(M)——^T*(M)/I
be the natural projection and let

A 2^: I^T^M))—^(A^T^M)/!))

be the second exterior power of the module map induced by TT.
Let D = A 2 ^ o d be the composition, so that we have:

D: r(I)—^(A^T^M)/!)).

Then D is a module map. Now there is a one-one correspondence
between bundle homomorphisms and module maps between the
sections of bundles, so that we have a bundle homomorphism, which
we also denote by D ,

D: I—^(^(M)/!)-

At each point p £ M , D is a linear map from the fibre at p of I
to the fibre at p of A^T^M)/!), so we will have a kernel at each
point p , which we denote by I^0. We define the first derived
system I^ of I by

T(I ) = u i(0
1 pGM'p •

By definition, the Pfaffian system I is completely integrable if and
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only if I0^!. Also we observe that, since the dimension of
A^T^M)/!) = C ( n - r , 2 ) , the codimension of ^1) in Ip can be
at most equal to the minimum of r and C ( n — r , 2 ) . Thus given
an r-dimensional Pfaffian system on a manifold M, the existence
of l(l) partitions M into subsets MQ , . . . , M^ , where m is the
minimum of r and C(n — r , 2) and M .̂ = [p € M | codimension
of y = o.

We will say an r-dimensional Pfaffian system I is non-integrable
if MQ = 0 and completely non-integrable if M^ = M.

2. The Generic Dimension of I0^

In this section we give an alternate description of the sets M,,
which will enable us to compute their generic dimensions, thus
answering the questions posed in the introduction above.

To this end consider the space of r-frames, F^, in R^ = (R")*.
Thus F^ = {cj == (0:1 , . . . , a?,.) € © RJ o^ A . . . A co,. ^ 0}, an
open set in © R,,.

r

Next we define a vector bundle over F ^ , V , as follows:
V = {(a) , r) | o?^ F^ and rGR^/{c<;}} where {a?} indicates the
space generated by o?^ , . . . , a?,,. Obviously V is the quotient of the
trivial bundle Py x R^ by the bundle E == {(co, 17) ̂  F^ x RJ 17 G {cj}}.
The bundle, in which we will be most interested, is
V = ©(A2^) = {(o;,n)|o;eF,,n = (fti,. . ., S2,) and

^EA^R^}) VO
Observe that V is a vector bundle of fibre dimension r ' C(n — r , 2).

We will now describe some subbundles of V which will be im-
portant to our work. To do this let W be any finite dimensional vec-
tor space, dimension p , and consider ©W. For 0 < / < min ( r , p )

r
we define the rank i set, R, C ® W, by

r

R, = {(^i , . . . , ^.)1 dimension of [ v ^ , . . . , Vy} = /} •

Then R, is easily seen to be a submanifold of ©W of dimension
r

i ' ( r - \ - p — i ) which is also invariant by the standard direct sum
action of G1(W) on © W . Now if E is any vector bundle with
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frame bundle B and standard fibre W then ® E is an associated
r

bundle of B with standard fibre © W and group action given by
r

the direct sum action mentioned above. So we may define subbundles
of © E , which we denote by R,(E), as the fibre bundles asso-
ciated to B with standard fibre Rp The definition makes sense
since the submanifolds R, are invariant by the Gl(W)-action.
Of course these subbundles will be submanifolds of © E of the

r
same codimension as the codimension of R, in (B W, namely
p. r — i . (p + r — i) = (p — i) (r - i) . In our case we let
E = A^ and we get submanifolds of V , which we will still denote
by R, (= R^A2^)) of codimension (C(n - r , 2) - 0 (r - i) for
0 < / < min (r, C(n - r, 2)). Notice that
R, = {(co, ft) E V| S2 = (^ , . . . , ̂ ) and dimension of

{^,...,n,}=o.
Next we consider F^ = J^(R" , F^), the space of 1-jets at the

origin (i.e. the source is 0 GE R") of r-coframes. We let p / . F^ —> F^
be the projection, so that if /^(o?)GF^ then p^(/^(co)) = o)(0).
Now it will be useful for us to observe that (F^'. F^ ,p^) is a vector
bundle and can be easily identified with the direct sum of r copies
of the trivial bundle F^ x ®2 Ry,. Using this identification we will
define a map 5 : F '̂ —> V. To do this we first define

§: F.x^R^—> A2!)
via 5(c^,T)=(o;,[Alt(T)]^p where [ ]^: A^ —> A^R,/^})
is the second exterior power of the projection R^ —^ R^/{co} and
Alt: ®2 R^ —^ A2 R^ is the skew-symetrization map. We now define
6 by 5 ^ © 5 . Now obviously 6 is a surjective bundle homomor-

r
phism and so 6 is also a surjective bundle homomorphism. Therefore
we have:

PROPOSITION. — 6 is a submersion.
Now the maps T^.: F^.—^ F^ given by ^.(0?^ , . . . ,o ;^) = o? .̂

induce TT^: F^ —^ F'i given by 7r/(/^(a?)) = /^(7r, o a?). This allows
us to write down the map 5 as follows:
5(/^)) = (P,(/^), [do ̂ (/^ ̂ ,. . . ,

^°-W^\^
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This formulation of 6 suggests the tie up of the S map with the
notion of first derived system which we will make below.

Since 6 is a submersion we can pull back the submanifolds
R, C V to submanifolds S, = S'^R,), which of course will have
the same codimensions as the R/s.

Next let G^ denote the space of r- planes in R^. We have
P r ' - Fr—> Gr ^iven ̂  Pr(^) = W which is a principal Gl(r)-
bundle. Now p, induces p;: F;—> G; where G; = J^R", G,),
via p^/^)) = f^Pr0 ^) and the triple (F;,G;,p;) is a prin-
cipal bundle with structure group given by Gl'(r) = J^(R",G !(/•)).
The sets S, also possess an important property given by the follow-
ing:

THEOREM. - S,C F; is invariant by the G\\r)-action of the
principal bundle (F^, G',, p;).

Proof. - The Gl'(r)-action on V'y is given by
i ^ ) ' W = / ^ ^ g )

where of course a) • g indicates matrix multiplication. Now we may
identify Gl\r) with Gl(r) x Hom(R", M(r, r)), where M(r, r)
is the space of r by r matrices. Under this identification and the
identification of F^ with © (F^ x ^R,,), it is not hard to check

^ r
that the Gl (r)-action on F^ is given as follows:

if /^(co) <——> (^, T ^ , . . . , T,) E © (F, x ̂ RJ
r

and /^) ^——> ( g , L) e,.Gl(r) x Hom(R" , M(r, r))

then /i(a))-^(i)^——^ (co- ^, T. g + c^. L)

where T = (T, , . . . , T,.), T • g is matrix multiplication,
(a? • L), = 2L/; ® co,, co(0) = 01 and g(0) = ^.

Now if we apply 5 to the ('"'• term of /-1 (co) • /^ (g) we obtain

6(u.g,^T/^., + L/.,®^)
= (G;.g. 1' SAlt(T,)g/, + L/ ,A ,̂1 ̂ )

=(o..^[S:Alt(T,)^,,]^)
L / J /
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where the last equality follows since {a? • g} == {a;}. Writing
[Alt(T)]^ for ([Alt(T,)]^, . . . , [Alt(T,)]^) we have

5(^(o?). f^g)) == (a;. g , [Alt(T)]^. g)

and since (7^(0))) = (co, [Alt(T)]^) we see that S, is invariant
by the G/'^-action.

Because of the above theorem the projection of S. to G' is
a submanifold of G[ of the same codimension as Ŝ . has in F' .
We will denote the projection of S, to G[ by 2^..

Next let H = {/^^(/)ej^^(R",R") | / is a diffeomorphism
of a neighborhood of 0 in R"}. For convenience we will denote
^o.o) ̂  ^ ^2^) when there is no chance of confusion. H is the
group of invertible 2-jets of maps carrying the origin in R" to itself.
We will define an H-action on G[ and show that the 2/s are in-
variant under this action. To do this we first define an H-action on
F^ as follows:
for /2 (/) G H and /^ (a;) E F;, /^ (a;). /2 (/) ^ ̂  (^ o J(/))

where (co o J(/))^ == cj, o J(/)

and (oj, o J(/)) (x) (v) == o;,(/(x)) (J(/) (x) (v))

for x and v elements of R". Of course J(/) (x) denotes the
ordinary jacobian map of / at x . Now trivially

P;(/i(^)./2(/))=P;(/i(T)./2(/))

whenever ^(r) = f^(o}) • j^(g) for some /^(g) Gl\r). Therefore
we can define the H-action on G[ as follows: if /^ (^GH and
^(Q)^G;, choose any 7^) ^ F; such that ^(^(co)=/^(Q)
and define /^(Q). ^CO ^ p;(/^(G;). y2^)). Now by definition
the actions of H on F^ and G[ commute with p[, so to show
Z .̂ is invariant by the H-action on G^, we need only show that
S, is invariant by the H-action on F^. To see that S, is invariant
by the H-action, we use our identification of F^ with ® F^ x ®2 R^
and we identify H with Gl(n)x Hom^(R",R"), where Hom^R^R")
is the space of symetric bilinear maps from R" x R" to R" , via

^0,0)^)'——^(WKOLJ^mO))
Q2fk

and J2^) (0) (e,, ^,) = S ———— (0) e,
k ^i dx/
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and {^.}, 1 < i < n, denotes the standard basis of R". Under the
above identifications it is easy to check that the H-action on F^
is given as follows:

if /^)<——^(o;,T) w h e r e T = a \ , . . . , T , ) , T , e ® 2 R „

and ^(f) <——> (a, b) G Gl(n) x Hom^(R" , R")

then f1^)' f2 (f) ^——> ( c x j o a ^ c j o b + To S^a)

where (G} o b 4- T o ®2^. = c .̂ o b 4- T, o ®2fl .

Next we compute 5 on /^(c^)- ^(fY To do this we compute
5 on each component:

5(cj o a, a?, o & + T, o ®2fl) = (oj o a, [Alt(Gj, o ^ 4- T, o ®2a]^p

but b is symetric so Alt(c^. o 6) = 0 and Alt(T, o S^a) = A2^(Alt(T,))
so 6(o) o a, cj o ft + T o g^) = (cj o a, [^a^AlKJ))]^^) and
clearly this implies that the S/s are invariant.

Now let M be an ^-dimensional manifold. We let G^(M) be
the associated bundle to the frame bundle of M with standard fibre
G^ and let G^(M) be the bundle of f-jets of r-dimensional sub-
bundles of the cotangent bundle of M. G^.(M) is a fibre bundle
with standard fibre G'y and structure group H, associated to the
principal H-bundle of /-jets of r-coframes on M. Now since the
2/s are invariant submanifolds of the standard fibre of G^(M),
we can define submanifolds 2^.(M) of G^(M) by letting £,(M)
be the bundle with standard fiber £, and transition functions the
same as G^(M). These submanifolds will have the same codimen-
sion in G^(M) as the 2, have in G[. Furthermore we have
G^.(M) = U 2,(M). Observe also that if Q is an r-dimensional
subbundle'of the cotangent bundle of M and /^(Q) (p) € 2,(M)
then the dimension of Q^ == r - i.

We let D'' denote the set of C5 r-dimensional Pfaffian sys-
tems on M . Then local triviality of G/M) —^ M , and the jet
transversality theorem (see for example (3)) gives the following:

THEOREM. - For s>2 the set T(S) of Q e D^ such that
/^(Q): M —> G^(M) is transversal to the stratification £(M)== 2y(M)
is a residual subset of D^.



1 20 R-P- BUEMI

Now if Q E D ^ , 5 > 2 , is a generic r-dimensional Pfaffian
system on M, then the theorem above gives a stratification of M
associated to Q by

M, = (^(Q))-1 (2,(M)) 0 < ; < min (r, C(n - r, 2))
and since /^(Q) is transversal to S,(M) for all ? , M, will have
the same codimension in M as 2,(M) has in G^(M). Also by our
observation above these M/s are the same as the M/s defined in
Section 1.

We now list some examples to illustrate our results:
1) r = 1 . In general we will have Mg and M^ with the codi-

mension of MQ = C(n - 1,2) and the codimension of M^ = 0.
Now if C(n - 1,2) > n , which happens if n > 5 , then MQ = 0
and M^ = M. So the generic 1-dimensional Pfaffian system on a
manifold of dimension n > 5 is completely non-integrable.

2) r = 2. For n > 7 a generic 2-dimensional Pfaffian system
is completely non-integrable and for n > 5 a generic 2-dimensional
system is non-integrable.

3) We note that the polynomial P(f) = (C(n - r , 2) - i) (r - i)
is decreasing on 0 < i < min (C(n — r , 2), r) = m. So P(z) takes
on its minimum value at i = m and P(w) = 0. Now if P(w - 1) > n
we will have M() = . . . = M^_i = 0 and M^ = M, i.e. the system
is completely non-integrable. To see when this happens we look at
the three possible cases:

a) C(n - r , 2) = r. In this case P(m - 1) = 1 so P(m - 1) f>n.
b) C(n - r, 2) < r. In this case P(m - 1) = r - C(n - r, 2) 4- 1,

and it is easy to check that P(m — 1) > n is impossible.
c) C(n - r, 2) > r . In this case P(m - 1) = C(n - r , 2) - r + 1,

and this case is possible as examples 1 and 2 above show.
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