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ON THE MARTIN COMPACTIFICATION
OF A BOUNDED LIPSCHITZ DOMAIN

IN A RIEMANNIAN MANIFOLD (1)
by J.-C. TAYLOR

0. Introduction.

Let D be a bounded Lipschitz domain in R". In [5]
Hunt and Wheeden showed that, for the Laplacian, the Martin
compactification of D is D. In this article the same result
is obtained for a class A(y, [ L , D) of second order elliptic
operators L defined on D.

n ^2 » ^
The operator L = Y a,f(x) ——— + Y b,(x) — + c{x) is in

».y=i ^xfix^ ^ ^Xi
A(y, ^; D) if the coefficients are uniformly Holder continuous
on D and such that:

(l) 1W112 < S ^W^ ^ Y l l S I I 2
1.^=1

for all ^ e R" and x e D; for all x e D,

(2) S b^x) ^ ii;
i=l

and

(3) — (A ^ c{x) < 0.

While the proof of this theorem is essentially the same as

(l) This work was materially supported by NRC Grant No. A-8108.
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that given in [5] for the Laplacian, some necessary techni-
cal modifications are imposed since the coefficients are
variable. In addition, greater use is made of the abstract
theory of the Martin compactification. Besides Serrin's
result on the Harnack inequality [12], the main techni-
cal tool used is Miller's result on the existence of a uni-
versal barrier for operators L e A(y, (JL; D). It is worth
noting that the proof given here is not valid for self-adjoint

n ^ / n b \ .operators L === ^ — ( ^ ^(x) — ) with (a,/^)) uniformly
1=1 ̂ 1 \y=i 5rr//

elliptic and measurable simply because there is no universal
barrier available for this class of operators on D. Presumably
the theorem is still true in this case.

Let X be a Riemannian manifold and let M <= X be
open, relatively compact, connected with non-void Lipschitz
boundary. By considering the Laplace-Beltrami operator A
in a suitable coordinate neighbourhood of an arbitrary boun-
dary point and applying the above result, one can prove that
M is the Martin compactification of H relative to A (*).

An interesting consequence of this result is the fact that if M
is the interior of a compact Riemannian manifold with boun-
dary N (in the sense that the metric of M is the metric of N
restricted to M) then N is in fact the Martin compactifi-
cation of M relative to A and hence is unique. As pointed
out to the author by W. Bfowder, this sort of thing does not
happen in the category of ^-manifolds. In fact, if n ^ 6,
results of Stallings [13] imply that in each dimension there
exist non-diffeomorphic compact ^-manifolds with boun-
dary with diffeomorphic interiors.

The article begins with a detailed proof of Carleson's lemma
based on the original argument in [3]. An examination of the
details of this proof then permits one to obtain this result for
any L e A(y, (A$ D).

In section three, following [5], it i? shown that for ZQ e &D
and Ai, h^ any two Bouligand functions associated with ZQ
there exists a constant c with ch^ < h^. The theorem about
the Martin compactification is established in section four and
then applied to Riemannian manifolds.

(*) Added in proof: also proved by S. Ito for C3 boundaries [18].
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1. Carleson's lemma [3].

A domain D <= R" will be said to be a Lipschitz domain if,
for each ZQ e &D, the following condition is satisfied : for
some neighbourhood U of ZQ there is a ^-diffeomorphism
w of U with an open set in R71 and a Lipschitz map f:
Rn-l _^ R g^^ ̂ ^

U n D = {z e R-K^) > /•(^(z), . . . , ^-i(z))},^1^ • • ., w^[z))},

where w(z) == (wi(z), . . ., w^(z)), for all z e U.
It is not hard to see that this condition is satisfied if w

is replaced by any other ^-diffeomorphism (with U repla-
ced by a smaller set in general) and hence that one can define
a Lipschitz domain in any ^-real manifold, k ^ 1. Of
course, it f is sufficiently differentiable then the domain in
question is a sub-manifold with boundary.

Let D be a bounded Lipschitz domain in R" and let
ZQ e ^D. By a suitable choice of coordinates one can assume
that ZQ = 0 and that it R" is identified with R71-1 X R
then there is a Lipschitz function f: R71"1 -> R with /YO) = 0
whose graph determines the boundary of D in a neighbour-
hood of the origin. More specifically, it can and will be assumed
that D' = {(^, y}\ \x\ ^ 1, \y\ ^ 12A} n D coincides with
{(rr, y)\ \x\ ^ 1, f{x) ^ y ^ 12A}, where (i) A is a constant
such that \f{x) — f{x')\ ^ A.\x — x'\, V^, x9 e R^;

(ii) \x\ = max \x^\ and (iii) z e R^ is written as (re, y)
l^i^n—l

with x e R"-1 and y e R.
When D is as above it will be said to be in the canonical

position
Let BI = 41A and let 7-0 = (3A)/(4Bi). Then, if

\x\ ^ 1/8, f{x) + roBi ^ A.

Denote by F the graph of /*. A closed r-cell C in F
with centre ZQ = (rco, A^o)) ]s a se^ of the form

r n {{x,y)\ \x - XQ\ ^ r}.

An open r-cell in F is similarly defined.
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Then, if \XQ\ ^ 1/8 and r ^ y*o, there is a smallest integer
^o = ̂ o{r) such that ( *) 2A ^ /^o) + 2/lorBl ^ 5A.

Consider the cylinder B^ of centre ZQ width 2^+lr and
length

(2^r)Bi i.e. {(rr, z/)| |n; - x,\ ^ 2^, |z/ - f(x,)\ < B^r}

where 0 ^ n ^ ^o- Let D^ = D n B^. Then ?)D^ consists
of three parts : a, = bD^ n F; (B, = bD/, n {z| |a; — a7o| = 2^};
and T. == ^D, n {z|y - /•(^o) + 2^}.

Let i/' > f{xo) and let y' == {z| y — /'(^o) ^ BJrc — XQ\ $
y = y ' } . Then y' c D if y' < 12A.

LEMMA 1.1. — There is a constant Kg = Kg(A) such that
for all u ^ 0 anrf harmonic on D one Aa^:

1) if 6A ^ y', u(z) ^ KgU^o, i/ ')VzeY'; an^
2) ^ 2A ^ y' > i/" an^ y- - f(x,) = 2(^/// - f(x,)) then

u^o, y " } ^ Kgu^o, y').

Proof. — Map the appropriate cone by a homothety of
magnitude (y' — f(^o))~1 and centre ZQ onto

{{x,y)\2 ^ y ^ BiH}.

The inequalities are then immediate consequences of Harnack's
inequality. Note that y ' — f(xo) ^ 7A.

Consider now a point 0 = (^, /*(^)) in ^, 0 < n ^ HQ
and let y^ = f{xo) + 2^1. Since Bi = 41A and (*) implies
2n^Bl ^ (5 + 1/8)A, it follows that 2^ ^ 1/8. Consequently,
|S| ^ 1/4 and so, using (*) once more, one has that

Vn - m ^ (5 + 1/2)A.
As a result, the cone

{{x, y) \2{y, - f(^)) ^ y - f{^ ^ 16A \x - ̂ } <= D.

Fix 8 > 0. By a homothety of centre 0 = (^, /"(S)) and
magnitude (y, — /'(S))"1 the above cone can be mapped onto
{{x, y} |2 ^ y > 16A|a;|}. The point (^, </„) goes to (0, 1)
and {(^, y) \y, > y ^ f(^) + 82'"r} goes into

!(0,()|l > o Bl+A
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since y^ — f{^) ^ 2^(81 + A). Hence, if u ^ 0 is harmonic
on D there is a constant Ke == I^S, B^) such that, for all
n < n^r) + 1, u(S, y) < Ksu(S, yj if /•(S) + 82-r < y < y,.
Combining this with lemma 1.1 completes the proof of the
following result.

LEMMA 1.2. — Given r ^ ro, there exists a constant

K 4 = K ^ ( 8 , A )

such that, for all u ^ 0 harmonic on D and for all

n < MoM +1,
one has

M ̂  y) < K4u(^o, yj,
whenever \XQ\ < 1/8, |S — ^ol == 2"^ anrf

/•(S) + 82^ ^ y ^ y^

A domain D in R" will be said to be « standard » if there
is a Lipschitz function f: R71"1 -> R with /'(O) === 0 and
| f{x} — f{x)\ ^ A.\x — x'\ such that (i) the

set C = {{x, f{x))\ 1/2 < H < 3/2} u {{x, y) \\x\ = 1/2,
f{x) ^ y ^ l/2Bi} u {{x,y)\ \x\ ^ 1/2, \y\ = 1/2B,}

is a connected component of bD n {(x, y)\ \x\ < 3/2} and
(ii) D n { ( ^ , y ) | H < 3 / 2 , H < 1 8 A } = {{x,y)\ 1/2<|^|<3/2,
y < f{x) < 18A} U {{x,y) | \x\ ^ 1/2, l/2Bi < y < 18A}.

LEMMA 1.3. — Let D be a standard domain and let w
be the solution to the Dirichlet problem for D corresponding to
the boundary value IB, where B == C 0 {[x, y)\ \x\ ^ 1/2}.

Let s > 0. Then, providing \XQ\ =1 there is a constant
8(e) such that

w(z) < e if z e D n {z\ \z — ZQ\ < 8},

where ZQ = (^o, A^o))-

Proof. — Let 8^ be the minimum Euclidean distance of x
from x ' , where |a;| ==1, [a/] =1/2. Let p be the solution
to the Dirichlet problem on D n {z\ \z — ZQ\ < 81} corres-

3
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ponding to the characteristic function of

D n {z\ \z-z,\ ==81}.

Then there exists 8, 0 < 8 < 8^ such that ^{z) < e on
D n {z\ \z — ZQ\ < 8}. Since p ^ w, this completes the
proof.

LEMMA 1.4. — Let X <= r n {z| \x\ ^ 1/8} 6e a Borel
set that contains^ as a dense subset, an open r-cell C, r ^ 7*0.
Denote by u the harmonic measure of X. Then there is a
constant K^ depending only on A, such that

u{x, y) ^ Ksu(0,5A),

for all z = {x, y) with \x\ = 1/2 and f(x) < y < 5A or
\x\ ^ 1/2 and y = 5A.

Proof. — Let ZQ == (^o, z/o) be the centre of the cell C.
Since the compact set {{x, y}\ \x\ ^ 1, 2A ^ y < 5A} <= D
it suffices to prove that u{x, y) ^ KgU^o, yj for

{x,y) ep^u Y^

where no = no{r) and the sets (B^, y^ are defined in terms
of the cylinder B^ whose centre is the centre of the open
cell C .

By induction on n it is proved that there is a constant K^
depending only on A such that for all

(x, y) e (3, u Y., u{x, y) ^ K,u{x^ yj.

First consider the cylinder {(x, y)\ \x\ ^ 1, \y\ ^ 2Bi}.
Let b be the value at (0, Bi) of the harmonic measure for
this cylinder of {(x, y}\ \x\ ^ 1, y = — 2Bi}. Then

u^ Vi) > b

and so u{x, y} < 1 ̂  1/6 u(^o, yi), for all (x, y) e D.
Assume that u(x, y) ^ KgU^o, y ^ ) tor all [x, y} e ̂  u y/c

if 0 ^ / c ^ n — l < M o with Kg depending only on A.
From lemmas 1.1 and 1.2 it follows that

u(x, y) ^ max {Kg, K^u^o, z/J
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for all

(^ y) e (p, u Yn)\{(^ y)\f(x) <y ^ 82"r + f{x)}.

Since K5 can be assumed ^ max {Kg, K^} it suffices to
consider what happens on

Pn ^ {(^ y)\fW < y ^ 82- + /^)} = (3,(8).

Let D,-i = D\{(o;, y)\ \x - x,\ ^ 2ft-lr, f{x) < y < 2n-lr}.
Then there is a unique « standard » Lipschitz domain D'
such that a homothety T of magnitude 2^ ^1/8 (see the
proof of lemma 1.2) and centre the origin followed by a trans-
lation of the origin to the centre of the cell C maps D'
onto D^-i.

Denote by P the harmonic function on D^-i with boun-
dary value Ip^u^- On D,_i

u ^ [Ksu(0, ̂ -i)> ^ [KAu(0, yj]^.

Let 8 == 8(1/K2) where, for any s > 0, 8(s) is the constant
in lemma 1.3. Hence, by the above inequality and that lemma
1.3, u{x, y) ^ Ksu(0, t/J on P,(8).

COROLLARY 1.5. — Let h ^ 0 be any Borel function on
<)D such that {h ^ 0} <= F n {z\ \x\ ^1 /8 } . Denote by H/»
the corresponding solution to the Dirichlet problem. Then, there
is a constant Kg, depending only on A, such that

(*) H,^, y) ^ KA(0, 5A),

for all z = (x, y) with \x\ = 1/2 and f(x) < y ^ 5A or
\x\ ^ 1/2 and y = 5A.

Proof. — Let y be the set of Borel sets

A c r n \T\ \x\ ^ 1 } = E
( ° )

such that (*) holds for h = IA. It suffices to show that y
consists of all the Borel subsets of E.

Let ^ be the set of finite unions of sets X of the type
considered in lemma 1.4. Then ^ is an algebra of sets contai-
ned in y'. Since V is a monotone class it contains the
(y-algebra ^ generated by ^ (cf. [8] IT 19). Clearly ^
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contains all open sets and hence ^ consists of all Borel
subsets of E.

This essentially completes the proof of the following result
(Carleson's lemma).

THEOREM 1.6. (Carleson). — Let u ^ 0 be harmonic on D
and such that lim u{z) == 0 for all

2->2o

ZoebD\fr n^l \x\ ^ -U\
\ ( ^)/

Then there is a constant K such that u{z) ^ Ku(0,5A) for

z e D\S(rr, y)\ \x\ ^ 1 f{x) ^ y ^ 5AJ.
( ^ )

Proof. — There is a Lipschitz function g on R""1 such
1 1 . .

that g ^ /*, g(^) == /'(a;) if i^l ^ -o"' 1^1 ^ •o" impl^s
0 0

A A . I
SW ^ "o"5 an(^ SW = ~Aa ^ \x\ ^ T^* Further, it can beo Ib Ib
assumed that the Lipschitz constant for g depends only on A
and not on the particular f or point ZQ e &D.

Let Do = D\S(rr, y)\ \x\ < 1 —^ < y ^ g{x)l. Then
( o o )

Do is again a Lipschitz domain and the bounded Borel func-
tion h on ?)Do defined by A(zi) = lim u{z) satisfies the

2->2^

hypotheses of corollary 1.5. Since u|Do == H/i the result
follows.

2. Carleson's lemma for uniformly elliptic operators.

As before, D will denote a bounded domain in R" with
Lipschitz boundary. Let Ao == Ao(y? (Jl? ^ D) denote the set
of second order partial differential operators L on D of
the form L=i,s•'(^>d^+,|t•<+c(^>•
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with coefficients that are locally Holder continuous and such
that

(1) 1/Yimi2 ^ S a,/z)^ ^ Y l l S I I 2

u==i
for all ^ e R" and ; seD;

(2) Ll^]^^
and

(3) 0 ^ c{z) ^ - (X.

In addition it will be assumed that there exists a modulus
of continuity 0 for the matrix-valued function

z -. (^(z)) = A(z)

with r00 0(5)5-1 ds=(x. and ^0(5) ^ 0. The distance from
A.(z) to A(z') i.e. ||A(z) — A(z')|| is given by the operator
norm.

If T is a homothety (or a diffeomorphism) of R", to each
L e Ao(y, p., a$ D) there corresponds a unique partial differen-
tial operator L' on D' = T(D) such that tor all u' e ^(D'),
if u === u' o T then Lu(z) == L'u'(w) whenever w = T(z).
For convenience, L' will be called the image of L under T.
If w = x(z — Zo) + ZQ, it has the form

V ^ S >WW) ̂  + ̂  ̂ .(T-(.)) ̂  + «(T-M).

The following lemma is then almost immediate.

LEMMA 2.1. — Let 0 < Xo ^ 1. Assume

T(z) = X(z - ̂ ) + ^o

wi(/i X ^ ^o. If L e Ao(y, (A, a; D) and L' 15 1(5 image
under T, ^n L" = (i/X2)!/ e Ao(y, l^A2, a; T(D)).

Proof. — It suffices to observe that if 0 is a modulus of
continuity for L then ^{s) = ̂ {sf^} is a modulus of conti-
nuity for L" with F" ^>{s)s~1 ds = (9ao ^){s)s~1 ds.

Serrin's result [12] on the existence of Harnack inequalities
yields the following result.
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LEMMA 2.2. — Let L e Ao(y, ^, a; D) and u e ̂ (D) fee
5uc/i </ia^ u ^ 0 and Lu == 0. Then, if A c: D 15 compact
there exists a constant x, depending on y, p., a and ̂  choice
of a neighbourhood of A in D, wi^A

u(z) ^ xu(JZ')Vjs, js' e A.

Another fairly obvious fact is the following one.

LEMMA 2.3. — Let T be an orthogonal transformation with
n

Tz == w and w^ = ^ CT^.. If L e Ao(y? (A, a; D) then L'
j=i

(^5 image under T) e Ao(Y? ^? a; T(D).

Proof. — The coefficients a^(w), ^(w) and c'(w) are

S a^(T-i^))^^, ^ ^(T^(^))^
k,l=l k=l

and c(T-l(w)) respectively. Further,

||A'(T(z) - A'(T(z'))[| == \\A{z) - A(^)||

and so the condition on the modulus of continuity is automa-
tically satisfied.

This fact then implies that to study the behaviour at
ZQ e ^D of functions u for which Lu == 0, L e Ao(y? ^9 a; D),
it suffices to consider the case where ZQ = 0 and where the
boundary is determined locally by the graph of a Lipschitz
function f: R"-1 -> R with f{0) = 0 and

\f{x)-f{x-)\ ^ Ala;-^|.

As before any z e R'1 will be written as z = (re, y) with
a; e R71-1 and y e R.

Let B ^ A and let L e Ao(y, ^, a; D).
Miller's universal barrier [9] implies that, for given y? (Jl

and B, there exists a strictly positive function u on

{(^y)ly > -BH}\{O,O}
which is ^2 on the interior and such that

(i) lim u(z) = 0.
2->Q
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(ii) Lu < 0 on D n {(a?, y)\y > — Bjrcj} for any

L G Ao(r, ^, a; D).
By using this universal barrier u the classical Dirichlet

problem on D relative to any LeAo(Y, (JL, a; D) can be
solved.

PROPOSITION 2.4. — Assume L e Ao(y, (A, a$ D) and that
for each ZQ e &D ^Aere 15 <m unbounded cone C with

C n D = {^o}.

Le^ 0 6 ^(^D). Then there is a unique continuous function u
on D with u e ^(D) anrf (i) Lu = 0, (ii) u|^D = 0.

Proof. — In case c == 0 a proof was given by Miller in [9]
n

(even admitting a singularity for ^ b^x) at ?)D).
1=1

When — ( J L ^ C ^ O on D then LI ^ 0. i.e. 1 is
super-harmonic. Let e be the greatest harmonic minorant
of 1. Miller's argument carries over once it is shown that e
converges to 1 at every boundary point. For this, it suffices
to exhibit, for each ZQ e bD, an L-subharmonic function
(see section 3) ^ ^ 1 on D with lim p(z) == 1.

2->ZOf •2'6D

For example, v(z) = e^ where f(z) == f^{z) is the unique
solution on D of the Dirichlet problem : w \ ?)D === 0,
Mw = — (A where Mw = Lw — cw (see Theorem 4 [9]).

Remark. — The proposition is true for arbitrary bounded
Lipschitz domains. It suffices to note that, for sufficiently
small 8, the sets N§ used by Miller on p. 99 of [9] satisfy
the hypotheses above. His argument then carries over for
a === 1 providing that the appropriate constant is replaced
by that constant times the solution of the Dirichlet problem
for N§ with boundary value 1.

LEMMA 2.5. — Let D be a Lipschitz domain such that for
each z e ^D there is an unbounded cone C{z) with

C{z) n D = {z}
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and let A be such that, for all z e bD, in a suitable coordinate
system at z, {(re, y)\A.y < — \x\} <= C(z).

Denote by B a neighbourhood of a point ZQ e 5D. Let
UL &e tAe harmonic measure of B 0 ?)D relative to

L e Ao(y, P., a; D).

Then, there is a neighbourhood U === U(y? I1? a? A, B) of ZQ
such that

u^{z) ^ 1/2 Vz e U n D.

Proof. — It is clear from the proof of Theorem 3 in [9]
that the function f = f^ tends to zero uniformly at ^D in
L e Ao. Hence, for e > 0 there is 8 > 0, 8 == S(Y? ^-5 a, A)
with e^{z) > 1 — s if the distance of z from bD is at
most 8 (here e^ is the solution of the Dirichlet problem
relative to L with boundary value 1).

Further, the universal barrier of Miller shows that there is a
neighbourhood U' == U'(Y, ^, a, A, B) of ZQ with ^{z) < e
if z e U' n D, where v^ is the solution of the Dirichlet
problem with boundary value ip, E == bD\B. Now since
UL = ^L — ^L it follows that u^(z) ^ 1 — 2e on

U = U' n [z\z- ZQ\} < S.
With the aid of these lemmas the arguments used in para-

graph one to prove theorem 1.6 can be applied to

L G A^Y, ^, a; D)

i.e. Carleson's lemma holds for such operators. The domain D
is, as in theorem 1.6, determined in the neighbourhood of 0
by a Lipschitz function f with /*(()) ==0.

THEOREM 2.6. (Carleson's Lemma). — Let u ^ 0 e ^(D)
be such that Lu == 0, L e A^y, {^, a; D), and such that

lim u{z) = 0
2->2o

for all Zo e ?>D\(r n {z| |a;| < 1/32}).
Then, there is a constant K = K(y, (A, a, A) for which

u(z) < Ku(0,5A) for all z e D\{(a;, y}\ \x\ < 1/2,

f{x) < y < 5A}.
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Proof. — I t suffices as before to prove the corollary 1.6.
It is a consequence of the lemmas 1.1, 1.2, 1.3 and 1.4.

Lemma 1.1 with Lu = 0 replacing Au == 0, is a conse-
quence of lemmas 2.1 and 2.2 since the magnitude X of the
homothety is ^ 1/7A.

Lemma 1.2 holds by virtue of lemmas 2.1 and 2.2 since
again the homotheties involved have magnitude X ^ 1/6A.

Lemma 1.3 presents no problems in view of Miller's uni-
versal barrier.

It remains to consider lemma 1.4. Lemma 2.5 can be applied
with D the image of {{x, y)\ \x — XQ\ ^ r, f(x) ^ y ^ 2Bi}
under the homothety of magnitude

1/r ^ 1/ro = 4Bi/3A( ^ 1)

and centre {x^ f{xo)) and with B the image of X under
this homothety. Combining this with lemma 2.2 one finds
that there is a constant b == &(y, ^, a, A, r)

u{x, y) ^ l/6u(^o, Vi)

for all u(x, y ) e D.
The rest of the argument in the proof of lemma 1.4 holds

without change, since lemmas 1.1, 1.2 and 1.3 are already
established.

For easy application of Carleson's lemma to the Martin
boundary it is useful to have it in the following form.

PROPOSITION 2.7. — Let D c R" be a bounded Lipschitz
domain and let Zi 6 D. Denote by V a bounded open neighbour'
hood of ZQ e bD.

Then there exists a constant K and a neighbourhood V
of ZQ with V c= U such that:

u{z) ^ Ku(z^) Vz e D\U

whenever u > 0 is L-hyperharmonic on D, L-harmonic on
D\V and^forall z' e ^D\V,lim u{z) = 0. (See paragraph 3

2->2'

for a definition of L-hyperharmonic.)

Proof. — As before let ZQ = 0 and assume D is in the
canonical position. By using a suitable homothety centred at
ZQ one can assume U => {(x, y)\ \x\ ^ 1/2, f{x) ^ y ^ 5A}.

4
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Let V = {{x, y)\ \x\ ^ 1/32, \y\ ^ A/32}. Then, as in
the final argument of the proof of theorem 7.1, one can replace
f by a Lipschitz function g with g ^ /*, g(rc) == /'(^) if
M ^ 1/8, g{x) ^ A/8 if H ^ 1/8 and g{x) = A/16 if
|^| ^ 1/16. This defines a Lipschitz domain D' with u|D'
L-harmonic and of the form to which theorem 2.6 applies.
The result follows.

3. The lemma of Hunt and Wheeden.

Let D be a bounded Lipschitz domain and let L be a
second order elliptic operator on L. A function u e ^(O),
0 c: D will be said to be L-harmonic on 0 if Lu = 0.

Assume that L e A(y, [A; D') where the Lipschitz domain
D' = {(x, y) | \x\ ^ 1, \y\ ^ 12A} n {{x, y) \ f{x) ^ y ^ 12A}
and /*: R"-1 -> R is a Lipschitz function with f{0) == 0 and
\f{x} ~ f^) | ^ A\x - x'\ for all x, x' e R"-^ Let

B^{{x,y)\\x ^ 1/2", \y\ ^ ^A/^}

and let z^ == (Oy^A^"). The boundary Harnack principle
(Ancona [16]) states that if L e A(y, ^; D) and if u, v ^ 0
are L-harmonic functions on D' such that

lim u{z) = lim v(z) == 0
2->2 Z->2

for all z ^ (0, 0) in the graph of f then there exists a constant
C == C(A, Y? [L) such that

u{z)lu{z^) ^ C^(z)/^)

for all z e bB^ n D'.
This result has as a corollary (see Ancona [16]) the following

theorem, where a positive L-harmonic function u 1=- 0 on D
is called a Bouligand function associated with ZQ e ?)D if
lim u{z) = 0 for all z' e Z)D'\{zo}.
2->Z'

THEOREM 3.1. (Lemma of Hunt and Wheeden for
L e A (y, (1; D)). — Let D be a bounded Lipschitz domain and
let ZQ e bD. Let h^ and h^ be any two Bouligand functions
associated with ZQ. Then there is a constant c with ch^ ^ Ag.
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Proof (Ancona [16]). — D can be assumed to be in standard
position with Zy = 0. Let XQ e D\D'. Then applying the
Boundary Harnack principle there is a constant C == C(A, y, p.)
<2nr»T"» tlisitsuch that

M î(̂ ) ^ C^(z)/^(zJ

for all z e D\B^.
Hence, by symmetry, Ai^)//^) ^ C/ii(^o)/^a(^o) = Ci.

Consequently, h^{z) ^ CC^(z) for all 2; e D\B^ and hence
AI ^ CCi/i on D.

It is not known whether this lemma holds for arbitrary
Lipschitz domains if L e Ao(y, |i, a; D) == Ao. However,
for this class of operators it remains true if the domain is of
class <^1'1 and even for domains which are of this class
except at isolated points. In what follows, for domains of
class <^1'1, Hunt and Wheeden's proof for the Laplacian will
be pushed through for operators L e AQ . This is feasible
because the L-harmonic measures [AL for a fixed point XQ
satisfy the following « Harnack » inequality: there exists a
measure X on ^D and a constant c such that for all

L e Ao = Ao(y, (JL, a; D) 1/c X ^ ̂  ̂  c\

providing D is star-like.
First, as in Hunt and Wheeden, it will be shown that it

suffices to consider a star-like domain. Let L e Ao(y, (JL, a$ D).
Mme Herve [4] showed that the L-harmonic functions define
a harmonic sheaf ^L on D in the sense of Brelot.

Consequently, L-hyperharmonic functions can be defined
in terms of the harmonic measures associated with J^L-
Further, as indicated in [4] (see also the proof of proposition
2.4) there exist non-constant hyperharmonic functions on D
that are non-negative. Hence, potentials (relative to ^^)
exist on D.

If E <== D and u ^ 0 is hyperharmonic one defines
RE^ = inf { ^ | ^ ^ 0 , ^ ^ u on E , ^ is hyperharmonic}
and REU as the lower semi-continuous regularization of this
function. Then t{^u is hyperharmonic and for each x e D
there is a unique measure pi on D such that

t{^u{x) = fu d[L.



40 J.-C. TAYLOR

This measure will be denoted by [L {dz) = R^x, dz) — the
usual notations being [L == ^ and R^x) = R^x). From
the general theory of harmonic spaces one knows that IW^? )
is carried by &(D\E).

Fix ZQ e ^D. As usual one can assume ZQ == 0 and that
with respect to suitable coordinates, the domain D is in the
canonical position of paragraph one. The point (0, 2A) is
such that for any {x, f(x)) with \x\ ^ 1 the line segment
joining these two points lies in D. Hence, if

D/ = {(^ y) I H ^ l, \y\ ^ l2A} n D
then D is a star-like set with (0, 2A) as « centre ».

Let Ai, Ag be two Bouligand functions for D associated
with Zo == 0. Then, if k, = h, - ft^ {i = 1, 2) k^ and ^
are two Bouligand functions for D' associated with 0.
Assume that there is a constant c > 0 with c/Ci < /Cg.

Then, ch^ ^ h^ + ftfn'^i on D. Now ftrn'Ai is a poten-
tial on D because Ai is a Bouligand function associated
with ZQ = 0. Hence, ch^ ^ Ag •

This shows that it suffices to prove the lemma of Hunt
and Wheeden for the case of a Lipschitz domain like D'
and for ZQ = 0. To begin with two lemmas will be proved.

Let 0 < ( < 1 and let ^ = (0,3^/4). Denote by C{t)
the closed cell in the graph F of f of width (&/(6A) and
centre 0. Let T = T( be the homothety of centre (0, b)
and magnitude s = 1 — 3^/4 and let L^ e Ao(y, i6[A, a; D')
be such that the image of 5"̂  under T coincides with
L|T(D'), LeAo(Y, ^ a;D') (note that 1/4 ^ 5 < 1). Further,
let u^) be the L^-harmonic measure of C{t) for D' and
let UG(() be the L-harmonic measure of C{t) for D7.

LEMMA 3.2. — There is a constant Ki == Ki(y, (A, a; A)
such that for all u > 0, L'harmonic on D',

u o T ^ K.iu(zi)uc(() on D'.

Proof. — The homothety T maps D' onto T(D') c: D'
and carries C(() onto

C' c= {^y)\ \x\ ^ tb/{6A)}\{{x,y)\ \y - M/4[ > A|^|}.
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A further homothety of magnitude 4/((6) and centre 0
shows that there is a constant Ki = Ki(y, (A, a; A) with
u(T(z)) ^ Kiu(zi) for all z e C{t) (note that 4/((6) ^ 4/6
and so, in view of Lemma 2.1, the Harnack inequality applies).

Let UG. be the L-harmonic measure of C' == T(C(<))
for T(D'). Then Uc = Uc. o T and u ^ K^u{z^uc. on
T(D') implies the desired result.

LEMMA 3.3. — Let C be the closed cell in the graph F of
width 2r, 0 < r < 1 and centre 0.

Let

B(a, r) = {(x, y}\ \x\ ^ r, f(x) ^ y ^ a} c= D'

where a/r > A. Then, there is a constant Kg = K^y, ^, a, A, a/r)
5UcA that uc{z) ^ Kg /or all z e B(a/2, r/2).

Proof. — It suffices to consider the situation when r = 1.
For 0 < r < 1, by a homothety of magnitude 1/r ^ 1
and centre 0 one returns to this case.

It follows from lemma 2.5 that there exists

8 > 0, 8 = 8(y, ̂  a, A)

such that uc(z) ^ 1/2 if the distance of z from C' is less
than 8, where C' is the closed cell in the graph of width r
and centre 0. The result follows by using the Harnack ine-
qualities.

Consider now h a harmonic function on D' that is a
Bouligand function associated with 0.

Let B(() = {{x, y)\ 12A|^| ^ tb, 4|y| ^ M}. Then, if
0 < t < 1 and s = 4 "~ 3t one has

4
(1) h{T{z)) ^ K^(3^/4K(o(z),

for all z e D'. Further, since A is a Bouligand function,
it follows from Carleson's lemma that there is a constant
KS = K^y, (A, a; A) such that

(2) h{z) ^ K^h(3tbl^) Vz e D'\B(^/2).
Hence, by lemma 3.3,

(3) h(z) ^ K3.A(M/4)(l/K2)uc^), Vz e D'\B(<).
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Assume A(0, b} == 1. It follows from (1) and (3) that

Ki/i(3^/4)uc(o(0, b) ^ 1 < (K3/K2)/i(3^/4)uc(o(0, b).

Assume that there is a constant M > 0 such that, for all
t e (0, I], UG(()(O, b) ^ Muc(t)(0, &). Choose the constant (3(()
so that the function ^ === (3(()uc(o takes the value 1 at
(0, &). Then, given the last assumption, there is a constant K
such that

h{T{z}} ^ K^{z) for all z e D'.

The functions v\ are L^-harmonic on D'. Further, the
family (^I)o<«i ls l^^ly uniformly bounded since, for all
(, L^ e Ao(v, (JL, a; D') which implies that the constants
involved in the Harnack inequalities [12] can be chosen to be
independent of (.

Consequently, locally the Schauder estimates imply that
for some a, 0 < a < 1, sup ||^fl2,a ^ M. Hence, there is a

t
sequence (tj decreasing to zero with (^J converging in
|| || 2 to a function v e ^(D'). It is clear that 0 = lim L^

n-9-oo
^ == L(\ Hence, there is a constant K such that for any
Bouligand function h associated to ZQ with A(0, b) = 1,
h ^ K^.

This essentially completes the proof of the following result.

THEOREM 3.4. — Let L e Ao(Y? P'? a; D') c^^d assume that
for a fixed point XQ e D' there is a measure X with support on
()D and a constant N such that

/ 1 \^\\ ^ ^^ NX

for all t, 0 ^ t ^ 1, where p^ is the Ij[-harmonic measure
associated with x^

Let ZQ e ^D' and denote by h an arbitrary Bouligand
function associated to ZQ. Let z-^ be a fixed point of D'.

Then there is a positive l^-harmonic function v and a constant
K (both independent of h) such that

K^(zi) < A.
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Proof. — The « Harnack» inequality for the harmonic
measures implies that

^
^c(o(0? b) ^ p^c(o(0, &).

To conclude it will be indicated how Serrin's results in [12]
imply that the measure theoretic assumption of theorem 3.4
is verified if D' is of class <^1'1. Clearly, if D itself is of
class <^1'1 the «box-like » subdomain D' can be replaced
with an analogous <^1'1 subdomain by « rounding off the
corners ».

In case D' is a ball B then it follows immediately from
Serrin's results that for operators L e Ao(y, ^, a; B) there
is a constant N such that

/ 1 \
(^-^ < t^L < NX

if (XL is the L-harmonic measure associated with the centre
of the ball and X is surface measure on the sphere.

If D' is starlike and of class ^2 then it is determined by a
^-function on a sphere. Consequently, there is an obvious
« radial » ^-difleomorphism of D onto a ball whose first
and second derivatives are bounded. As the formula below
shows such a diffeomorphism maps the class Ao(y, (A, a; D')
into Ao(Y', ^.', a'; B) and consequently the desired property
of the harmonic measures follows immediately. If

n ^u n ^u
Lu{x) = ^ a^x) + S W ,— + u{x)c{x),

i, j==i °Xi OXj ^^ OXi

x e D and T is a ^-diffeomorphism of D onto Do then
the image Lo of L under T is given by

n ^v n !)cf
Lo^) = S W ———— + S W — + P(i/)c»(y),

A,i=l "Vk "Vl k=l "yk

where aUy) = 5 CTv(a;) ̂  W ̂  W
i,j ^^i ox}

W = 2 W ̂  {x} + S a,{x) -^ (^
< "'••'i i , j " î "•r/

c°(y) ^c{x) and y == T(a;).
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This argument extends to star-like domains D' of class
^1>1 simply because a <^1'1 function is the uniform limit
of a sequence of ^2-functions whose first and second derivatives
are uniformly bounded. As a consequence, there is a « good »
exhaustion of D' by ^-starlike domains D^. Namely, for
each n there is a measure X, on ^D, and a constant N
(independent of n) such that

-^-\ < (^n.L ^ NX,

where (JL^L is the L-harmonic measure on D, associated
to the centre XQ of the starlike domain D'.

Since (AL is the vague-limit of the measures ((J^L) and
X^DJ ^ N(JI, ,L(^DJ ^ N there is a measure X on bD'
with

f-^-\ ^ (XL ^ NX.

This completes the proof of the following result.

COROLLARY 3.5. — Let D be a bounded domain of class ^lfl

and Zi e D and let L e Ao(y, (A, a; D). Then there is a positive
inharmonic function ^ and a constant K such that for any
i-Bouligand function h associated to ZQ.

Kyh{z^) ^ A.

Example 3.6 (due to Ancona). — The following example
of a domain with a « point » shows that corollary 3.5 is true
for domains that are worse than <^1'1. It is not known to the
author whether the corollary holds for general Lipschitz
domains.

Let cp : [— 1, + oo) -> R be a continuous function that is
^2 on (— 1, + oo) and such that (1) 9(1) = \/1 — t2,
— 1 < t < 0, (2) cp(() > 0 if \t\ < i and (3) <p(l) == 0.
Let D be the solid of revolution in R3 determined by
?|[-i,i] with z == y = 0 as the axis of revolution.

The only point of the boundary where bD is possibly not
Lipschitz is (1,0,0). At all other points ^D is even ^2.
Consider the sets

D, = D|nj{(rr, y, z) | 1 — 3/2n < x < 1 — l/2n}
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and
A, = D n {{x, y, z) \ x = 1 - 1/n}:

By Founding off the « corners » of D^ and using a diffeo-
morphism the following fact can be obtained : if u, ^ ^ 0
are L-harmonic on D^ then there is a constant C, indepen-
dent of M, such that

u{x)lu(i - 1/n, 0, 0) ^ C^)/^(l - 1/n, 0, 0)

for all x e A^. This result can be easily obtained from ine-
quality (33)in [12].

Given this inequality it follows that if u, ^ are two Bouli-
gand functions associated to (1, 0, 0) with

u(0, 0, 0) == P(O, 0, 0) = 1

then u ^ C2? on D n {{x, y, z) \ x < 1 — 1/n} for all u
and hence, u < C2^.

Note that this argument (which is due to Ancona) applies
in many situations e.g. to

D= { { x , y , z ) \ x > 0, y^^2 < 1}

and the point at infinity.

4. The Martin compactification of D relative to L.

Mme Herve [4] showed that, for any y e D, two L-poten-
tials with point support are proportional i.e. the hypothesis
of|proportionality is satisfied by ^L- Hence, according to [4]
there exist Green functions G for L on D. In other words,
there exists a lower semi-continuous function G : D X D -> R+
continuous off the diagonal and such that, for all y e D,
x -> G{x, y} is a potential with support {y}.

Choose XQ e D and define K(rc, y) to be 1 if

x = y == XQ and G{x, y)/G(a-o, y)

otherwise. Then there is a unique compactification D == DL
of D such that: (1) for all x e D the function y ~> K{x, y)
extends continuously; and (2) the extended functions sepa-
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rate the points of D\D (cf. [15]). This compactification is
called the Martin compactification of D relative to L.

Carleson's lemma, in the form of proposition 2.7, implies
the following result, due to Brelot [17].

PROPOSITION 4.1. — There is a unique continuous function TC :
D —> D such that 7^{x) == x for all x e D.

Proof. — It is known (cf. [2]) that D is a compact metric
space. It suffices therefore to show that if (yj <= D converges
in D then it converges in D.

Assume (y^) converges in D to a point ?/o. Let

lim K(^, yj = h{x).
n>oo

Let U be a neighbourhood of z/o and let x e D\U. Since
limt/^==t/o, f ftu(^, dz)K{z, yj == K{x, yj for k suffi-
]C><X> v __

ciently large. Since, for x e D\U, the measure Ru(^, dz)
is carried by ?)(D\U) it follows from proposition 2.7 that

lim f Ru(^, dz)K{z, yj = ( Ru(o?, dz) lim K(;s, z/J.
fc>00 l/ ^ Jfc^OO

Hence Ru/i == h on D\U.
From this and the existence of barriers it follows that,

lim h{x) =0 if x' e bD\U. Suppose that some other subse-
x->x'

quence (y^.) has limit point y'^ + 2/0. It then follows that
lim h{x) = 0 for all x e ^D and so h=0. Hence (yj
x->x' _

converges in D to a unique point.
As is well known, the Martin compactification serves for

the representation of positive harmonic functions. More pre-
cisely, if h ^ 0 is L-harmonic on D there is a measure (A
on D\D == A such that, for all x e D

h{x)=fK{x,y}^dy),
where

K{x, y} = lim K(a;, yj if (yj c D and lim </„ = y e A.
n->oo n
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Furthermore, there is a unique measure (the canonical one)
carried by the set of minimal points A^ = {y\ K(., y ) is a
minimal harmonic function} (h is minimal if 0 ^ k ^ /i, k
harmonic implies k = ch). For further details see for examplem, [2].

PROPOSITION 4.2. — Let B the support of \L e M+(A) and
let h(x) = j K(^, y) [^{dy). Then, lim h{x) =0 if z/o ^ ^(B).

l/ a-->yo

Proof. — It follows from the proof of proposition 4.1 that
if U is a neighbourhood of ^(B) with 2/0 6 U then, for each
y e B, | ftu(^? dz)K(z, y) = K(.r, y). Hence, /i = tkuh.

Furthermore, since 7c(B) is compact, it follows (from the
proof of proposition 4.1 and from proposition 2.7) that there
exists a constant Ko with K(o^, y) ^ Ko ̂ fx e D\U, Vy e B.
Hence, h ^ Ko(i(D\D) on D\U. The result follows since
h = Ruh.

COROLLARY 4.3. — Let h be a Bouligand function associated
with z/o e ^D. If

[L e M+(D\D) and h{x) = f K{x, y)[L {dy)

then supp (JL <= ^{yo}'

Proof. — Assume B n ^^iyo} = 0 with B compact.
Let

hi{x} == f K{x, y}lB{y) [^{dy).

Then \ ^ h and lim h^(x) = 0 by proposition 4.2. Hence,
X->JQ

h^ = 0 and so (^(B) = h^Xo) = 0.
Combining this corollary with the lemma of Hunt and

Wheeden one obtains a proof of the main theorem.

THEOREM 4.4. — D == D and every boundary point is
minimal.

Proof. — If VQ e bD corollary 4.3 implies that there is at
least one minimal point in Tc-1^}. First note that TC is
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onto and so rc-1^} is never void. It follows from corollary 4.3
that, for each ye^-^yo} every integral representation of
the harmonic function x -> K{x, y) involves a measure
carried by Ti;-1^}. In particular, this is true for the canonical
measure, which is carried by the set of minimal points.

The harmonic functions x -> K{x, y) with n{y) = y^
are all Bouligand functions associated with y^ At least one
of them is minimal. It then follows from the lemma of Hunt
and Wheeden (theorem 3.1) that they are all proportional
and hence coincide since they agree at XQ . In other words, n
is a continuous bijection and so is a homeomorphism.

This paragraph concludes with the following sharpened
version of proposition 4.2.

PROPOSITION 4.5. — Let h ^ 0, L-harmonic on D, be
represented by the measure (JL on 6D. If B c: ^D is compact
then B ^ supp (i if and only if lim h{x) = 0 for all ye&D\B.

x->y

Further, if supp [L <= B and U is a neighbourhood of B
in R", there exists a constant Ko such that

h{x) ^ Koh{xo) for all a;eD\U.

Proof. — The second statement has been proved above (see
the proof of proposition 4.2).

It remains to show that if lim h{x) = 0 for all yebD\B
x->y v

then supp (A <= B. It suffices by inner regularity, to prove that
for any compact set A <= ^)D, A n B = 0 implies pi(A) = 0.
Let h^x) = f K{x, y}i^y) (x(^). Then h^ < h and by
proposition 4.2 lim h^x) == 0, for all y e B. Hence, h, == 0
i.e. ^ (A)==0 . x^

5. The Martin compactification
of an open Riemannian Manifold.

Let X denote a ^3-manifold equipped with a ^-Rieman-
nian metric and let M be an open, relatively compact, connec-
ted subset of X with a non-void Lipschitz boundary.
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THEOREM 5.1. — The Martin compactification of M rela-
tive to the Laplace-Beltrami operator A is the closure M of
M in X. Further, all the Martin boundary points are minimal.

Proof. — It suffices to establish Carleson's lemma in this
context. The lemma of Hunt and Wheeden follows from purely
local considerations, as is shown by its proof, and it together
with Carleson's result gives a proof of the theorem (it suffices
to repeat the proof of theorem 4.4).

First note that, if ^ is the harmonic sheaf on M deter-
mined by A, then H has a positive potential. This follows
either from the abstract theory of harmonic spaces Loeb [6])
or from the theory of differential equations on manifolds
(cf. [I], [11]).

Let z/o e ^M and let U be an open coordinate neighbour-
hood of 2/0 in X such that $(U n M) == D where D is a
bounded Lipschitz domain in R" and 0 : U -> R" is a
coordinate map of the manifold X.

Let h ^ 0 be a hyperharmonic function on M such that
lim h{x) = 0, for all y e ^)M\U. Set k = h — Rpu^ and
x->y ^ ^ v

I == (Rpu^)|U n M. Transporting these functions to D via
0 one obtains functions /c', V on D that are solutions to
Lu < 0, where L is a self-adjoint uniformly elliptic operator
on D with ^-coefficients. In fact one can take L to be the
image of A|D under 0 and k' = k o O-1, I ' == I o O-1.

Applying theorem 4.4 to D and L it follows from propo-
sition 4.5 that there is a measure [A on $(^U n M) such
that V{x) == I V ^ ! ( x ^ y ) p.(A/), K' being the Martin kernel for D
defined by L. Let x^ e U r\ M be such that

K'(0(^), y} = i,
for all y e D. _

If V is an open neighbourhood of yo with V ^ U it
follows from proposition 4.5 that there exists a constant Ki
with V{t) ^ K^'(<I)(o;i)) for all t e <D(V n M). Hence,

l{x) ^ KiZ(^)
for all x e V n M.

Proposition 2.7, applied to D and ^(V), implies that there
is a neighbourhood 0 of ^(^o) ^h 0 <= 0(V) and a cons-
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tant K:2 with k\t) ^ K^^{x^), for all ^eD\0(V),
providing (i) lim h{x) = 0 for all y e bMN.O'^O) and (ii)

.-T'-^.Vx->y
h is harmonic on MYO'^O).

Therefore, for a positive hyperharmonic function h on M
that satisfies (i) and (ii), h{x) ^ (Ki + Kg)/^^) for all
x E M\V. This proves Carleson's lemma (in the form stated
as proposition 2.7).

Remark. — Clearly, the above proof shows that M is the
Martin compactification of M relative to any « reasonable »
second order elliptic operator L defined on M, where
« reasonable » means that in any coordinate neighbourhood U
with 0(U 0 M) == D a bounded Lipschitz domain the image
of L under 0 belongs to A(y, ^; D).

An immediate consequence of theorem 5.1 is the fact that,
in an appropriate sense, an open Riemannian manifold M
is the interior of at most one compact Riemannian manifold
with boundary.

THEOREM 5.2. — Let M denote a compact ^^-manifold
with boundary equipped with ^n+l-Riemannian metric. Denote
by M the interior of M. Then M is the Martin compactifi-
cation of M relative to the Laplace' Beltrami operator on M.

Further^ let N be a compact <^n+2-manifold with boundary
equipped with a (Sn+l-Riemannian metric. Let N denote
the interior of N and assume 0 : M —>• N is a <^n+l-diffeo-
morphism that preserves the metrics. Then there is a unique
^^-diffeomorphism $ : M -^ N that extends 0.

Proof. — By theorem 5.9 of [10] there is a ^^-diffeomor-
phism P of a neighbourhood T in M of bM with
bM X (0,1) such that P(x) = {x, 0), whenever x e ^M.
Using the map P to attach bM X (— I? 1) to M one
obtains a ^""^-manifold X containing M as a compact
sub-manifold with boundary.

To complete the proof it suffices to show that there exists a
^+1- Riemannian metric on X that coincides with the given
one on M.
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Let S be the ^""^-bundle over X obtained by replacing
the fibre R" of the tangent bundle by the convex cone of
positive definite symmetric n X n matrices.

Let So be a section of ^ over X (cf. [14], p. 58).
Denote by s a ^n+l-section of ^ over M. For each

point x e ̂ M there is a neighbourhood LLp of x and ^n+l-
section ^ of ^ over U^ such that ^|U^ n M = s\V^ n M.
It Wa; is a compact neighbourhood of x with W,p ^ U^.
there is a section ^ of ^ over X for which ^.|W^ = <s^|Wa.

p i rand S^[V^=SQ\[V^
Let V^. be a compact neighbourhood of x with V^, c W^,

n

and assume LJv^ ^ ^M. Denote by (O^ei a ^^-parti-
tion of unity subordinate to the cover W^, W^, . . ., W^,

\ /l ra l \ / n \X\ U V^. and set ( = S ( S °^,) • Then ( is a section
\\ i=l / iel \i=l /

/ n \
of ^ and if x e (LJ W^.) n M, t{x) = s{x).

\ 1=1 7
Hence if ^i and ^3 are appropriately chosen ^n+l-

functions s^ = ̂ ^t + ^2^ ls a section of ^ over X that
agress with s on M.

The diffeomorphism 0 : M -> N obviously extends as a
homeomorphism 0 : M —^ N. Let ZQ e ^)M and WQ = ^(^o).
There is point Zi e M such that a geodesic neighbourhood U
of Zi in X is a neighbourhood of ZQ and a geodesic neigh-
bourhood V of 0(^i) = Wi in Y (an open manifold contai-
ning N as X contains M) is a neighbourhood of WQ.
It can be assumed that <&(U n M) <= V n N. Then it is
easy to see that 0 commutes with the appropriate expo-
nential maps and hence 0 is a <^n+l-diffeomorphism.
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