KYOJI SAITO On a generalization of de Rham lemma

Annales de l'institut Fourier, tome 26, nº 2 (1976), p. 165-170 http://www.numdam.org/item?id=AIF_1976__26_2_165_0

© Annales de l'institut Fourier, 1976, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 26, 2 (1976), 165-170.

ON A GENERALIZATION OF DE-RHAM LEMMA

by Kyoji SAITO

In this short note, we give a proof of a theorem (cf. $\S 1$) which is a generalization of a lemma due to de-Rham [1] and which was announced and used in [2].

As no proof of this theorem was available in the literature, Lê Dũng Tráng pushed me to publish it: I am grateful to him.

1. Notations and formulations of the theorem.

Let R be a noetherian commutative ring with unit. The profondeur of an ideal \mathfrak{A} of R is the maximal length q of sequences $a_1, \ldots, a_q \in \mathfrak{A}$ with:

i) a_1 is a non-zero-divisor of R.

ii) a_i is a non-zero-divisor of $R/a_1R + \cdots + a_{i-1}R$, $i=2, \ldots, q$. Let M be a free R-module of finite rank n. We denote by $\bigwedge_{i=1}^{p} M$ the p-th exterior product of M (with $\bigwedge_{i=1}^{q} M = R$ and $\bigwedge_{i=1}^{q} M = 0$).

Let $\omega_1, \ldots, \omega_k$ be given elements of M, and (e_1, \ldots, e_n) be a free basis of M,

$$\omega_1 \wedge \cdots \wedge \omega_k = \sum_{1 \leq i_1 < \cdots < i_k \leq n} a_{i_1 \cdots i_k} e_{i_1} \wedge \cdots \wedge e_{i_k}.$$

We call \mathfrak{A} : the ideal of R generated by the coefficients $a_{i_1...i_k}$, $1 \leq i_1 < \cdots < i_k \leq n$. (We put $\mathfrak{A} = \mathbb{R}$, when k = 0.)

Then we define:

n

$$Z^{p} := \{ \omega \in \bigwedge^{p} \mathbf{M} : \omega \wedge \omega_{1} \wedge \cdots \wedge \omega_{k} = 0 \} \quad p = 0, 1, 2, \dots$$
$$\mathbf{H}^{p} := Z^{p} / \sum_{i=1}^{k} \omega_{i} \wedge \bigwedge^{p-1} \mathbf{M} \qquad p = 0, 1, 2, \dots$$

In the case when k = 0, we understand $Z^p = 0$, $H^p = 0$ for p = 0, 1, 2, ...

THEOREM. — i) There exists an integer $m \ge 0$ such that : $\mathfrak{A}^m \mathrm{H}^p = 0$ for p = 0, 1, 2, ..., n.

ii) $H^p = 0$ for $0 \leq p < prof(\mathfrak{A})$.

2. Proof of the theorem.

Proof of i). — Since R is noetherian, we have only to show for any $\omega \in \mathbb{Z}^p$ and any coefficients $a_{i_1...i_k}$,

 $1 \leq i_1 < \cdots < i_k \leq n,$

there exists an integer $m \ge 0$ such that

$$(a_{i_1\dots i_k})^m \omega \in \sum_{i=1}^k \omega_i \wedge \bigwedge^{p-1} \mathbf{M}.$$

If $a_{i_1...i_k}$ is nilpotent, then nothing is to show. Suppose $a_{i_1...i_k} = a$ is not nilpotent and let $R_{(a)}$ be the localization of R by the powers of $a = a_{i_1...i_k}$. There is a canonical morphism $R \to R_{(a)}$ and we denote by $[\omega]$ the image of $\omega \in \bigwedge^p M$ in $(\bigwedge^p M) \bigotimes_{R} R_{(a)} (= \bigwedge^p (M \bigotimes_{R} R_{(a)}))$ because M is free over R).

Since the ideal in $R_{(a)}$ generated by the coefficients of $[\omega_1] \wedge \cdots \wedge [\omega_k]$ contains the image of $a = a_{i_1 \dots i_k}$ in $R_{(a)}$, it coincides with $R_{(a)}$ and we may consider

$$[\omega_1], \ldots, [\omega_k]$$

as a part of free basis of $M \bigotimes_{\mathbb{R}} \mathbb{R}_{(a)}$. We add some other elements $[e_1], \ldots, [e_{n-k}]$ such that

 $[\omega_1], \ldots, [\omega_k], [e_1], \ldots, [e_{n-k}]$

166

give a basis of $M \bigotimes_{n} R_{(a)}$. Then any element

$$\left[\omega\right] \in \bigwedge^{p} \left(\mathbf{M} \bigotimes_{\mathbf{R}} \mathbf{R}_{(a)} \right)$$

can be developed in the form:

$$\begin{bmatrix} \omega \end{bmatrix} = \sum_{\substack{l+m=p \\ 1 \leq i_{4} < \cdots < i_{l} \leq k \\ 1 \leq j_{4} < \cdots < j_{m} \leq n-k}} a_{i_{1} \cdots i_{k}, j_{1} \cdots j_{n-k}} \begin{bmatrix} \omega_{i_{1}} \end{bmatrix} \\ \land \cdots \land \begin{bmatrix} \omega_{i_{l}} \end{bmatrix} \land \begin{bmatrix} e_{j_{1}} \end{bmatrix} \land \cdots \land \begin{bmatrix} e_{j_{m}} \end{bmatrix}.$$

Then the fact $[\omega] \wedge [\omega_1] \wedge \cdots \wedge [\omega_k] = 0$ is equivalent to the existence of some $\eta'_i \in \bigwedge_{\mathbb{R}} (\mathbb{M} \bigotimes_{\mathbb{R}} \mathbb{R}_{(a)}) \ i = 1, \ldots, k$ with $[\omega] = \sum_{i=1}^k \eta'_i \wedge [\omega_i]$. Let us take $\eta_i \in \bigwedge_{\mathbb{N}} \mathbb{M}$ and $m_1 \ge 0$ with $\eta'_i = a^{-m_i}[\eta_i] \ i = 1, \ldots, k$.

Then we have:

$$\left[a^{m_i}\omega - \sum_{i=1}^k \eta_i \wedge \omega_i\right] = a^{m_i}[\omega] - \sum_{i=1}^k [\eta_i] \wedge [\omega_i] = 0.$$

By the definition of $R_{(a)}$, there exists some $m_2 \ge 0$ such that

$$a^{m_{\mathbf{z}}}\left\{a^{m_{\mathbf{i}}}\omega-\sum_{i=1}^{k}\eta_{i}\wedge\omega_{i}
ight\}=0\quad\mathrm{in}\quad\bigwedge^{p}\mathrm{M}.$$

This completes the proof of i).

Proof of ii). We prove it by double induction on (p, k) for $p, k \ge 0$.

a) In the case k = 0, the assertion is trivially true by the definition of H^{p} .

b) Case p = 0.

Let $\omega \in \bigwedge^{\circ} M = R$ with $\omega \wedge \omega_1 \wedge \cdots \wedge \omega_k = 0$. The fact $p = 0 < \text{prof}(\mathfrak{A})$ implies the existence of $a \in \mathfrak{A}$, which is non-zero-divisor of R. Since $a\omega = 0$, we get $\omega = 0$.

c) Case 0 and <math>0 < k.

The induction hypothesis is then, that for (p-1, k) and (p, k-1) the assertion ii) of the theorem is true.

Let $a \in \mathfrak{A}$ be a non-zero-divisor of R. According to i), there exists an integer m > 0 with $a^m H^p = 0$. Since $a^m \in \mathfrak{A}$ is again a non-zero-divisor of R, we may assume that m=1.

167

KYOJI SAITO

We denote by $\overline{\omega}$ the image of $\omega \in \bigwedge^{r} M$ in $\left(\bigwedge^{p} \mathbf{M}\right) \bigotimes \mathbf{R}/a\mathbf{R} \simeq \bigwedge^{p} \left(\mathbf{M} \bigotimes \mathbf{R}/a\mathbf{R}\right).$

For $\omega \in \mathbb{Z}^p$, we have a presentation:

(*)
$$a\omega = \sum_{i=1}^{k} \eta_i \wedge \omega_i$$
, with $\eta_i \in \bigwedge^{p-1} M$.

We have then: $0 = \sum_{i=1}^{k} \overline{\eta}_i \wedge \overline{\omega}_i$. For any $1 \leq j \leq k$, we get:

$$ar{\eta}_j \wedge ar{\omega}_1 \wedge \cdots \wedge \omega_k = \left(\sum_{i=1}^k ar{\eta}_i \wedge ar{\omega}_i\right) \ \wedge ((-1)^{j-1} ar{\omega}_1 \wedge \cdots \wedge ar{\omega}_j \wedge \cdots \wedge ar{\omega}_k) = 0.$$

Here the symbol ^ means, we omit the corresponding term. Since the ideal of R/aR generated by the coefficients of $\overline{\omega}_1 \wedge \cdots \wedge \overline{\omega}_k$ is equal to α/aR and

$$\text{prof} \ \ \boldsymbol{\mathfrak{A}}/a\mathbf{R} = \text{prof} \ \boldsymbol{\mathfrak{A}} - 1 \geqslant p - 1 \geqslant 0,$$

we can apply to $\overline{\eta}_j$ the induction hypothesis for (p-1, k); there exist $\xi_{ji} \in \bigwedge M, j, i = 1, ..., k$, such that

$$\overline{\eta}_j = \sum_{i=1}^k \overline{\xi}_{ji} \wedge \overline{\omega}_i, \quad j = 1, \ldots, k.$$

Lifting back this relation to $\bigwedge^{p-1} M$, we find some $\zeta_j \in \bigwedge^{p-1} M$, $j = 1, \ldots, k$, such that

$$\eta_j = \sum_{i=1}^k \xi_{ji} \wedge \omega_i + a\zeta_j \qquad j = 1, \ldots, k.$$

Replacing η_i in the presentation (*) by this, we obtain:

$$a\left(\omega - \sum_{j=1}^{k} \zeta_{j} \wedge \omega_{j}\right) = \sum_{i, j=1}^{k} \xi_{ji} \wedge \omega_{i} \wedge \omega_{j}.$$

Multiplying by $\omega_2 \wedge \cdots \wedge \omega_k$, we have:

$$a\left(\omega-\sum_{i=1}^{k}\zeta_{i}\wedge\omega_{i}
ight)\wedge\omega_{2}\wedge\cdots\wedge\omega_{k}=0.$$

168

Since a is a non-zero-divisor of R, we have :

$$\left(\omega - \sum_{i=1}^{k} \zeta_{i} \wedge \omega_{i}\right) \wedge \omega_{2} \wedge \cdots \wedge \omega_{k} = 0.$$

Now since the ideal \mathfrak{A}' generated by the coefficients of $\omega_2 \wedge \cdots \wedge \omega_k$ contains the ideal \mathfrak{A} , we have prof $\mathfrak{A}' \geq p$ of $\mathfrak{A} > p$. Again by the induction hypothesis for (p, k-1), we find some $\theta_i \in \bigwedge M, j = 2, \ldots, k$ with

$$\omega - \sum_{i=1}^{k} \zeta_i \wedge \omega_i = \sum_{j=2}^{k} \theta_j \wedge \omega_i.$$

This ends the proof of ii).

3. Remark.

We can formulate the theorem in § 2, for a more general class of modules M than the one of free modules, as follows. Let M be a R-finite module with homological dimension $hd_{R}(M) \leq 1$, and $\omega_{1}, \ldots, \omega_{k}$ be elements of M. Since $hd_{R}(M) \leq 1$, we have a free resolution:

$$0 \to L_1 \to L_2 \to M \to 0.$$

Let $\tilde{\omega}_1, \ldots, \tilde{\omega}_k$ be some liftings of $\omega_1, \ldots, \omega_k$ in L_2 and $\tilde{e}_1, \ldots, \tilde{e}_m$ be images in L_2 of a free basis e_1, \ldots, e_m of L_1 . Let \mathfrak{A} be the ideal of \mathbb{R} generated by coefficients of $\tilde{\omega}_1 \wedge \cdots \wedge \tilde{\omega}_k \wedge \tilde{e}_1 \wedge \cdots \wedge \tilde{e}_m$.

Since \mathfrak{A} can be considered as a Fitting ideal of the following resolution :

$$L_1 \oplus \mathbb{R}^k \to L_2 \to M \Big/ \sum_{i=1}^k \mathbb{R}\omega_i \to 0.$$

we obtain the following lemma.

LEMMA. — \mathfrak{A} does only depend on M and $\omega_1, \ldots, \omega_k$ and does depend neither on the choice of $\tilde{\omega}_1, \ldots, \tilde{\omega}_k$ and e_1, \ldots, e_m nor on the resolution of M, we have used.

Let us define again :

$$\mathbf{H}^{p} = \left\{ \omega \in \bigwedge^{p} \mathbf{M} : \ \omega \ \land \ \omega_{1} \ \land \ \cdots \ \land \ \omega_{k} = 0 \right\} / \sum_{i=1}^{k} \omega_{i} \ \land \ \bigwedge^{p-1} \mathbf{M}.$$

KYOJI SAITO

Then we obtain again: i) $\mathfrak{A}^m \mathbf{H}^p = 0$, p = 0, 1, 2, ... for some m > 0 and ii) $\mathbf{H}^p = 0$ for $0 \leq p < \operatorname{prof} \mathfrak{A}$.

For the proof we have only to apply the theorem to L_2 and $\tilde{\omega}_1, \ldots, \tilde{\omega}_k, \tilde{e_1}, \ldots, \tilde{e_m}$.

BIBLIOGRAPHY

- G. DE RHAM, Sur la division de formes et de courants par une forme linéaire, Comment. Math. Helv., 28 (1954), 346-352.
- [2] K. SAITO, Calcul algébrique de la monodromie, Société Mathématique de France, Astérisque, 7 et 8 (1973), 195-212.

Manuscrit reçu le 28 juillet 1975 Proposé par B. Malgrange.

Kyoji SAITO, Department of Mathematics University of Tokyo College of General Education (Kyoyo-Gakubu) Komaba, Meguro-cho, Tokyo (Japan)