ANNALES DE L’INSTITUT FOURIER

MORISUKE HASUMI
Invariant subspaces on open Riemann surfaces

Annales de linstitut Fourier, tome 24, n°4 (1974), p. 241-286
<http://www.numdam.org/item?id=AlF_1974 24 4 241 0>

© Annales de I’institut Fourier, 1974, tous droits réservés.

L’acces aux archives de la revue « Annales de l'institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique 1’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NumbpaMm
Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIF_1974__24_4_241_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Inst. Fourier, Grenoble
24, 4 (1974), 241-286.

INVARIANT SUBSPACES
ON OPEN RIEMANN SURFACES

by Morisuke HASUMI

1. Introduction.

The purpose of the present paper is to classify completely
the closed invariant subspaces of the L? spaces with respect
to a harmonic measure on the Martin boundary of a certain
hyperbolic Riemann surface. Our problem has its origin in a
famous paper [1] of Beurling, where he characterized, among
others, the closed shift-invariant subspaces of the Hardy class
H? on the unit disk. He showed that such a subspace is gene-
rated by a single inner function. In recent years, efforts have
been directed to extending this result to multiply connected
regions. We now know what happens for any bordered compact
Riemann surface, due to works by Voichick [15, 16], Forelli [4]
and the author [5]. Very recently, in his thesis [6] (see also [7]),
Neville has studied extensively the invariant subspaces of the
Hardy classes on certain infinitely connected plane regions
called Blaschke regions and has obtained quite remarkable
results. In a very long forthcoming paper [8], he has genera-
lized his thesis results further to a class of Riemann surfaces
including all Blaschke regions. The main result of the present
paper will be general enough to imply all these previous
results.

In this paper, we shall deal with a class of hyperbolic Rie-
mann surfaces satisfying conditions (A), (B) and (C). Our
conditions are almost the same as those discussed by Neville [8]
and will be stated in Section 5. In order to prove our main
result (Theorem 7.1), we shall follow the program developed
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by Neville [6]. Namely, we shall first prove a generalized
Cauchy’s theorem and its converse formulated in terms of the
Martin boundary. At one delicate point, we shall employ the
Brelot-Choquet theory of Green lines [2]. Once we get Cauchy
theorems, i1t will not be so hard to determine the closed
(weakly* closed, if p = o) invariant subspaces of L? on
the Martin boundary of our surface. The results concerning
the Hardy classes can then be deduced rather quickly.

Now we sketch the contents of this paper. In Section 2,
we shall list some basic facts, taken from Neville [6, 8], about
the inner-outer factorization of certain meromorphic functions
on a hyperbolic Riemann surface R and also about the
Hardy classes HP(R). In Section 3, we shall give the integral
representation of functions in certain classes h?(R) of harmo-
nic functions on R and study the duality of such spaces.
After proving a Cauchy theorem in its weaker form in Section 4,
we shall establish in Section 5 direct and inverse Cauchy theo-
rems for R satisfying the conditions (A), (B) and (C) (Theo-
rems 5.3 and 5.12). Section 6 will contain further properties
of the lifting operation from the surface R to its universal
covering surface. Finally in Section 7, we shall determine the
closed H”(R)-submodules of the spaces L? on the Martin
boundary of R and prove, as a special case, the characteri-
zation theorem of the closed H®(R)-submodules of H?(R)
(Corollary 7.2).

The present paper came out of our efforts to answer some
open questions posed in Neville’s thesis [6]. After the first
draft of this paper was written, we were informed that Neville
himself had already found the same direct and inverse Cauchy
theorems as well as the same characterization of the closed
invariant subspaces of the Hardy classes prior to our disco-
very. His results will appear in [8]. But the two works look
different in techniques. His discussion is based on the Hayashi
boundary, whereas ours on the Martin boundary. By using
the Martin boundary, we shall be able to give a much shorter
exposition of the main results in [8]. Furthermore, our tech-
niques will allow us to classify the closed invariant subspaces
of the L* spaces on the Martin boundary of our surface,
which we believe is new. On the other hand, H. Widom has
informed us that our condition (B) implies the condition (C)
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for any Riemann surface, independently of (A). So the condi-
tions (A) and (B) alone will imply all our results. But we leave
our conditions unchanged, in the hope that the conditions
may be weakened in some way or other.

We were benefited in every way from Neville’s thesis [6]
and its influence on the present paper is quite evident. We
wish to thank Professor Lee A. Rubel for having allowed us
to see this very interesting thesis as soon as it was completed.
Our thanks are also due to Professor Harold Widom for sup-
plying us the valuable remark.

2. Definitions and some basic facts.

This section contains a brief sketch of some basic results
in Neville [6, 8]. Let R be a hyperbolic Riemann surface,
which will be fixed throughout this section. For any domain D
on R, HP(D) will denote the real vector space of functions
on D which can be expressed as the difference of two posi-
tive harmonic functions on D. Let u; € HP(R ~ Z),1 = 1,2,
where Z, and Z, are discrete subsets of R. We identify
u;, and u, 1if there is a discrete subset Z; of R such that
Z, VZ,<c Z; and u; =u, on R ~ Z;. The union of the
sets HP(R ~ Z), with discrete Z < R, after the above
identification, is denoted by SP(R). If uwe HP(R ~ Z)
with discrete Z ¢ R, then every point @ in Z 1s seen to be
either a logarithmic singularity of u or a removable one.

Prorosition 2.1 ([8; Theorem 2.2.1]). — SP(R) s a vector
lattice with respect to the pointwise operations. It is order complete
in the sense that, if {u,} < SP(R) and if there exists an ele-
ment u € SP(R) with w, < u for all A, Vu, existsin SP(R).

For each u e SP(R), we put |u] =u V (— u). For each
subset A of SP(R), we define Al to be the set of all u
in SP(R) such that [u] A |¢] =0 for any ¢ € A. We put
I(R) = {1}* and Q(R) = I(R)*. A function in I(R) (resp.,
Q(R)) 1s called inner (resp., outer or quasibounded).

ProrosiTion 2.2 ([8; Theorem 2.2.2]). — Both I(R) and
Q(R) are bands of SP(R) and SP(R) = I(R) @ Q(R). The
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projection maps p; and pq associated with this decomposition
are positive.

For any u e SP(R), pi(u) and po(u) are called the inner
and the outer parts of u, respectively. They are also denoted
as u; and ug, respectively. The following two facts are
easily seen.

Prorosition 2.3. — For any u € SP(R), its outer parts uq
has no irremovable singularities, so that uw and u; have the
same singularities.

Prorosrrion 2.4. — For any u e SP(R), we have

ug = limhm [(— m) V (n A u)].

Now let f be a meromorphic function of bounded charac-
teristic on R, i.e., f=fi/f with bounded analytic functions
fi and f; on R. Then, logl|f] =log|fi] —loglfe] 1s
contained in SP(R), so that log|f|] (= u, say) 1s decom-
posed into its inner and outer parts u; and ug. We put
fi = exp (ur + i(w1),) and fo = exp (uq + i(ug),), Wwhere
the asterisk denotes the harmonic conjugate normalized in
some fixed way. Then, f; and f, are multiplicative mero-
morphic functions of bounded characteristic and |f| = |fil|fol,
where fo is analytic in view of Proposition 2.3. Here, multi-
plicativity of a (multiple valued) meromorphic function &
on R means the following. Let H;(R;Z) be the first singular
homology group of R with integral coefficients and let II be
the group of multiplicative characters of H,(R; Z). Then,
the multiplicativity of h means that, if h; 1s any function
element of h at a point a € R and if h, denotes the function
element of h at the same point a which i1s obtained by the
analytic continuation of h;, along the path « e H;(R; Z)
1ssuing from a, we have hy, = 6(x)h;, where 0 is an element
of II determined uniquely by h. The character 0 1is called
the character of h and denoted as 6(h). We call a nonne-
gative extended real-valued function w on R a locally
meromorphic modulus (1.m.m.) if there exists a multiplicative
meromorphic function f on R with w=|f|]. If this f
is of bounded characteristic, then u is said to be of bounded
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characteristic. If f is analytic, then u 1is called a locally
analytic modulus (l.a.m.). Clearly, u is an L.Lm.m. of bounded
characteristic if and only if log u € SP(R). An l.m.m. u of
bounded characteristic is called inner (resp., outer) if

log u € I(R) (resp., Q(R)).

Prorosition 2.5 ([8; Theorem 2.3.1]). — Every lm.m. u
of bounded characteristic can be factored uniquely into the
product of an inner . m.m. u; and an outer l.a.m. wug, where
us = exp (px (log u)) and g = exp (pq (log u)).

Next we shall define Hardy classes on R in the sense of
Rudin. For 0 < p < o, H?(R) will denote the set of analytic
functions f on R for which |f|? has a harmonic majorant.
H=(R) will denote the set of bounded analytic functions on R.
Let a, € R be fixed. For fe H/(R) with 0 < p < ©, we
put |fl, = (L.-H.M.(|f|?)(ap)?, where L.H.M. stands for
the least harmonic majorant. For fe H*(R),

Ifle = sup {|f(2)| : z € R}.

Then it 1s well known that, for 1 < p < o, the space H?(R)
1s a complex Banach space with respect to the pointwise ope-
rations and the norm |.|, and that H®(R) is a Banach
algebra. Each HP(R) with 1 < p < o« 1is a topological
H*(R)-module.

As 1s well known, the open unit disk, U, can be viewed
as a umversal covering Riemann surface of R. Let ¢ be
the conformal covering map from U onto R such that
¢(0) = ao. Let T be the group of covering transformations
for ¢, i.e., the group of fractional linear transformations <
of U onto itself such that ¢ o 1 = ¢. Put

SPr = {se SP(U): sorv =3 forany veT}.

Prorosition 2.6 ([8; Theorem 2.4.1]). — The mapping
§—>so¢ gives a vector lattice isomorphism of SP(R) onto
SPr. For ue SP(R), ue I(R) (resp., Q(R)) if and only if
wogel(U) (resp., QU)).

We note that, for any l.a.m. u such that u? has a harmonic
majorant, there exists an analytic function f on U such that
u o ¢ = |f|. In this case, |f|? has a harmonic majorant on U,

14
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so that f i1sin HP(U). If g is an analytic function on U
and if ger =g forall veT, then there exists an analytic
function A on R such that ho o =g

Prorosrtion 2.7 ([8; Theorem 2.5.3]). — Let u beanl.a.m.
on R such that either u is bounded or u? has a harmonic
majorant for some 1 < p < . Then,

(a) LHM.(u?) € QR) if p # oo;

(b) u s of bounded characteristic;

(¢) (logu) v 0eQ(R);

(

d) ur is a bounded l.a.m. and |u4., = 1.

3. Martin boundary and integral representation.

In this section we . shall interprete some results in
Neville [6] in terms of the Martin compactification theory
found, for instance, in Constantinescu and Cornea [3]. Let R
be a hyperbolic Riemann surface, R* its Martin compactifi-
cation, and A = R* ~ R the Martin ideal boundary. Let
G(a, z) = G,(z) be the Green function for R with pole at
a point a € R. We shall denote by k,, b € R*, the Martin
function with pole at b, which is defined as follows. Take a
point ay in R, which is fixed throughout the discussion,
and let «, be a fixed positive number so large that

{z e R: G(ag, 2) > a5}

is a parametric disk on R. Let @ be an indefinitely differen-
tiable real function on [— o, 4 o] such that ®(t) < ¢,
O(t) =1t for t < 0, @ 1is constant for ¢t > 1, and

d*®/det < 0.
We put @y(t) = @(t — «y) + o. Then, we define
k() = G(b, 2)[®o(G(b, a))

for b, ze R. The function b — k,, b € R, is then extended
by continuity to R* and we get the Martin functions #k,
for be R*. Let A; be the set of points be A such that k,
is a minimal harmonic functions on R. Then, A; is a Gg
subset of A. The fundamental role of A, in the integral
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representation of harmonic functions on R is given by the
following

Prorosition 3.1 ([3: Folgesatz 13.1]). — There exists a
unique vector lattice isomorphism u — p, of HP(R) onto
the space M(A,) of finite real regular Borel measures on A,

such that
U= fA‘ ky dia(b).

Let x denote the measure corresponding to the constant function 1.
Then, ue HP(R) s outer (resp., inner) if and only if the
measure u, is absolutely continuous (resp., singular) with
respect to .

We note that y 1s the harmonic measure on A; for the
point a,. We say that a function on A, 1is measurable
(resp., integrable) if it 1s so with respect to x, and that a pro-
perty holds a.e. on A, 1if it holds on A; a.e. with respect
to .

Next we shall define the boundary values of a function
defined on R. For a positive superharmonic function s
on R and a closed subset F of R, we define sy to be the
greatest lower bound of the positive superharmonic functions
which are not smaller than s quasi-everywhere on the set F.
Nowlet be A;. We shall denote by ¥, = ¢,(R) the family
of nonempty open subsets D of R such that k, # (k;)r~p.
Then, ¥, 1s seen to be a filter base for each b€ A,.

Let f be any function from R into the complex sphere Q.
For beA,, we put f'(b) = n{Clf(D): De9,}. Clearly,
f*(b) depends only on the values of f taken on the outside of
any compact set in R. So the same definition can be made
when f 1s defined only off some compact subset of R. Let
2(f) be the set of beA; for which f*(b) is a singleton.
We define f(b) for each be @(f) by the condition

{f(b)} = ()

and call f the boundary function for f. Then we have the
following

Prorosition 3.2 ([3; Hilfssatze 14.1, 14.2]). — Suppose

that a function f: R — Q is continuous outside a compact
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subset of R. Then:

a) For any open neighborhood D' of f(b) in Q, f1(D')
contains a set of ,.

b) The function f: 2(f) > Q is measurable. In particular,
2(f) is a Borel subset of A,.

As for harmonic functions on R, we have the following

ProrosiTion 3.3 ([3; Folgesatz 14.2]). — If wue HP(R),

then U exists a.e. on A; and the outer part of u is given by
Ja, 6Bk, dx(b)

In particular, if u € HP(R) 1is outer, then the measure dy,
given by Proposition 3.1 is equal to @ dy. So we have

Cororrary 3.4. — If u* s areal integrable function on A,,
then
(1) u= [y u*(b)ks dx(b

is an outer harmonic function in HP(R) and 4 = u* a.e.
on A,.

Let A?(R), 1 < p < o, be the space of complex-valued
harmonic functions f on R such that |f|? has a harmonic
majorant, and A”(R) the space of complex-valued bounded
harmonic functions on R. We define the norm |.||, in
R(R), 1 < p < o by setting |fl, = ((L. HM(]f] )) (@) 1P
and the norm |.|, in A"(R) by |f|. = sup {|f(z)| : 2 € R}.
We shall denote by the symbol h[u*] the right—hand member
of (1).

Tueorem 3.5. — Let 1 < p < . For each feh(R),
the boundary function f is defined a.e. on A, and belongs to

LP(dy). Put Sf=1/{. Then, S is a linear map of h(R)
into LP(dy) such that.

a) S is isometric and surjective for 1 < p < o,

b) S is norm-decreasing for p =1, and is isometric as well

as surjective on the space hy(R) of all outer functions in h'(R).
S is isometric and surjective on HY(R).
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Proof. — Consider the universal covering surface (U, o)
of R such that ¢(0) =a,. For feh?(R) with 1 < p < ®
(or fe HY(R)), we have foqeeh?(U) (or foqeHY(U)).
We know that fo¢ is outer and so, by Proposition 2.6,

f is outer, too. By Proposition 3.3, f exists a.e. on A,
belongs to L!(dy) and

f=fuf(b)k, dx(b)
Suppose first that 1 < p < o and feh(R). Put
u = L.H.M.(|f]?).

Since |f|? < u, it follows that |f|P < & a.e. on A, and
so felr dx) The Holder inequality then shows that

IF@IF =] [, f (k=) du(B)f <[5 1 (B)]7holz) dx(b).

Namely, Ifl? < h |f|"] and therefore h[|f| ] Smce
Q(R) 1s an order ideal, u is outer. So, h [fl = u.
Hence, we have u = A[|f|?]. Consequently we have

112 = ulao) = huﬂ = [u 1 (B)1Pky(ao) dx(b)

= [u If(B)l? dx(b nanp

Thus, S 1is isometric. Surjectivity of S is obvious.
The case p = can be treated similarly.
Finally, let fe A'(R). Then, by Proposition 3.3,

fo=h[f fA b)k, dy (b

Let u = L.H.M. (|fy|). Then we have u=h |f‘Q| = A[If1],
so that S: AY(R) — Li(dy) 1is 1sometric and sur]ectlve
Next, let ¢ = L.H.M.(|f]) and let ¢ = ¢; + ¢o be the inner-
outer decomposition of ¢. Then, |f| < 6 =6, ae. on A,.
So, Ifly = vola) < (@) = |fl;. Thus, S: R(R)— Li(dy)
is norm-decreasing. The result for H!(R) comes from the
fact HY(R) < R4(R). Q.E.D.

Now we introduce the notion of B topology (or strict
topology) in a space H of bounded functions on R as
follows. Let Co(R) be the space of continuous complex func-
tions f on R such that {ze R:|f(z)] > ¢} is compact for
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any ¢ > 0. Then, a net {hy} in H is defined to converge
toan h e H with respect to the B topology if (hy — h)f — 0
uniformly for each fe Co(R). This topology has been studied
extensively for the spaces- of bounded analytic functions by
Rubel and Shields [11] and Neville [8; Chapter 4, Section 5].

Tueorem 3.6. — For 1 < p < ©, the Banach space dual of
h*(R) s isometrically vsomorphic with 1P (dy) with

pPr+pt=1,
where the duality s given by

f, g% = [y, (SN)(b)g*(b) dx(b)

for feh(R) and g*eLF (dy). For p =1, the Banach
space dual of h4(R) is isometrically isomorphic with L*(dy).
The dual of the space h*(R) equipped with the B topology tis
identified with L(dy).

Proof. — The last statement is a direct consequence of the
theory of the B topology. Other assertions are also simple
consequences of Theorem 3.5 and the duality theory of L?
spaces.

4. A preliminary Cauchy theorem.

We again consider a hyperbolic Riemann surface R and
use the notations in the preceding section. Let f be a real
continuous function defined on R ~ K, where K 1is any
compact subset of R. Let #[f] (resp., #'[f]) be the class
of superharmonic (resp., subharmonic) functions s on
for which there exists a compact subset K, of R with
s>f (vesp,, s<f) on R~ (K UK,). If neither #[f]
nor #[f] is empty, put W[f](z) = inf {s(z): s € #'[f]}
and W][f](z) = sup {s(z): se€ #[f]} for ze R. Then, both
W(f] and W[f] are harmonic functions on R and

WIf] < W[f].

If these functions coincide, then we denote the common fune-

tion by W(f].
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Suppose that the surface R is regular in the sense of
potential theory, i.e., the set ‘

{ze R: G(a, z) > ¢}

i1s compact for any a € R and any ¢ > 0. Let a € R. Since
the set of critical points of G, is at most countable, we can
find a monotonically decreasing sequence {c,} of positive
numbers converging to zero, in such a way that

R,={zeR:G(a,2) >¢},n=1,2,
are Jordan regions, ClR, ¢ R,+; for n=1, 2,

LZJanR7

and 8G(a, z) =22,G(a, z) dz is non-vanishing on each dR,,
where d, = —;— (d, — 19,) denotes the partial differentiation

with respect to z =z + 1y for any local coordinate. We call
such an exhaustion {R,} of R a regular exhaustion of R
with center a. Now we show the following

Lemma 4.1. — Let K be a compact subset of R and F
a positive continuous Wiener function on R ~ K, in the sense
of [3; p. bb], such that there exists an outer harmonic function u

on R with 0 <F <u on R~ K. Then, the boundary

function ¥ for F exists a.e. on A, and is integrable.
Suppose further that R is regular. Let ae€ R and {R,}
a regular exhaustion of R with center a. Then, we have

"ln‘,‘?z—mf Fle) 3G(a z) = [ B (B)ky(a) d(b).

Proof. — Since F is a Wiener function on R ~ K, it
follows from [3; Hilfssatz 14.3] and Proposition 3.2 that F

exists a.e. on A; and is measurable. Since we have

0<F<u

on R~ K, we have 0 < F < & a.e. on A,. Since @ 1s
integrable, so 1s F.
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Now we suppose R  to be regular. To show the conver-
gence of the integrals, we first assume that 0 < F < 1.
Then, by [3; Satz 14.2], W[F] exists and is given by

WIF] = [, B(b)k, dx(b).

We also know (cf. [3; Hilfssatz 6.1]) that there exists a poten-
tial p on R such that p 1s finite everywhere on R and,
for every & > 0, there exists a compact set K, ¢ R with
W[F] —ep < F < W[F]4+ep on R~ K, Take n so
large that K, ¢ R, and integrate this inequality with res-
pect to dp, which is the restriction of —51— 3G(a, z) to
dR,. Since we have T

WIF](@) = [io WIF1(z) dpa(z) = [, F(b)ks(a) dx(b)

Jua, P(3) dua(a) < pla),

we conclude that

U;B z) dpn(2) fA b)I < epla).

So the desired result follows in this case.

Next we consider the general case. Put F, = min {F, m}
for m=1,2, .... Itis known that F, are Wiener functions
on R~ K and F,=min{F, m} ae on A, (cf. [3]).
By what we have shown in the preceding paragraph, there
exists, for any m and any e > 0, a number ny, = ny(m, ¢)
such that

U;n z) dy,(2) fA (b)| < for n > ng.

Since F is integrable and F,— F a.e., there exists, for
any ¢ > 0, a number my, = my(c) such that

fA1 F(b)ky(a) dy(b) < fA, F,(b)ky(a) dy(b) +c for m > m,.
Since 0 < F < u, we have F—F, < u—u, on R~ K,
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where u, = min (u, m). If K ¢ R,, then we thus have

0 < [in F(z) dita() — [ Fal2) dua(2)

< [on, u(z) dia(z) — f tn(2) dit,(2)
< ‘ufa) — (u A m)(a).

If we take m > my(e) and n > ny(m, ), then we have

| [, E(B)ko(a) dx(b) — [y, Fla) dusa(a)

< 2¢ + u(a) — (u A m)(a).

Since u is outer, (u A m)(a) > u(a), so that we are done.

Tueorem 4.2. — Suppose that R is regular and let a e R
be fized. Let z, ..., z, be 1 distinct critical poinis of the
function G, and let ¢, j = 1 2, ..., 1, be the multiplicity

of z. Put g(z) =exp <— 2 ch(zj, z)> If f vs a mero-

morphic function on R such that |flg has a harmonic majorant
on R, then f exists a.e. on A, is integrable and

a) = |, F(b)ky(a) dx(b).

Proof. — Since |f|g has a harmonic majorant, Propo-
sition 2.7 (a) shows that its least harmonic majorant, wu, 1is
outer. Since R 1s regular, there exist a compact set K in
R and a constant ¢ > 0 such that the interior of K contains
Z, ..., % and g =>¢ on R ~ K. So we have |f| < clu
on R ~ K. Since both Ref and Imf are harmonic on
R ~ K and majorized there in modulus by the outer
harmonic function c¢'u, they are Wiener functions on
R ~ K. So, by [3; Hilfssatz 14.3], f existsa.e. on A; and
1s measurable. Moroever, we have If| < c'd ae. on A,.
Hence, fe Li(dy).

Let {R,} be a regular exhaustion of R with center a.
Then, G, — ¢, is the Green function for R, with pole at a.
We may assume without loss of generality that K is contained
in R,. For each n, f(z)3G(a, z) is a meromorphic differential
in z on ClR, with only one pole at a, whose residue is
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equal to — 2nif(a). Thus we have

- 2mf f(z) 3G(a, 2).
By applying Lemma 4.1, we get the desired result.

5. Direct and inverse Cauchy theorems.

Let R be a hyperbolic Riemann surface and a, the point
in R which is used for defining the Martin functions. We
consider the following three conditions (A), (B) and (C):

(A) R 1s regular.

(B) Let II be the group of multiplicative characters of
the group H;(R; Z). There exists a family of outer La.m.’s
{8(6): 6 € I1}, such that (a) 8(1) = 1; (b) 3(6) has character 0
for each 6 elIl; (¢) 0 < 3(0) < 1 for each 0 €Il; (d) if a
sequence of the form {8(6,): n=1, 2, ...} 1is pointwise
convergent to a function of the form |f| with fe H*(R),
then f i1s B exterior in the sense that fH*(R) is B dense
in H*(R).

In order to state the condition (C), we denote, for each
aeR, by Z(a)={z;=2z(a): j=1, 2, ...} a univalent
enumeration of the critical points of G, and by ¢, = ¢;(a)
the multiplicity of z. And we put

(2) £9(s) = exp (— 3 ¢G(z, 7).

J

(C) There exists a point a € R for which 2 ¢,G(z,2) < ©
on R ~ Z(a).

Remark. — H. Widom [18] observed that (C) holds (if and)
only if ¥ ¢/(a)G(z(a), z) < © on R ~ Z(a) for every

J
a € R, provided that R satisfies (A). According to a recent
private communication from him, the results in [18] will
show that the condition (B) (or less: there only has to be a
3(0) for each 6 eIl such that 3(6) <1 and 8§(6)=£0)

implies the condition (C) for any Riemann surface, indepen-
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dently of (A). Thus, the condition (C) can be suppressed
without changing our main results. For an interesting class
of Riemann surfaces satisfying the conditions (A), (B) and (C),
we refer the reader to Neville [8; Chapters 5 and 8]. See also
Widom [17].

Our main objective of this section is to prove a Cauchy
theorem and its converse for any surface R satisfying (A),
(B) and (C). These theorems have also been found by Neville [8].
We shall begin with '

Lemma 5.1. — Let R be a hyperbolic Riemann surface for
which (C) holds. Then, g® exists a.e. on A; and is equal to 1
a.e. on A;.

Proof. — Put s(z) = 3, ¢;G(z;, z). Then, our hypothesis
J

shows that s 1is a positive superharmonic function on R.
It is therefore a Wiener function (cf. [3; p. 56]). By
[3; Satz 14.2], § exists a.e. on A; and the outer part of
Ws] 1s equal to f.?(b)k,, dx(b). For n=1, 2, ..., we

n

put s,(z) = X ¢G(z, z) and s,=s—s, Since s, is
j=1

a potential, we have W[s,] =0 and so W[s] = W[s,] for
n=1,2,.... Thus, W[s] < s, for all n. Since } ¢,G(z, z)
is convergent on R ~ Z(a), {s,: n=1, 2, ...} converges

to zero on R. So W[s] =0 and therefore §=0 a.e.
on A;. Q.E.D.

Lemma 5.2. — Let R be a hyperbolic Riemann surface for
which (B) and (C) hold. Then there exists a sequence

B:j=12, ...}

of functions in H*(R) and a strictly increasing sequence of
integers {v(j): ] =1, 2, ...} such that, for each ], the inner
factor of |By| is exp (— Y ¢G(z, z)) and such that

i)

lim B, (= B, say)

J> 0

exists in the B topology and ts B exterior.
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Proof. — We put C(z) = exp( Y ¢G(z, z)), =1,

2, .... By (C), 2 ¢:G(z, z) 1s finite ‘(/)111 R~ {z:12>]}.
izJ

Since each G(z, z) belongs to I(R), the order completeness

of I(R) implies that Y ¢,G(z, z) belongs to I(R), so that

l/]

each C; is an inner Lam. on R. Let 6; be the character
of C;. Then there exists an F; e H”(R) such that

|F)| = C;3(877).

Since |F;| < ]—— 1, 2, ..., there exists a B convergent
subsequence {FVQ) ] = 1 2,...} of {F;}. Weput B, =F,g,
;j=1,2, ..., and let B be the B limit of

{Bj:].z 1, 2, ...}.
Since Y, ¢;G(z, z) converges uniformly on compact subsets

J
of R ~ Z(a), we see that hm ¥ ¢G(z, z) = 0 uniformly
J>» 2]
on compact subsets of R. So C; tend to 1 uniformly on

compact subsets of R. Thus,
3(0.pp7") = | Pyl [Cupp = | B

with respect to the B topology. Hence, by (B), the function B
is B exterior.
Now we are in the position to prove our Cauchy theorem.

Tueorewm 5.3. — Let R be a hyperbolic Riemann surface for
which (A), (B) and (C) hold. Let ac R be fixed. Let f

be a meromorphic function on R such that |f|g® has a har-
monic majorant. Then, f exists a.e. on Ay, is integrable, and

= [u. [ (B)ks(a) dx(b).

Proof. — We know that log g®e I(R) ¢ SP(R). So,
log |[f] = log (|f|g®) — log g® Dbelongs to SP(R), too. We
denote by ¥ the function z-—log|z] on the complex
sphere Q. ¥ 1is non-constant and continucus on Q and the
composite ¥ o f (=log|f]) 1s a Wiener function on R,
since i1t 1s in SP(R). So, by [3; Folgesatz 10.1 and Satz 14.4],
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f exists a.e. on A,. By Lemma 5.1, we have §® =1 a.e.
on A, So, |f|=1f|g® < & ae. on A,, where u denotes
the least harmonic majorant of |f|]g® on R. Since
i e Li(dy), we have f e Li(dy), too.

Now we use the notations in the proof of Lemma 5.2 and put
vih—1

gi(z )_exp<— E ¢:G(z, z)>’ j=2,3, .... Then, for any
s € H*(R), fsB; 1s meromorphic on R and

|fsBjlg; = s]1f188(8(Cup)™),

the latter having a harmonic majorant in view of our assump-
tion. Applying Theorem 4.2, we have

(3) (fsBy)(a@) = [, f(b k(@) dx(b).

By Lemma 5.2, B~ B in H=(R) with respect to the B

topology. In view of Theorem 3.6, we have ﬁj —B in L=(dy)
with respect to the weak topology o(L*(dy), L'(dy)). Letting
] = o in (3), we get

(fsB)(a) = [y [(D)§(B)B(b)ks(a) dx(b).

Since B 1s B exterior, there exists a net {s,} ¢ H®(R)
such that B —1 with respect to the £ topology.

So §B —1 with respect to o(L=(dy), Li(dy)) and conse-
quently

f(a) = him (f3,B)(a) = lm ﬂ (b)ks(a) dx(b)
= fA b)ky(a) d b)

as was to be proved.

We proceed to prove an inverse Cauchy theorem, which
will generalize previous results by Read [9], Royden [10]
and Neville [6], and which has also been found by Neville [8].
Here we shall follow Neville’s method in [6]. In order to do so,
however, we have something to settle in advance, which we
now describe.

For any two points a, ¢’ € R, we set

Pla, a'; z) = 3G(d', 2)/3G(a, 2z for z € R.
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Then, P(a, a’; z) 1s a meromorphic function on R. If a # o,
then 1t vanishes at a and has poles in the set Z(a) U {a'}.

Lemma 5.4. — Let R be a hyperbolic Riemann surface
for which (A), (B) and (C) hold. Let a, a’ € R be fized. Then,
P(a, a’; b) exists a.e. on A, and is equal to ky(a')[ky(a) a.e.
on A,.

Of course, we have only to consider the case a # a'. The
proof is rather long. We first prove the existence of the boun-
dary function and will evaluate the function after some dis-
cussion about Green lines. We shall assume throughout the
conditions (A), (B) and (C) even when we do not need the full
strength of the conditions.

Ezistence of the boundary function. — Let {R,} be a regular
exhaustion of R with center a and let G®™(a’, z) be the
Green function for R, with pole at a’. Since G, — ¢, is the
Green function for R, with pole at a, the Harnack inequality
shows that there exists a constant ¢, depending only on a,
a’ and R, such that 0 < 3G"(d/, 2)/3G(a, 2) < ¢ on dR,.

Put' u(a, a'; 2) = g9@3z)exp (— G(a’, z)), where g©®
was defined by (2). Then, the condition (C) implies that
u(a, a'; z) 1s a nontrivial inner l.a.m. on R. Since

u(a, a';z) <1
on R, we have

0 < u(a, a; 2)(8G™(a’, 2)/3G(a, z)) < ¢ on dR,.

Since u(a, a'; z)|8G™(a’, 2)/8G(a, z)| is an lLa.m. on CIR,,
the maximum principle implies that

u(a, a'; 2)|83G™(a’, 2)/3G(a, z)] < ¢ on CIR,.

Since 38G™(a’, z) converge to 3G(a’, z) almost uniformly
on R ~ {a’'}, we have

(4) u(a, a'; z)|Pla, a’; z)| < ¢ on R.
In particular, we have log|P(a, a'; z)| € SP(R). By [3;

Folgesatz 10.1 and Satz 14.4], P(a, a’; b) exists a.e. on A,,
as was to be proved.
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Some properties of Green lines. — In . order to evaluate

P(a, a’; b) on A,;, we need the concept of Green lines. Let
a € R be fixed and define r(z) and «(z) by the equations
dr(z)[r(z) = — dGla, z) and dw(z) = — *dG(a, z). The first
equation 1s solved by r(z) = exp (— G(a, z)), which we
shall use in what follows. Put

R(p) = {ze R: G(a, ) > ¢} = {ze R: r(z) < ef}

for p with 0 < p < . We call R(p) regularif 3G, # 0
on the boundary of R(p). An open arc on R is called a
Green arc for G, if it is a level arc of the function © on
which dw(z) # 0 and (z) 1s constant. A maximal Green
arc 1s called a Green line. We shall denote by G = G(R; a)
the totality of Green lines L for G, issuing from the point a.
For a sufficiently large p > 0, R(p) is regular and

w = f(z) = efr(z) exp (1o(z))

is a conformal mapping from Cl R(p) onto the unit disk
{weC: |w <1}. We fix such a p (= p,, say) and put
J = d9R(py). The function z = f1(w) maps {w: |w| < 1}
onto R(p,) U J, so that each point z on J 1is represented
by a real number o € [0, 2r) where z = f-1(¢®). So, every
L e G can be parametrized with o as L =1, where o
represents the point in L N J. We define a measure m,
called the Green measure on G (or, more exactly, on J), by

dm (L) = dm (o) = do/2r with L = L,.

We also put E; = E¢(R;a) = {L € G:ClL 1s compact in R}.
Clearly, L € E, (if and) only if L ends in a point of Z(a).
It follows that E, is countable. Since R 1is regular, we see
that sup {r(z): ze L} =1 for Le G if and only if L ¢ E,.
If we take the branch of w(z) at zeL, with ©(z) = o,
then we can use the single-valued function r(z)e® = rei
as a global coordinate on the star region

G =G'(R;a) = U{L: Le G} v {a}.

Thus, if R(p) i1s regular and if w is a harmonic function on
R(p), continuous on Cl R(p), then the usual Green formula
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states the following :

u(a) = — 1 u(z) *dG(a, z) = —2—1; f:x u(re) deo |

27 Joree
27

- f u(re®) dm(L,) with r= .
0

Let f be a function on R. We say that f has a radial limit
a.e.on G if

f(L,) = lim f(re®) = lim {f(z): z€ L, r(z) - 1}

r>1

exists m-a.e. on G ~ E,. Then, we have the following

Lemma 5.5. — a) Every bounded analytic function [
on G' = G'(R;a) possesses aradial limita.e. on G = G(R; a)
and the limit function f(L) ts m-measurable on G. If f # 0,
then f(L) # 0 m-a.e. on G. This ts true of every meromorphic
function f of bounded characteristic.

b) Suppose that R s regular and let 1 < p < . If
an analytic function f on G’ is such that |f|P is majorized
on G’ by a harmonic function u e Q(R), then f has a radial
limit a.e. on G and the function L — f(L) belongs to Lr(dm).

Proof. — Part a) is essentially contained in [12; Chapter 111,
Theorems 6D and 61]. So, we shall prove b).

Let f satisfy the condition in b). Then, by Proposition 2.7,
|[f| 1is of bounded characteristic, so that f itself is of bounded
characteristic on G’ because G’ 1s simply connected.
By a), there exists a measurable subset M of G ~ E; such
that m(G ~ (E, UM)) =0 and f(L) exists for every
LeM. Let 0 <p < o be such that R(p) 1s regular.
Then,

ﬁ | f(re®)|? dm(L,,) < ﬁ ™ u(re®) dm(L,) = u(a) with r=eF.

Take any decreasing sequence {p,: n=1, 2, ...} with
pn = 0 such that R(p,) 1s regular for each n. Put

Oa(Lis) = |f(rae®)|?

Added in proof. — The suggestion made for the proof of Lemma 5.5 (a) is
inexact; however, the lemma itself is true and follows from the conditions (A)

and (C).
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with r, = exp (— p,). Then, lim ¢,(L) (= ¢(L), say) exists
>00

for every LeM and ¢(L) = |[f(L)|?. So, by the Fatou
lemma, we see that ¢ 1is m-integrable and

[ #(L) dm(L) =1lim [ ¢,(L) dm(L) < u(a).
This is what we wished to show. Q.E.D.

Returning to our case, we see by the condition (B) that
there exists a function F € H*(R) with

|F| = u(a, a' .)3(0(u(a, a’; .))™1).

Put f(z) = P(a, a'; 2)F(z). In view of (4), we have fe H*(R).
By Lemma 5.5, F(L) and f(L) exist m-a.e. on G ~ E,.
Since F # 0, we have F(L) # 0 m-a.e. on G. It follows
that P(a, o’; L) exist and is finite m-a.e. on G.

Let Le G ~ E, and let e, be the end of L, 1.e.,

er = CI(L) ~ (L U {a})

in R*. Thus, e, is a non-void subset of A, We want to
evaluate P(a, o'; L) when 1t exists. At each ze L, we take
a local coordinate z =z 4 ty such that dz = dG(a, z)
and dy = *dG(a, z). Along L, we then have

3G(a, 2) = d,G(a, z) dx = dz
and

3G(a', 2) = [0,G(a, 2) + 10,G(a’, 2), ] dz,

where G(a’, z), denotes the harmonic conjugate of G(d', z).
We may assume that z = G(a, z) and y = y, = constant
along L. Then we have on L

(5) Re (P(a, a’; z))
= (dG (&,  + 1y,)/dz)[(dG (a, x + vy,)/dx).
Suppose that P(a, a’; L) exists. Then, (5) has a limit as =z
tends to zero. Since both G(a, x + Lyo) and G(a', z + 1y,)

tend to zero as z tends to zero in view of the condition (A),
I’Hospital’s rule shows that

Re (P(a, a’; L)) = lim (dG (&', x + iy,)/dz)/(dG (a, x + ty,)/dx)
= lim G(a’, z + 1y,)/G(a, z + 1y,).
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Let beey. Then, there exists a sequence of points z, in L
with the coordinates z, + ty, such that z, -0 and z, - b.
So, the final member is equal to ky(a')/k,(a). Since b is
arbitrary in ey, ky(a’)/ks(a) 1s constant on e; as a function
in b,

Now let &' run over a countable dense subset A of R.
Then we see that there exists a measurable subset A
of G ~ E, such that (1) m(G ~ (E, VA))=0; (u) for
each ¢’ € A and L e A, F(L) and f(L) exist and are finite,
and F(L) # 0. So, for each o’ € A and L €A, P(a, a'; L)
exists. Therefore, if b, b’ € e, with' L € A, then

k(@) [ko(a) = (@) [k (a)

for every a' € A. Since the function k, with beA 1is

continuous on R, the density of A in R implies that k,

and k, are proportional. Hence we have b= b by the

fundamental property of the Martin functions (cf. [3; pp. 135-

136]). Namely, e, consists of a single point for each L € A.
We next prove

LEMMA 5.6. — Let (V, ¢) be a parametric disk in R and
put 1/4 = ¢(U(0; 1/4)), where U(w; r) denotes the
open dzsk in C wzth center w and radius r. Let ae€ R be
fixed. Then, there exists a constant C such that

|P(a, a'; 2) — P(a, a"; 2)|g%(z) < Cld(a') — ¢(a”)]
for any o, a”" € V(1/4) and any zeR ~ C1V.

Proof. — Let {R,} be a regular exhaustion with center a
such that C1V ¢ R;. Let o', a”" € V(1/4) and let G®(a, z)
and G™(a", z) be the Green functions for R, with poles at
a and a”, respectively. Then, for any real outer harmonic
function h on R,, we have

3G"(a", 2) _
— m> 8G(a, z).

Put h* =h Vv 0 and h~ = (—h) vV 0. Then, At and h-

are positive outer harmonic functions on R,. By the Harnack
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inequality, we have ¢(r)™? < h*(a’)/h*(a") < ¢(r), where
| r=¥(a') — ¥(a") -
and ¢(r) = (3 + 4r)/(3 — 4r). The same is true of the function
h=. So,
(7) |h(a')—h(a")| < |k*(a’) — h+(a”)] + |h=(a’) — h=(a")|
‘ < 8r(h*(a”) 4 h~(a”))

_ '8r<— 2—1? fb k(3 i%)(ia“——z)z) 3G(a, 2)

< ’8r>\<- -2;) fb  1h(z)3G(a, =),

where A is a constant depending only on a, V and R, and
not on n. Combining (6) and (7), we have

lsc;m(a', 7)) 3G®(a”, z)

8G(a, 2) 3G(a, 2)
We put ¢(z) = g9z) exp (— G(a’, z) — G(a”, z)). Then,

¢(z) 1s an inner L.Lam. on R andis < 1. So,

® [360,7) _ 3GM(d’, z)
3G(a, 2) 3G(a, 2)

Since the left-hand member of (8) is an l.a.m. on CIR, so
that the inequality sign remains to hold when z runs over R,.
Letting n — o, we have |P(a, a’;z) — P(a, a"; 2)|¢(z) < 8xr
on R. Since ClV(1/4) is a compact subset of V ¢ ClV,
the set of functions exp (G, + G,.) with a', a" € V(1/4)
form a uniformly bounded family of functions on R ~ Cl V.
Hence, there exists a desired constant C. Q.E.D.

Now let a” € R be any point and take a sequence {a,}
in A which converges to a”. We may assume that {a,}
is contained in V(1/4), where (V, ¢) is a fixed parametric
disk centered at a”. By the preceding lemma, we have, for
z=zx+ iy L in A,

|P(a, a.;  + iyo) — Pla, an;  + iyo)| | F(z + 1)l
< CH’(an) - ¢(am)|

< 8\r on dR,.

¢(z) < 8\r on dR,.

for n,m=1, 2, ..., and also

|Pa, a”; = + 1yo) — P(a, a,; & + iyo)|[F(z + iyo)l
< Cl¢(a”) — ()l
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for all z sufficiently near zero. It follows at once from these
inequalities that P(a, a”; L) exists for L € A. Summing up,
we have the following.

Prorosition 5.7. — Let ae€ R be fixed. Then, there exists
a measurable subset A of G(R;a) ~ Ey(R;a) with

m(G ~ (E, UA)) =0
such that F(L) (# 0) and P(a, a'; L) exist and are finite

for every o' € R and every L € A. Furthermore, e; consists
of a single point, by, for every L e A and

Re (P(a, '; L)) = ky(a)/ks(a)

for every o' € R and every b= b, with L € A.

We can thus apply the Brelot-Choquet theory of Green
lines [2] to our problem. We know that the Martin compacti-
fication i1s metrizable and resolutive (cf. [3; Satz 13.4]). For
each point b e A,, let #, be the filter of all sets of the form
R Nn'W where W varies over the fine neighborhoods of b
in R*. As was shown by L. Naim [19], there exists a measu-
rable subset A’ ¢ A, such that x(A’) =1 and the family
E = {F,: be A’} satisfies Brelot-Choquet’s conditions A
and B, where

A : If h is subharmonic and bounded above and if we have
limsup A < 0 along any F €, then A < 0

B: For each #, €, there exist an open neighborhood W
of b in R* and a superharmonic function ¢ > 0 on W n R
such that lim ¢ = 0 along #, and, for any neighborhood V
of b, inf{v(z): 26 (W nR) ~ V} > 0.

Moreover, Proposition 5.7 shows that almost all Green lines
in G(R; a) ~ Eo(R; a) converge in R*. Hence, the Brelot-
Choquet theorey [2] implies the following

ProrosiTion 5.8. — Let a€ R be fixed and let A = A(a)
be the set of Green lines L e G(R; a) ~ Eo(R; a) for which

the end ey, consists of a single point, say by. Then, the following
hold :

a) m(G ~ (E, U A)) =0;

b) The function L — by, from A into A is measurable
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and s measure preserving with respect to the measure dm on A
and the harmonic measure k,(a) dy(b) on A corresponding to
the point a. In particular, the points in A which are not in
the tmage of A wunder the above mapping form a null set in A.

c) Let f* be a bounded measurable function on A, and
let. f=h[f*] be the solution of the Dirichlet problem for R
with the boundary values f* (cf. Section 3). Then, f has a
radial limit a.e. on G and f(L) = f*(by) m-a.e. on A.

Combining this with Corollary 3.4, we have the following

CoroLrarYy 5.9. — Let f* be a bounded measurable function

on Ay, and f=h[f*]. Let ae R. Then, f has a radial
limit a.e. on G(Rj; a) and

(9) f(b) =f*(b) =f(L) ae.on A

where b= by, with L e A(a).
By Proposition 5.7 and Corollary 5.9, we conclude this:

Cororrary 5.10. — Let a, a’ € R be fixed. Then,
(10)  Re (P(a, a’; b)) = ky(a')/ky(a) a.e.on A,.

Proof. — Using the notations defined after the proof of
Lemma 5.5, we have P(a, a'; z) = f(z)/F(z) and 1t is
clear that (9) 1s valid for both f and F. From this the

desired result follows at once.

Completion of the proof of Lemma 5.4. — Let now a, o
and a" be any pairwise distinct three points in R. Then,
P(a, a'; z) = P(a, a"; z)P(a”, a’'; z). So, if f’(a, a”; b) and
P(a”, @’; b) exist and are finite for some b e A,, then
p(a, a'; b) exists and P(a, a’; b) = P(a, a”; b)Pa", o'; b).
By Corollary 5.10, we see that, for almost all b€ A,

Re (P(a, a”; b)P(a”, a'; b)) = Re (f’(a, @ b)) = ly(a )/kb( )

= Re (P(a, a"; b)) Re (P(a”, a'; D).
For such beA,, either P(a, a”; b) or P(a", a'; b) should
be real.

Finally we fix two distinct points a, o’ € R and suppose,
on the contrary, that there exists a measurable subset A’
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of A, with x(A’) > 0 such that, for each be A’, P(a, a'; b)
exists, satisfies (10) and is non-real. Take a sequence of points
a,(# a') in R converging to a’. Then, there exists a measu-
rable subset A” of A’ with y(A”) > 0 such that P(a, a,; b)
exist for all n and all beA”. Since f’(a a'; b) 1s non-
real for any beA’, we may assume, In view of the above
observation, P(a, a,; b) exists and is equal to ky(a,)/ky(a)
for all n and all b€ A”. By the Harnack inequality, we see
that ;! < |P(a, a,; b)] < A, a.e. on A" and therefore

(11) 27t < |P(a, a'; b)/P(a, a,; b)] < A, ae.on A’,

where {)\,} 1is a sequence of positive numbers tending decrea-
singly to 1. There exists a point b in A" for which (11)
holds for all n. For such b, we have

1 = lim |P(a, a'; b)/P(a, a,; b)| = lim |P(a, a'; b)|ky(a /k,,
. |I‘>(a a5 b)|ky(a)[key(a').
Since (10) holds for this b, we should have
Pla, a'; b) = ky(a')[ky(a)

which is real. This contradiction shows that P(a, a'; b) is

real a.e. on A;. In view of Corollary 5.10, this completes the
proof of Lemma b.4.

Lemma 5.11. — Let R be a hyperbolic Riemann surface for
which (A), (B) and (C) hold. Let a€ R be fized, (V, {) a
parametric disk in R ~ Z(a), and J any closed rectifiable
curve contained in V(1/4). Put

3(3) = [i Pla, ¥'(8); 2)dE  for zeR ~ (Z(a) U C1V),

where ' denotes the inverse map of §. Then, P; is regular
analytic on R ~ (Z(a) U C1 V) and can be extended analy-
tically to R ~ Z(a). Py(a) =0, Py s meromorphic, the set
of poles of P; s contained in Z(a) and, for each z; € Z(a),
" the order of pole of P; at z; is not larger than c¢;. Moreover,
|Ps|g® is bounded, P;(b) exists ae. on A, and

(12)  Po(b) = [, (ko(d'(E))/Ro(a) dE a.e. on A,
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Proof. — Since the poles of P(a, a'; z) are contained in
Z(a) U {a'}, the function P; is analytic on

R ~ (Z(a) U Cl V(1/4)).
If & & eU=¢(V), then
G(y'(8), ¢'(€)) = —logl& —&'| + h(E, &) for & # &,

where h(E, &) is sym‘metfic in £ and E’, is harmonicin &’
and has a removable singularity at & = £. So, we have

8G(¢(8), ¢'(8') = — (8 — &) d& + 3ph(E, &),

where 8:h(€, £') 1s an analytic differential in £ € U. For
£ eU with 1/4 < |&'| < 1, we have

(3;,1152,, &) /SG(a;l §'<E'>)> d,

P(a, ¢'(E); ¢'(£)) dE = f

4@

4@

the right-hand member being analytic throughout U. Hence,
the function P; can be continued analytically to the whole V,
so that Py can be regarded as analytic on R ~ Z(a).

Since 8G(a, z) has a pole at a, P;j(a) = 0. The poles of
P; are contained in Z(a) and have the asserted orders. Since
J 1is compact, the Harnack inequality shows that there exists
a constant ¢ depending only on ¢, J and R with

|Ps(2)|gz) < ¢
on R. Thus, log|P;| belongs to SP(R) and therefore P,

exists a.e. on A;.
Finally we shall prove (12). Let ~: [0, 1) -> ¢(J) be a

fixed parametrization of the curve ¢(J). Since

a — Pla, a'; 2)

is continuous on J for any fixed ze R ~ (Z(a) U Cl V),
we have for such z

Py(z) = fu Pla, §'(2); ) d
= lim Y P(a, ’*]’I(En,j)§ Z)(E-vn,j — &n,j—l)

n>w j=1

where &, ; = Y(]/n), 7=0,1, ..., n—1, and £, ,=E&,,.
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Let A’ be a measurable subset of A; with

x(Ay ~ A') =0

such that, for be A’, g9(b) =1 and
Pla, ¥ (8n))5 b) = ko(¥' (En 1)) ks(a)

for every n and j. Such a set A’ exists in view of Lemmas
5.1 and 5.4.

Take any b e A’. Then, for any 0 < ¢ < 1 and any n,
there exists an open set D, € %, such that D, ¢ R~ ClV
and

Cl {g@(2)P(a, ¢’ (£, ,); 2): z€ D} € UP(a, (5, )3 b); <)
for j=1,2, ..., n. Thus, for z€D,,

3 g9 P(a, ¢ (En); 2)(Eny — Enja)

j= v
-y ol g,
< 3 |, ¥ () 0 — B, —

< {e length (¢(J)).

We take n, in such a way that v([(j — 1)/n, j/r]) 1s contai-
ned in a disk of diameter ¢ for each n > ny, and j =1, 2,

cone Put Jy, = y([(— Dfn, jfnl) j=1, 2 ...\ n.
Let zeD, with n > n,. Since [§ —§&,;| < ¢ for each
£ €J,; wehave,in view of Lemma 5.6,

| fir €2@P(z, ¥'(£); 2) dE
- z £(2)P(a, ¥ (En )3 2)(Eny — Enyoa)l

Jj=1 fln,j {g<a)<z) (a, I(E)', Z)

_g@)() ( I(nj),z)}dgl
< Ce. length( (J)).

N
M=n

Since a' — ky,(a’) 1is continuous on R, there exists an n
’ 1
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such that, for n > n,,

W) sy [ RW(E)
3 e Gy =t — [ TS a

Hence, for n > max (no, n,) and for zeD,, we have

— S (ko4 (8)) () 2|
<e. length (v.])( )) + Ce.length ($(J)) + .

Thus we have shown that the boundary function for g(“)PJ

exists a.e. on A; and is equal to j:w) (ks (V' (E)) [ Kp(a)

By Lemma 5.1, g® =1 a.e. on A;, so that we obtaln the
desired result. Q.E.D.

< €.

Tueorem 5.12. — Let R be a hyperbolic Riemann surface
for which (A), (B) and (C) hold. Let a€ R be fixed. Let

u* € Li(dy)
and suppose that
fA. h(b)u*(b)ky(a) dx(b) = 0

for each function h, meromorphic on R, such that |h|g®
is bounded on R and h(a) = 0. Then, there exists an f in
HY(R) such that f = u* ae. on A,.

Proof. — We put
2) = [y, u*(b)ky(z) dx(b) for zeR.

Then, f is an outer harmonic function on R. Let (V, ¢)
be any parametric disk contained in R ~ Z(a) and let J
be any closed rectifiable curve in V(1/4). Then, the Fubini
theorem and Lemma 5.11 show that

fw) f(¥'(8)) de = f <ﬁ(3)’£%’(l%ﬁ d&)u*(b)kb(a) dy(b)
= [ Py (biku(a) d(h) = 0.

By the Morera theorem, f is analytic on R ~ Z(a). Since f
i1s continuous on R, every point in Z(a) is a removable
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singularity and indeed f 1s analytic everywhere on R.
Clearly, |f| has a harmonic majorant, so that fe H'(R).
f = u* a.e.on A; by Corollary 3.4. This completes the proof.

6. Further properties of the lifting.

We again consider a hyperbolic Riemann surface R and
its universal covering Riemann surface (U, ¢), where U
18 the open umt disk and ¢ 1s a conformal mapping of U
onto R with ¢(0) = a,. We know that the Martin compac-
tification of U 1is the usual closed unit disk, the Martin
boundary is the usual circumference dU, and the harmonic
measure for the origin is exactly the normalized Lebesgue
measure on dU, which we shall denote by do(w) = z%dco.
Further T will denote the group of covering transformations
for ¢. Since both U and R are hyperbolic, the boundary
function § for ¢ 1is defined a.e. on dU with values in the
Martin compactification R* of R by [3; Satz 10.2
and Satz 14.4]. Put ¢(z) = exp (— G(ay, 9(3))) for ze U.
Then, ¢ is an inner lLa.m. on U, so that, by Lemma 5.1, 9
exists and 1s equal to 1 a.e. on dU. By usmg the notatlon
defined before Proposition 3.2, we set

2 ={wedU:weD(v) N 2(p) and ¢(w) = 1}.

Lemma 6.1. — 2 is a T-invariant Borel subset of dU with
6(2) = 1. Further, ¢ maps 2 into A.

. Proof. — The first half is obvious. So, let we 2. By
Proposition 3.2, we see that, for any ¢ > 0, v((1 — ¢, 1 4 ¢))
belongs to ¥%,(U). Suppose, on the contrary, that §(w) € R.
Then, there exist an open neighborhood W of §(w) in R
and a constant ¢ > 0 such that G(ay, a) > ¢ for -every
a € W. Again by Proposition 3.2, ¢=*(W) € 4,(U). It follows
that 1 — ¢ < ¢(z) = exp (— G(ay, ¢(z)) < e for any z
in the set ¢71((1 — e, 1 +¢)) N ¢}(W). As ¢ is arbitrary,
this gives a desired contradiction. Q.E.D.

In what follows, we regard é as defined not on 92(¢)
but on 2.
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Lemma 6.2. — Let f* be any real or complex continuous
function on A and put f= Rh[f*]c ¢. Then, for any w e 9,
f(w) exists and is equal to f* o $(w). In particular,

(13)  R[f*]e o =h[f*-¢]

on U, where the right-hand member of (13) is of course the
solution of the Dirichlet problem for U with the boundary
values f* o §.

Proof. — We put h=nh[f*] on R and =f* on A.
Then, h is continuous on R*. Let w € 2 and put b = §(w).
Since h 1s continuous, A~Y(U(f*(b); €)) 1is an open neighbor-
hood of b for any ¢ > 0. So, by Proposition 3.2,

¢ (R (U(f*(b); ¢))) (= Dy, say)

belongs to %,(U). This implies that f(D,) 1s contained in
U(f*(b); ). As ¢ is arbitrary, we see that f(w) exists and
1s equal to f*(b) = (f* o §)(w). Since f 1s bounded and
harmonic on U, Proposition 3.3. shows that f=hA[f* . ¢],
as was to be proved.

Lemma 6.3. — The formula (13) ts true of any bounded measu-
rable function f* on A.

Proof. — We suppose first that f* is a real function defined
everywhere on A. Suppose moreover that f* 1is lower semi-
continuous and let {f¥} be the set of real continuous func-
tions on A majorized by f*. Then, f* =supf¥. In view

3

of the vector lattice isomorphism given by Proposition 3.1,
we have Vh f¥]=n [sup f¥] = h[f*]. Next, we regard

f*o4% and fx $ as deﬁned everywhere on dU by conti-
nuing them to be zero on dU ~ 2. Then, they are bounded

measurable on dU and f*o ¢ =sup (f¥ - ). So, again
using Proposition 3.1 now for U, we have

=V ity

A
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By Lemma 6.2, we see A[fy o &]=h[f¥]o . It follows
from Proposition 2.6 that

Wt e e = (VD) o =V
= Vhift - 8] = hif* - 6]

The formula (13) is thus true of any lower semi-continuous f*
and also of any upper semi-continuous [*.

Suppose now that f* is just measurable. Then, there exist
an increasing sequence {gr} of bounded upper semi-conti-
nuous functions and an decreasing sequence {hy} of bounded
lower semi-continuous functions on A such that g¥ < f¥ < h¥
for all n and

lim [ g(b) dx(b) = [ f*(b) dy (b) =lim [ h¥(b)

n>oo n>»oo

It follows that {h[gy]:n=1,2, ...} isincreasing, {h[h}]:
n=1, 2, ...} 1s decreasmg, and h(g¥] < R[f*] < Rh[AY]
for all n. Moreover,

k(A (a0) — hlgx](a0) =f (hx(b) — gx(b)) dx (b) — 0.
So we have V h[g*] = A[f*] = /\ h[k*]. By Proposition 2.6,

V (hlgt1 o o) = hif*1 oo = A ([¥] o ¢) and consequently

V higr o 01 = hif*1 oo = Aniht - ¢
On the other hand, it is clear that
Vh 6] < R[f* o &] </\hh*ocf>]

Hence, we have h[f*] o ¢ = A[f* - §].

So far, we have assumed that f* is defined everywhere on A.
Since h[f*] does not change by any change of f* on a negli-
gible subset of A, we infer that f* o ¢ changes only on a
negligible subset of U by a mentioned change on f*. Hence
we conclude that the formula (13) is true of any class function
f* e L*(dy), as was to be proved. Q.E.D.
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- Cororrary 6.4. — If a measurable subset A of A is
negligible (resp. has positive measure), then $*(A) is negli-
gible (resp., has positive measure) in dU.

This has essentially been proved in the last paragraph of
the proof of Lemma 6.3. This shows us that f* o § 1s a well-
defined class function on dU for any f* e Ll(dy). We
finally show the following.

Prorosition 6.5. — If f* e L(dy), then f* o $ € L(do)
and (13) holds. If f* e LP(dy) with 1 < p < oo, then f*o §
belongs to 1P(ds) and the correspondence f* —f* o ¢ 1is
an isometric isomorphism of 1.7 (dx) onto LP(do)r, where
Lr(do)r denotes the set of T-invariant functions in Lf(dc).

Proof. — We may suppose that f* is real and positive.
We put f¥=inf{f* n}, n=1,2, .... By Lemma 6.3,
we have h[f¥] o9 =h[fF-¢],n=1, 2, .... Corollary 3.4
shows that f¥ o ¢ can be regarded as the boundary function
for the harmonic function &A[f)}]o ¢. Clearly, A[f*]c¢
is a majorant of h[f*] ¢ for each n. It follows that, if A
1s the boundary function for A[f*]o ¢, we have & e Li(do)
and f*o& < h ae. for each n. So, f*- & < h a.e. and
consequently f* o ¢ e L(do). Moreover we have

Wf*Yee =k [sup f21ee = (V) o0 = V(I o)
=V hifs o o) = h [sup (£ - &) = AIf* - 4],

as was to be proved.

Next we suppose f* e L?(dy) with 1 < p < . Then,
h[f*] belongs to A?(R) and so hA[f*]-¢ e h?(U). Since
f* o & 1is, by (13), the boundary function for h[f*]. ¢, it
belongs to L?(ds) by Theorem 3.5. Moreover, the same
theorem shows that

IF*ls = 1R[f*11, = IR[f*] o ol, = 1A[f* < &1, = If* © 4l

and therefore that the correspondence f* — f*o ¢ 1is an
1isometric map of L?(dy) onto L*(do)r.
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7. Invariant subspaces of Lr(dy).

Let R be a hyperbolic Riemann surface which satisfies
the conditions (A), (B) and (C). We know by Theorem 3.5

that the map kh — h gives an isometric linear injection of
Hr(R) into L*(dy) for each p with 1 < p < . By use
of this map, we can identify, for each p, H?(R) with a sub-
space of I”(dy), which we shall denote by Hf(dy). We
define

HP(dy)o = §u* e HA(dy) : [ u*(b) dx(b) = 0}.

We note that H*(dy) and H®(dy), are both subalgebras
of L*(dy). In this section, we are going to determine closed
(weakly*-closed, if p = ) subspaces of L*(dy) that are
invariant under multiplication by functions in H>(dy).
To do this, we first define the boundary values of multipli-
cative analytic functions. We say (cf. [5]) that a function Q:
«—> Q(.; «) of Hy(R; Z) into the space of all measurable
functions on A; modulo x-null functions is an m-function
of character 6 e II, if Q(.; «) = 0(«)0(B)*Q(.; B) a.e. for
any «, p in H;(R; Z). Two m-functions Q, and Q, are
called equivalent and denoted as Q, = Q, if they have the
same character 6 and there 1s an « € H,(R; Z) such that
Qy(.; &) = 0(xg)Qy(.; «) a.e. for every « € Hy(R; Z).

Now, we denote by MH?(R), 1 < p < o, the set of all
multiplicative analytic functions f on R such that |[f|?
has a harmonic majoranton R if p < o and |f| 1s bounded
on R if p= . Let f be a non-constant function in
MH?(R) with character 6. Take any single-valued branch of
f on the Green star region G'(R; a,) (cf. Section 5) and
denote it as f(z; 0), where 0 denotes the zero element of
H;(R; Z). For any o € H;(R; Z), we denote by f(z; «) the
single-valued branch of f on G’(R; @) which is obtained
by an analytic continuation of f(z; 0) along the path a.
We clearly have f(z; «) = 0(«)f(z; 0) for each « € H,(R; Z)
and ze G'(Rj;a,). By Lemma 5.5, f(z;0) has a radial limit
a.e. on G(R; a,). We put f(b; 0) =f(L; 0) if L€ A(a),
b= by, and f(L; 0) exists in the sense explained in Sec-
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tion 5. In view of Lemma 5.5 and Proposition 5.8, f(b;0)
is well-defined as a class function on A, and belongs to
LP(dy). For each « e Hy(R; Z), f(b; «) is defined similarly
as the radial himit a.e. of the branch f(z; «). We have of course
fb; «) = O(a)f(b; 0) a.e. for each « € Hy(R; Z), so that
« - f(.; «) is an m-function. It is clear that a different choice
of the imtial branch gives rise to an equivalent m-function.
Thus, each fe MHP(R) defines a set of mutually equivalent
m-functions, any one of them being denoted as f.

Further, we say that an m-function Q 1is an i-function
if |Q(b; )] =1 ae. on A; for each « € H;(R; Z). Now
we are in the position to prove our main result.

Taeorem 7.1, — Let 1 < p < . Let M be a closed

(weakly* closed, if p= o) subspace of LP(dy) such that
H*(dy) ! < IN.

a) M is doubly invariant, i.e., H*(dy), M is dense (weakly*
dense, if p= o) in M, if and only if there exists a meas-
urable subset X of A, such that I = Cgl’(dy), where
Cy denotes the characteristic function of X. The set X s
determined by IMM wuniquely up to a null set.

b) M s simply invariant, 1.e., H*(dy)eM is not dense
(weakly* dense, if p= ) in M, if and only if there exists
an i-function Q of some character 0 € Il such that

(14) M= {f* e Lo(dy): f*/Q = h for some h e MHP(R)}.

The i-function Q s determined uniquely by IM up to equi-
valence.

Proof. — First we consider the case 1 < p < . Let I
be a closed subspace of L?(dy) invariant under the multipli-
cation of functions in H®(dy). Let {M}, be the smallest
closed subspace of I1P7(ds) that contains all f* ¢ with
f*eM and is invariant under the multiplication by the
coordinate function ¢ on dU. Then, {IN}, is either doubly
invariant (i.e., €°{M}, = {M},) or simply invariant (ie.,
°{M}, ¢ {M},). We shall investigate these two cases
separately.
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(i) Suppose first that {M}; is doubly’ invariant. Then,
by [13], {IM}, = CsL’(ds), where .S’ 1is a measurable
subset of daU and Cg denotes its characteristic function.
Since - {IR},, is invariant under T,.we may assume that. §
is invariant under T, i.e., (S’),-— S’ for,any tgT. So,
Cs € L?(do)r. By Pr0p051t10n 6.5, there exists an element Q
in L*(dy) such that Qo ¢ = Cs a.e. on dU. This shows
that Q takes either 0 or 1 up to a null set. Namely, Q
determines a measurable subset £ of A, such that Q = Cg
We shall show that IR = CyL?(dy). pertow

If f* egﬁ then f"‘ o€ {sﬁ},, S0 that ‘

(Cef*) - @*(Cw )(f*w)—Cs(f"‘w) f*o 8.
Thus, Cef* =f* ae. and so f"‘ngL”(dx) _Hence, .
v M < Cgle(dy).
In order to show the reverse inclusion, we take a'ny' s*

in Lf(dy)  with p? + p* =1. Then, s*o¢§ e L’ (do).
Now suppose that s* is orthogonal to I, 1e.,

Ja, s () *(5) dx(b) = 0
for every f* e M. Let g be the function defined by (2) with
a =a, and define B, e H*(R) by |B;] = g8(6(g)~). Let
u be any meromorphic function on R such that glu| is
bounded on- R. Then, Byu € H*(R) and therefore

ﬁoﬁf*os,é))?
for any f* e IN. So_we have |
Ja, Bo(B)A(B)f*(B)s*(b) dx(b) = 0.

By Theorem 5.12, there exists an analytic function M(f*)
in HY(R) such that . M(f*) = B,f*s* a.e. on A,. By consi-
dering the case u =1, we have M(f*)(a,) = 0. Propo-
sition 6.5 shows us that

h[(Bof*s*) o $] = h[Bof*s*] o o = M(f*) o ¢
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So (Byf*s*) o ¢ is the boundary function for
M(f*) - ¢ € HY(U).

For any analytic function ¢ on U, continuous up to the
boundary ®U, we thus have

Jow #(€°)(Bof*s*) o 8)(e®) do(w) = ¢(0)(M(f*) = $)(0)
= ¢(0)(M(f*))(a) = 0.

Taking L? limits in o(f* o ), we see that

Jio (Bes*) o §)fy ds =0 for any f, € (M},

Since {M}, = CsL?(ds), (Bys*) o ¢ must vanish a.e. on
and consequently Bys* must vanish a.e. on X. Since B,
can vanish only on a set of measure 0 in view of Lemma 5.1,
s* must vanish a.e. on Z. This shows that s*_1 CyL*(dy)
and therefore CyLf(dy) < M, as was to be proved.

(1) Now suppose that {IR}, 1s simply invariant. Then,
by [14], there exists a function ¢ e L*(ds) with |[q] =1
a.e. on dU such that {M}, = qH(ds). Since {M}, is
invariant under T, there exists a character © — ¢(t) of
the group T such that ¢ot = ¢(r)g a.e. on dU.

For any €T, we draw a curve I' joining the origin 0
with 7(0) within U. Then ¢(I') is a 1-cycle starting from
ay. Clearly any two such curves define homologous cycles
of R. Therefore, ¢(I') determines an element « in the
group H;(R; Z). The correspondence © — « preserves the
group operations so that it gives a homomorphism of T
onto H;(R; Z), which we call the canonical homomor-
phism of T onto H;(R; Z). Thus, the above character
v — ¢(tr) of T induces a character 6 of H;(R;Z) such that
0(x) = ¢(v), where © — « 1s the canonical homomorphism
of T onto H;(R; Z).

Now let N e MH*(R) be such that |N| = §(8) (= u, say)
and let N(z; «) for ze G'(R; a,) and « e H;(R; Z) be
defined as in the second paragraph of this section. Furthermore,
let N; be the analytic function on U such that

N} =N v ¢
15
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and N;(0) = N(ap; 0). Then, N,or=c(s)N; for any
veT. Let f*eI. Then there exists a function F e H?(U)
such that f* o ¢ = gF. Multiplying N; on both sides, we
get Nl-q_(f* o ) = N,F, where N,F is a T-invariant func-
tion in H!(U). So we can find an A in H!(R) with

h oo = NF.
By (13), we have

hh o ¢) =h[h]o ¢ =hoo = N,F = h[N,F].
So, hotp =N, F‘ a.e. on dU and therefore
(RIf*) o & = (NE)/(f* = 6) = Nyg

a.e. on dU. This shows that h/f * 1is independent of the choice
of f* in M.

Since u = 3(0) 1s outer, logu is an outer function in
HP(R) so that # exists a.e. on A, and log u = h [log #].
Thus, we have

h [log |Ny]] = log |Ny| = log (u o o)
= (log u) o ¢ = h [log ] o o = & [log (i « $)].

Hence, |N;| =@ 0¢ a.e. on 2U. Now, by Proposition 2.4,
(15) logu =limlim [(— m) V (n A (log u))].

Put u,,=(—m)V (n A (logu)) for m, n=1, 2, ...
Proposition 5.8 says that u,, has a radial limit a.e. on
G(R; ay) and uy (L) = tp.(b1) ae. on G(R; q). It
follows from this and (15) that log u has a radial limit a.e.
and log u(L) = log @i(bL) a.e., i.e., u has a radial limit a.e.
and u(L) = d(by) a.e.

On the other hand, consider any branch N(z; «) of N
on the Green star region G'(R; q,). Then, Lemma 5.5 states
that N(z; «) has a radial limit a.e. on G(R; a,). Since
IN(z; «)] = u(z) on R, we conclude that |N(L; «)| = @(by)
a.e. We define N(b; o) = N(L; «) with b= b;, whenever
N(L; «), L € A(ay), exists. Finally we put

Q(bs «) = f*(b)N(b; «)/h(b)
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if the right-hand side is defined. For each « e H;(R; Z),
Q(b; «) is well-defined up to a null set and .

1Q(B; ) = IF*(B)/AB)IN(b; a)| = |£*(b)h(b)la(b) = 1
a.e. So Q(b; «) 1s an i-function. Thus, for each f* eI,
we have [*(b)/Q(b; «) —iz /N(b oc a.e. on A, for each
« € H;(R; Z). Since /N oo = |N;F|/|Ny| = |F|,
we see that A/N belongs to MH”(R). Hence,

f* e H(dy; Q),

where Hr(dy; Q) -denotes the right-hand side of (14). This
shows that M 1is included in Hr(dy; Q).:

Next we shall show the reverse inclusion. Let s* € L' (dy)
be orthogonal to M. Since {M}, = qH?(ds), we have, as
in (1),

Jio aB((Bys*) o $) do = 0 fot any F e Hr(U).
So, q((Bos*) o ) € H(ds) and [, q(Bes*) o §) do = 0.

Let ¢*e H(dy; Q) and Me MH?(R) be such that

*(b)/Q(b; o) = M(b; ) a.e. on A, for each « e Hy(R; Z).
We use the representation Q(b; o) = f*(B)N(b; a)/h(b)
defined above. So we have ¢*(b) = f*(b)N(b; «)M(b; «)/h(b),
where N(z; «)M(z; «) is independent of «. Namely,

' N(z; «)M(z; a)

defines a single-valued analytic function K(z) in H?(R).
Let M; be the analytic function on U such that

IMy] = [M] o ¢ and M;(0) = M(ay; 0).
It follows that Ko = M;N; and therefore
4 (% o 8)((Bos*) o §) = Mug((Bys*)  4) € Hi(do).
So,  Alo*Bus*]e o = hl(s*Bs®) 0 8] = MMug((Bys*) - &)
the last member being in H?(U) and vanishing at the origin 0.
Hence, h[o*Bys*] belongs to Hi(R) and vanishes at a,.

We define ¢ = h[¢*Bys*], v+ = exp ((log |¢]) A 0) and
y_ = exp (— ((log|¢]) V 0)), where ¢_ 1is an outer l.a.m.
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by Proposition 2:7. Further,'we: define k e H*(R) by
[k| = 8(6(g))8(0(g)™*). Then, ¢k/B, is. meromorphic on R,
vanishes at a, and satlsﬁes '

glek/Bol =03(6(g))..
Thus, g|lvk/B,| has a harmonic majorant on R. By Theo-

rem 5.3, we have

. (B(BYK(B)[Bo(b)) dx(B) = (k[By)(ao
Since $(b) = ¢*(b)By(b)s*(h) a.e. on A,, we get
(16) S K(Ble*()s*(B). du(b) = 0

for any ¢* € H?(dy; Q) and any s*1I.

Since k 1is outer, it is B exterior. To show this, we put
k,=(—loglkl]) An for n=1,2, ... Then, each k, is
outer, exp (k,) 1is- bounded on R and k, - — log|k|
pointwise on R. "We have

|| exp (k) = exp (— (— log [k]) + k) < 1

and |k| exp (k,) > 1 pointwise on R. We define ¢, in
H*(R) by the condition |t| = 8(0 (exp (k,))) exp (k, )
Then, {kt,: n=14, 2, ...} 1is a norm-bounded sequence in
H*(R), so that it has a B convergent subsequence {kt,:
]=1,2,...}. Let te H*(R) be the limit of this subsequence.
We t_hus have

|t| = ljim |kt,p] = Lim 8(8 (exp (kup)) )| K| exp (Fugp)
>o0 oo
= ljim-8(6 (exp (Fagp))™)-

By the condition (B), ¢ is B .exterior and consequently k
is B exterior.

Thus, there exists a net {#} in H<*(R) such that &k
converge to 1 with respect to the B topology. Theorem 3.6
shows that #k converge to 1 with respect to the weak*
topology o(L*(dy), L*(dy)).- Since HP (dy;:Q) is invariant,
(16) implies

[, BORBIA(B)sH(B) dy(b) = O



INVARIANT SUBSPAGES -ON @PEN :RIEMANN SURFACES 281

for every . A: By taking limit in. A, ‘we see finally that
[, ¢*(b)s*(b) dx(b) = 0.
As s* is arbitrary, we have ¢*'e 3. Hence,

Hr(dy; Q) <M
as desired.

(i) We shall show that CzL’(dy) is doubly. invariant for
any = ¢ A, and that HP{dy; Q) is simply invariant for any
i-function Q

We first consider the case MM = CyLA(dy). We put

u(z) = exp (— Glay, 2))

and define B, e H*(R) by |B,| = ud(0(u)~*). Then,
By(as) = 0
so that B, e H~(dy),. We know that @(b) =1 ae. on A,.
Trivially, d(sgn B;)® =M or, equivalently,
(t(sgn B,))1I = M.
Since M is invariant, we have
S = (a(sgn B,)2B,M = B,

where ¢ = §(0(u)™!). As we  shall show below, ¢ 1is
dense in M and therefore B,IM is dense in M, which implies
that M is doubly invariant.

In order to show that ¢ is dense ‘IR, we note that
— log ¢ is a positive outer harmonic function on- R. Putting

v, = (—loge¢) An for n=1,2, ..., we see as before that
v, are outer, exp ¢, as well as exp (— ¢,) are bounded on R,
v exp(v,) <1, and ¢, converge increasingly to — loge

pointwise on - R. By Propositions 3.1 and 3.3, ¢, converge
increasingly to —log¢ in Ll(dy). So some subsequence
{9 7T=1, 2, ...} of {0,}. converges increasingly to
—log ¢ a.e. on A; .and .therefore exp(— ¢,;) converge
decreasmgly to ¢ ae. on A;. Now let f*eIN. Then,

f*0.exp (6,¢5) € 6IM.
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Since ¢.exp (¢,;) < 1 a.e.,, we have
|f*6.exp (Gup)l < If*

a.e. and f*J.exp (¢,;) converge a.e. to f* on A,. By
Lebesgue’s dominated converge theorem, we |see that
f*G.exp (6,;) converge to f* with respect to the weak
topology o(L*(dy), L#(dy)). Thus, ¢IM is weakly dense in

Since ¢IN 1is a convex subset of Lr(dy), its weak
closure is exactly equal to its norm-closure. Hence ¢ is
dense in 3R, as was to be proved.

Next we consider the case IR = HP(dy; Q). We take any
f* in the closure of H=(dy),JR, i.e., there exists a sequence
{u,: uy(ap) =0, n=1,2, ...} in H*(R) and a sequence
{fr:n=1,2, ...} in 9}3 such that i, fx converge to f*
i L*(dy). Let h and h, n=1, 2, ..., be in MH?(R)
such that

f*(®)/Q(b; «) = h(b; «)  and  [(B)/Q(b; «) = hy(b; a)

a.e.on A, foreach « e Hy(R;Z). We also take N € MH*(R)
in such a way that |N| = 3(6), where 0 denotes the charac-
ter of Q. Then, N(b; aJh(b; «) = N(b; «)f*(b)/Q(b; «) is
the L7 limit of the sequence

N(b; «)ii(b)f#(b)/Q(bs «) = Ba(b)N(b; a)hy(b; a).

It follows easﬂy that the sequence of single-valued analytic
functions u,(z)N(z; «)h,(z; «) on R converges to

N(z; a)h(z; )

uniformly on compact subsets of R. Since wu,(ay) =0 for
each n, we have N(ay; «)h(ay; «) = 0 and therefore

h{ao; @) = 0.
On the other hand, let N’ eMH”(R) be such that
IN'| = 3(6).

Then, the function N'(b; «)Q(b; «) is independent of « and
so determines a function [’ e L*(dy). Since :

f/(8)]Q(b; &) = N'(b; «),
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we have ' € H?(dy; Q) for every 1 < p < o and in parti-
cular f e M. Since N'(gy; «) # 0, the above observation
shows that f’ is not in the closure of H>(dy)J%. Hence, M
is simply invariant.

The proof of the theorem in the case of 1 < p < o can
now be obtained easily by comblnmg (1), (1) and (i1). The
case p = o can be shown in the same way as in the case
1 < p < © by using the weak* topology o(L>(dy), L!(dy))
in place of the L? norm topology. The statements concerning
the uniqueness of £ and Q can be shown easily. This comple-
tes the proof of Theorem 7.1.

Finally, we deduce Neville’s main resultin [8] from the pre-
ceding theorem.

Cororrary 7.2 (Neville [8; Theorem 7.1.1]). — Let R
be a hyperbolic Riemann surface for which (A), (B) and (C) hold.
Let 1 < p < o andlet M be a closed (B closed, if p = )
subspace of HP(R). Then, M is an H*(R)-submodule of
H?(R) if and only if it is quasi-principal, i.e., there exists a
bounded inner lam. 1 such that, for 1 < p < o,

= {f € H/(R): (|f|/1)? admits a harmonic majorant}
and, for p = o,
= {f e H*(R) : |f|/1 is bounded}.

Proof. — Let M be a non-trivial closed (B closed, if p = )
H>(R)-submodule of HP(R), 1 < p < . Put

= {f:feM},

which is the set of the boundary functions of the elements in 9.
It follows from Theorems 3.5 and 3.6 that M, is a closed
(weakly* closed, if p = o) H=(dy)-submodule of H?(dy).
Every nonzero function in MM cannot vanish identically
on any subset of A; of positive measure. So, I, cannot
be doubly invariant in view of Theorem 7.1 a). M is thus
simply invariant so that there exists an i-function Q of some

character 0 with Iy = H(dy; Q). If feM, then
f e Hedy; Q
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and so there exists an h e MH?(R) such that

{()/Q(b; «) = h(b; «)

ae. on A, for any «eHy(R; Z). Namely, f(b)/h(b; «)
1s independent of the choice of f in M. Since f(2)/h(z; «)
is a multiplicative meromorphic function of bounded charac-
teristic on R whose boundary values are independent of f,

we see that the function f (z)/h(z; «) itself is also independent
of feM. We put q(z; a) = f(2)/h(z; «) so that

4(b; ) = Q(b; «)

a.e.on A, for any « € H;(R; Z). Thus a function fe H(R)
belongs to M if and only if f(z)/g(z; «) 1s in MHP(R).
On the other hand, Proposition 2.7 implies that

pi(log|ff) <0

for any fe M. Since I(R) is order complete, we see that
Vi{pt(og|fl): feM} (= w, say) exists in I(R). If we
put I = exp u;, then I is aninner lL.a.m.on R and (|f]/I)
admits -a harmonic majorant on R (|f|/I is bounded on R,
if p= o) for any feI. Let Je MH*(R) be such that
|[J] =1 on R. We have shown that f(z)/J(z; «) € MHP(R)
for any fe k.

From these observation follows that ¢(z; «)/J(z; «) belongs
to MH*(R). In fact, q(z; «)/J(z; «) is evidently a multi-
plicative meromorphic function of bounded characteristic.
Suppose that this has a pole at a point, a’, in R. We then
take any nonzero feIN, so that f(z)/q(z; «) e MH?(R).
We suppose that f/q has a zero of order ¢’ > 1 at the point
a'. Let B’ be a meromorphic function on R such that
|B’| = exp (¢'G,.).3(0 (exp (— ¢'G,))). Then, fB’ is a mero-
morphic function of bounded characteristic on R such that
we have f(z)B'(z)/q(z; «) € MH?(R) and fB’ e L*(dy). There-
fore, f'ﬁ' also belongs to My, i.e., the boundary function
of an analytic function in HP(R). Since fB’ 1s of bounded
characteristic, it is determined by its boundary values, so
that fB’ belongs to HP(R), too. Hence, fB’ € I and there-
fore f(z)B’(z)/J(z; «) belongs to MH?(R). But "

f(2)B'(2)/J(z; «) = (f(2)B'(2)/q(z; «))(q(z5 «)[I(z; «))
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should have a pol¢-at @’ in view of our-construction of B'.
This contradiction shows that q(z; «)[J(z; «) must be analy-
tic. Since J 1s analytlc, g ~“187also. analytlc Since [§] =1
a.e. on’ Ay |g| is an inner la.m, and |q|/I < 1. Since
(Ifl/1ql)> admits a harmonic ma]orant (if1/lql . is bounded,
if p= o) and.so. p;(log|f]) < log|g] for any feM,
we see that logI < Iog lgl, or equivalently, I/|g] < 1. So,

lql =1 and therefore ¢ .and - 3 are - equxvalent Hence
the subspace I has the desired form. The converse statement.
1s obvious. Q.E.D.
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