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ON ABSOLUTE STABILITY
by Roger C. McCANN

It is well known that absolute stability of a compact subset
M of a locally compact metric space can be characterized by
the presence of a fundamental system of absolutely stable
neighbourhoods, and also by the existence of a continuous
Liapunov function V defined on some neighbourhood of
M = V-1(0), [1]. Here we characterize the absolute stability
of M in terms of the cardinality of the set of positively
invariant neighbourhoods of M.

Throughout this paper R and R* will denote the reals and
non-negative reals respectively. A rational number r is
called dyadic if and only if there are integers n and j such
that n> 0,1 < < 2" and r=.2—],-l-

A djrnamical system on a topological space X is a mapping
m of X X R into X satisfying the following axioms (where
znt = w(x, t)): ‘

(1) an0 =z for ze X.

(2) (zwt)ns = zn(t + s) for ze€ X and ¢, s e R.

(3) = 1s continuous in the product topology.

If Mc X and N < R, then MzxN will denote the set
{znt: e M, te N}. A subset M of X is called positively
invariant if and only if MrR+ = M. A point z e X is called
a critical point if and only if znR = {x}. A subset M of X
i1s called stable if and only if every neighbourhood of M
contains a positively invariant neighbourhood of M.

- A Liapunov funetion for a positively invariant compact
subset M of X 1isa continuous mapping V of a neighbour-
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hood W of M into R+ such that V-1(0) =M and
V(znt) < V(z) for ze W and te R+

Absolute stability is defined in terms of a prolongation and
is characterized by the following theorem, [1].

TaeoreM. — Let M be a compact subset of a locally compact
metric space. Then the following are equivalent :

(i) There is a Liapunoy function V for M.

(11) M possesses a fundamental system of absolutely stable
neighbourhoods.

(i) M s absolutely stable.

Lemma 1. — Let A = R be uncountable. Then there exists an
z € A such that every neighbourhood of x contains uncountably
many elements of A.

Proof. — [4, 6,23, I11].

The following is a consequence of Lemma 1.

Lemma 2. — Let A = R be uncountable. Then there exists
an x € A such that the sets {ye A:y <z} and {yeA:
& < y} are uncountable.

Lemma 3. — Let S and T be relatively compact sets of a
locally compact connected metric space X and D a family of
open sets of X such that

(i) for every Ue D, S < U< U < T,

(i) if U, Ve9D, then either U<V or V< U.
Then there is a W € D such that the sets {UeD: U =« W}
and {Ue®D: W < U} are uncountable.

Proof. — Since X is connected, the boundary 23U of
Ue®D is nonempty. If Ue®dD, then dU 1is compact since T
is relatively compact. Let d be a metric on X and define f:
D—R+ by f(U)=4dS, dU). If U Ved with UcV,
then f(U) < f(V). Let A be the image of 9 under f.

Then f is a one-to-one order preserving mapping of D
onto A. A is uncountable since 9 is such. By Lemma 2
there is an ze€ A such that the sets {yeA: z < y} and
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{yeA: y <z} are uncountable. Set W =f3(z). It is
easily verified that

{(UeD: Uc W} = {fy): y < z},
{(Ued: We U= {f*y): = < y},

and that both sets are uncountable.

TaeoreM 4. — A nontrivial compact subset M of a locally
compact connected metric space is absolutely stable if and only
if M possesses a fundamental system F of open positively
invariant neighbourhoods such that

(i) for each Ue &, the set {Ve F: V = U} is uncoun-
table,

(ii) if U, Ve, theneither U< V or V = U.

Proof. — Since X 1is connected, no nontrivial subset of X
is both open and closed. If M 1is absolutely stable, then
there is a continuous Liapunov function V for M. Set
F = {V([0, r)]: r in the range of V}. It is easily verified
that F possesses the desired properties. Now assume that
F is a fundamental system of open positively invariant
neighbourhoods of M with properties (1) and (i1). For each
dyadic rational we will construct a set U(r) € F such that
U(r) = U(S) whenever r < s. We first obtain from F a

fundamental system of neighbourhoods U %) n a non-

negative integer} such that U(%) S U(—;;) and the set

gA €F: U(%) cAc U<—21—n>z is uncountable. This 1s
done by induction in the following manner. Let N; be a
countable fundamental system of neighbourhoods of M. Let
U(1) = N, be an element of F which is relatively compact.
Suppose that U<§1;> has been defined. By Lemma 3 and
property (i1), thereisa B e %W €eF:We<U (~1—>g such that

‘ . A
B = N,; andboth {We&J:V < B} and

Wed: BV e U(-})é
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2m 1
to one with the desired properties. For example, we chose

are uncountable. Set U = B. Now extend this system

U %) to be any element C of F such that the sets

%Weﬂ U<§> Ve cg and (Wed:Cc Ve UL}
are uncountable. ThlS is possible by the properties of the sets
U<—21—n) ~and Lemma 3. Now 'define V: U(1) > Rt by
V(z) = inf {r: z € U(r)}. Evidently. V(z) =0 if and only if
zeM. If zeU(r) and te R*, then znte U(r) since U(r)
is positively invariant. Therefore,

V(z) =inf {r: 2z € U(r)} > inf {r: zxt e U(r)} = V(z=xt).
The continuity of V is proved as in the proof of Urysohm’s
lemma. Thus we have constructed a Liapunov function for M.
M is absolutely stable.

Ezample. — Let X =[—1,1], M = {0}, and = be the
dynamical system indicated by the following diagram where
the points + 2" n a non-negative integer, are critical points.

A .
2 4 ¢ 2

-

0 .

Clearly M 1s stable. The only open positively invariant
neighbourhoods of M are X andintervals of the form
(— 2™, 27") where m and n are non-integers. There are
only countably many such neighbourhoods. Hence, M 1s
not absolutely stable.

Prorosition 5. — Let X' be the plane and p an isolated
critical point. If each neighbourhood of p contains uncountably
many periodic trajectories (cycles), then p s absolutely stable.

Proof. — Let W be a disc neighbourhood of p which con-
tains no critical points other than p. A cycle C is a Jordan
curve and, hence, decomposes the plane into two components,
one bounded (denoted by int C) and the other unbounded.
If C is a cycle, then int C contains a critical point, [3, VII,
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4.8]. Hence, if C is a cycle in W, then C is the boundary
of a neighbourhood (necessarily invariant) of p. It can be
shown (the proof is almost identical with that of Proposition
1.10 of [6]) that if C; and C, are distinct cycles in W,
then either intC; < intC, or int C, < int C;. Theorem 4
may now be applied to obtain the desired result.

Another characterization of absolute stability of compact
sets 1s found in [5]. Non-compact absolutely stable sets are
characterized in [3].
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