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THE BRAUER–MANIN OBSTRUCTION FOR
CONSTANT CURVES OVER GLOBAL FUNCTION

FIELDS

by Creutz BRENDAN & Voloch JOSÉ FELIPE (*)

Abstract. — Let F be a finite field and C, D smooth, geometrically irreducible,
proper curves over F and set K = F(D). We consider Brauer–Manin and abelian
descent obstructions to the existence of rational points and to weak approxima-
tion for the curve C ⊗F K. In particular, we show that Brauer–Manin is the only
obstruction to weak approximation and the Hasse principle in the case that the
genus of D is less than that of C. We also show that we can identify the points
corresponding to non-constant maps D → C using Frobenius descents.
Résumé. — Soit F un corps fini et C, D courbes lisses, géométriquement ir-

réductibles, propres sur F et soit K = F(D). Nous considérons les obstructions
de Brauer–Manin et de descente abélienne à l’existence de points rationnels et
d’approximation faible pour la courbe C ⊗F K. En particulier, nous montrons que
l’obstruction de Brauer–Manin est la seule obstruction à l’approximation faible et
le principe de Hasse dans le cas où le genre de D est inférieur à celui de C. On
montre aussi que l’on peut identifier les points correspondant aux morphismes non
constants D → C en utilisant la descente de Frobenius.

1. Introduction

Let C be a smooth, geometrically irreducible, proper curve of genus > 1
over a global field K. The question of whether the Brauer–Manin obstruc-
tion is the only obstruction to the Hasse principle or weak approxima-
tion for C was raised around 1999 by Scharaschkin and Skorobogatov. Not
much progress has been made in the number field case, but a substantial
amount of numerical evidence has been obtained, notably [3]. By contrast,
the question in the function field case has been settled affirmatively for
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44 Creutz BRENDAN & Voloch JOSÉ FELIPE

“most” curves [16], namely those curves whose Jacobian does not have
an isotrivial factor and satisfy a certain condition on the p-power torsion
points, where p is the characteristic of K. The latter condition has largely
been removed due to recent work of Rössler [18]. However, these results do
not address the case of isotrivial or even constant curves and the purpose
of this paper is to consider this case.
To put our results in context we begin with a summary of the general

situation, assuming that C is embedded in its Jacobian J and that J has
finite Tate–Shafarevich group. If SC is the set of primes of good reduction
for (some model of) C, then there is a commutative diagram

C(K) //

��

J(K)

��∏
v∈SC

C(Fv) // ∏
v∈SC

J(Fv) ,

where Fv denotes the residue field at the prime v of K. Scharaschkin [19]
considered the set CMW-Sieve, which is the intersection of the topological
closures of the images of J(K) and

∏
v∈SC

C(Fv) inside
∏
v∈SC

J(Fv). He
showed that if CMW-Sieve is empty, then the set C(AK)Br of adelic points
orthogonal to the Brauer group of C is too, and used this to give examples of
curves of genus at least 2 which are counterexamples to the Hasse principle
explained by the Brauer–Manin obstruction. Poonen conjectured, in the
number field case, that every counterexample to the Hasse principle could
be explained this way [14]. Around the same time Stoll conjectured, in
the number field case, that the set C(AK)Br

• of adelic points, modified at
archimedean primes, orthogonal to the Brauer group of C is equal to the
(topological closure of the) image of C(K) [20]. Recall that C(K) can be
infinite when C is an isotrivial curve over a global function field, even if the
genus of C is greater than 1. For an example showing that it is in general
necessary to take the topological closure see [16, Remark 1.3]. One may also
ask if CMW-Sieve is equal to the topological closure of the image of C(K)
in
∏
v∈SC

J(Fv). There are logical dependencies between these statements
as follows.

(1.1)

C(K) = C(AK)Br
• in C(AK) +3 C(K) = ∅ ⇒ C(AK)Br = ∅

C(K) = CMW-Sieve in
∏
v∈SC

C(Fv) +3 C(K) = ∅ ⇒ CMW-Sieve = ∅

KS
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BRAUER–MANIN FOR CONSTANCT CURVES 45

All four statements are known to hold when J(K) is finite by a result
of Scharaschkin [19]. The statement in the upper-left is the conclusion of
the theorem of Poonen–Voloch mentioned above; the theorem says nothing
about the statement in the lower-right.

1.1. Results for constant curves over global function fields

Let F be a finite field and let C,D be smooth, geometrically irreducible,
proper curves over F. Set K = F(D). We consider Brauer–Manin and finite
descent obstructions to the existence of K-rational points on the curve
C ⊗FK, which we also denote by C. We remark that C may be embedded
in its Jacobian J since it has a 0-cycle of degree 1 defined over F by the
Hasse–Weil bounds and that the Tate–Shafarevich group of J is finite by
results of Tate and Milne [11, Theorem 3].
Let C(AK,F) :=

∏
v C(Fv) ⊂ C(AK) be the set of reduced adelic points

on C (see Section 2.2 for details). Since C can be defined over F we have
a model with everywhere good reduction and so CMW-Sieve ⊂ C(AK,F) ⊂
C(AK).

Theorem 1.1. — C(AK)Br = C(K) ∪ CMW-Sieve.

In Corollary 4.3 we will deduce from Theorem 1.1 that the statements
on the left in (1.1) are equivalent in the case of constant curves over global
function fields (and similarly for those on the right, though this was already
known [5, Proposition 2.2]).

Our proof of Theorem 1.1 utilizes the connection between the Brauer–
Manin and finite abelian descent obstructions developed in [20] building on
work of Colliot-Thélène and Sansuc, Harari and Skorobogatov. In particu-
lar, C(AK)Br is the set of adelic points surviving all torsors C ′ → C arising
as pullbacks of isogenies J → J (See Proposition 2.2). So Theorem 1.1 is
a consequence of the following two theorems proven in Sections 3 and 4,
respectively.

Theorem 1.2. — Let C(AK)F∞ denote the set of adelic points surviv-
ing the n-th iterate of the F-Frobenius isogeny F : J → J for all n > 1.
Then

C(AK)F
∞

= C(K) ∪ C(AK,F).

Theorem 1.3. — Let C(AK)ét-isog denote the set of adelic points sur-
viving all torsors arising as pullbacks of étale isogenies J ′ → J . Then

C(AK)ét-isog ∩ C(AK,F) = CMW-Sieve.
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46 Creutz BRENDAN & Voloch JOSÉ FELIPE

This result remains true if C(AK)ét-isog is replaced by the a priori smaller
set of adelic points surviving all torsors under abelian group schemes over
K (see Theorem 4.2). Propositions 4.4 and 4.5 show that in general non-
étale torsors are required to cut out the set of rational points (even if one
includes non-abelian group schemes).
In Corollary 5.3 we give a characterization of the elements of CMW-Sieve

in terms of maps between the sets D(F) → C(F) which induce homomor-
phisms of their Jacobians. We are thus lead to ask if all such maps arise
from a global point.

Question 1.4. — Suppose ψ : D(F) → C(F) is a Galois-equivariant
map of sets which, when extended linearly to divisors, sends principal di-
visors to principal divisors. Is there a morphism of curves φ : D → C such
that ψ is given by composing φ with a limit of Frobenius maps?

An affirmative answer to this question implies that all four statements
in (1.1) hold in the case of constant curves over global function fields. In
Section 5 we show that the answer to this question is affirmative when the
genus of D is less than the genus of C.

Theorem 1.5. — If the genus of D is less than the genus of C, then
C(AK)Br = C(K) = C(F).

2. Notation and preliminaries

As in the introduction C will denote a constant curve over the global
function field K = F(D) and J is the Jacobian of C. The places of K are
in bijection with the set D1 of closed points of D. Given a closed point
v ∈ D1 we use Kv, Ov and Fv to denote the corresponding completion,
ring of integers and residue field, respectively. Let us fix once and for all an
algebraic closure F of F and for each place v, an embedding F ⊂ Fv ⊂ F.
The embedding determines a geometric point v ∈ D(F) in the support of
v. Let GF = Gal(F/F) be the absolute Galois group of F.
Throughout the paper X denotes a proper geometrically integral variety

over F and XK := X ⊗F K. Unless otherwise specified, all cohomology is
flat cohomology.

2.1. Adelic points

The adele ring of K is the K-algebra AK =
∏
v∈D1(Kv : Ov), where

the restricted product runs over the closed points of D. For any place v
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of K, the inclusions F ⊂ Fv ⊂ Ov ⊂ Kv endow Ov,Kv and AK with the
structure of F-algebra. Consequently the sets

X(Kv) := MorSpec(F)(Spec(Kv), X) ,
X(AK) := MorSpec(F)(Spec(AK), X)

are well defined. The universal property of fibered products gives canoni-
cal bijections of these sets with XK(Kv) and XK(AK), respectively. Since
X is proper we may identify X(AK) = XK(AK) =

∏
v∈D1 X(Kv) =∏

v∈D1 X(Ov).

2.2. Reduced adelic points

The reduced adele ring of K is the F-algebra AK,F =
∏
v∈D1 Fv. This is

an F-subalgebra of AK . The set X(AK,F) = MorSpec(F)(Spec(AK,F), X) of
reduced adelic points on X is a closed subset of X(AK) which can be iden-
tified with

∏
v∈D1 X(Fv), where the latter is endowed with the product of

the discrete topologies. This agrees with the subspace topology determined
by the inclusion X(AK,F) ⊂ X(AK). The quotient of Ov by its maximal
ideal induces the reduction map rv : X(Kv) = X(Ov) → X(Fv). These
give rise to a continuous projection r : X(AK)→ X(AK,F) sending (xv) to
(rv(xv)).

Lemma 2.1. — A reduced adelic point (xv) ∈ X(AK,F) determines a
unique map of GF-sets ψ : D(F)→ X(F) with the property that ψ(v) = xv.
This induces a bijection X(AK,F)↔ MapGF

(D(F), X(F)).

Proof. — Since D(F) is the union, as v ranges over the closed points
of D, of the GF-orbits of the points v, it is clear that there is a unique
GF-equivariant map with the stated property. Conversely, given a map of
GF-sets ψ : D(F) → X(F), we define an adelic point (xv) ∈ X(AK,F)
by xv = ψ(v) ∈ X(F). Galois equivariance of the map shows that xv ∈
X(Fv). �

2.3. Rational points

The universal property of fibered products and the valuative criterion for
properness give identifications XK(K) = X(K) = MorF(Spec(K), X) =
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48 Creutz BRENDAN & Voloch JOSÉ FELIPE

MorF(D,X). Together with previous lemma we have a commutative dia-
gram

X(K) r // X(AK,F)

MorF(D,X) // MapGF
(D(F), X(F))

where the bottom map is the obvious one taking a morphism of varieties
to the map it induces on geometric points. Since a morphism of varieties
over a field with geometrically reduce source is determined by what it does
to geometric points [9, Exercise 5.16], the horizontal maps are injective.

2.4. Brauer–Manin and abelian descent obstructions

Consider the category Cov(XK) ofXK-torsors under finite group schemes
over K (see [20, Section 4]).
We say that an adelic point P ∈ X(AK) = XK(AK) survives (X ′, G) ∈

Cov(XK) if the element of
∏
v H1(Kv, G) given by evaluating (X ′, G) at P

lies in the image of the diagonal map H1(K,G)→
∏
v H1(Kv, G). Equiva-

lently P survives (X ′, G) if and only if P lifts to an adelic point on some
twist of (X ′, G). The set of adelic points surviving a set of torsors is a subset
of X(AK) containing K. Let X(AK)ab denote the set of adelic points sur-
viving all (X ′, G) ∈ Cov(XK) for which G is a finite abelian group scheme
over K.
When X is a subvariety of an abelian variety A/F we shall consider the

subset of torsors in Cov(XK) which arise as pullbacks of (étale) isogenies
φ : A′ → A defined over F. We note that these are geometrically connected
torsors under finite abelian group schemes over F. They depend on the
embedding X → A, but only up to twist by elements of H1(F, ker(φ)). As
such the sets X(AK)isog and X(AK)ét-isog of adelic points surviving all such
torsors do not depend on the embedding.

Proposition 2.2. — Suppose X/F is either a curve or an abelian va-
riety. Then X(AK)Br = X(AK)ab = X(AK)isog. If X is an abelian variety,
then X(AK)Br = X(K).

Proof. — Stoll proved the number field analogue of the first statement
[20, Section 7]. For the extension to global function fields see [5, Section 2].
For the second statement see [16, Remark 4.5]. Note that this uses [7], which
in turn uses crucially [12, Theorem III.8.2] a complete proof of which can
be found in [6]. �
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3. Frobenius descent obstruction

Let J be the Jacobian of C and fix an embedding C → J . We will consider
the relative Frobenius morphism F : J (−1) → J constructed as follows. Let
J (−1) → SpecF be the pullback of J → SpecF by the map on SpecF
induced by raising elements of F to p(n−1), where |F| = pn. Then J is the
pullback of J (−1) → SpecF by the pth power map on SpecF. The universal
property of the fibered product gives a morphism F-schemes F : J (−1) → J .
Zariski locally, defining equations for J are obtained from those defining
J (−1) by taking p-th powers and F is given by raising coordinates to their
p-th powers.
The pullback of F along the embedding C → J yields a torsor

(C ′, ker(F )) ∈ Cov(CK) under the finite abelian K-group scheme ker(F ) ⊂
J (−1) (which is strictly speaking the base change of ker(F ) to K). The
torsor (C ′, ker(F )) does not depend on the choice of embedding because
F : J (−1)(F) → J(F) is surjective. We note that C ′ is not reduced; the
induced morphism C ′red → C on the reduced subscheme of C ′ is the Fp-
Frobenius morphism C(−1) → C which has degree p, while C ′ → C has
degree pg.

For a separable extension L/K the Kummer sequence associated to F is
an exact sequence of flat cohomology groups

0→ J(L)/F (J (−1)(L)) δF,L−→ H1(L, kerF ) −→ H1(L, J)[F ]→ 0 .

The connecting morphism δF,L has the following explicit description.

Lemma 3.1. — There is a canonical injective group homomorphism
ΦL : H1(L, kerF ) → Hom(Ω1

J/L,ΩL/F) which is functorial on separable
extensions L/K and such that the composition ΦL ◦ δF,L sends x ∈ J(L)
to the map (ω 7→ x∗ω).

The existence of the map is a slight restatement of [17, Proposition 1.1]
(which is, in turn, a variant of [1, Section 2]) and the explicit expression
follows from the proof there. See also [4, p. 123–124] for a proof in the
ordinary case.

Lemma 3.2. — If (xv) ∈ C(AK) survives (C ′, ker(F )) and δF,Kv
(xv) 6=

0 for some v, then (xv) ∈ C(K) unless p = 2 and C is hyperelliptic, in
which case a similar result holds with F replaced by F 2.

Proof. — Let ω1, . . . , ωg be a basis of holomorphic differentials of C over
F (so of J as well). Choose a separating variable t ∈ F(C) and write
ωi = fidt with fi ∈ F(C). This determines, for each separable L/K,
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50 Creutz BRENDAN & Voloch JOSÉ FELIPE

an isomorphism Hom(Ω1
J/L,ΩL/F) ' Ω⊕gL/F. Let µL : J(L) → Ω⊕gL/F be

the map obtained by composing with the map given by Lemma 3.1. If
δF,Kv

(xv) 6= 0, then the image of µKv
(xv) in P(Ω⊕gKv/F) = Pg−1(Kv) is the

point (f1(xv) : · · · : fg(xv)), which is the image of xv under the canonical
map C → Pg−1.
If x=(xv)∈C(AK) survives F -descent, then there exists ξ∈H1(K, kerF )

such that for each v, µKv (xv) = ΦK(ξ) ∈ Ω⊕gK/F ⊂ Ω⊕gKv/F. In this case the
point (f1(xv) : · · · : fg(xv)) has coordinates in K and is independent of
v. This immediately implies that (xv) ∈ C(K) unless C is hyperelliptic
and C → Pg−1 is not ramified above P . In this case the fiber of C →
Pg−1 above P is a locally trivial torsor under Z/2Z and, hence, consists
of a pair of global points Q,Q′ ∈ C(K) interchanged by the hyperelliptic
involution. Since Q+Q′ is linearly equivalent to an F-rational divisor it lies
in F (J (−1)(F)) ⊂ ker(µK) and so µK(Q) = −µK(Q′). Since p is odd, this
shows that µK(Q) 6= µK(Q′). Since xv ∈ {Q,Q′} and µKv

(xv) does not
depend on v, we conclude that all xv must be equal and so (xv) ∈ C(K).

For hyperelliptic curves in characteristic 2 a similar argument using F 2-
descent taking values in a module over the ring W2(K) of length two Witt
vectors gives the result (we omit details). �

Remark 3.3. — Part of the argument of Lemma 3.2 comes from the proof
of [10, Theorem 4.2.1] where it is used in a (slightly) different context.

Remark 3.4. — In the case p = 2 and C is hyperelliptic the proof shows
that an adelic point (xv) surviving (C ′, ker(F )) which does not lift to C ′ has
xv ∈ C(K) for each v and in particular that C(K) 6= ∅. The issue is that
the various xv may differ from one another by the hyperelliptic involution
and so (xv) may not be global.

Proof of Theorem 1.2. — Let (xv) ∈ C(AK)F∞ . In particular, (xv)
survives (C ′, ker(F )). If µKv

(xv) 6= 0, then (xv) is global by the lemma.
Otherwise (xv) ∈ F (J (−1)(AK)) in which case (xv) lifts to some (yv) ∈
C(−1)(AK). Since ker(F ) has nontrivial rational points defined over the
separable closure of K, [8, Main Theorem] gives that X1(K, ker(F )) =
ker
(
H1(K, ker(F ))→

∏
v H1(Kv, ker(F ))

)
= 0. Hence (xv) does not lift to

any nontrivial twist of (C ′, ker(F )). It follows that (yv) ∈ C(−1)(AK)F∞ .
This argument may be iterated, so we conclude that (xv) is either global
or arbitrarily divisible by Frobenius, hence in C(AK,F) by [5, Lemma 2.13].
This proves that C(AK)F∞ ⊂ C(K) ∪ C(AK,F). For the reverse inclusion
note that C ′(AK,F) = C(−1)(AK,F) and the map F : C ′(AK,F) → C(AK,F)
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agrees with relative Frobenius map C(−1)(AK,F) → C(AK,F) which is sur-
jective. Hence C(AK,F) ⊂ C(AK)F∞ . �

Remark 3.5. — It follows from the proof of Theorem 1.2 that the subset
of C(K) corresponding to non-constant maps D → C is characterized as
the set of adelic points surviving F∞-descent that, at some stage, lift to a
non-trivial torsor.

Corollary 3.6. — All nontrivial twists of the Frobenius torsor
(C ′, ker(F )) ∈ Cov(CK) satisfy the Hasse principle, i.e., if Y → CK is
a twist whose class in H1(K, ker(F )) is nontrivial and Y (AK) 6= ∅, then
Y (K) 6= ∅.

Proof. — If Y is such a torsor and contains an adelic point, then this
point maps to an adelic point (xv) ∈ C(AK) unobstructed by F . As in the
previous proof H1(K, ker(F ))→

∏
v H1(Kv, ker(F )) is injective by [8, Main

Theorem]. Since Y is a nontrivial twist, this implies that there is some v
such that µKv (xv) 6= 0. Hence, C contains a global point that is the image
of a Kv-point on Y by the lemma (and the remark above). Since Y → C is
purely inseparable, this implies that Y contains a global point as well. �
Note that whether or not the trivial torsor satisfies the Hasse principle

depends on whether or not C itself does.

4. Etale abelian descent obstruction

In this section we show that, at the level of reduced adelic points, all
of the information given by the Brauer group can be obtained from finite
abelian and étale torsors. We use X(AK,F)? to denote X(AK)? ∩X(AK,F).

Proposition 4.1. — Suppose X is a closed subvariety of an abelian
variety. Then X(AK,F)isog = X(AK,F)ét-isog.

Proof. — Suppose P ∈ X(AK,F)ét-isog and let (X ′, G) be the pullback of
some isogeny φ : A′ → A. We sill show that P survives (X ′, G). SinceG/F is
abelian it decomposes as a direct product G = Gc×Ge of a connected group
scheme and an étale group scheme [13, Proposition 11.3]. This gives rise to
an etale torsor (X ′/Gc, Ge) and an inseparable torsor (X ′/Ge, Gc), and it
suffices to show that P survives both. It survives the first by assumption.
Evaluation of the second torsor at P gives an element of

∏
v∈D1 H1(Fv, Gc).

We claim that H1(Fv, Gc) = 0, so P lifts to (X ′/Ge, Gc) as well.

TOME 72 (2022), FASCICULE 1
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To establish the claim, we use that there are abelian varieties A,B over
F fitting into an exact sequence

(4.1) 0→ Gc → A→ B → 0

(See [12, Appendix A]). In particular, A and B are isogenous so A(Fv) and
B(Fv) have the same cardinality by a celebrated result of Tate [21]. Then
A(Fv) → B(Fv) is surjective, being a homomorphism of finite groups of
the same size with kernel Gc(Fv) = 0. On the other hand H1(Fv, A) = 0 by
Lang’s theorem, so the long exact sequence of cohomology groups assoicated
to (4.1) gives H1(Fv, Gc) = 0. �

Theorem 4.2. — If X/F is either a curve or an abelian variety, then
X(AK,F)Br = X(AK,F)ab = X(AK,F)ét-isog. If X is a curve, then also
X(AK,F)Br = XMW-Sieve.

Proof. — The first statement follows from Propositions 2.2 and 4.1. The
proof of [5, Proposition 2.12] gives the second. �

This proves Theorem 1.3 and, consequently, Theorem 1.1, which has the
following Corollary.

Corollary 4.3. — Suppose C/F is a curve. Then C(K) = C(AK)Br

in C(AK) if and only if CMW-Sieve = r(C(K)) in C(AK,F).

Proof. — Assume C(K) = C(AK)Br and let P ∈ CMW-Sieve. By Theo-
rem 1.1 there exist a sequence of elements Pn ∈ C(K) converging to P in
C(AK). Since r : C(AK)→ C(AK,F) is continuous, r(Pn)→ r(P ) = P , so
P ∈ r(C(K)).

Conversely, suppose CMW-Sieve = r(C(K)) and let P ∈ C(AK)Br. By
Theorem 1.1 we have P ∈ C(K) or P ∈ CMW-Sieve. In the former case
P obviously lies in the closure of C(K), so suppose P ∈ CMW-Sieve. By
assumption there are Pn ∈ C(K) such that r(Pn) → P in the subspace
C(AK,F) ⊂ C(AK). By [5, Lemma 2.13] the sequence Fn! : C(AK) →
C(AK) of n!-th iterates of the F-Frobenius converges uniformly to r. Hence
limn F

n!Pn = P , showing that P lies in the closure of C(K) in C(AK). �
Theorem 4.2 does not hold if one replaces X(AK,F) with X(AK).

Proposition 4.4. — Let X/F be an abelian variety of p-rank 0. There
are infinitely many global function fields K = F(D) such that X(K) =
X(AK)Br 6= X(AK)ét-isog.

Proof. — Let (xv) ∈ X(AK) be such that r(xv) = 0X . For each v, the
kernel of reduction in X(Kv) is divisible by all integers prime to p. So, for
any n prime to p we have (xv) ∈ nX(AK). The assumption on the p-rank
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implies that all (geometrically connected) torsors under étale abelian group
schemes are dominated by a twist of [n] : X → X for some n prime to p
and so (xv) ∈ X(AK)ét-isog. In particular, for any K the set X(AK)ét-isog is
infinite. However, if K = F(D) is such that X and Jac(D) have no isogeny
factors in common. Then X(K) = X(F) is finite. �

For a constant variety X/F let X(AK)ét denote the set of adelic
points which survive all torsors under finite étale group schemes and set
X(AK,F)ét = X(AK)ét ∩ X(AK,F). In the case of curves the étale torsors
do not always cut out the set of rational points, even if one allows tor-
sors under finite non-abelian group schemes that are not required to be
geometrically connected.

Proposition 4.5. — There exists a curve C/F of genus 2 such that
C(K) = C(AK)Br 6= C(AK)ét.

Proof. — Take K = Fp(t), p 6= 2, 5 and X : y2 = x5 +1, so C(K) = C(F)
and J(K) = J(K) = J(F) in J(AK). By [16, Proposition 4.6], which applies
since X(K,J) is finite by [11, Theorem 3], we have that C(AK)Br =
J(K) ∩ C(AK) = J(F) ∩ C(AK) = C(F) in J(AK). Now, for every place v
of K choose a local parameter tv and let xv = (tv,

∑
j

(1/2
j

)
t5jv ). Then the

adelic point (xv) survives all finite étale torsors, lifting to the same twist
that r((xv)) = (0, 1) ∈ C(F) ⊂ C(K) does. Indeed, this is a special case of
the following proposition. �

Proposition 4.6. — Let (xv) ∈ X(AK) be an adelic point on a con-
stant variety X/F. Then (xv) ∈ X(AK)ét if and only if r(xv) ∈ X(AK,F)ét.

Proof. — First suppose (xv) ∈ X(AK)ét. Let F : X → X be the Frobe-
nius morphism. By functoriality of descent (e.g., [20, Lemma 5.3(2)]) if
(xv) ∈ X(AK)ét then F (xv) is as well. It follows that the same is true
for Fn!(xv) for any n > 1. This sequence converges to r(xv) in the adelic
topology. Since X(AK)ét is closed by [15, Theorem 8.4.6] we have that
(xv) ∈ X(AK,F)ét = X(AK)ét ∩X(AK,F).

For the converse, suppose r(xv) ∈ X(AK,F)ét and let (X ′, G) be an X-
torsor under the finite étale group scheme G. Replacing (X ′, G) by a twist
if necessary we may assume r(xv) lifts to an adelic point on X ′. The fiber
of X ′ → X over xv ∈ X(Kv) = X(Ov) gives a class Tv in H1(Ov, G). By
Hensel’s Lemma (which applies since G is étale) the reduction map Ov →
Fv induces an isomorphism H1(Ov, G) ' H1(Fv, G). Since rv(xv) ∈ X(Fv)
lifts to X ′v, the image of Tv in H1(Fv, G) is trivial. Hence Tv is trivial and
so the fiber of X ′ above xv contains a Kv-point. Thus X ′ contains a lift
of (xv). �
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5. Reduced adelic points and maps

Let JD be the Jacobian of D and fix an embedding D → JD correspond-
ing to a 0-cycle of degree 1 (which exists by the Hasse–Weil bounds). Recall
that by Lemma 2.1 there is a bijection between the set X(AK,F) of reduced
adelic points and the set MapGF

(D(F), X(F)) of Galois equivariant maps
on geometric points.

Theorem 5.1. — Let A/F be an abelian variety. For any pair (ψ, P ) ∈
HomGF(JD(F), A(F))×A(F) the map ψ|D +P : D(F)→ A(F) corresponds to
a reduced adelic point which survives all torsors in Cov(AK). This induces
bijections

r(A(K)) = A(AK,F)Br ↔ HomGF(JD(F), A(F))×A(F) .

Proof. — Let (xv) ∈ A(AK,F)Br and let ψ : D(F) → A(F) be the cor-
responding Galois-equivariant map. Extending by linearity we obtain a
Galois-equivariant homomorphism ψ′ : Z0(D)→ Z0(A) on the groups of 0-
cycles. The map sending a 0-cycle z ∈ Z0(A) to the pair (sum(z),deg(z)) ∈
A(F) × Z induces an isomorphism of the group of 0-cycles on A modulo
Albanese equivalence onto A(F)× Z.
We claim that if z ∈ Z0(D) is a principal divisor, then the 0-cycle ψ′(z)

is albanese equivalent to 0. To see this, suppose z =
∑
nPP where P are

geometric points of D. Let Fn be a power of the F-Frobenius which fixes
all P appearing in the support of z. By Theorem 4.2, (xv) ∈ A(AK,F)ét-isog

so it must lift to a twist of (1−Fn) : A→ A. Since X(K,A) is finite [11,
Theorem 3] we may choose n large enough so that the twist to which it lifts
contains a rational point, and hence be of the form (1− Fn) + γ : A→ A

for some γ ∈ A(K). Evaluating at a point P ∈ D(F) in the support of
z we conclude that ψ(P ) = (1 − Fn)(P ) + γ(P ) = γ(P ). By linearity it
follows that ψ(z) = γ(z). By the universal property of the Jacobian of D,
γ ∈ A(K) = MorF(D,A) factors through a morphism γ0 : JD → A of
abelian varieties. Hence, if the image of z in JD is trivial, its image in A
must be trivial as well.
The claim established in the previous paragraph implies that ψ′ factors

through a Galois-equivariant map Pic(D) → A(F) × Z. We obtain a pair
(ψ, P ) ∈ HomGF(JD(F), A(F)) × A(F) by taking ψ as the restriction of
the above map to Pic0(D) = JD(F) and defining P by ψ′(z1) = (P, 1) ∈
A(F)×Z, where z1 ∈ Z0(D) is the 0-cycle of degree 1 used to embed D in
JD. This yields the map A(AK,F)Br → HomGF(JD(F), A(F))×A(F).

Now suppose (ψ, P ) ∈ HomGF(JD(F), A(F))×A(F). The map ψ|D + P :
D(F) → A(F) corresponds to a reduced adelic point of A and it is easy
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to check that this yields an inverse to the map constructed above. We will
show that the adelic point corresponding to ψ|D + P lies in the closure of
the image of A(K) in A(AK,F). This suffices to prove the theorem since
A(AK,F)Br is a closed set containing the image of A(K). Furthermore, we
may assume P = 0.

The homomorphism ψ : JD(F) → A(F) induces also a morphism ψ′ ∈
HomGF(TétJD, TétA) between the full étale Tate modules of JD and A, i.e.,
TétA = lim←−nA(F)[n]. Since F is perfect, the abelian group schemes A[n]
split as a direct product of an étale and a connected group scheme [13,
Proposition 11.3]. It follows that the full Tate module (profinite group
scheme) splits as TA = TétA×A0, with A0 a connected pro-p group scheme
and similiarly for JD. As there are no nontrivial morphisms between p-
primary étale and connected group schemes we obtain a surjective map
HomF(TJD, TA)→ HomGF(TétJD, TétA). Tate’s theorem [21, 22] gives an
isomorphism HomF(JD, A) ⊗ Ẑ → HomGF(TJD, TA). From this it follows
that, for every n, there is some φn ∈ HomF(JD, A) ⊂ A(K) which agrees
with ψ on JD[n](F). Then the sequence r(φn!) converges in A(AK,F) to the
adelic point corresponding to ψ. �

Corollary 5.2. — Suppose ψ : D(F) → A(F) is the map correspond-
ing to a point (xv) ∈ A(AK,F)Br. Then ψ is either constant, in which case
(xv) ∈ A(F), or ψ has infinite image.

Proof. — It is enough to show that the image of the induced map ψ :
JD(F) → A(F) has infinite image. This follows since JD(F) is a divisible
group and, hence, has no nontrivial finite homomorphic image. �

Corollary 5.3. — Suppose C/F is a smooth, geometrically irreducible,
proper curve with a fixed embedding C → J . There is a bijection

C(AK,F)Br

↔
{

(ψ, P ) ∈ HomGF(JD(F), J(F))× J(F) : ψ(D(F)) ⊂ C(F)− P
}
.

Proof. — We have C(AK,F)Br = C(AK,F) ∩ J(AK,F)Br by Theorem 4.2
and the definition of C(AK,F)ét-isog. A pair (ψ, P ) as in Theorem 5.1 cor-
responds to a reduced adelic point on C if and only if ψ(D(F)) + P ⊂
C(F). �

Remark 5.4. — Given a reduced adelic point (xv) ∈ C(AK,F)Br one can
always choose an embedding of C into J such that the corresponding pair
(ψ, P ) has P = 0.
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Remark 5.5. — Zilber [23, 24], resolving a conjecture of Bogomolov, Ko-
rotiaev and Tschinkel [2], has shown that if ψ : JD(F) → J(F) is an iso-
morphism such that ψ(D(F)) = ψ(C(F)), then ψ is a morphism of curves
composed with a limit of Frobenius maps. In particular, the corresponding
reduced adelic point lies in the closure of the image of C(K) in C(AK,F).

Corollary 5.6. — Suppose (xv) ∈ C(AK,F)Br and J has only finitely
many abelian subvarieties. Then the induced ψ : JD(F) → J(F) is either
constant or surjective, in which case J is an isogeny factor of JD.

Proof. — By functoriality of the Brauer pairing we have (xv)∈J(AK,F)Br.
Now J(AK,F)Br = J(K)∩ J(AK,F) in J(AK) by Proposition 2.2, so (xv) =
limφn : D → J for some sequence of φn ∈ J(K). It suffices to show that
the induced maps φn : JD → J are eventually surjective. If φn : JD → J is
not surjective, then φn(D) is contained in a translate of a proper abelian
subvariety. The intersection C ∩ (x + A) of C ⊂ J with a translate of a
proper abelian subvariety A is finite. If there are only finitely many proper
abelian subvarieties, then these intersection numbers are bounded. But
then so is φn(D) ∩ C. This implies ψ(D(F)) is finite, so ψ is constant by
Corollary 5.2. �

Proof of Theorem 1.5. — Note that the equality C(K) = C(F) is trivial
and that it then follows from Theorem 1.2 that C(AK)Br = C(AK,F)Br.
Hence, it is enough to show that C(AK,F)Br = C(F). Suppose (xv) ∈
C(AK,F)Br and let ψ : JD(F)→ J(F) be the corresponding homomorphism
as in Corollary 5.3. We may choose embeddings D ⊂ JD and C ⊂ J ,
such that ψ restricted to D(F) is the map corresponding to (xv). Let
I = ψ(JD(F)). Since JD(F) is generated by the divisors of degree g = gD on
D, we have I ⊂ W g(C), where W g(C) is the image of the g-th symmetric
power of C in J under the map induced by the embedding C → J . As
I is a topological subgroup of J(F) with the Zariski topology, its Zariski
closure I is an algebraic subgroup of J contained in W g(C). Since g =
dimW g(C) < dim J , we have that C ∩ I is a proper algebraic subset of C
and, hence, is finite. As this intersection contains ψ(D(F)) we conclude by
applying Corollary 5.2. �
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