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A NOTE ON LOEWNER ENERGY, CONFORMAL
RESTRICTION AND WERNER’S MEASURE ON

SELF-AVOIDING LOOPS

by Yilin WANG (*)

Abstract. — We establish an expression of the Loewner energy of a Jordan
curve in terms of Werner’s measure on simple loops of SLE8/3 type. The proof is
based on a formula for the change of the Loewner energy under a conformal map
that is reminiscent of SLE processes’ conformal restriction property.
Résumé. — Nous établissons une expression de l’énergie de Loewner d’une courbe

de Jordan en termes de la mesure de Werner sur les boucles auto-évitantes du type
SLE8/3. La preuve est basée sur la variation de l’énergie de Loewner sous l’effet
des transformations conformes. Cette formule rappelle la propriété de la restriction
conforme de SLE.

1. Introduction

Loewner’s idea [9] of encoding a simple curve into a real-valued driving
function provides a powerful tool in the analysis of univalent functions. This
idea led to the solution of the Bieberbach conjecture by De Branges [1] and
has also more recently received a lot of attention since 1999 with the con-
struction of random fractal simple curves, the SLEs, by Oded Schramm [14].

The study of the Loewner energy lies at the interface between classical
Loewner theory and the SLE theory. The Loewner energy is a determinis-
tic quantity associated to regular deterministic curves, but simultaneously
reflects the large deviation structure of SLEs [16] driven by a vanishing mul-
tiple of Brownian motion. The Loewner energy is studied in [2, 4, 16, 13, 17]
in various similar settings. Let us review briefly its definition for chords and
then for loops as introduced by Rohde and the author [13].

Keywords: Loewner energy, conformal restriction, Werner’s measure, Schramm–Loewner
evolution.
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1792 Yilin WANG

Let γ be a simple curve (chord) from 0 to ∞ in the upper half-plane
H, one chooses to parametrize γ by the half-plane capacity of γ[0, t] seen
from infinity, which means the conformal map gt from H r γ[0, t] to H,
that is normalized near infinity by gt(z) = z + o(1) does satisfy gt(z) =
z+ 2t/z+ o(1/z). The function gt can be extended continuously to the tip
γt of the slit γ[0, t] which enables to define W (t) := gt(γt). The function
W : R+ → R is called the driving function of γ. The Loewner energy in
(H, 0,∞) of the chord γ is defined to be

IH,0,∞(γ) := I(W ) := 1
2

∫ ∞
0

W ′(t)2 dt

when W is absolutely continuous and is ∞ otherwise.
The definition extends to a chord γ connecting two prime ends a and b

in a simply connected domain D ⊂ C, via a uniformizing conformal map
ϕ : D → H such that ϕ(a) = 0 and ϕ(b) =∞, that is

ID,a,b(γ) := IH,0,∞(ϕ(γ)).

Following [13], we define Loewner loop energy via a limiting procedure. Let
Γ : [0, 1] → Ĉ be an oriented Jordan curve with a marked point Γ(0) =
Γ(1) ∈ Γ, where Ĉ = C∪{∞} ' S2 is the Riemann sphere. For every ε > 0,
Γ[ε, 1] is a chord connecting Γ(ε) to Γ(1) in the simply connected domain
Ĉ r Γ[0, ε]. The rooted Loewner loop energy is then defined as

IL(Γ,Γ(0)) := lim
ε→0

IĈrΓ[0,ε],Γ(ε),Γ(0)(Γ[ε, 1]).

It was observed in [13] that the Loewner energy depends only on the trace
of the curve (in particular, not on its root) which is a priori not obvious
from the definition. To understand the presence of these symmetries, three
identities of the Loewner energy are established in [17]. For the purpose of
the present work, let us review the link to the determinants of Laplacians.

Let g be a Riemannian metric on S2 and Γ a smooth Jordan curve on
S2. We define

H(Γ, g) := log det′ζ(−∆S2,g)− log volg(S2)
− log detζ(−∆D1,g)− log detζ(−∆D2,g),

where D1, D2 ⊂ S2 are the connected components of S2 r Γ, ∆Di,g the
Laplace–Beltrami operator on Di with Dirichlet boundary condition, and
det′ζ (resp. detζ) the zeta-regularized determinant for operators with non-
trivial (resp. trivial) kernel. The zeta-regularization of determinants is in-
troduced by Ray and Singer [12]. It uses an analytically continued zeta
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LOEWNER ENERGY AND WERNER’S MEASURE 1793

function defined from the spectrum of the operator. Since the precise regu-
larization procedure is not instrumental in our proofs nor in providing the
intuition in the present work, we refer the interested readers to [11] for the
definition and [17, Sec. 7] for more details on the functional H. The relation
between H and IL is the following.

Theorem 1.1 ([17, Prop. 7.1, Thm. 7.3]). — If g = e2σg0 is conformally
equivalent to the spherical metric g0 on S2, then

(i) H( · , g) = H( · , g0);
(ii) any circle (denoted as S1) minimizes H( · , g) among all smooth

Jordan curves;
(iii) we have the identity

(1.1) IL(Γ,Γ(0)) = 12H(Γ, g)− 12H(S1, g).

The right-hand side of (1.1) clearly does not depend on the parametriza-
tion of Γ.

It was pointed out in [8, 3] that − log detζ(−∆M ) can be thought as a
renormalization of the total mass of Brownian loops contained in M under
the Brownian loop measure µloopM introduced by Lawler and Werner [7].
Roughly speaking,

“− log detζ(−∆M ) =
∫

dµloopM .”

Hence the identity (1.1) can be interpreted as

(1.2) “IL(Γ) = 12µloopC (δ, δ ∩ S1 6= ∅)− 12µloopC (δ, δ ∩ Γ 6= ∅).”

We can also speculate this identity from the large deviations of SLE that
we will comment on later. However, both terms on the right-hand side
of (1.2) diverge. In this work, we make sense of the above identity for all
Jordan curves using a renormalization of Werner’s measure (see Section 2)
on simple loops of SLE8/3 type which is closely related to the Brownian
loop measure. The precise statement is the following (see Theorem 5.1 for
the proof): Let f be a conformal map from the unit disk D to a connected
component of Ĉ r Γ. For 0 < ε < 1, let S(1−ε) denote the circle of radius
1− ε and center 0 and Γ(1−ε) := f(S(1−ε)) the equi-potential.

Theorem 1.2. — We have

IL(Γ) = lim
ε→0

12W(S1, S(1−ε); Ĉ)− 12W(Γ,Γ(1−ε); Ĉ),

whereW(K1,K2; Ĉ) denotes the total mass of loops that intersect both K1
and K2 under Werner’s measure.

TOME 71 (2021), FASCICULE 4



1794 Yilin WANG

As an intermediate step, we derive a variation formula for the Loewner
energy under a conformal mapping (see Theorem 4.1).

Theorem 1.3. — If η is a Jordan curve with finite energy and Γ = f(η),
where f : A→ Ã is conformal on an open neighborhood A of η, then

IL(Γ)− IL(η) = 12W(η,Ac; Ĉ)− 12W(Γ, Ãc; Ĉ).

Let us make some loose comments in relation to SLE at the end of this
introduction. Notice that the Dirichlet energy is the action functional of the
standard Brownian motion B, therefore it is also the large deviation rate
function of

√
κB under appropriate norm as κ → 0. Hence, the Loewner

energy I( · ) is naturally the large deviation rate function of SLEκ in the
small κ limit [16], namely

P {SLEκ loop stays close to Γ} ≈ exp(−IL(Γ)/κ), as κ→ 0+.

This relation to SLE indeed led us to Theorem 1.3 where we use an argu-
ment similar to the conformal restrictions for SLE.
On the other hand, the partition function for an SLE loop is formally

given by [3]:

P {SLEκ loop stays close to Γ} ∝ exp
(
− c2µ

loop
C (δ, δ ∩ Γ 6= ∅)

)
,

where c = (3κ − 8)(6 − κ)/2κ ∼ −24/κ is the central charge associated
to SLEκ. Therefore, by comparing the above two expressions, we identify
IL(Γ) with −12µloopC (δ, δ ∩ Γ 6= ∅) up to an additive constant as suggested
by (1.2). Hence, the Loewner energy does not only quantify the decay of a
certain volume of the infinitesimal neighborhood of a given curve measured
by the total mass of SLE0+, but also the mass of Brownian loops (whose
boundary are of SLE8/3 type) attached to the curve as confirmed by this
work’s results.

Acknowledgement

The author thanks Wendelin Werner for inspiring discussions and his
help to improve the manuscript and also the referee for useful comments.

2. Werner’s measure on self-avoiding loops

In this section, we briefly recall the definition and main features of
Werner’s measure on self-avoiding loops.
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LOEWNER ENERGY AND WERNER’S MEASURE 1795

The Brownian loop measure in the complex plane C and its sub-domains
has been introduced by Lawler and Werner in [7] and its definition can be
immediately extended to a general Riemannian surfaceM (with or without
boundary) in the following way:
Let x ∈M , t > 0, consider the sub-probability measure Wt

x on the path
of the Brownian motion (diffusion of infinitesimal generator the Laplace–
Beltrami operator ∆M ) on M started from x on the time interval [0, t],
which is killed if it hits the boundary of M . The measures Wt

x→y on paths
from x to y are obtained from the disintegration of Wt

x according to its
endpoint y:

Wt
x =

∫
M

Wt
x→y dvol(y).

Note that Wt
x→y has total mass pt(x, y), where pt is the heat kernel with

Dirichlet boundary condition. Define the Brownian loop measure on M :

µloopM :=
∫ ∞

0

dt
t

∫
M

Wt
x→x dvol(x).

Since the starting point coincide with the endpoint, it is a measure on
the set of unrooted loops by forgetting the starting point and the time-
parametrization (so that we distinguish loops only by their trace).
The Brownian loop measure satisfies the following two remarkable prop-

erties
• (Restriction property) IfM ′⊂M , then dµloopM ′ (δ) = 1δ⊂M ′dµloopM (δ).
• (Conformal invariance) Let M1 = (M, g) and M2 = (M, e2σg) be
two conformally equivalent Riemann surfaces, where σ ∈C∞(M,R).
We have

µloopM1
= µloopM2

.

Notice that the total mass (under the Brownian loop measure) of loops
contained in C is infinite (in fact, that for all positive R, both the mass
of loops of diameter greater than R and the mass of loops of diameter
smaller than R are both infinite), which can be viewed as a consequence of
its scale-invariance (or from the fact that the integral of 1/t diverges both
at infinity and at 0). However, when D ⊂ C is a proper subset of C with
non-polar boundary, and K1,K2 are two disjoint compact subsets of D,
the total mass (under the Brownian loop measure) of the set of loops that
do stay in D and intersect both K1 and K2 is finite (staying in D in some
sense removes most large loops, and intersecting both K1 and K2 prevents
the loops for being too small). We will denote this finite mass by

B(K1,K2;D) := µloopD ({δ; δ ∩K1 6= ∅, δ ∩K2 6= ∅}).

TOME 71 (2021), FASCICULE 4



1796 Yilin WANG

Werner’s measure on simple (self-avoiding) loops in Ĉ defined in [18] is
simply the image of µloopC under that map that associates to a (Brownian)
loop its outer boundary (i.e., the boundary of the unbounded connected
component of its complement). As shown in [18], this measure turns out
to be invariant under the map z 7→ 1/z (and more generally under any
conformal automorphism of the Riemann sphere), which in turn makes it
possible to define this measure µloopW,M in any Riemann surface M , in such a
way that the above restriction and conformal invariance properties still hold
for this family of measures on self-avoiding loops. In fact, shown in [18] that
this is the unique (up to a multiplicative constant) such family of σ-finite
measures on self-avoiding loops satisfying both the restriction property
and the conformal invariance properties. For other characterizations (via a
restriction-type formula, or as a measure on SLE loops) of Werner’s measure
and its properties (it is supported on SLE8/3-type loops which have fractal
dimension 4/3), see [18]. Since we will be discussing conformal restriction
properties of the Loewner energy here, it is worth stressing here that the
proofs in [18] are building on the work of Lawler, Schramm, and Werner [6]
on chordal conformal restriction properties.
One feature that makes Werner’s measure convenient to work with on

Riemann surfaces is that if we consider two disjoint compact sets K1,K2 ⊂
Ĉ, then the total mass of loops that intersect both K1 and K2 is finite
(see [10, Lem. 4]):

W(K1,K2; Ĉ) := µloop
W,Ĉ({δ; δ ∩K1 6= ∅, δ ∩K2 6= ∅}) <∞.

This contrasts with the fact that the total mass (for the Brownian loop
measure) of loops that intersect both K1 and K2 is infinite, due to the
many very large Brownian loops that intersect both K1 and K2 (but the
outer boundary of these large loops tends not to intersect K1 or K2, which
explains whyW(K1,K2; Ĉ) is finite). This feature was also instrumental in
the proof of the conformal invariance of simple Conformal Loop Ensembles
on the Riemann sphere by Kemppainen and Werner in [5].

3. Conformal restriction for simple chord

We first recall the variation formula of the chordal Loewner energy under
conformal restriction, first appeared in [2] and [16]: LetK be a compact hull
in H at positive distance to 0. The simply connected domain HK := HrK
coincides with H in the neighborhoods of 0 and∞. Let Γ be a simple chord
contained inHK connecting 0 to∞ with finite Loewner energy in (H, 0,∞).

ANNALES DE L’INSTITUT FOURIER
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Proposition 3.1 ([16, Prop. 4.1]). — The energy of Γ in (H, 0,∞) and
in (HK , 0,∞) differ by

IHK ,0,∞(Γ)− IH,0,∞(Γ) = 3 log |ψ′(0)ψ′(∞)|+ 12B(Γ,K;H)
= 3 ln |ψ′(0)ψ′(∞)|+ 12W(Γ,K;H),

where ψ is a conformal map HK → H fixing 0,∞.

Notice that the derivatives of ψ at boundary points 0 and ∞ are well-
defined by Schwarz reflection principle since HK coincides with H in their
neighborhood. The first equality is the analogy of the conformal restriction
property of SLE derived in [6]. The second equality is due to the fact that
H is simply connected domain with non-polar boundary and both K and Γ
are attached to the boundary, so that the Brownian loop hits both K and
Γ if and only if the outer-boundary hits them. For readers’ convenience, we
include the derivation of the first equality below.

Without loss of generality, we choose the conformal map ψ : HK → H as
in Proposition 3.1 such that ψ′(∞) = 1. Let Kt be the image of K under
the flow gt associated to Γ, g̃t the mapping-out function of ψ(Γ[0, t]), and
ψt = g̃t◦ψ◦g−1

t : HrKt → Hmaking the diagram commute (see figure 3.1).
It suffices to show that for T <∞,

(3.1) IH,0,∞(ψ(Γ[0, T ]))− IH,0,∞(Γ[0, T ])
= 3 ln |ψ′(0)|+ 12B(Γ[0, T ],K;H)− 3 ln |ψ′T (0)|

which implies Proposition 3.1 since the last term 3 ln |ψ′T (0)| → 0 when
T →∞ and IH,0,∞(ψ(Γ[0, T ])) = IHK ,0,∞(Γ[0, T ]).

K
Γt

ψ0(K)
Γ̃t

Kt gt(Γ[t, T ]) g̃t(Γ̃[t, T ])ψt(Kt)

ψt

ψ0

gt g̃t

0 0

Wt W̃t

Figure 3.1. Maps in the proof of Proposition 3.1, W̃ t = ψt(Wt).
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Proof. — We write Wt for W (t) to shorten the notation. We show first

(3.2) IH,0,∞(ψ(Γ[0, T ])) = 1
2

∫ T

0

[
∂tWt −

3ψ′′t (0)
ψ′t(0)

]2
dt.

Notice that (Γ̃t := ψ(Γt))t>0 is not capacity-parametrized. We denote a(t)
the capacity of Γ̃[0, t], such that

g̃t(z) = z + 2a(t)/z + o(1/z), as z →∞.

By a scaling consideration, we have ∂ta(t) = [ψ′t(Wt)]2. The family of
conformal maps g̃t satisfies the Loewner differential equation: For z ∈ H,

∂tg̃t(z) = ∂ag̃t(z)∂ta(t) = 2[ψ′t(Wt)]2

g̃t(z)− W̃ t

.

Now we compute the variation of W̃ . Since ψt is defined by g̃t ◦ψ ◦ g−1
t , we

have
∂tψt(z) = ∂tg̃t(ψ ◦ g−1

t (z)) + (g̃t ◦ ψ)′(g−1
t (z))∂t(g−1

t (z))

= 2[ψ′t(Wt)]2

g̃t ◦ ψ ◦ g−1
t (z)− W̃ t

+ (g̃t ◦ ψ)′(g−1
t (z))−2(g−1

t )′(z)
z −Wt

= 2[ψ′t(Wt)]2

ψt(z)− W̃ t

− 2ψ′t(z)
z −Wt

.

(3.3)

Expanding ψt in the neighborhood ofWt (this is possible since ψt is analytic
by Schwarz reflection principle), we obtain

∂tψt(z) = −3ψ′′t (Wt) +O(z −Wt).

Therefore

∂tW̃ t = ∂t(ψt(Wt)) = (∂tψt)(Wt) + ψt(Wt)∂tWt

=
(
−3ψ

′′
t (Wt)
ψ′t(Wt)

+ ∂tWt

)
ψ′t(Wt).

Notice that since we assumed that Γ has finite Loewner energy in H, it
implies that W is in W 1,2. In particular, W is absolutely continuous. It is
not hard to see that it implies that W̃ is also absolutely continuous and the
above computation of ∂tW̃ t makes sense for almost every t. The Loewner
energy of ψ(Γ[0, T ]) is given by

1
2

∫ a(T )

0

∣∣∣∂aW̃ (t(a))
∣∣∣2 da = 1

2

∫ T

0

∣∣∣∂tW̃ (t)
∣∣∣2 (a′(t))−1 dt

= 1
2

∫ T

0

[
−3ψ

′′
t (Wt)
ψ′t(Wt)

+ ∂tWt

]2
dt

ANNALES DE L’INSTITUT FOURIER
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as we claimed.
Now we relate the right-hand side of (3.1) with the mass of Brownian

loop measure attached to both Γ and K. Differentiating (3.3) in z and
taking z →Wt, we obtain

(∂tψ′t)(Wt) = ψ′′t (Wt)2

2ψ′t(Wt)
− 4ψ′′′t (Wt)

3 .

We have also

∂t[lnψ′t(Wt)] = 1
2

(
ψ′′t (Wt)
ψ′t(Wt)

)2
− 4

3
ψ′′′t (Wt)
ψ′t(Wt)

+ ψ′′t (Wt)
ψ′t(Wt)

∂tWt.

Therefore

(3.4)
1
2

[
∂tWt− 3ψ

′′
t (Wt)
ψ′t(Wt)

]2
− 1

2(∂tWt)2 = 9
2

(
ψ′′t (Wt)
ψ′t(Wt)

)2
− 3ψ

′′
t (Wt)
ψ′t(Wt)

∂tWt

= −3∂t[lnψ′t(Wt)]− 4Sψt(Wt),

where

Sψt = ψ′′′t
ψ′t
− 3

2

(
ψ′′t
ψ′t

)2

is the Schwarzian derivative of ψt. Intergrating (3.4) over [0, T ], we obtain
the identity (3.1) by identifying the Schwarzian derivative term using the
path decomposition of the Brownian loop measure (see [6, 7])

−4
∫ T

0
Sψt(Wt) dt = 12B(Γ[0, T ],K;H). �

From Proposition 3.1, we deduce a more general relation between the
Loewner energy of the same chord in two domains D and D′, whose bound-
ary coincides in a neighborhood of the two marked boundary points. It
suffices to compare D and D′ to the Riemann surface D t D′ identified
along the connected component of D ∩D′ containing Γ.

Corollary 3.2. — Let (D, a, b) and (D′, a, b) be two simply connected
domains in Ĉ coinciding in a neighborhood of a and b, and Γ a simple curve
in both (D, a, b) and (D′, a, b). Then we have

ID′,a,b(Γ)− ID,a,b(Γ) = 3 log |ψ′(a)ψ′(b)|
+ 12W(Γ, D rD′;D)− 12W(Γ, D′ rD;D′),

where ψ : D′ → D is a conformal map fixing a and b.

TOME 71 (2021), FASCICULE 4
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4. Conformal restriction for simple loop

We prove in this section the following conformal restriction formula for
the loop energy. The loop version has the advantage compared to the
chordal case of no longer having the boundary terms.

Theorem 4.1. — Let η be a Jordan curve with finite energy and Γ =
f(η), where f : A→ Ã is conformal on an open neighborhood A of η. Then

IL(Γ)− IL(η) = 12W(η,Ac; Ĉ)− 12W(Γ, Ãc; Ĉ).

The loop terms are finite since Ac and η are compact in Ĉ and are
disjoint.

Remark 4.2. — The right-hand side of the above identity remains the
same if we replace A by a subset B such that η ⊂ B ⊂ A. In fact, since
ArB is at positive distance to η, we have W(η,ArB;A) <∞. We then
decompose the loop measure

W(η,Bc; Ĉ) =W(η,Ac; Ĉ) +W(η,ArB;A).

Similarly, we have

W(Γ, f(B)c; Ĉ) =W(Γ, Ãc; Ĉ) +W(Γ, Ãr f(B); Ã).

The conformal invariance of Werner’s measure provides that

W(η,ArB;A) =W(f(η), f(ArB); f(A)) =W(Γ, Ãr f(B); Ã).

Hence

W(η,Ac; Ĉ)−W(Γ, Ãc; Ĉ) =W(η,Bc; Ĉ)−W(Γ, f(B)c; Ĉ).

Therefore, since A contains an annular neighborhood of η, it suffices to
prove Theorem 4.1 when A is an annulus.
Proof of Theorem 4.1. — Since the loop energy is a limit of chordal

Loewner energy, the idea of the proof is to apply the conformal restriction
for chordal energies.
More precisely, let a, b be two points on the curve η, ã = f(a) and

b̃ = f(b). We write D := Ĉ r (ab)η and D̃ := Ĉ r (ãb̃)Γ. We take a
“stick” T attached to the arc (ab)η of the curve η, such that D r K is
simply connected, where K = Ac∪T is the union of two “lollipops”. Define
T̃ := f(T ) ⊂ Ã the conformal image of T and similarly K̃ = Ãc ∪ T̃ (see
Figure 4.1).
Now we compare the chordal Loewner energy of (ba)η (the complement

of (ab)η in the curve η) in D and (̃bã)Γ in D̃. Notice that D and D r K

coincide in a neighborhood of both a and b. Let ψ and ψ̃ be a choice of

ANNALES DE L’INSTITUT FOURIER



LOEWNER ENERGY AND WERNER’S MEASURE 1801

f : A→ Ã

K := Ac ∪ T K̃ := Ãc ∪ T̃

ψ : Ĉ\ ((ab)η ∪K) → Ĉ\(ab)η ψ̃ : Ĉ\
(

(ãb̃)Γ ∪ K̃
)
→ Ĉ\(ãb̃)Γ

a

b

η

T b̃
ã

Γ = f(η)

T̃

b

a
ã

b̃

g : Ĉ\(ab)η → Ĉ\(ãb̃)Γ

Figure 4.1. Maps in the proof of Theorem 4.1.

conformal maps as in Figure 4.1, and g factorizes the diagram. Applying
Corollary 3.2 to (ba)η in D, we have

(4.1) IDrK((ba)η)− ID((ba)η) = 3 log |ψ′(a)ψ′(b)|+ 12W((ba)η,K;D),

and similarly,

(4.2) ID̃rK̃((̃bã)Γ)− ID̃((̃bã)Γ) = 3 log
∣∣∣ψ̃′(ã)ψ̃′(̃b)

∣∣∣+ 12W((̃bã)Γ, K̃; D̃).

From the construction,

IDrK((ba)η) = ID(ψ[(ba)η]) = ID̃(g ◦ ψ([(ba)η])

= ID̃(ψ̃[(̃bã)Γ]) = ID̃rK̃((̃bã)Γ),

where the second equality follows from the conformal invariance of the
chordal Loewner energy.
We write H(a, b;D) for the Poisson excursion kernel between two bound-

ary points a, b of the domainD (relatively to the local analytic coordinates).
Choosing the same analytic coordinates near a, b in the above four pictures,
then we have

ψ′(a)ψ′(b)
ψ̃′(ã)ψ̃′(̃b)

= H(a, b;Ar (ab)η)
H(a, b;D)

H(ã, b̃; D̃)
H(ã, b̃; Ãr (ãb̃)Γ)

= H(a, b;Ar (ab)η)
H(ã, b̃; Ãr (ãb̃)Γ)

H(ã, b̃; D̃)
H(a, b;D) = f ′(a)f ′(b)

g′(a)g′(b)
which no longer depends on the stick T chosen.
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Also notice that we can decompose the loop measure term as in the
remark:

W((ba)η,K;D) =W((ba)η, Ac;D) +W((ba)η, T ;Ar (ba)η).

Since Werner’s measure is conformally invariant, we have in particular

W((ba)η, T ;Ar (ba)η) =W((̃bã)Γ, T̃ ; Ãr (̃bã)Γ).

Taking the difference (4.1)–(4.2) combining the above observations, we get

(4.3) ID̃((̃bã)Γ)− ID((ba)η)

= 3 log
∣∣∣∣f ′(a)f ′(b)
g′(a)g′(b)

∣∣∣∣+ 12W((ba)η, Ac;D)− 12W((̃bã)Γ, Ã
c; D̃).

We conclude the proof by taking b → a on η, using the definition of loop
energy

ID((ba)η) b→a−−−→ IL(η, a) = IL(η)
and the fact that

W((ba)η, Ac;D) b→a−−−→W(η,Ac; Ĉ).

The log-derivative terms goes 0 thanks to the following lemma and con-
cludes the proof of the theorem. �

Lemma 4.3. — With the same notations as in the proof of Theorem 4.1
(see Figure 4.1),

lim
b→a

∣∣∣∣f ′(a)f ′(b)
g′(a)g′(b)

∣∣∣∣ = 1.

Proof. — Without loss of generality, we may assume that A = D the
unit disk, a = 0, and ã = f(a) = 0.
Let ψ be the conformal map Ĉ r (ab)η → D, such that ψ(∞) = 0 and

ψ(0) = 1. Similarly, let ϕ be the conformal map Ĉ r (ãb̃)Γ → D, such that
ϕ(∞) = 0 and ϕ(0) = 1. Define the conformal maps F = ϕ ◦ f ◦ ψ−1 and
G = ϕ ◦ f ◦ ψ−1 between the blue-shaded area in Figure 4.2.
It is not hard to see that the diameter of ψ(Dc) and ϕ(Dc) shrinks to 0

as b→ a. Therefore
F ′(1)F ′(ψ(b))
G′(1)G′(ψ(b))

b→a−−−→ 1.

On the other hand,

F ′(1)F ′(ψ(b))
G′(1)G′(ψ(b)) = H(a, b;Ar (ab)η)

H(ã, b̃; Ãr (ãb̃)Γ)
H(ã, b̃; D̃)
H(a, b;D) = f ′(a)f ′(b)

g′(a)g′(b)

which concludes the proof. �

ANNALES DE L’INSTITUT FOURIER



LOEWNER ENERGY AND WERNER’S MEASURE 1803

f : D→ Ã
a

b

b̃ã

Γ = f(η)

D

ψ ϕ

ψ

ψ(b)
ϕ(b̃)

1
a

b
η

1

1

1

1
ψ(b)

ϕ(b̃)

Ã

F = ϕ ◦ f ◦ ψ−1

G = ϕ ◦ g ◦ ψ−1

g : Ĉ\(ab)η → Ĉ\(ãb̃)Γ

a

b
η

b̃ã

Γ = f(η)

ϕ
Ĉ\(ab)η Ĉ\(ãb̃)Γ

Figure 4.2. Maps in the proof of Lemma 4.3.

By taking η = S1, we deduce immediately the interpretation of the
Loewner energy of an analytic Jordan curve:

Corollary 4.4. — If Γ = f(S1) is an analytic curve, then

IL(Γ) = 12W(S1, Ac; Ĉ)− 12W(Γ, Ãc; Ĉ),

where f : A→ Ã maps conformally a neighborhood A of S1 to a neighbor-
hood Ã of Γ.

Proof. — It follows immediately from Theorem 4.1 and IL(S1) = 0. �

5. Loewner energy as renormalized Werner’s measure

Let Γ be a Jordan curve in Ĉ, D a connected component of Ĉ r Γ and
f a conformal map from the unit disk D to D. For 0 < ε < 1, let S(1−ε)

denote the circle of radius 1− ε and center 0 and Γ(1−ε) := f(S(1−ε)).

Theorem 5.1. — We have

IL(Γ) = lim
ε→0

12W(S1, S(1−ε); Ĉ)− 12W(Γ,Γ(1−ε); Ĉ).

Proof. — For each ε, we apply Corollary 4.4 to the analytic curve Γ(1−ε)

with A := D which gives

IL(Γ(1−ε)) = 12W(S1, S(1−ε); Ĉ)− 12W(Γ,Γ(1−ε); Ĉ).

Now it suffices to see that IL(Γ(1−ε)) converges to IL(Γ).
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If IL(Γ) < ∞, it is shown in [17, Sec. 8] that Γ is a quasicircle of Weil–
Petersson class, which is equivalent to∫

D

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣2 dz2 <∞,

where dz2 represents the Lebesgue measure. Let fε(z) := f((1−ε)z) denote
the uniformizing conformal map from D to the connected component of
Ĉ r Γ(1−ε). We have for ε < ε0 < 1/2,∫

D

∣∣∣∣f ′′(z)f ′(z) −
f ′′ε (z)
f ′ε(z)

∣∣∣∣2 dz2

=
∫
|z|<1−ε0

∣∣∣∣f ′′(z)f ′(z) −
f ′′ε (z)
f ′ε(z)

∣∣∣∣2 dz2 +
∫

1−ε06|z|<1

∣∣∣∣f ′′(z)f ′(z) −
f ′′ε (z)
f ′ε(z)

∣∣∣∣2 dz2

6
∫
|z|<1−ε0

∣∣∣∣f ′′(z)f ′(z) −
f ′′ε (z)
f ′ε(z)

∣∣∣∣2 dz2 + 4
∫

1−2ε06|z|<1

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣2 dz2

ε→0−−−→ 4
∫

1−2ε06|z|<1

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣2 dz2,

the convergence is due to the fact that f ′′ε /f ′ε converges uniformly on com-
pacts to f ′′/f ′. As ε0 → 0, the above integral converges to 0, and we
conclude that

lim
ε→0

∫
D

∣∣∣∣f ′′(z)f ′(z) −
f ′′ε (z)
f ′ε(z)

∣∣∣∣2 dz2 = 0.

It yields that Γ(1−ε) converges in the Weil–Petersson metric to Γ (see [15,
Cor. A.4] or [17, Lem. H]) and therefore IL(Γ(1−ε)) converges as well to
IL(Γ).
If IL(Γ) = ∞, from the lower-semicontinuity of the Loewner loop en-

ergy [13, Lem. 2.9] and the fact that Γ(1−ε) converges uniformly (param-
etrized by S1 via fε) to Γ, we have

lim inf
ε→0

IL(Γ(1−ε)) > IL(Γ) =∞.

Hence IL(Γ(1−ε)) converges to ∞ as ε→ 0. �
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