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CLASSIFICATION OF STRING LINKS UP TO
2n-MOVES AND LINK-HOMOTOPY

by Haruko A. MIYAZAWA,
Kodai WADA & Akira YASUHARA (*)

Abstract. — Two string links are equivalent up to 2n-moves and link-homotopy
if and only if their all Milnor link-homotopy invariants are congruent modulo n.
Moreover, the set of the equivalence classes forms a finite group generated by ele-
ments of order n. The classification induces that if two string links are equivalent
up to 2n-moves for every n > 0, then they are link-homotopic.
Résumé. — Deux enlacements d’intervalles sont équivalents à 2n-mouvements

et homotopie près si et seulement si leurs invariants d’homotopie de Milnor sont
congrus modulo n. De plus, l’ensemble des classes d’équivalence forme un groupe
fini engendré par des éléments d’ordre n. Cette classification implique que si deux
enlacements d’intervalles sont équivalents à 2n-mouvements près pour tout n > 0,
alors ils sont homotopes.

1. Introduction

In the 1950s, J. Milnor [22, 23] defined a family of link invariants, known
as Milnor µ-invariants. For an ordered oriented m-component link L in the
3-sphere S3, the Milnor number µL(I) (∈ Z) of L is specified by a finite
sequence I of elements in {1, . . . , m}. This number is only well-defined
up to a certain indeterminacy ∆L(I), i.e. the residue class µL(I) of µL(I)
modulo ∆L(I) is a link invariant. The invariant µL(ij) for a sequence ij
is just the linking number between the ith and jth components of L. This
justifies regarding µ-invariants as “generalized linking numbers”.

Keywords: Milnor invariant, link, string link, 2n-move, link-homotopy, Fox’s congruence
class, clasper.
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In [13], N. Habegger and X.-S. Lin defined Milnor numbers for string
links and proved that Milnor numbers are well-defined invariants without
taking modulo. These numbers are called Milnor µ-invariants. It is remark-
able that µ-invariants for non-repeated sequences classify string links up
to link-homotopy [13] (whereas µ-invariants are not enough strong to clas-
sify links with four or more components up to link-homotopy [18]). Here
the link-homotopy, introduced by Milnor in [22], is the equivalence relation
on (string) links generated by self-crossing changes and ambient isotopies.
In addition to link-homotopy, there are various “geometric” equivalence
relations on (string) links that are related to Milnor invariants, e.g. con-
cordance [3, 28], (self) Ck-equivalence [11, 14, 19, 30, 31], Whitney tower
concordance [5, 6, 7], etc.
A 2n-move is a local move illustrated in Figure 1.1, and the 2n-move

equivalence is the equivalence relation generated by 2n-moves and ambi-
ent isotopies. The 2n-moves were probably first studied by S. Kinoshita
in 1957 [15]. It is known that several 2n-move equivalence invariants are
derived from polynomial invariants, the Alexander [16], Jones, Kauffman
and HOMFLYPT polynomials [27]. Besides polynomial invariants, Fox col-
orings and Burnside groups give 2n-move equivalence invariants [8, 9].
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Figure 1.1. 2n-move

Both Milnor invariants and 2n-moves are well-studied in Knot Theory.

However, to the best of the authors’ knowledge, there are no research ar-

ticles relating Milnor invariants and 2n-moves (except for the easily ob-

served fact that the linking numbers modulo n are 2n-move equivalence

invariants). In this paper, we show the following theorem that establishes

an unexpected relationship between Milnor link-homotopy invariants and

2n-moves.

Theorem 1.1. — Let n be a positive integer. Two string links σ and

σ′ are (2n + lh)-equivalent if and only if µσ(I) ≡ µσ′(I) (mod n) for any

non-repeated sequence I.

Here, the (2n + lh)-equivalence is the equivalence relation generated by

2n-moves, self-crossing changes and ambient isotopies. Note that “2n+lh”
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Both Milnor invariants and 2n-moves are well-studied in Knot Theory.
However, to the best of the authors’ knowledge, there are no research ar-
ticles relating Milnor invariants and 2n-moves (except for the easily ob-
served fact that the linking numbers modulo n are 2n-move equivalence
invariants). In this paper, we show the following theorem that establishes
an unexpected relationship between Milnor link-homotopy invariants and
2n-moves.

Theorem 1.1. — Let n be a positive integer. Two string links σ and
σ′ are (2n + lh)-equivalent if and only if µσ(I) ≡ µσ′(I) (mod n) for any
non-repeated sequence I.

Here, the (2n + lh)-equivalence is the equivalence relation generated by
2n-moves, self-crossing changes and ambient isotopies. Note that “2n+ lh”
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stands for the combination of 2n-move equivalence and link-homotopy. In
order to prove Theorem 1.1, we give a complete list of representatives for
string links up to (2n+ lh)-equivalence (Proposition 5.3).
Let SL(m) denote the set of m-component string links. Since the set of

link-homotopy classes of SL(m) forms a group [13], it can be seen that the
set of (2n+ lh)-equivalence classes is also a group. Moreover, we have the
following.

Corollary 1.2. — The set of (2n + lh)-equivalence classes of SL(m)
forms a finite group generated by elements of order n, and the order of the
group is ns(m), where

s(m) =
m∑
r=2

(r − 2)!
(
m

r

)
.

The link-homotopy, concordance and Ck-equivalence give group struc-
tures on those equivalence classes of SL(m), respectively [13, 14]. The set
of link-homotopy classes is a torsion free group of rank s(m) ([13, Sec-
tion 3]), and the concordance classes contain elements of order 2. It is still
open if the concordance classes contain elements of order > 3, and if the
Ck-equivalence classes have torsion elements. In contrast to these facts,
Corollary 1.2 implies that, for any integer n > 2, the (2n+ lh)-equivalence
classes contain elements of order n.
As a consequence of Theorem 1.1, we obtain a necessary and sufficient

condition for a link in S3 to be (2n + lh)-equivalent to the trivial link by
means of Milnor numbers.

Corollary 1.3 (Corollary 6.4). — Let n be a positive integer. An m-
component link L in S3 is (2n+lh)-equivalent to the trivial link if and only
if µL(I) ≡ 0 (mod n) for any non-repeated sequence I.

In [12], R. H. Fox introduced the notion of congruence classes modulo
(n, q) of knots in S3 for integers n > 0 and q > 0, and asked whether the set
of congruence classes of a knot determines the knot type. More precisely, he
asked the following question: If two knots are congruent modulo (n, q) for
every n and q, then are they ambient isotopic? We note that the notion of
congruences and the question can be extended to (string) links. It is known
in [12, 17, 25, 26] that the Alexander and Jones polynomials restrict the
possible congruence classes. In particular, M. Lackenby proved that if two
links are congruent modulo (n, 2) for every n, then they have the same
Jones polynomial [17, Corollaly 2.4].
Since the 2n-move equivalence implies the congruence modulo (n, 2), it

would be interesting to ask whether the set of 2n-move equivalence classes
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of a (string) link determines the link type. Theorem 1.1 implies that if two
string links are 2n-move equivalent for every n, then they share all Milnor
invariants for non-repeated sequences. Combining this and the classification
of string links up to link-homotopy [13], we have the following corollary.

Corollary 1.4. — If two string links are 2n-move equivalent for ev-
ery n, then they are link-homotopic. In particular, if a (string) link L is
2n-move equivalent to the trivial one for every n, then L is link-homotopi-
cally trivial.

2. Preliminaries

In this section, we summarize the definitions of string links and their
Milnor invariants from [10, 13, 23, 30].

2.1. String links and Milnor µ-invariants

Let D2 be the unit disk in the plane equipped with m points x1, . . . , xm
in its interior, lying in order on the x-axis. Let I1, . . . , Im be m copies of
[0, 1]. An m-component string link is the image of a proper embedding

m⊔
i=1

Ii −→ D2 × [0, 1]

such that the image of each Ii runs from (xi, 0) to (xi, 1). Each strand of a
string link inherits an orientation from the usual orientation of [0, 1]. The
m-component string link {x1, . . . , xm} × [0, 1] in D2 × [0, 1] is called the
trivial m-component string link, and denoted by 1m.
Given an m-component string link σ, let G(σ) denote the fundamental

group of the complement (D2× [0, 1])\σ with a base point on the boundary
of D2×{0}, and let G(σ)q denote the qth term of the lower central series of
G(σ) (q = 1, 2, . . .). Let αi and li be the ith meridian and the ith longitude
of σ, respectively, illustrated in Figure 2.1. Abusing notation, we still denote
by αi the image of αi in the qth nilpotent quotient G(σ)/G(σ)q. We assume
that each li is the preferred longitude, i.e. the zero-framed parallel copy of
the ith component of σ. Since G(σ)/G(σ)q is generated by α1, . . . , αm
([4, 28]), the ith longitude li is expressed modulo G(σ)q as a word in
α1, . . . , αm for each i ∈ {1, . . . ,m}. We denote by λi this word.

ANNALES DE L’INSTITUT FOURIER
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x1 xi xm

x1 xi xmαi

x1 xi xm

x1 xi xm

li

Figure 2.1. The ith meridian αi and the ith longitude li

variables X1, . . . , Xm with integer coefficients. The Magnus expansion is a

homomorphism

E : ⟨α1, . . . , αm⟩ −→ Z⟨⟨X1, . . . , Xm⟩⟩

defined, for 1 ⩽ i ⩽ m, by

E(αi) = 1 +Xi, E(α−1
i ) = 1−Xi +X2

i −X3
i + · · · .

Let I = j1j2 . . . jki (k < q) be a sequence of elements in {1, . . . ,m}. The
coefficient ofXj1 · · ·Xjk in the Magnus expansion E(λi) is called theMilnor

µ-invariant for the sequence I and denoted by µσ(I) [13]. In particular, we

define µσ(i) = 0. The length |I| (= k+1) of I is called the length of µσ(I).

2.2. Milnor’s algorithm

To compute µσ(I) we need to obtain explicitly the word λi in α1, . . . , αm.

In [23], Milnor introduced an algorithm to give λi by using the Wirtinger

presentation of G(σ) and a sequence of homomorphisms ηq as follows. (Al-

though this algorithm was actually given for Milnor invariants of links in

S3, it can be applied to those of string links.)

Given an m-component string link σ, consider its diagram D1∪· · ·∪Dm.

Let ai1 be the arc which is incident to the endpoint {xi}×{0}. Successively
label the other arcs of the ith component Di as ai2, ai3, . . . , air(i) when we

go along Di with respect to the orientation by starting from the arc ai1,

where r(i) denotes the number of arcs of Di (i = 1, . . . ,m). Then the
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Let 〈α1, . . . , αm〉 denote the free group on the set {α1, . . . , αm}, and let
Z〈〈X1, . . . , Xm〉〉 denote the ring of formal power series in non-commuta-
tive variables X1, . . . , Xm with integer coefficients. The Magnus expansion
is a homomorphism

E : 〈α1, . . . , αm〉 −→ Z 〈〈X1, . . . , Xm〉〉

defined, for 1 6 i 6 m, by

E(αi) = 1 +Xi, E(α−1
i ) = 1−Xi +X2

i −X3
i + · · · .

Let I = j1j2 . . . jki (k < q) be a sequence of elements in {1, . . . , m}. The
coefficient ofXj1 · · ·Xjk in the Magnus expansion E(λi) is called theMilnor
µ-invariant for the sequence I and denoted by µσ(I) [13]. In particular, we
define µσ(i) = 0. The length |I| (= k+ 1) of I is called the length of µσ(I).

2.2. Milnor’s algorithm

To compute µσ(I) we need to obtain explicitly the word λi in α1, . . . , αm.
In [23], Milnor introduced an algorithm to give λi by using the Wirtinger
presentation of G(σ) and a sequence of homomorphisms ηq as follows. (Al-
though this algorithm was actually given for Milnor invariants of links in
S3, it can be applied to those of string links.)
Given anm-component string link σ, consider its diagram D1∪ · · · ∪Dm.

Let ai1 be the arc which is incident to the endpoint {xi}×{0}. Successively
label the other arcs of the ith component Di as ai2, ai3, . . . , air(i) when we
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go along Di with respect to the orientation by starting from the arc ai1,
where r(i) denotes the number of arcs of Di (i = 1, . . . , m). Then the
Wirtinger presentation of G(σ) has the form〈

aij (1 6 i 6 m, 1 6 j 6 r(i))∣∣a−1
ij+1u

−1
ij aijuij (1 6 i 6 m, 1 6 j 6 r(i)− 1)

〉
,

where the uij are generators or inverses of generators which depend on the
signs of the crossings. Here we put

vij = ui1ui2 . . . uij .

Let A denote the free group on the Wirtinger generators {aij}, and let
A denote the free subgroup generated by a11, a21, . . . , am1. A sequence of
homomorphisms ηq : A→ A is defined inductively by

η1(aij) = ai1,

ηq+1(ai1) = ai1, ηq+1(aij+1) = ηq
(
v−1
ij ai1vij

)
.

Let Aq denote the qth term of the lower central series of A, and let N
denote the normal subgroup of A generated by the Wirtinger relations
{a−1
ij+1u

−1
ij aijuij}. In [23, page 290], Milnor proved that

(2.1) ηq(aij) ≡ aij
(
modAqN

)
.

By the construction of the Wirtinger presentation, ai1 represents the ith

meridian of σ. Hence, we have the natural homomorphism

φ : A −→ 〈α1, . . . , αm〉

defined by φ(ai1) = αi (i = 1, . . . , m). Since vir(i)−1 = ui1 . . . uir(i)−1
represents an ith longitude, for the preferred longitude li we regard that
li = asi1vir(i)−1 for some s ∈ Z. Moreover, we can identify φ ◦ ηq(li) with λi
by Congruence (2.1).

3. Milnor invariants and 2n-moves

In this section, we discuss the invariance of Milnor invariants under
2n-moves.

ANNALES DE L’INSTITUT FOURIER
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3.1. Milnor link-homotopy invariants and 2n-moves

The following theorem reveals how Milnor link-homotopy invariants, i.e.
µ-invariants for non-repeated sequences, behave under 2n-moves.

Theorem 3.1. — Let n be a positive integer. If two string links σ and σ′
are (2n+lh)-equivalent, then µσ(I) ≡ µσ′(I) (mod n) for any non-repeated
sequence I.

For P,Q ∈ Z〈〈X1, · · · , Xm〉〉, we use the notation P
(n)
≡ Q if P − Q is

contained in the ideal generated by n. To show Theorem 3.1, we need the
following lemma.

Lemma 3.2. — Let n > 2 be an integer and let σ be an m-component
string link. For any Wirtinger generators aij and akl of G(σ), there exists
R(Xi, Xk) ∈ Z〈〈X1, · · · , Xm〉〉 such that each term of R(Xi, Xk) contains
Xi and Xk, and

E
(
φ ◦ ηq

((
aεija

δ
kl

)±n)) (n)
≡ 1 +

(
n

2

)
R(Xi, Xk) +O(2),

where ε, δ ∈ {1,−1} and O(2) is the ideal generated by monomials con-
taining at least twice Xr for some r (= 1, . . . , m).

Proof. — By the definition of ηq, φ ◦ ηq
(
aεij
)

= w−1αεiw for some word
w in α1, . . . , αm. Put E(w) = 1 +W and E(w−1) = 1 +W , where W and
W denote the terms of degree > 1. Note that (1 + W )(1 + W ) = 1. Then
it follows that

E
(
φ ◦ ηq

(
aεij
))

= E
(
w−1αεiw

)
=
(
1 +W

)
(1 + εXi) (1 +W ) +O(2)

= 1 + εXi + εXiW + εWXi + εWXiW +O(2)
= 1 + εP (Xi) +O(2),

where P (Xi) = Xi+XiW +WXi+WXiW . Note that each term in P (Xi)
contains Xi. Similarly, we have

E
(
φ ◦ ηq

(
aδkl
))

= 1 + δQ(Xk) +O(2),

TOME 71 (2021), FASCICULE 3
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where Q(Xk) denotes the terms of degree > 1, each of which contains Xk.
Therefore, we have the following.

E
(
φ ◦ ηq

((
aεija

δ
kl

)n))
=
(

(1 + εP (Xi) +O(2)) (1 + δQ(Xk) +O(2))
)n

=
(
1 + εP (Xi) + δQ(Xk) + εδP (Xi)Q(Xk) +O(2)

)n
= 1 +

n∑
r=1

(
n

r

)(
εP (Xi) + δQ(Xk) + εδP (Xi)Q(Xk) +O(2)

)r
= 1 +

2∑
r=1

(
n

r

)(
εP (Xi) + δQ(Xk) + εδP (Xi)Q(Xk) +O(2)

)r +O(2)

(n)
≡ 1 +

(
n

2

)(
εP (Xi) + δQ(Xk) + εδP (Xi)Q(Xk) +O(2)

)2 +O(2)

(n)
≡ 1 +

(
n

2

)(
P (Xi) +Q(Xk) + P (Xi)Q(Xk) +O(2)

)2 +O(2)

= 1 +
(
n

2

)(
P (Xi)Q(Xk) +Q(Xk)P (Xi)

)
+O(2).

Similarly, we have

E
(
φ ◦ ηq

((
aεija

δ
kl

)−n))
= E

(
φ ◦ ηq

((
a−δkl a

−ε
ij

)n))
(n)
≡ 1 +

(
n

2

)(
Q(Xk)P (Xi) + P (Xi)Q(Xk)

)
+O(2)

= 1 +
(
n

2

)(
P (Xi)Q(Xk) +Q(Xk)P (Xi)

)
+O(2).

Putting R(Xi, Xk) = P (Xi)Q(Xk) + Q(Xk)P (Xi), we obtain the desired
congruence. �
Proof of Theorem 3.1. — Since it is obvious for n = 1, we consider

the case n > 2. Since µ-invariants for non-repeated sequences are link-
homotopy invariants, we show that their residue classes modulo n are pre-
served under 2n-moves.
Assume that two m-component string links σ and σ′ are related by a

single 2n-move. A 2n-move involving two strands of a single component is
realized by link-homotopy. Furthermore, a 2n-move whose two strands are
oriented antiparallel is generated by link-homotopy and a 2n-move whose
strands are oriented parallel; see Figure 3.1. The link-homotopy in the
figure is given by the fact that two 2-component string links having the

ANNALES DE L’INSTITUT FOURIER
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same linking number are link-homotopic. Thus, we may assume that two
strands performing the 2n-move, which relates σ to σ′, are oriented parallel
and belong to different components. Moreover, the 2n-move is realized by
the move in the disk ∆ of Figure 3.2. It follows that there are diagrams
D and D′ of σ and σ′, respectively, which are identical except in ∆ where
they differ as illustrated in Figure 3.2.
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isotopy

link-homotopy

2n-move

1 2n 1 2n

Figure 3.1

Put labels aij (1 ⩽ i ⩽ m, 1 ⩽ j ⩽ r(i)) on all arcs of D as described in

Section 2.2, and put labels a′ij on all arcs in D′ \∆ which correspond to the

arcs labeled aij in D \∆. Also put labels b′1, . . . , b
′
2n, c

′
1, . . . , c

′
2n on the arcs

of D′ in ∆ as illustrated in Figure 3.2. Let A′ be the free group on {a′ij} ∪
{b′1, . . . , b′2n, c′1, . . . , c′2n} and A′ the free subgroup on {a′11, a′21, . . . , a′m1}.
Let η′q : A′ → A′ denote the sequence of homomorphisms associated with

D′ given in Section 2.2, and define a homomorphism ϕ′ : A′ → ⟨α1, . . . , αm⟩
by ϕ′(a′i1) = αi (i = 1, . . . ,m).

Note that for a non-repeated sequence I = j1 . . . jki, the Milnor invariant

µ(I) is the coefficient of Xj1 · · ·Xjk which does not involve Xi. Hence, for

the ith preferred longitudes li and l′i associated withD andD′, respectively,
it is enough to show that

(3.1) E (ϕ ◦ ηq (li))
(n)≡ E

(
ϕ′ ◦ η′q (l′i)

)
+O(2) + P(Xi)

for any 1 ⩽ i ⩽ m, where P(Xi) is the ideal generated by monomials

containing Xi. To show this congruence, we use the following claim.

Claim 3.3. — For any 1 ⩽ i ⩽ m and 1 ⩽ j ⩽ r(i), we have

E (ϕ ◦ ηq (aij))
(n)≡ E

(
ϕ′ ◦ η′q

(
a′ij

))
+O(2).
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Figure 3.1.

Put labels aij (1 6 i 6 m, 1 6 j 6 r(i)) on all arcs of D as described in
Section 2.2, and put labels a′ij on all arcs in D′ \∆ which correspond to the
arcs labeled aij in D\∆. Also put labels b′1, . . . , b′2n, c′1, . . . , c′2n on the arcs
of D′ in ∆ as illustrated in Figure 3.2. Let A′ be the free group on {a′ij} ∪
{b′1, . . . , b′2n, c′1, . . . , c′2n} and A′ the free subgroup on {a′11, a

′
21, . . . , a

′
m1}.

Let η′q : A′ → A′ denote the sequence of homomorphisms associated withD′
given in Section 2.2, and define a homomorphism φ′ : A′ → 〈α1, . . . , αm〉
by φ′(a′i1) = αi (i = 1, . . . , m).
Note that for a non-repeated sequence I = j1 . . . jki, the Milnor invariant

µ(I) is the coefficient of Xj1 · · · Xjk which does not involve Xi. Hence, for
the ith preferred longitudes li and l′i associated with D and D′, respectively,
it is enough to show that

(3.1) E (φ ◦ ηq (li))
(n)
≡ E

(
φ′ ◦ η′q (l′i)

)
+O(2) + P(Xi)

for any 1 6 i 6 m, where P(Xi) is the ideal generated by monomials
containing Xi. To show this congruence, we use the following claim.

TOME 71 (2021), FASCICULE 3



898 Haruko A. MIYAZAWA, Kodai WADA & Akira YASUHARA

10 HARUKO A. MIYAZAWA, KODAI WADA, AND AKIRA YASUHARA

D :

D′ :

2n-move

∆

∆

akl−1

agh−1

akl

agh

akl+1

agh+1

a′kl−1

a′gh−1

a′kl

a′gh

a′kl+1

a′gh+1

b′1c′1

b′2

c′2
b′2n

c′2n

b′2n−2

c′2n−2

Figure 3.2. D and D′ are related by a single 2n-move.

Before showing Claim 3.3, we observe that it implies Congruence (3.1).

Without loss of generality, we may assume that i = 1, i.e. we compare

the preferred longitudes l1 = as11v1r(1)−1 and l′1 = a′t11v
′
1r(1)−1 (s, t ∈ Z).

Since the two strands in ∆ belong to different components, we only need

to consider two cases.

If both of the two strands in ∆ do not belong to the 1st component,

then s = t and l′1 is obtained from l1 by replacing u1j with u′
1j (j =

1, . . . , r(1)− 1) and a11 with a′11. Therefore, Congruence (3.1) follows from
Claim 3.3.

If one of the two strands in ∆ belongs to the 1st component, then Fig-

ure 3.2 indicates that l1 and l′1 can be written respectively in the forms

l1 = as11u11 . . . u1h−1u1h . . . u1r(1)−1

and

l′1 = a′
s−n
11 u′

11 . . . u
′
1h−1 (a

′
1ha

′
kl)

n
u′
1h . . . u

′
1r(1)−1.
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Figure 3.2. D and D′ are related by a single 2n-move.

Claim 3.3. — For any 1 6 i 6 m and 1 6 j 6 r(i), we have

E (φ ◦ ηq (aij))
(n)
≡ E

(
φ′ ◦ η′q

(
a′ij
))

+O(2).

Before showing Claim 3.3, we observe that it implies Congruence (3.1).
Without loss of generality, we may assume that i = 1, i.e. we compare
the preferred longitudes l1 = as11v1r(1)−1 and l′1 = a′

t
11v
′
1r(1)−1 (s, t ∈ Z).

Since the two strands in ∆ belong to different components, we only need
to consider two cases.
If both of the two strands in ∆ do not belong to the 1st component, then

s = t and l′1 is obtained from l1 by replacing u1j with u′1j(j = 1, . . . , r(1)−
1) and a11 with a′11. Therefore, Congruence (3.1) follows from Claim 3.3.

If one of the two strands in ∆ belongs to the 1st component, then
Figure 3.2 indicates that l1 and l′1 can be written respectively in the forms
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l1 = as11u11 . . . u1h−1u1h . . . u1r(1)−1

and

l′1 = a′
s−n
11 u′11 . . . u

′
1h−1 (a′1ha′kl)

n
u′1h . . . u

′
1r(1)−1.

Both E(φ ◦ ηq(as11)) and E(φ′ ◦ η′q(a′
s−n
11 )) have the form 1 + P(X1). Fur-

thermore, by Lemma 3.2 we have

E
(
φ′ ◦ η′q

(
(a′1ha′kl)

n) ) (n)
≡ 1 +

(
n

2

)
R(X1, Xk) +O(2) = 1 +P(X1) +O(2).

Therefore, this together with Claim 3.3 proves Congruence (3.1).
Now, we turn to the proof of Claim 3.3. The proof is done by induction

on q. The assertion certainly holds for q = 1. Recall that

φ ◦ ηq+1 (aij+1) = φ ◦ ηq
(
v−1
ij ai1vij

)
and

φ′ ◦ η′q+1
(
a′ij+1

)
= φ′ ◦ η′q

(
v′ij
−1
a′i1v

′
ij

)
.

If vij does not pass through ∆, then it is clear that v′ij is obtained from
vij by replacing aij with a′ij . Therefore,

E (φ ◦ ηq (vij))
(n)
≡ E

(
φ′ ◦ η′q

(
v′ij
))

+O(2)

by the induction hypothesis. This implies that

E (φ ◦ ηq+1 (aij+1)) = E
(
φ ◦ ηq

(
v−1
ij ai1vij

))
(n)
≡ E

(
φ′ ◦ η′q

(
v′ij
−1
a′i1v

′
ij

))
+O(2)

= E
(
φ′ ◦ η′q+1

(
a′ij+1

))
+O(2).

If vij passes through ∆, then vij and v′ij can be written respectively in
the forms

vij = ui1 . . . uih−1uih . . . uij

and

v′ij = u′i1 . . . u
′
ih−1 (a′iha′kl)

n
u′ih . . . u

′
ij .
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Put

E (φ ◦ ηq (ui1 . . . uih−1)) = 1 + F,

E
(
φ ◦ ηq

(
(ui1 . . . uih−1)−1

))
= 1 + F ,

E (φ ◦ ηq (uih . . . uij)) = 1 +G

and

E
(
φ ◦ ηq

(
(uih . . . uij)−1

))
= 1 +G,

where F, F ,G and G denote the terms of degree > 1. Then we have

E (φ ◦ ηq+1 (aij+1)) =
(
1 +G

) (
1 + F

)
(1 +Xi) (1 + F ) (1 +G) .

It follows from the induction hypothesis that

E
(
φ′ ◦ η′q+1

(
a′ij+1

))
(n)
≡
(
1 +G

)
E
(
φ′ ◦ η′q

(
(a′iha′kl)

−n
)) (

1 + F
)

(1 +Xi)

× (1 + F )E
(
φ′ ◦ η′q

(
(a′iha′kl)

n)) (1 +G) +O(2).

Lemma 3.2 implies that

E
(
φ′ ◦ η′q+1

(
a′ij+1

))
(n)
≡
(
1 +G

)(
1 +

(
n

2

)
R(Xi, Xk)

)(
1 + F

)
(1 +Xi)

× (1 + F )
(

1 +
(
n

2

)
R(Xi, Xk)

)
(1 +G) +O(2).

In particular, we have the following.(
1 +

(
n

2

)
R(Xi, Xk)

)(
1 + F

)
(1 +Xi) (1 + F )

(
1 +

(
n

2

)
R(Xi, Xk)

)
=
(

1 +
(
n

2

)
R(Xi, Xk)

)(
1 +

(
1 + F

)
Xi (1 + F )

)(
1 +

(
n

2

)
R(Xi, Xk)

)
= 1 +

(
1 + F

)
Xi (1 + F ) + 2

(
n

2

)
R(Xi, Xk) +O(2)

(n)
≡ 1 +

(
1 + F

)
Xi (1 + F ) +O(2)

=
(
1 + F

)
(1 +Xi) (1 + F ) +O(2).

This proves Claim 3.3, and hence completes the proof of Theorem 3.1. �
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3.2. Milnor isotopy invariants and 2p-moves

For Milnor isotopy invariants, i.e. µ-invariants possibly with repeated
sequences, we have the following.

Proposition 3.4. — Let p be a prime number. If two string links σ and
σ′ are 2p-move equivalent, then µσ(I) ≡ µσ′(I) (mod p) for any sequence
I of length 6 p.

Remark 3.5.
(1) The restriction on the length of sequences in Proposition 3.4 must

be necessary. In fact, there exists the following example: Let σ = σ4
1 ,

where σ1 is the generator of 2-braids. We can verify that µσ(112) =
1 by using a computer program written by Y. Takabatake, T. Ku-
boyama and H. Sakamoto [29].(1) While σ is 4-move equivalent to
12, µσ(112) is not congruent to 0 modulo 2.

(2) Proposition 3.4 cannot be extended to the 2n-move equivalence
classes of string links for a nonprime number n. For example, let
σ = σ8

1 then the computer program of Takabatake–Kuboyama–
Sakamoto gives us that µσ(211) = 10. While σ is 8-move equivalent
to 12, µσ(211) is not congruent to 0 modulo 4.

Proof of Proposition 3.4. — Let D and D′ be diagrams of m-component
string links σ and σ′, respectively. Assume that D and D′ are related by
a single 2p-move whose strands are oriented parallel. (In the case where
the orientations of two strands of a 2p-move are antiparallel, the proof is
strictly similar. Therefore, we omit the case.) We use the same notation as
in the proof of Theorem 3.1. It is enough to show that, for any 1 6 i 6 m,

E (φ ◦ ηq (li))
(p)
≡ E

(
φ′ ◦ η′q (l′i)

)
+ (terms of degree > p).

By arguments similar to those in the proof of Theorem 3.1, l′i is obtained
from li by replacing akl with a′kl for all k, l and inserting the pth powers
of elements in the free group A′ on the Wirtinger generators of G(σ′). The
following claim completes the proof. �

Claim 3.6. —
(1) For any word w in α1, . . . , αm, we have

E (wp)
(p)
≡ 1 + (terms of degree > p).

(1)Using the technique of “grammar compression”, Takabatake, Kuboyama and Saka-
moto [29] made a computer program in the program language C++, based on Milnor’s
algorithm, which is able to give us µ-invariants of length 6 16.
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(2) For any 1 6 i 6 m and 1 6 j 6 r(i), we have

E (φ ◦ ηq (aij))
(p)
≡ E

(
φ′ ◦ η′q

(
a′ij
))

+ (terms of degree > p).

Proof. — Put E(w) = 1 +W , where W denotes the terms of degree > 1.
Then

E (wp) = (1 +W )p
(p)
≡ 1 +W p.

This proves Claim 3.6(1).
By arguments similar to those in the proof of Claim 3.3, η′q+1(a′ij) is

obtained from ηq+1(aij) by replacing ηq(akl) with η′q(a′kl) for all k, l and
inserting η′q(wp) for some elements w in A′. Hence, using Claim 3.6(1), we
complete the proof of Claim 3.6(2) by induction on q. �

4. Claspers

To show Theorem 1.1, we will use the theory of claspers introduced by
K. Habiro in [14]. In this section, we briefly recall the basic notions of
clasper theory from [14]. We only need the notion of Ck-tree in this paper,
and refer the reader to [14] for the general definition of claspers.

4.1. Definitions

Definition 4.1. — Let σ be a string link in D2 × [0, 1]. An embedded
disk T in D2× [0, 1] is called a tree clasper for σ if it satisfies the following:

(1) T decomposes into disks and bands.(2)

(2) Bands are called edges and each of them connects two distinct disks.
(3) Each disk has either one or three incident edges, and is then respec-

tively called a disk-leaf or node.
(4) σ intersects T transversely and the intersections are contained in

the union of the interior of the disk-leaves.
We say that T is a Ck-tree if the number of disk-leaves of T is k + 1, and
is simple if each disk-leaf of T intersects σ at a single point. (Note that a
tree clasper is called a strict tree clasper in [14].)

(2)More precisely, T has a handle decomposition with 0-handles (“disks”) and 1-handles
(“bands”).
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We will make use of the drawing convention for claspers of [14, Figure 7]
except for the following: A +© (resp. −©) on an edge represents a positive
(resp. negative) half-twist. This replaces the circled S (resp. S−1) notation
used in [14].
Given a Ck-tree T for a string link σ, there is a procedure to construct

a zero-framed link γ(T ) in the complement of σ. Surgery along T means
surgery along γ(T ). Since surgery along γ(T ) preserves the ambient space,
surgery along the Ck-tree T can be regarded as a local move on σ in D2 ×
[0, 1]. Denote by σT the string link in D2 × [0, 1] which is obtained from σ

by surgery along T . Similarly, we define the string link σT1 ∪ ··· ∪Tr obtained
from σ by surgery along a disjoint union of tree claspers T1 ∪ · · · ∪ Tr. A
Ck-tree T having the shape of the tree clasper in Figure 4.1 (with possibly
some half-twists on the edges of T ) is called a linear Ck-tree. As illustrated
in Figure 4.1, surgery along a simple linear Ck-tree for σ is ambient isotopic
to a band summing of σ and the (k + 1)-component Milnor link(3) .
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surgery

Figure 4.1. Surgery along a simple linear Ck-tree

4.2. Some technical lemmas

This subsection gives some lemmas, which will be used to show Theo-

rem 1.1.

Given a Ck-tree T for an m-component string link σ = σ1 ∪ · · · ∪ σm,

the set { i σi ∩ T ̸= ∅, 1 ⩽ i ⩽ m} is called the index of T and denoted by

Ind(T ). The following is a direct consequence of [11, Lemma 1.2].

Lemma 4.2 (cf. [11, Lemma 1.2]). — Let T be a Ck-tree for a string

link σ with |Ind(T )| ⩽ k. Then σT is link-homotopic to σ.

The set of ambient isotopy classes of m-component string links has a

monoid structure under the stacking product “∗”, and with the trivial m-

component string link 1m as the unit element. Combining Lemma 4.2 and

[31, Lemma 2.4], we have the following.

Lemma 4.3 (cf. [31, Lemma 2.4]). — Let T be a Ck-tree for 1m, and let

T be a Ck-tree obtained from T by adding a half-twist on an edge. Then

(1m)T ∗ (1m)T is link-homotopic to 1m.

By Lemma 4.2 together with [20, Lemma 2.2 (2) and Remark 2.3], we

have the following.

Lemma 4.4 (cf. [20, Lemma 2.2 (2) and Remark 2.3]). — Let T1 be a

Ck-tree for a string link σ, and T2 a Cl-tree for σ. Let T ′
1 ∪ T ′

2 be obtained

from T1 ∪ T2 by changing a crossing of an edge of T1 and that of T2. Then

σT1∪T2 is link-homotopic to σT ′
1∪T ′

2
.

By parallel tree claspers we mean a family of r parallel copies of a tree

clasper T for some r ⩾ 1. We call r the multiplicity of the parallel clasper.

The following can be proved by Lemma 4.2 and [20, Lemma 2.2 (1) and

Remark 2.3].

Lemma 4.5 (cf. [20, Lemma 2.2 (1) and Remark 2.3]). — Let T1 be

a Ck-tree for a string link σ, and T2 a parallel Cl-tree with multiplicity

SUBMITTED ARTICLE : 20200515-KODAIWADA.TEX

Figure 4.1. Surgery along a simple linear Ck-tree

The Ck-equivalence is the equivalence relation on string links generated
by surgery along Ck-trees and ambient isotopies. Habiro proved that two
string links σ and σ′ are Ck-equivalent if and only if there exists a disjoint
union of simple Ck-trees T1 ∪ · · · ∪ Tr such that σ′ is ambient isotopic to
σT1∪ ··· ∪Tr [14, Theorem 3.17]. This implies that surgery along any Ck-tree
can be replaced with surgery along a disjoint union of simple Ck-trees.
Hereafter, by a Ck-tree we mean a simple Ck-tree.

4.2. Some technical lemmas

This subsection gives some lemmas, which will be used to show Theo-
rem 1.1.
(3)Also referred to as the Sutton Hoo link because of a cauldron chain from the Sutton
Hoo exhibited in the British Museum [10, page 222].
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Given a Ck-tree T for an m-component string link σ = σ1 ∪ · · · ∪ σm,
the set { i σi ∩ T 6= ∅, 1 6 i 6 m} is called the index of T and denoted by
Ind(T ). The following is a direct consequence of [11, Lemma 1.2].

Lemma 4.2 (cf. [11, Lemma 1.2]). — Let T be a Ck-tree for a string
link σ with | Ind(T )| 6 k. Then σT is link-homotopic to σ.

The set of ambient isotopy classes of m-component string links has a
monoid structure under the stacking product “∗”, and with the trivial
m-component string link 1m as the unit element. Combining Lemma 4.2
and [31, Lemma 2.4], we have the following.

Lemma 4.3 (cf. [31, Lemma 2.4]). — Let T be a Ck-tree for 1m, and let
T be a Ck-tree obtained from T by adding a half-twist on an edge. Then
(1m)T ∗ (1m)T is link-homotopic to 1m.

By Lemma 4.2 together with [20, Lemma 2.2(2) and Remark 2.3], we
have the following.

Lemma 4.4 (cf. [20, Lemma 2.2(2) and Remark 2.3]). — Let T1 be a
Ck-tree for a string link σ, and T2 a Cl-tree for σ. Let T ′1 ∪ T ′2 be obtained
from T1 ∪ T2 by changing a crossing of an edge of T1 and that of T2. Then
σT1∪T2 is link-homotopic to σT ′1∪T ′2 .

By parallel tree claspers we mean a family of r parallel copies of a tree
clasper T for some r > 1. We call r the multiplicity of the parallel clasper.
The following can be proved by Lemma 4.2 and [20, Lemma 2.2(1) and
Remark 2.3].

Lemma 4.5 (cf. [20, Lemma 2.2(1) and Remark 2.3]). — Let T1 be a
Ck-tree for a string link σ, and T2 a parallel Cl-tree with multiplicity r

for σ. Let T ′1 ∪ T ′2 be obtained from T1 ∪ T2 by sliding a leaf f of T1
over r parallel leaves of T2 (see Figure 4.2). Then σT1∪T2 is link-homotopic
to σT ′1∪T ′2∪Y , where Y denotes the parallel Ck+l-tree with multiplicity r

obtained by inserting a vertex v in the edge e of T2 and connecting v to
the edge incident to f as illustrated in Figure 4.2.

5. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.
Habegger and Lin [13] proved that Milnor link-homotopy invariants clas-

sify string links up to link-homotopy. In [31], the third author gave an al-
ternative proof for this by using clasper theory. Actually, he constructed
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r for σ. Let T ′
1 ∪ T ′

2 be obtained from T1 ∪ T2 by sliding a leaf f of T1

over r parallel leaves of T2 (see Figure 4.2). Then σT1∪T2
is link-homotopic

to σT ′
1∪T ′

2∪Y , where Y denotes the parallel Ck+l-tree with multiplicity r

obtained by inserting a vertex v in the edge e of T2 and connecting v to

the edge incident to f as illustrated in Figure 4.2.

T2 T1

σ

rf

e

Y

v

T ′
2 T ′

1

σ

r r

Figure 4.2

5. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.

Habegger and Lin [13] proved that Milnor link-homotopy invariants clas-

sify string links up to link-homotopy. In [31], the third author gave an al-

ternative proof for this by using clasper theory. Actually, he constructed

explicit representatives, determined by Milnor link-homotopy invariants,

for the link-homotopy classes as follows. Let π : {1, . . . , k} → {1, . . . ,m}
(2 ⩽ k ⩽ m) be an injection such that π(i) < π(k − 1) < π(k) (i =

1, . . . , k− 2), and let Fk be the set of such injections. Given π ∈ Fk, let Tπ

and Tπ be linear Ck−1-trees with index {π(1), . . . , π(k)} illustrated in the

left- and right-hand side of Figure 5.1, respectively. Here, Figure 5.1 de-

scribes the images of homeomorphisms from neighborhood of Tπ and Tπ to

the 3-ball. Putting Vπ = (1m)Tπ and V −1
π = (1m)Tπ

, we have the following.

Theorem 5.1 ([31, Theorem 4.3]). — Let σ be an m-component string

link. Then σ is link-homotopic to σ1 ∗ · · · ∗ σm−1, where for each k,

σk =
∏

π∈Fk+1

V xπ
π ,

with

xπ =

{
µσ(π(1)π(2)) (k = 1),

µσ(π(1) . . . π(k + 1))− µσ1∗···∗σk−1
(π(1) . . . π(k + 1)) (k ⩾ 2).
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Figure 4.2.

explicit representatives, determined by Milnor link-homotopy invariants,
for the link-homotopy classes as follows. Let

π : {1, . . . , k} → {1, . . . , m} (2 6 k 6 m)

be an injection such that π(i) < π(k − 1) < π(k) (i = 1, . . . , k − 2), and
let Fk be the set of such injections. Given π ∈ Fk, let Tπ and Tπ be linear
Ck−1-trees with index {π(1), . . . , π(k)} illustrated in the left- and right-
hand side of Figure 5.1, respectively. Here, Figure 5.1 describes the images
of homeomorphisms from the neighborhoods of Tπ and Tπ to the 3-ball.
Putting Vπ = (1m)Tπ and V −1

π = (1m)Tπ , we have the following theorem.
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Tπ Tπ

π(k) π(k − 1)

π(1) π(2) π(k − 2)

π(k) π(k − 1)

π(1) π(2) π(k − 2)

Figure 5.1. Linear Ck−1-trees Tπ and Tπ with index {π(1), . . . , π(k)}

The following is the key lemma to show Theorem 1.1.

Lemma 5.2. — Let n be a positive integer and ε ∈ {1,−1}. Then, for
any π ∈ Fk+1 (1 ⩽ k ⩽ m− 1), V εn

π is (2n+ lh)-equivalent to 1m.

Proof. — Since V −n
π ∗ V n

π is link-homotopic to 1m by Lemma 4.3, it is

enough to show the case ε = 1, i.e. for any π ∈ Fk+1, V
n
π is (2n + lh)-

equivalent to 1m. For the case k = 1, we see that V n
π and 1m are related

by a single 2n-move.

Assume that k ⩾ 2. Let T1 be the linear Ck−1-tree for 1m of Figure 5.2 (a)

with index {π(1), . . . , π(k)}, and let T 1 be obtained from T1 by adding a

positive half-twist on an edge. Then 1m is link-homotopic to (1m)T 1∪T1
by

Lemma 4.3. Let T2 be the parallel C1-tree of Figure 5.2 (b) with multiplicity

n. Since surgery along T2 is realized by a 2n-move, (1m)T 1∪T1
is 2n-move

equivalent to (1m)T 1∪T1∪T2
in Figure 5.2 (b). Let T ′

1 ∪T ′
2 be obtained from

T1 ∪ T2 by sliding a leaf of T1 over n parallel leaves of T2, and let Y be

the parallel Ck-tree with multiplicity n as illustrated in Figure 5.2 (c). It

follows from Lemmas 4.4 and 4.5 that (1m)T 1∪T1∪T2
is link-homotopic to

(1m)T 1∪T ′
1∪T ′

2∪Y . Furthermore, by Lemma 4.3, (1m)T 1∪T ′
1∪T ′

2∪Y is (2n+lh)-

equivalent to (1m)Y = V n
π . □

Combining Theorem 5.1 and Lemma 5.2, we give a complete list of rep-

resentatives for string links up to (2n+ lh)-equivalence as follows.

Proposition 5.3. — Let σ be an m-component string link and xπ as

in Theorem 5.1. Then σ is (2n+ lh)-equivalent to τ1 ∗ · · · ∗ τm−1, where for

each k,

τk =
∏

π∈Fk+1

V yπ
π

with 0 ⩽ yπ < n and yπ ≡ xπ (mod n).

SUBMITTED ARTICLE : 20200515-KODAIWADA.TEX

Figure 5.1. Linear Ck−1-trees Tπ and Tπ with index {π(1), . . . , π(k)}

Theorem 5.1 ([31, Theorem 4.3]). — Let σ be an m-component string
link. Then σ is link-homotopic to σ1 ∗ · · · ∗ σm−1, where for each k,

σk =
∏

π ∈Fk+1

V xππ ,
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with

xπ ={
µσ(π(1)π(2)) (k = 1),
µσ(π(1) . . . π(k + 1))− µσ1 ∗ ···∗σk−1(π(1) . . . π(k + 1)) (k > 2).

The following is the key lemma to show Theorem 1.1.

Lemma 5.2. — Let n be a positive integer and ε ∈ {1,−1}. Then, for
any π ∈ Fk+1 (1 6 k 6 m− 1), V εnπ is (2n+ lh)-equivalent to 1m.

Proof. — Since V −nπ ∗ V nπ is link-homotopic to 1m by Lemma 4.3, it is
enough to show the case ε = 1, i.e. for any π ∈ Fk+1, V nπ is (2n + lh)-
equivalent to 1m. For the case k = 1, we see that V nπ and 1m are related
by a single 2n-move.

Assume that k > 2. Let T1 be the linear Ck−1-tree for 1m of Figure 5.2(a)
with index {π(1), . . . , π(k)}, and let T 1 be obtained from T1 by adding a
positive half-twist on an edge. Then 1m is link-homotopic to (1m)T 1 ∪T1

by
Lemma 4.3. Let T2 be the parallel C1-tree of Figure 5.2(b) with multiplicity
n. Since surgery along T2 is realized by a 2n-move, (1m)T 1 ∪T1

is 2n-move
equivalent to (1m)T 1 ∪T1 ∪T2

in Figure 5.2(b). Let T ′1 ∪T ′2 be obtained from
T1 ∪ T2 by sliding a leaf of T1 over n parallel leaves of T2, and let Y be
the parallel Ck-tree with multiplicity n as illustrated in Figure 5.2(c). It
follows from Lemmas 4.4 and 4.5 that (1m)T 1 ∪T1 ∪T2

is link-homotopic to
(1m)T 1 ∪T ′1 ∪T ′2 ∪Y

. Furthermore, by Lemma 4.3, (1m)T 1 ∪T ′1 ∪T ′2 ∪Y
is (2n+

lh)-equivalent to (1m)Y = V nπ . �
Combining Theorem 5.1 and Lemma 5.2, we give a complete list of rep-

resentatives for string links up to (2n+ lh)-equivalence as follows.

Proposition 5.3. — Let σ be an m-component string link and xπ as
in Theorem 5.1. Then σ is (2n+ lh)-equivalent to τ1 ∗ · · · ∗ τm−1, where for
each k,

τk =
∏

π∈Fk+1

V yππ

with 0 6 yπ < n and yπ ≡ xπ (mod n).

Proof. — Theorem 5.1 implies that σ is link-homotopic to σ1∗· · ·∗σm−1,
where

σk =
∏

π ∈Fk+1

V xππ .
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(a)

(b)

π(k + 1) π(k)

π(1) π(2) π(k − 1)

T1

T 1

T1

T 1

T2

n

(c)

Y

T ′
1

T 1

T ′
2

n

n

Figure 5.2

Proof. — Theorem 5.1 implies that σ is link-homotopic to σ1∗· · ·∗σm−1,

where

σk =
∏

π∈Fk+1

V xπ
π .

By Lemmas 5.2 and 4.3, we can insert/delete V ±n
π and remove V ε

π ∗ V −ε
π

up to (2n+ lh)-equivalence (ε ∈ {1,−1}). Hence, σk is (2n+ lh)-equivalent

to τk for each k. □
Proof of Theorem 1.1. — This follows from Theorem 3.1 and Proposi-

tion 5.3. □
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Proof. — Theorem 5.1 implies that σ is link-homotopic to σ1∗· · ·∗σm−1,

where

σk =
∏

π∈Fk+1

V xπ
π .

By Lemmas 5.2 and 4.3, we can insert/delete V ±n
π and remove V ε

π ∗ V −ε
π

up to (2n+ lh)-equivalence (ε ∈ {1,−1}). Hence, σk is (2n+ lh)-equivalent

to τk for each k. □
Proof of Theorem 1.1. — This follows from Theorem 3.1 and Proposi-

tion 5.3. □
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Proof. — Theorem 5.1 implies that σ is link-homotopic to σ1∗· · ·∗σm−1,

where

σk =
∏

π∈Fk+1

V xπ
π .

By Lemmas 5.2 and 4.3, we can insert/delete V ±n
π and remove V ε

π ∗ V −ε
π

up to (2n+ lh)-equivalence (ε ∈ {1,−1}). Hence, σk is (2n+ lh)-equivalent

to τk for each k. □
Proof of Theorem 1.1. — This follows from Theorem 3.1 and Proposi-

tion 5.3. □
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(c)

Figure 5.2.

By Lemmas 5.2 and 4.3, we can insert/delete V ±nπ and remove V επ ∗ V −επ

up to (2n+ lh)-equivalence (ε ∈ {1,−1}). Hence, σk is (2n+ lh)-equivalent
to τk for each k. �

Proof of Theorem 1.1. — This follows from Theorem 3.1 and Proposi-
tion 5.3. �

Proof of Corollary 1.2. — By combining Theorem 1.1, Lemma 5.2 and
Proposition 5.3, we have the corollary. �
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Remark 5.4. — Theorem 1.1 characterizes Milnor link-homotopy invari-
ants modulo n by two local moves, the 2n-move and self-crossing change.
In [1], B. Audoux, P. Bellingeri, J.-B. Meilhan and E. Wagner defined Mil-
nor invariants, denoted by µw, for welded string links and proved that
µw-invariants for non-repeated sequences classify welded string links up to
self-crossing virtualization. (Later, this classification led to a link-homotopy
classification of 2-dimensional string links in 4-space [2]). For welded string
links, we can show a similar result to Theorem 1.1 that characterizes
µw-invariants for non-repeated sequences modulo n in terms of the 2n-
move and self-crossing virtualization. While the idea of the proof is similar
to that of Theorem 1.1, we need arrow calculus and representatives for
welded string links up to self-crossing virtualization given in [21] instead of
clasper calculus and representatives for string links up to link-homotopy.
We give the details in [24].

6. Links in S3

In the previous sections, we have studied string links. We now address
the case of links in S3.

Given an m-component string link σ, its closure is an m-component link
in S3 obtained from σ by identifying points on the boundary of D2 × [0, 1]
with their images under the projection D2 × [0, 1]→ D2. The link inherits
an ordering and orientation from σ. Note that every link can be represented
by the closure of some string link.
Habegger and Lin proved that for two link-homotopic links L and L′, and

for a string link σ whose closure is L, there exists a string link σ′ whose
closure is L′ such that σ′ is link-homotopic to σ [13, Lemma 2.5]. Similarly,
we have the following.

Lemma 6.1. — Let n be a positive integer. Let L and L′ be (2n+ lh)-
equivalent (resp. 2n-move equivalent) links and σ a string link whose closure
is L. Then there exists a string link σ′ whose closure is L′ such that σ′ is
(2n+ lh)-equivalent (resp. 2n-move equivalent) to σ.

The proof is strictly similar to that of [13, Lemma 2.5], and hence we
omit it.
Let σ be a string link. We define ∆σ(I) to be the greatest common divisor

of all µσ(J) such that J is obtained from I by removing at least one index
and permuting the remaining indices cyclically. It is known from [13] that
the integer ∆σ(I) and the residue class of µσ(I) modulo ∆σ(I) are invari-
ants of the closure of σ. For a link L, we define ∆(n)

L (I) to be gcd{∆σ(I), n}
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and µ
(n)
L (I) to be the residue class of µσ(I) modulo ∆(n)

L (I) for a string
link σ whose closure is L. Obviously, ∆(n)

L (I) and µ(n)
L (I) are invariants of

L. Moreover, we have the following.

Proposition 6.2. — Let L and L′ be links.
(1) Let n be a positive integer. If L and L′ are (2n + lh)-equivalent,

then ∆(n)
L (I) = ∆(n)

L′ (I) and µ(n)
L (I) = µ

(n)
L′ (I) for any non-repeated

sequence I.
(2) Let p be a prime number. If L and L′ are 2p-move equivalent, then

∆(p)
L (I) = ∆(p)

L′ (I) and µ
(p)
L (I) = µ

(p)
L′ (I) for any sequence I of

length 6 p.

Proof. — Let σ be a string link whose closure is L. By Lemma 6.1, there
exists a string link σ′ whose closure is L′ such that σ′ is (2n+lh)-equivalent
to σ. By Theorem 3.1, for any non-repeated sequence I, µσ(I) ≡ µσ′(I)
(mod n). Therefore,

∆(n)
L (I) = gcd {∆σ(I), n} = gcd {∆σ′(I), n} = ∆(n)

L′ (I).

Since ∆(n)
L (I) divides n, it follows that

µσ(I) ≡ µσ′(I)
(

mod ∆(n)
L (I)

)
.

This completes the proof of Proposition 6.2(1).
Using Proposition 3.4 instead of Theorem 3.1, Proposition 6.2(2) is

shown similarly. �
Proposition 6.2(1) together with Theorem 1.1 implies the following.

Theorem 6.3. — Let n be a positive integer, and let L and L′ be m-
component links. Assume that ∆(n)

L (I) = ∆(n)
L′ (I) = n for any non-repeated

sequence I of length m. Then, L and L′ are (2n+lh)-equivalent if and only
if µ(n)

L (I) = µ
(n)
L′ (I) for any non-repeated sequence I of length m.

Proof. — Since the “only if” part directly follows from Proposition
6.2(1), it is enough to show the “if” part.

Let σ and σ′ be string links whose closures are L and L′, respectively.
Since ∆(n)

L (I) = ∆(n)
L′ (I) = n for any non-repeated sequence I of length m,

it follows that
µσ(J) ≡ µσ′(J) ≡ 0 (mod n)

for any non-repeated sequence J of length < m. Furthermore, since µ(n)
L (I)

= µ
(n)
L′ (I) for any non-repeated sequence I of length m, we have

µσ(I) ≡ µσ′(I) (mod n).
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Hence, σ and σ′ are (2n + lh)-equivalent by Theorem 1.1. This completes
the proof. �
As a consequence of Theorem 6.3, we have the following.

Corollary 6.4. — Let n be a positive integer. An m-component link
L is (2n + lh)-equivalent to the trivial link if and only if ∆(n)

L (I) = n and
µ

(n)
L (I) = 0 for any non-repeated sequence I of length m.

Proof. — This follows from Proposition 6.2(1) and Theorem 6.3. �
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