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A COMBINATION THEOREM FOR CUBULATION
IN SMALL CANCELLATION THEORY
OVER FREE PRODUCTS

by Alexandre MARTIN & Markus STEENBOCK

ABSTRACT. — We prove that a group obtained as a quotient of the free product
of finitely many cubulable groups by a finite set of relators satisfying the classical
C’(1/6)-small cancellation condition is cubulable. This yields a new large class of
relatively hyperbolic groups that can be cubulated, and constitutes the first in-
stance of a cubulability theorem for relatively hyperbolic groups which does not
require any geometric assumption on the peripheral subgroups besides their cubula-
bility. We do this by constructing appropriate wallspace structures for such groups,
by combining walls of the free factors with walls coming from the universal cover
of an associated 2-complex of groups.

RisUME. — Nous montrons qu’un groupe obtenu comme quotient d’un produit
libre d’un nombre fini de groupes cubulables en ajoutant un nombre fini de relations
satisfaisant la condition de petite simplification C’(1/6) est lui aussi cubulable.
Cela donne une large classe de nouveaux groupes relativement hyperboliques qui
peuvent étre cubulés, et constitue le premier exemple de théoréme de combinaison
pour la cubulabilité de groupes relativement hyperboliques ne recquérant aucune
hypothese sur les sous-groupes périphéraux en dehors de leur cubulabilité. Nous
obtenons ceci en construisant des structures d’espaces a murs appropriées pour ces
groupes, en combinant des murs venant des facteurs libres avec des murs venant
du revétement universel d’un complexe de groupes de dimension 2 associé.

1. Introduction

The geometry of non-positively curved cube complexes has attracted
a lot of attention recently due to spectacular progress in several related
problems, most notably the solution to Thurston’s four remaining questions
on the structure of 3-dimensional manifolds, including the virtual Haken

Keywords: group actions on CAT(0) cube complexes, small cancellation theory over free
products, cubulation of groups.
Math. classification: 20F06, 20F65, 20F67.



1614 Alexandre MARTIN & Markus STEENBOCK

conjecture of Waldhausen [1]. An important problem in this circle of ideas
is to show that virtually special cubical complexes are stable under various
geometric operations. A main geometric task is to combine the various
wallspaces at hand to construct a wallspace structure for the group under
study.

1.1. Combination problems

A general combination problem for wallspaces can be formulated as
follows:

Combination Problem. Let G be a group acting on a polyhedral com-
plex X endowed with a wallspace structure, such that each non-trivial face
stabiliser admits a wallspace structure.

e Under which conditions can we combine such structures into a
wallspace structure for G?

e If each stabiliser is cubulable, under which conditions can we ensure
that G is cubulable?

This problem has been extensively studied to combine CAT(0) cube com-
plexes under strong (relative) hyperbolicity conditions on the group:

Amalgams and HNN extensions. Haglund-Wise [14] and Hsu-
Wise [17] prove that virtual specialness of groups is preserved under certain
amalgamated products or HNN extensions. In a such setting, G is acting
cocompactly on a tree X with vertex stabilisers that are CAT(0) cubulable.
Theorem 1.2 of [14] requires the vertex stabilisers and the whole groups to
be Gromov hyperbolic, while Theorem A of [17] requires that the group G
is hyperbolic relative to virtually abelian subgroups.

Cubical small cancellation theory. The malnormal virtually special
quotient theorem [34] deals with cubulable hyperbolic groups and proves
the cubulability of appropriate hyperbolic quotients, under strong cubical
small cancellation conditions [34, Def. 5.1].

Relatively hyperbolic groups. Hruska-Wise [16] prove that, for a
group G that is hyperbolic relative to a finite set of parabolic subgroups
(P;), the G-action on the CAT(0) cube complex dual to a finite family
of relatively quasiconvex subgroups is cocompact relative to P;-invariant
subcomplexes. If the parabolic subgroups are abelian and if the action on
the dual cube complex is proper, they show that the action is cocompact
on a truncation of that dual cube complex.

ANNALES DE L’INSTITUT FOURIER



CUBULATION IN SMALL CANCELLATION THEORY 1615
1.2. The main theorem

The main theorem of this article is a cubulation theorem for large classes
of relatively hyperbolic groups, without any assumption on the peripheral
subgroups besides their cubulability. These groups are realised as C’(1/6)
small cancellation groups over free products. Note that finitely presented
C’'(1/6) small cancellation groups over a free product of groups are hyper-
bolic relative to their free factors [26].

THEOREM 1.1 (cf. Theorem 4.4 and Theorem 4.6). — Let F be the free
product of finitely many cubulable groups. If G is a quotient of F by a
finite set of relators that satisfies the classical C'(1/6)—small cancellation
condition over F, then G is cubulable.

We explain our proof in all detail for one relator, and a free product
of two cubulable groups. We do so to keep the article easily accessible by
reducing too technical notations in Section 2. However, our proof is readily
extendable to the general setting, taking into account Remarks 2.19, 3.12,
3.36 below.

To the authors’ knowledge, there are no prior results for relatively hy-
perbolic groups to provide a cocompact action on the dual CAT(0) cube
complex without strong assumptions on the peripheral subgroups. In par-
ticular, the cocompactness of the action does not assume any condition on
the free factors besides their cubulability. This contrasts with the afore-
mentioned theorems where either stronger hyperbolicity conditions on the
group G, or stronger conditions on the peripheral subgroups are needed. In
particular, we do not need the peripheral subgroups to be hyperbolic, nor
do we need that they are virtually abelian.

Small cancellation over free products. The class of small cancel-
lation groups over free products provides a natural setting to study the
cubulability of groups acting cocompactly but not properly on higher-
dimensional complexes for two reasons. As we explain in this article, such
groups act in a very controlled way on 2-dimensional C’(1/6)—polygonal
complexes, and therefore provide natural and elementary examples to de-
velop a good geometric intuition. Moreover, small cancellation theory over
free products allows for the construction of groups with a wide range of
algebraic and geometric properties. For example, small cancellation theory
over free products was fundamental in showing strong embedding proper-
ties of infinite groups [24, 30], in the solution of non-singular equations over
groups [6, 7], in the construction of torsion-free groups without the unique
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1616 Alexandre MARTIN & Markus STEENBOCK

product property [2, 9, 27, 32] and in the construction of acylindrically hy-
perbolic groups with unexpected properties [10, Th. 1.7]. These techniques
should enable us, in theory, to produce large classes of cubulable groups
that have unexpected extreme properties.

1.3. Comparison to previous work of Wise on cubical small
cancellation

In the celebrated essay [34], Wise outlines a far-reaching extension of his
results from [33] on the action of finitely presented classical C’(1/6)-small
cancellation quotients on CAT(0) cube complexes. We explain here how
the small cancellation groups over free products considered in this paper
can be considered examples of Wise’s cubical small cancellation groups,
and to what extent Wise’s approach [34, Th. 5.50, Cor. 5.53] is sufficient
to recover some, but certainly not all, of the results obtained in this paper.

In this section, for the sake of a simplified comparison, we use the nota-
tions of [34].

1. Cubical presentations. The general setting of Wise’s cubical small
cancellation theory deals with so-called cubical presentations (X | Y) [34,
Sec. 3.2], which consists of a non-positively curved cube complex X, and a
local isometry ¢ : Y — X of non-positively curved cube complexes (Wise’s
theory deals with an arbitrary number of such maps, but for simplicity we
will restrict ourselves to the case of a single local isometry). To this data,
one can associate its mapping cone X*, whose fundamental group is the
quotient of 71 (X) by the normal subgroup generated by the image of ¢.

We obtain a cubical presentation associated with a quotient over a free
product of the form AxB /< w>>, for some appropriate element w of AxB,
as follows (here we only treat the torsion-free case): let us assume that the
word w is not a proper power, and that A and B are torsion-free. We choose
two non-positively curved complexes X 4 and X g with fundamental groups
A and B respectively, and connect them by an edge. This construction
yields a non-positively curved cube complex X with fundamental group
A x B. One can then associate to the word w an immersed simplicial loop
@ : P — X. This yields a cubical presentation for the quotient G :=
A*B/cws.

In Section 2, we explore such a construction in a technically precise way.
We can then treat such groups in more generality than was possible using
only the the methods of [34].

ANNALES DE L’INSTITUT FOURIER
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2. Properness of the action and the generalised B(6)—condition.
Wise gives conditions of a small cancellation nature that insures that the
universal cover of X* can be equipped with a wallspace structure that al-
lows for the study of the cubulability and the specialness of 71 (X*). In par-
ticular, the generalised B(6)—condition [34, Def. 5.1] is a key ingredient to
construct an appropriate wallspace structure for the group in [34, Th. 5.50],
and to obtain the properness of the action on the dual CAT(0) cube com-
plex. In presence of strong small cancellation conditions [34, Th. 3.20,
Cor. 3.32], Wise shows that the crucial non-positive curvature condition (2)
in his generalised B(6)—condition holds.

In our previous construction, by choosing a sufficiently large length for
the edge joining X 4 and X g, the generalised B(6)—condition can be verified
for the cubical presentation of G. In particular, Wise’s work can be adapted
to our setting to show that the groups we consider in this paper act properly
on a CAT(0) cube complex. Indeed, properness is treated in Theorem 5.50
of [34]. (One can verify the assertions: The conditions (1), (3), (4), (5)
and (6) of Wise generalised B(6)—condition are satisfied by construction;
Condition (2) follows from Corollary 3.32(1) in [34]. The conditions (2), (3)
and (4) of [34, Th. 5.50] are satisfied by construction as well.)

With these general ideas of Wise in the background, the approach fol-
lowed in this article provides a shorter and more explicit proof of the fact
that such groups act properly on CAT(0) cube complexes, and does not
require the full strength of Wise’s machinery. In particular, we do not use
the generalised B(6)—condition, nor do we use Wise’s detailed analysis of
cubical van Kampen diagrams.

3. Cocompactness of the action. Our most important contribution
lies in the cocompactness of the action. In Wise’s Corollary 5.53 [34] (and
in other related results as mentioned above), cocompactness of the action
follows from the hyperbolicity of the quotient group. It is therefore not
possible to recover our cubulability results from Wise’s argument in [34,
Th. 5.50, Cor. 5.53] when the free factors are not hyperbolic. In contrast to
such strong conditions, in this article we only require the universal cover
of the associated complex of groups to be hyperbolic. This can be thought
as controlling the geometry relative to the free factors, and not necessarily
the geometry of the whole group, to understand the geometric structure of
the wallspace.

TOME 67 (2017), FASCICULE 4
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1.4. Complexes of groups

In this article we adopt the point of view of complexes of groups, a high-
dimensional generalisation of a graph of groups, developed by Gersten—
Stallings [31], Corson [5], and Haefliger [11]. In particular, we associate to
a group G with small cancellation over a free product a 2-dimensional
complex of groups with fundamental group G. Its universal cover is a
C'(1/6)-small cancellation polygonal complex X on which G acts with
vertex stabilisers being conjugates of the free factors. To obtain a space
quasi-isometric to G, we then blow up vertices into CAT(0) cube com-
plexes. As a result, we obtain a polyhedral complex with a proper and
cocompact G-action. It is on such a polyhedral complex that we want to
define a wallspace structure, by combining the walls in X and the walls of
the various cube complexes present in the blown-up space.

This complex of groups approach is very natural: it allows us to work
directly with the geometric structure of the small cancellation complex X.
We can use it to explicitly combine walls of the free factors to obtain a
wallspace structure for the small cancellation quotient G.

It is this complex of groups approach that allows us to remove the strong
(relative) hyperbolicity conditions required in aforementioned articles: The
polygonal complex X itself is hyperbolic, but the blown-up space, which
is quasi-isometric to G, can have a very different geometry. One of the
key points in this complex of groups approach is to use the geometry of
the polygonal complex X to study the walls constructed in the blown-up
space.

Note that our main theorem then follows from the following, slightly more
general, statement that can be extracted from our proof of Theorem 1.1.

THEOREM 1.2. — Let X be C'(1/6)-small cancellation polygonal com-
plex on which a group G acts cocompactly, with cubulable vertex stabilisers
and trivial edge stabilisers. Then G is cubulable.

1.5. Applications

The existence of a cubulation, or more generally of a proper action on
a CAT(0) cube complex, has many interesting consequences. We list here
several corollaries of our main theorem.

ANNALES DE L’INSTITUT FOURIER
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Baum—Connes conjecture. Recall that a group acting properly on a
CAT(0) cube complex has the Haagerup property. In particular, such a
group satisfies the strong Baum—Connes conjecture [15] and does not have
Kazhdan’s Property (T). By relaxing our assumptions on the free factors,
we obtain a combination theorem for groups acting properly on locally
finite CAT(0) cube complexes.

THEOREM 1.3. — Let F be the free product of finitely many groups act-
ing properly on a locally finite CAT(0) cube complex. If G is the quotient
of F by a finite set of relators that satisfies the classical C’'(1/6)—small can-
cellation condition over F, then G acts properly on a locally finite CAT(0)
cube complex. In particular, G has the Haagerup property and thus the
strong Baum—Connes conjecture holds for G.

Consequences of Agol’s theorem. Let us mention two other signif-
icant applications of Theorem 1.1 in the particular case of (Gromov) hy-
perbolic groups. By a recent result of Agol [1] building upon a work of
Haglund-Wise [13, 14] among others, a hyperbolic group that acts prop-
erly and cocompactly on a CAT(0) cube complex is virtually a special
subgroup of a right-angled Artin group. In particular, this implies that a
cubulable hyperbolic group is residually finite, linear over the integers and
has separable quasiconvex subgroups. We thus obtain the following:

THEOREM 1.4. — Let F be the free product of finitely many hyperbolic
cubulable groups. If G is a quotient of F by a finite set of relators that
satisfies the classical C’(1/6)—small cancellation condition over F, then G
is residually finite, linear over the integers and has separable quasiconvex
subgroups.

Another application of Agol’s theorem, in the context of the Atiyah and
Kaplansky zero-divisor conjectures, was provided by [29]. The main result
therein, based on the work of Linnell-Schick—Okun and collaborators, see
for instance [18], implies the Atiyah conjecture on ¢2-Betti numbers for a
large class of groups having the Haagerup property, including cubulable
hyperbolic groups. We thus obtain the following:

THEOREM 1.5. — Let F be the free product of finitely many torsion-free
hyperbolic cubulable groups. If G is a torsion-free quotient of F' by a finite
set of relators that satisfies the classical C'(1/6)—small cancellation condi-
tion over F, then G satisfies the strong Atiyah conjecture. In particular, G
satisfies the Kaplansky zero-divisor conjecture over the complex numbers.

TOME 67 (2017), FASCICULE 4
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The Kaplansky zero-divisor conjecture asserts that the group ring over
the complex numbers of a torsion-free group contains no non-trivial zero-
divisor. A usual method to show the Kaplansky conjecture is to prove
the unique product property for the group. The question whether small
cancellation groups have the unique product property is a difficult and
long-standing open problem, cf. Problem N1140 of Ivanov in [22].

Open problem. Torsion-free groups without the unique product prop-
erty were constructed as graphical small cancellation groups over free prod-
ucts [2, 9, 27, 32]. It is unknown whether these so called generalised Rips—
Segev groups satisfy the Kaplansky zero-divisor conjecture. It is therefore
natural to ask, in light of Agol’s theorem, whether our approach can be
extended to cubulate some generalised Rips—Segev groups.

1.6. Methods

Let us detail the idea and structure of our proof.

Complexes of groups and spaces. In Section 2, we realise a C’'(1/6)
small cancellation group G over the free product F as the fundamental
group of a developable 2-dimensional complex of groups, the universal cover
of which is a C’(1/6)—small cancellation polygonal complex. From now on
we denote this polygonal complex by X. In order to prove that a group is
cubulable, a useful approach (which goes back to ideas of Sageev [12, 28]) is
to define an appropriate wallspace structure on it. Therefore, we first want
a space with a proper and cocompact action of G. The polygonal complex
X does not have this property in general. Indeed, vertex stabilisers are
conjugates of (the image in G of) the possibly infinite free factors of the
free product F.

The blow up space. To overcome this problem, we blow up vertices of
X. More precisely, we construct a simply connected space £G with a proper
and cocompact G-action as a complex of spaces (a high-dimensional gener-
alisation of the notion of tree of spaces) over X. This complex is polyhedral
and is a union of CAT(0) cube complexes and polygons. The CAT(0) cube
complexes are exactly the preimages of vertices of X and each one is en-
dowed with a geometric action by the associated vertex stabiliser. The
polygons of £G are in one-to-one correspondence with the polygons of X,
some of their edges map homeomorphically to edges of X, while portions
of their boundary are geodesics in some of the CAT(0) cube complexes

ANNALES DE L’INSTITUT FOURIER
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contained in £G (see Figure 2.3). This construction can be thought as a
generalisation of the action of a classical C’(1/6)-small cancellation quo-
tient over the free group on the universal cover of its presentation complex.

Walls on the building blocks of £G. The space £G is built up from
X and the fibre CAT(0) cube complexes.

In Section 3, we put a wallspace structure on (the set of vertices of) £G.
First notice that the walls of the small cancellation complex X, the so-called
hypergraphs introduced by Wise [33], naturally lift to walls of EG. However,
in the case where one of the free factors in the free product F is infinite this
collection of walls is not enough to separate elements of G in a conjugate
of the image of that factor. This corresponds to the problem of separating
vertices of £G in one of the CAT(0) cube complexes that is the preimage of
a vertex of X with an infinite stabiliser. Nonetheless, vertices of a CAT(0)
cube complex are separated by so-called hyperplanes. We therefore want
to “extend” hyperplanes in a given CAT(0) cube complex to walls of the
whole space £G. In order to do that, we extend Wise’s approach [33, 34]
to this more general setting.

Walls on complexes of CAT(0) cube complexes. Namely, every
time a polygon R of EG crosses a hyperplane in some vertex fibre along an
edge e, we want to combine this hyperplane with the diameter of R (seen as
a wall) starting at the midpoint of e. Such a procedure should have the fea-
ture that the resulting walls should be realised as trees of hyperplanes over
generalised hypergraphs of X. However, since polygons of £G have part of
their boundary contained in the vertex fibres, the overlaps between poly-
gons of £G can be quite different from the well controlled overlaps between
polygons of the small cancellation complex X. In order to overcome this
problem, we first perform an appropriate subdivision, called “balancing”,
of the complex (see Definition 3.23 for a precise definition). This procedure,
as well as the construction of walls, is detailed in Sections 2.1, 2.2 and 2.3.
The aforementioned generalised hypergraphs of X, together with the asso-
ciated generalised hypercarriers, are introduced in Section 2.1. They enjoy
the same properties as the usual notions introduced in [33], and Wise’s ar-
gument extends to this more general setting in a straightforward way. We
give the full proofs of these results in an Appendix.

Properness and cocompactness. Finally, we study in Section 4 the
set of walls of £G. Namely, we prove that this set of walls satisfies criteria
that, as shown by Chatterji-Niblo [4], imply that the action of G on the

TOME 67 (2017), FASCICULE 4
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CAT(0) cube complex associated with the wallspace structure is proper
and cocompact. This concludes the proof of Theorem 1.1.
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2. Complexes of groups and small cancellation over free
products of groups

Suppose G is a finitely presented group, viewed as a quotient of the free
group F,, on n generators. That is, G is given by generators g1, ..., g, and
finitely many relators rq, ..., r, € I, such that G is the quotient of the free
group by the normal closure of the subgroup generated by the relators. We
now recall the constructions of the presentation complex and the Cayley
complex associated with such presentations. We start from the bouquet of
n oriented cycles ¢y, ...c,. We label each cycle ¢; by the generator g;. For
each relator r; we take a polygonal 2-cell R;, whose boundary edges are
oriented and labelled by the generators such that the label of a boundary
path of R; equals r;. Then glue R; to the bouquet along its boundary word.
The complex so obtained is the presentation complex of G. Its universal
cover is the Cayley complex of G. Note that the fundamental group of the
presentation complex is G, and G has a free and cocompact action on the
associated Cayley complex.
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In this paper, we are interested in properties of groups G that are quo-
tients of the (non-trivial) free product F of finitely many groups. In this
section, we associate to a small cancellation quotient G of the free product
of two groups a developable 2-dimensional complex of groups with fun-
damental group G, the universal cover of which is a small cancellation
polygonal complex, see Definition 2.9. We shall think about this complex
of groups as of an analogue for the presentation complex in the case of
quotients of free product of groups. The action of G on the universal cover
is no longer proper as soon as one of the free factors is infinite. More
precisely, stabilisers of vertices correspond to conjugates of the free factors
in G. However, we can construct another polyhedral complex with a proper
and cocompact G-action, by blowing up vertices of the universal cover. This
polyhedral complex is the analogue of the Cayley complex for quotients of
free products of groups, and is obtained as a complex of spaces over the
universal cover.

2.1. Small cancellation groups over free products of groups

We summarize some aspects of the small cancellation theory of the free
product of two groups. A more complete treatment can be found in [19,
Chap. V.9]. We let F = A % B be the free product of two groups A and B.
The groups A and B are called the free factors. Every non-trivial element
of F can be represented in a unique way as a product w = hy - - - h,, called
the normal form, where h; is a non-trivial element in either A or B and
no two consecutive h;, h;y1 belong to the same free factor. Then the free
product length of w is given by |w]| := n.

The normal form of w is weakly cyclically reduced if |w| < 1 or hy # h;; L.
If u,v € F, u=hy---hy, v ="k ky, and h, = k;'*, then h,, and k;
cancel in the product uv. Otherwise, we say that the product uv is weakly
reduced.

Let R C F be a subset of F, each element of which is represented by a
weakly cyclically reduced normal form. Let G be the group defined as

G:=F/<r>,

where <R>> denotes the normal closure of R in F. We say that R is sym-
metrised if it is stable by taking weakly cyclically reduced conjugates and
inverses. Up to adding all weakly cyclically reduced conjugates of elements
of R and their inverses, we can always assume that R is symmetrised.

TOME 67 (2017), FASCICULE 4



1624 Alexandre MARTIN & Markus STEENBOCK

An element p in F is a piece if there are distinct relators r1,72 € R such
that the products ry = pu; and ro = pus are weakly reduced.

The set R satisfies the C’(1/6)—condition (over F) if it is symmetrised
and if for every piece p and every relator r € R such that the product
r = pu is weakly reduced, we have that

1ol < =17/
p g!"l

To avoid pathological cases, let us in addition assume that for all r € R
we have that |r| > 6. If these conditions are satisfied, we say that G is a
C’'(1/6)—group (over F).

THEOREM 2.1 ([19, Cor. V.9.4]). — Let G be a C'(1/6)—group over the
free product F. Then the projection map F — G embeds each free factor
of F.

THEOREM 2.2 ([26]). — Let G be a C’(1/6)-group over the free product
F. Then G is hyperbolic relative to the free factors. If all free factors are
hyperbolic, then so is G.

Alternatively this follows from Theorem 1 of [32] in the torsion-free case,
proved in a more general setting of graphical small cancellation over free
products, and the arguments extend without any change to allow torsion.

Example 2.3 (Fuchsian groups). — These are fundamental groups of
orientable surfaces of genus g with r cone-points of order my,...m,, and s
points or closed discs removed. They are generated by

ala"'7agub1a"'7bg7x17"'am7’7y1u"'7y57
with the relators
g T s m
I [ai, 010 2 10 gy, 2™

If 49 + 1+ s > 6, then the set of relators obtained from symmetrising the
word

7 (@, )10} g 5 T0 e
satisfies the C'(1/6)—condition over the free product

my

(@r) * (br) % -+ % (ag) * (bg) * (@1 | ]") % -+ (@ | ") % (Y1) * - (Ys)-
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2.2. Complex of groups associated with C’(1/6)—groups over a
free product of groups

Let w € F be an element satisfying the C’(1/6)—condition over F = Ax B
and define the group
G=4*B/cu>.
Observe that w acts hyperbolically on the Bass—Serre tree associated with
A x B by the small cancellation condition, and thus we can write

w = (aobo e aN_le_l)d,

where d > 1 and agbg...an_1by_1 is not a proper power in A * B. The
theory that we develop in this paper can readily be extended to the free
product of finitely many groups and to quotients with respect to finitely
many relators.

To an action of the group G on a simply connected polyhedral complex
X, one an associate a complex of groups G()) over the quotient Y = G\ X
and a morphism F from G(Y) to G [3, Sec. II1.C.2.9]. This construction can
be reversed. Namely, if one expects GG to act on a complex whose existence
is yet unknown, one can start by constructing a candidate for the associated
complex of groups G()) and the associated morphism F'. One can then use
tools from the theory of complexes of groups to check that this complex
of groups is indeed associated to an action of G on a simply connected
polyedral complex. This is the strategy we now follow: We start by defining
a complex of groups in Definition 2.4, and then check in Proposition 2.5
that it is associated to the action of the small cancellation quotient G on a
polygonal complex, whose construction is then detailed in Definition 2.6.

We start by defining several complexes, see Figure 2.1.

e Let L be the simplicial complex consisting of a single edge with
vertices us and upg, and let L’ be its barycentric subdivision with
¢ being the barycentre of L. The space L’ consists of two edges e 4
(containing u,4) and ep (containing ug).

e Let Ry be the model polygon on 2N sides, that is, a polygonal
complex consisting of a single 2-cell whose boundary consists of 2N
edges. We choose an orientation of Ry, a vertex vg in Ry, and then
denote by (v;);ez/2nz the remaining vertices, so that, seen from v;,
the vertex v;11 is the next vertex in the positive direction on dRy.

o Let Ry simp1 be the simplicial complex obtained from R by adding a
vertex, called apex, in the centre of the 2-cell, and, for each vertex v;
an edge, called radius, joining the apex to v;. In particular, Ro simpi
is the simplicial cone over a loop on 2N edges. For each i € Z/2NZ,
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let e; be the edge of Ry simpr between v; and s, and denote by o;
the triangle of Rg simp; containing e;_; and e;.
o Let R/O,simpl be the the barycentric subdivision of R gimpi-

Let us orient the edges in the 1-skeleton of L’ and R67simpl as follows.
If o & o are two simplices of L or R (i.e. vertices, edges, or faces) with
barycentres ¢ and ¢’ respectively, then the edge between c and ¢’ is oriented
from ¢’ to c¢; the barycentre ¢’ is called the initial vertex of that edge, the
barycentre c is called the terminal vertex of that edge. The two edges of
L' are, in particular, oriented towards the vertices u4 and up respectively.
If o G o/ & o with barycentres ¢, ¢’ and ¢” respectively, then the edges
a from ¢’ to ¢ and b from ¢’ to c¢ are said to be composable, and their
composition is defined to be the edge from ¢” to ¢, which we denote ba.

Starting from these complexes, we now define the CW-complexes

K .= (LU RO)/:, Kgimpl = (LU RO,simpl)/:
and K/~ 1= (L/ U RlO,simpl)/z .

simp

Let us first describe K{; .
ary of Rj g, Pointing towards a vertex vg; with the oriented edge es of
L', while oriented edges in the boundary of Ry ) pointing towards a ver-
tex v9;41 are identified with the oriented edge ep. The resulting simplicial

complex is K;impl. The construction is illustrated in Figure 2.1. Now, let

Here we identify oriented edges in the bound-

!
simpl

g:L'U Rg,simpl —
denote the projection, seen as the map between the underlying topological
spaces. The map ¢ restricts to a homeomorphism on the interior of each cell
of LURy and LURg ¢imp1- We can therefore push forward the CW-structures

of LU Ry and L U R simp1 using the map ¢, and we denote by
Kimpt = q(L U Ro gimp1) and K := ¢q(L U Ry)

the associated CW-complexes. In other words, Ky and K are obtained
from K;impl by forgetting, in each case from left to right, the additional
structure we have put on R&SimPl and Ry simpr respectively. In all three
cases, we use apex, radii, and v; to refer to their respective images in
Ré),simpl and K;imp
A small category without loop, or scwol in short, is an oriented graph
without loop with a notion of composability of edges, see [3, Chap. ITII.C
Def. 1.1]. The oriented 1-skeleton of the first barycentric subdivision of a
simplicial complex can be endowed with a structure of scwol. For such a
scwol and simplices ¢ C ¢/, we will denote by (o,0’) the oriented edge

corresponding that inclusion. We described a structure of scwol on the

, respectively.
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oriented 1-skeleton of L', which we denote £’, and on the oriented 1-skeleton
of R/O,simpl' These scwols can be glued together along the map ¢, yielding
a structure of scwol on the 1-skeleton of K; ,, which we denote K, .
Observe that pairs of composable edges of IC;impl are in 1-to-1 correspon-
dence with triangles of K{; . The simplicial complex K, is said to be
a geometric realisation of the scwol K ).

A complex of groups over a scwol Y consists of the data (Go,%s, gb.a)
of local groups G,, local maps 1., and twisting elements g, for every
pair (b,a) of composable edges of Y subject to additional compatibility
conditions, see [3, Chap. IIL.C, Def. 2.1]. To follow our construction details
of such kind are not a prerequisite. However, we refer the interested reader
to Bridson—Haefliger [3, Chap. IIL.C] for more terminology and background
on complexes of groups.

Before defining a complex of groups over K, ;, we associate to each
edge a of K, an element h, of G. For i > 0, we denote by w; € G the
product of the first ¢ factors of the product apbg---anx_1bny—_1. Thus, wy
is the trivial element, w1 = ag, we = agby, w3 = agbpay, etc. Now let us
define the following group elements (in what follows, the indices have to be
understood modulo 2N for the various simplicies involved):
for every 1 <i < 2N, by, 4 e, 1) i= Wi,
for every 1 <i < 2N, hy,_, 0,) = w;ll,
for every 1 <i < 2N, hp o, = wi_l,
for every 1 <i < 2N, hy, o) = w;l,
and heyy o0n) = wQ_]\lf
All the other elements h, are trivial.

R

'/
0,simpl

!

Figure 2.1. Part of the complex of groups G (ICSimpl). Twisting elements
corresponding to white triangles of Ry .., are trivial. (The element
1 denotes the generator of Z/dZ.)
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/
simpl

/

DEFINITION 2.4. — We define a complex of groups G(K;,, 1) over K,

as follows:

e the local groups at us and up are respectively A and B, the local
group at the apex is Z/dZ, and all the other local groups are trivial;

e all the local maps are trivial;

e the twisting element associated with a pair of composable edges
(b,a) is defined as gpq = hbhah;al. As the pairs of composable
edges are in bijective correspondence with the triangles of K,

we represent the twisting elements in Figure 2.1.

We also define a morphism F' = (F,, F(a)) of complexes of groups from

G(Kgimp1) to G. (A general definition of morphism of complexes of groups

can be found in [3, Chap. III.C, Def. 2.5].)

e The local morphisms F,,, : A - G and F,, : B — G are the
natural compositions A — Ax B — G and B — Ax B — G. The
morphism Z/dZ — G sends the generator 1 of Z/dZ to the image
of wony = agbg...an_1by_1 in G. All the other local morphisms
are trivial;

e For every edge of K! we set F'(a) := hy,.

simpl’

Let m1 (G (Kmp1)s ua) be the fundamental group of G(K{,,,)) at the ver-
tex ua, seen as the group of homotopy classes of G(K(;,,,)-loops, see [3,
Chap. IIL.C, Def. 3.5]. Let m F' : m1(G(K{,p1),ua) — G be the associ-
ated morphism of fundamental groups, see [3, Chap. III.C, Prop. 3.6]. The
following result is not surprising when viewed against the aforementioned
construction of the presentation complex. However, as complexes of groups
are in some technical points surprisingly different to the standard situation,

we give an elementary proof using the language of [3, Chap. III.C Sec. 3].
PRrROPOSITION 2.5. — The map
T F i (G(Kmp), ua) = G
is an isomorphism.

Proof. — Since A and B generate A x B, and thus G, the map 71 F' is
surjective. Let g be an element of ker m F' C 71 (G(K, 1), ua), and let v
be a G(K{;,,1)-loop based at ua in the homotopy class g. Note that it is

possible to homotop v to a loop the support of which is contained in the
image of L' in K/,

simpl*
In other words, if we denote by i : G(L') — G(K{,,,) the natural em-
bedding of complexes of groups (that is, the pullback of G(K;,,) under
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the inclusion of scwols £ < K, ), then the induced morphism of fun-

damental groups 714 : m1 (G (L"), ua) = m1(G (K1), ua) is surjective. Let
h be an element of 7 (G(L'),ua) such that g = mi(h). We thus have
w1 F(mi(h)) = 0. But since m F o myi : m(G(L'),ua) — G is the natural
projection AxB — Ax B/<<w>>, it follows that A is in the normal subgroup
generated by the G(L')-loop (ao,egl, en, by, efgl, ea,ay,...)% Thus, g is in
the normal closure of the G( ;impl)—loop (ao, ezl, en,bo, egl, ea,ay,...) 0 It
is now enough to prove that such a G (ICgimpl)—loop is homotopically trivial.
But the definition of 1 (G(K{,,1), ua) implies that this loop is homotopic

to the following edge-path (seen as a m1(G/(K{;,,,1), wa)-loop):

Figure 2.2. A homotopically trivial G(K., . )-loop.

simpl

which is homotopically trivial since the local group at the apex is Z/dZ,

hence the result. O
Let 2(©) (Kimp1) be the set of vertices of Ky, 1, let AL (Kimp1) be the set
of edges of Kl;,, 1, and let A2 ( «imp1) denote the set of pairs a = (az, a1) of

composable edges of K;,,, . For every (oriented) edge a define i(a) to be the
initial vertex, and t(a) to be the terminal vertex. For a = (az,a;) € A2)(Y),
we set i(a) :=i(ay) and t(a) := t(az). As a convention, we set i(a) := a and
t(a) := a for every vertex a of K, ;. We define maps

(90,(91 : Ql(l) — Q[(O)
by setting dg(a) :=i(a) and 0 (a) := t(a). For 0 < i < 2, we define maps
0; : Ql'(2)( éimpl) - Q’[(l)( éimpl)

by setting dy(az,a1) := agz, 01(az,a1) := azay, and dz(az,ay) := a.
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Let AF be the standard Euclidean k-simplex, that is, the set of elements
(to,...,tx) witht; > 0and > ,t; = 1. For k > 1 and 0 < i < k, we denote
the embeddings of the sides of A* by

di: AMT = AR

defined by sending (to, ..., tk—1) to (to,-.-,ti—1,0,t;, .., te—1)-

Since the morphism F' is injective on the local groups, the complex of
groups G(K{;,,,) is developable, namely it comes from the action of G on a
simply connected complex with quotient KJ; ., [3, Def. II1.C.2.11]. We now
explicitly construct the complex and the associated action. This complex
is the geometric realisation of the development D(K;,, ;, F') associated to
the morphism F : G(K{;,,) — G [3, Th. IILC.2.13], and is obtained by
patching up copies of R, using the complex of groups G(K/, ) and

/
0,simpl? simpl
the morphism F.

DEFINITION 2.6. — Let X/

«imp1 De the simplicial complex obtained from

the disjoint union
OJ;[Q aewk)(]—,[c,mpl)<Fi(a>(Gi(a>)\G x {a} x Ak)
by identifying pairs of the form
([gF(a)~ '), 0i0,2) and ([g],a,d;(z)) for 0<i<k
and a € AV (K., ) UAR (K

simpl simpl
vertex i(a) and terminal vertex i(0;a). We define a cellular action of G on

Xlimp1 by making it act on the left on each first factor.

), where a denotes the edge with initial

Note that there is a natural equivariant projection

m: X! l—>K’

simp simpl

obtained by forgetting the first coordinate. The CW-structure on Kgimpi
can be pulled-back along m, yielding a simplicial complex Xgimp with
barycentric subdivision X ;impl. For simplicity reasons, we still denote by 7
the projection map Xgimpr —+ Ksimpl-

We now construct our polygonal complex X as the pull back of the CW-
structure on K along 7. We can obtain X from X, as follows. We
denote by s € Kgimp1 the apex of Kgmpl and by S C Xgimp1 the preimage
of s under the projection 7 : Xgmp — Ksimpl, called the set of apices of
Xsimpl- A simplicial polygon of Xgimp is the star in Xgimp of an apex of .S,
that is, the subcomplex consisting of all simplices containing that apex as
a vertex. Two distinct simplicial polygons of Xgimp are either disjoint or
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meet along a subset of m~!(L). Let us delete all the apices of Xgmp and all
the edges containing them to obtain a polygonal complex denoted X, that
is, a CW-complex such that 2-cells are modelled after a model polygon EO
on d- 2N sides (which is an orbifold cover of the model polygon Ry on 2N
sides), and such that the various gluing maps Ry — 7~ (L) are simplicial.
Furthermore, we identify ﬁo with the polygon of X whose apex in Xgjmp
corresponds to the point {1} x {s} x A°.

By definition, X;impl is the geometric realisation of the development
DK pis F), see [3, Th. II1.C.2.13]. Note that the following result on com-

plexes of groups follows directly from [3, Prop. I11.C.3.14].

PROPOSITION 2.7. — Let G()) be a complex of groups over a scwol Y
whose geometric realisation is a simplicial complex, v be a vertex of ) and
F : G(Y) —» G a morphism from G()) to some group G that is injective
on the local groups.

The geometric realisation of the development D(Y, F') is a universal cover
of the complex of groups G(Y) if and only if the induced morphism 71 F :
m1(G(Y),v) = G is an isomorphism.

We thus obtain the following.

ProprosiTION 2.8. — The simplicial complex X;mpl is (equivariantly

isomorphic to) a universal cover of G(K{;,,,)- In particular, the small can-

cellation group G acts on X(;, ., with quotient K, .,

bilisers A, B, or Z/dZ at vertices mapped under 7 on the vertices ua, up,
or the apex respectively, and with trivial edge stabilisers.

with vertex sta-

Proof. — It is enough to prove that the conditions of Proposition 2.7
are satisfied. The geometric realisation of K, ; is the simplicial complex
K ipp- The morphism F': G(KY;,, ;) — G is injective on the local groups
as G is a C'(1/6)-small cancellation group, see Theorem 2.1. The result
thus follows from Proposition 2.5. g

DEFINITION 2.9 (piece, C’(1/6) polygonal complex). — Let Y be a
polygonal complex. A path of Y is an injective path in the 1-skeleton of Y .
For a path P of Y, we denote by |P| the number of edges of P, called its
length.

A piece of a polygonal complex Y is a path P of Y such that there exist
polygons Ry and Ry such that the map P — Y factorsas P —+ Ry — Y
and P — Ry — Y but there does not exist a homeomorphism OR; — OR5
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making the following diagram commute:

P ORy

e

OR; ——Y.

By convention, we also consider edges of Y as pieces.

The polygonal complexY is said to be a C'(\) polygonal complex, A > 0,
if for every piece P of Y and every polygon R of Y containing P in its
boundary, we have |P| < X\ - |0R).

PROPOSITION 2.10. — Let G be a C'(1/6)-small cancellation group
over the free product F. Then, the polygonal complex X defined above
is a C'(1/6) polygonal complex.

Proof. — Consider two polygons of X sharing an edge. Up to the action
of G, we can assume that such an edge contains the vertex of X that is the
image in X of the point (1¢,{ua},0) (with the notations of Definition 2.6,
and where we denote by 14 the unit element of G). The two chosen polygons
then correspond to two cyclic conjugates of w. By construction of G (K1),
these cyclic conjugates must be distinct. The result thus follows from the
C'(1/6)—condition satisfied by G. O

The Greendlinger Lemma [19] immediately implies the following, see for
instance [23, Lem. 13.2].

COROLLARY 2.11. — The polygons of X are embedded.

2.3. Complex of spaces with proper and cocompact action

A group is cubulable if it acts geometrically, i.e. properly discontinuously
and cocompactly, on a CAT(0) cube complex. From now on, we assume that
A and B are cubulable groups, and denote CAT(0) cube complexes with a
geometric action of A and B respectively by EA and EB respectively.

Let Y be a CW-complex. We consider the vertex set of Y as a metric
space, equipped with the graph- or edge metric on the 1-skeleton of Y. We
abuse notation and refer to this metric space again as Y.

We now apply a useful theory for classifying spaces of complexes of
groups [20, Sec. 2]. This theory provides us with an explicit construction
of a simply connected polyhedral complex with a geometric action of G.
The construction can be thought of as of blowing up the vertices of the
polygonal complex X.
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DEFINITION 2.12 ([20, Def. 2.2]). — Let G()) be a complex of groups
over a scwol ). A complex of classifying spaces EG(Y) compatible with
the complex of groups G()) consists of the following:

e For every vertex o of ), a space EG,, called a fibre, which is a
cocompact model for the classifying space for proper actions of the
local group G,

e For every edge a of Y with initial vertex i(a) and terminal vertex
t(a), a Gi-equivariant map ¢q : EGiq) — EGyq), that is, for
every g € Gy(q) and every v € EG;(,), we have

ba(9-7) = Ya(9)-da(),

and such that for every pair (b,a) of composable edges of YV, we
have

9b,a © (ybba = ¢b¢a-

Complexes of classifying spaces compatible with a given complex of
groups were shown to exist in full generality in [21]. However, we define
here an explicit complex of classifying spaces compatible with G(Kéimpl).
We use this space to define a wallspace structure in Section 3.3. We use
the same notations as in Section 2.2, in particular, we will denote by (o, c”)
the oriented edge of lCéimpl corresponding to an inclusion of simplices ¢ in
o’ of Kgimpi-

e The fibre EG,, := FA and EG,, := EB are the given CAT(0)
cube complexes. We view their vertex sets as metric spaces equipped
with the edge metric (also referred to as combinatorial metric). We
fix base vertices z4 € EG,,, and zp € EG,,, respectively.

e For each 7 = 0,1,..., N — 1, we choose an oriented combinatorial
geodesic

Va,i from z4 to a; - x4

in EG,,,, and denote by |4 ;| its edge length. Let EG.,, be the ori-
ented simplicial segment of |4 ;| edges, and let ¢(y , e,,) 1 EGey, —
EG,, be a parametrisation of 74 ;. In other words, the attaching
path 74 ; is realised as a simplicial embedding ¢, , c,,) from EG.,,
mapping the initial vertex of EG,,, to 4, and the terminal vertex
toa;-xy.

e Analogously, for each i =0..., N — 1, we choose an oriented com-
binatorial geodesic

vB,i from x5 to b; - zp

TOME 67 (2017), FASCICULE 4



1634

Alexandre MARTIN & Markus STEENBOCK

in EG,,, and denote by |yp;| its edge length. Let EG
the oriented simplicial segment of |yp ;| edges, and let ¢y, ey, :
EG.,,,, — EG,,; be a parametrisation of vp ;. In other words, the
attaching path yp ; is realised as a simplicial embedding ¢
from EG.,,,, mapping the initial vertex of EG
terminal vertex to b; - xg.

be

€24+4+1

uB;€2'i+1)
to z g, and the

€241
All the other fibres are reduced to a single point.
For each ¢ = 0...,2N — 1, the map ¢, ,,) sends the single
point EG,, to the terminal vertex of the oriented simplicial seg-
ment EG., ,, and the map ¢, »,) sends the single point EG,, to
the initial vertex of the oriented simplicial segment EG.,. For each
i=0...,2N —1, the map ¢(,,_, »,) sends the single point EG,, to
the point a; - x4 € EG,,, if i is even (respectively b; - zp € EG,,
if 7 is odd), the map ¢, »,) sends the single point EG,, to the the
point 4 € EG,, if i is even (respectively xp € EG,,, if i is odd).
The map ¢, 1, sends the single point EG, to the base vertex of
EG,,, and the map ¢, 1 sends the single point EG, to the base
vertex of EG, ;.

e All the other maps are the trivial ones.

It is straightforward to check that this indeed defines a complex of clas-

sifying spaces compatible with G (K

simpl)'

We now define, following [20], a geometric realisation £G of a classifying

space for proper and cocompact actions of G. As in our construction of X,

we use the explicitly given map F', and the attaching paths, to patch up

2-simplices and the fibre CAT(0) cube complexes in an appropriate way.

DEFINITION 2.13 (The space £G). — We construct a space EG, ob-
tained from the disjoint union

I1 11 (Fi(u)(Gi(u))\G x {a} x AF x EGi(a))

0<k<2 acq®M (K, )

by identifying pairs of the form

(l9F(a)1],0;a,2,04(8)) and ([g],a,d;(2),€), for 0<i<hk,

where a is the edge with initial vertex i(a) and terminal vertex i(9;a). We
define a cellular action of G on £G by making it act on the left on each

first factor. The various maps

FZ-( )(Gi(a))\G X {a} x AP x EGi(a) — Fi(a)(Gi(a)>\G X {Cl} x AF
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obtained by forgetting the last coordinate yield an equivariant projection
p:EG — X.

The preimage of a vertex v of X under p is called the fibre over v and
denoted EG,, as it is a cocompact model for the classifying space for proper
actions of the stabiliser G, of v.

L

&G

Figure 2.3. The polyhedrons of EG. The figure presents portions of
two simplicial polygons of X (one green, one red) and its preimage in
EG. Vertical triangles are shaded. Attaching paths in the various fibres
are coloured with respect to the associated polygon of X.

The following proposition is an application of Theorem 2.4 of [20].

PROPOSITION 2.14. — The space EG is simply connected, and the G-
action on it is proper and cocompact.

Remark 2.15. — This result was proven in [20, Theo. 2.4] in the case of
a complex of groups over a simplicial complex. Here, while G (lCéimpl) is not
a complex of groups over a simplicial complex, the geometric realisation of
Klimp1 is nonetheless a simplicial complex, and the proof of [20] carries over

to this case without any change.
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DEFINITION 2.16 (polyhedrons of £G, Figure 2.3). — The space EG is

a polyhedral complex as can be seen as follows. First note that we have, in

particular, a projection EG — K;, .

e FEach fibre is isomorphic to a locally finite CAT(0) cube complex,
more specifically EG, is isomorphic to EA if v is a vertex in the
preimage of us, and EG, is isomorphic to EB if v is a vertex in
the preimage of ug.

e Let R be a polygon of X, and denote by R its interior. The boundary
of p~Y(R) in G is a path of EG which is the concatenation of
geodesics in the fibres (which are translates of the chosen geodesics
YVA,i»7YB,) and paths which map homeomorphically onto edges of
Xsimpl- Thus, such a boundary comes equipped with a simplicial
structure, and we identify the closure of p_l(lo%) with the simplicial
cone over such a boundary path. The preimage of the closure p~! (R)
with this simplicial structure is called a simplicial polygon of £G.

This shows that EG is a polyhedral complex, and the projection map p :
EG — Xgimpl Is a polyhedral map. For a polygon R of X, we denote by

R := closure of p~*(R)
the unique associated simplicial polygon of £G.

DEFINITION 2.17 (horizontal, vertical polyhedrons). — We say that a
polyhedron of £G is horizontal if p restricts to a homeomorphism on it, and
vertical otherwise. For an edge e of X, we denote by € the unique horizontal
edge of G which maps onto e under p.

DEFINITION 2.18 (attaching paths). — Let R be a polygon of X and v
be a vertex of R. We define the attaching path of R along EG,,:

Pu,R ‘= EG, N é

In this section we have constructed a polygonal complex £G which is
a realisation of an analogue for quotients of free products of the Cayley
complex of the group G . In particular, the group G acts properly and
cocompactly on £G. The space £G was realised as a complex of spaces
over the C’(1/6)-small cancellation polygonal complex X constructed in
Section 2.2. £G is a polyhedral complex consisting of the following two
building blocks: polygons of £G, which are mapped to polygons of X (the
latter being modelled after the polygon RVO), and CAT(0) cube complexes,
which are fibre of vertices of X, and are isomorphic to the chosen complexes
E4 or Ep.

ANNALES DE L’INSTITUT FOURIER



CUBULATION IN SMALL CANCELLATION THEORY 1637

Remark 2.19. — Our constructions generalise to the setting of Theo-
rem 1.1 in a straightforward way. In the general case, the space L’ is a star
consisting of m + 1 vertices and m edges, a vertex ug, terminating the
j-th edge, a degree m vertex in the center. One constructs a complex of
groups with fundamental group G by iterating the “coning off” construc-
tion which we explained in the case of one relator, by gluing a polygon to
this star (and by choosing appropriate twisting elements) for each relator:
The universal cover of this complex of groups is again a C’(1/6)—polygonal
complex, the map F' and the space X being constructed in essentially the
same way. Each polygon of this complex corresponds to a conjugacy class
of a relator, and vertex stabilisers are conjugates of the free factors of F.

Similarly, our blow-up space construction of EG can be generalised in a
straightforward way.

Our next aim is to describe a wall structure on £G. One family of walls on
E( is obtained by lifting the walls of X. A second family of walls is obtained
by combining natural wall structures on the polygons of £G and the various
CAT(0) cube complexes. There is however, a priori, no canonical way to
combine these walls, see our explanation in Section 3.3. The geometric
structure of the corresponding wallspace associated with £G is controlled
using the properties of the C’(1/6)-small cancellation polygonal complex
X in combination with the properties of the fibre CAT(0) cube complexes.
The properties of X are discussed in Section 3.1 and the Appendix.

3. The wallspace

Spaces with walls were introduced by Haglund-Paulin [12] and generalise
essential properties of CAT(0) cube complexes.

DEFINITION 3.1 (wallspace). — A wallspace is a pair (Y,H) consisting
of a set Y together with a collection H of non-empty subsets of Y, called
half-spaces, such that:

e for every half-space H in H, its complement Y \ H is also in H,
e for every x,y of Y, there are only finitely many half-spaces H such
that v € H and y ¢ H.

A partition of Y into two half-spaces is called a wall, and we denote the
set of walls of (Y,H) (short: Y) by W(Y).

We say that a wall separates a pair of points of Y if each half-space
associated with that wall contains exactly one point of the pair. We say
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that two walls W = {H, Y \ H} and W’ = {H',Y \ H'} cross if all the
intersections HNH',HN(Y\H'), Y\H)NH',(Y\H)N(Y \ H') are non-
empty. We define the wall-pseudometric dyyy)(z,y) between two points
z,y of Y to be the number of walls separating them. We say that a group
acts on a wallspace if it acts on the underlying set and preserves the set of
half-spaces.

DEFINITION 3.2 (wallspace on a polyhedral complex). — A structure
of wallspace on a polyhedral complex is a structure of wallspace on its
vertex set.

If a wall of a polyhedral complex is defined by means of the complement
of a separating subset containing no vertex, we will abuse notation and not
distinguish the associated wall and the separating subset.

Whenever a group acts on a space with walls, one can associate an action
of the group on a CAT(0) cube complex by isomorphisms. This follows from
arguments of [28], and the CAT(0) cube complex can explicitly be described
using the walls, see [4, 25] for the explicit construction. Let G be a small
cancellation group over the free product of two groups. The aim of this
section is to define a set of walls W on the polyhedral complex £G, turning
EG into a wallspace. The above mentioned general procedure then yields
the cube complex C)y associated with the action of G on the wallspace
(EG,W).

Again, G denotes the small cancellation quotient AxB /<w>, and X
the C’(1/6)-polygonal complex constructed in Section 2.

3.1. Galleries, hypercarriers and hypergraphs

In this section we introduce fundamental notions and theory that we use
later to define walls and then to study their geometric structure. In what
follows, while results are stated for the polygonal complex X, the results
hold for an arbitrary C’(1/6)—polygonal complex.

DEFINITION 3.3 (far apart). — Let R be a polygon of a C'(1/6)—
polygonal complex and T, 1o two simplices of its boundary OR. We say
that 71 and 1o are far apart in R if no path P in OR containing both 7|
and 1o is a concatenation of strictly less than four pieces.

Example 3.4. — 1In a C'(1/6)—polygonal complex all polygons of which
have an even number of edges, opposite edges of a given polygon are far
apart.
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Remark 3.5. — 1If two cells of a given polygon R of a C’'(1/6)—polygonal
complex are far apart in R, then the polygon R is unique by the small
cancellation condition. We thus simply say that these cells are far apart,
the reference to R being implicit.

DEFINITION 3.6 (polygon with doors, system of doors). — A polygon
with doors is a polygon R of X, referred as the underlying cell, together
with a choice of simplices 11,72 of OR called doors. We will denote such
a data Ry; r,3. (We often write Ry, ,,, indistinctly for a polygon with
doors and for its underlying cell.)

A system of doors is a collection C of polygons with doors. We will simply
speak of a polygon of C when speaking of a polygon with doors of C. A
door of C is a door of a polygon of C.

Note that a door can be an edge as well as a vertex in the boundary of
a polygon.

DEFINITION 3.7 (Gallery). — A gallery is a system of doors C satisfying
the following conditions.

e (coherence condition) For every pair of polygons Ry, r,}, Rz 3
of C with the same underlying cell and such that 7, = 71, we also
have 15 = 7).

e (far apart condition) For every polygon Ry, ,,} of C, the doors T
and 19 are far apart in the sense of Definition 3.3.

e (connectedness condition) For every pair of doors 7,7 of C, there
exists a sequence

R{‘rl,fg}v R{72,73}> ey R{‘rn,_l,rn}

of polygons with doors of C such that T = 1, and 7" = 7,,.

DEFINITION 3.8 (hypercarrier and hypergraph associated with a gallery).
Given a gallery C, we associate a polygonal complex to it as follows. Take
the disjoint union of all polygons Ry, .,y of C. Whenever P is a path
embedded in ORy;, .,y and ORy,, .y, and if P embeds in X such that P
is contained in the intersection of ORy;, .,y and OR(;, ;.3 in X, then we
identity ORy;, -,y and ORy, ;,, along P. The resulting polygonal complex
is denoted by Y¢ and called the hypercarrier associated with C.

For each polygon Ry, ;,3 of C, we denote by L., r,y the path of Ry, ;.\
which is the union of the radii of Ry, ,,y joining the apex of R¢; .,y to
the barycentres of 7 and To. Let

Ac = UL{T1,72} cYe.
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We call A¢ the hypergraph associated with C.

The hypercarrier Y comes endowed with a map i¢ : Yo — X, by map-
ping every polygon in Y¢ to the corresponding polygon in X. This map is
by construction an immersion on the 1-skeletons.

We note that our hypercarriers and hypergraphs extend the correspond-
ing notions of Wise [33, Def. 3.2 and 3.3]. In particular, Wise’s hypercarriers
and hypergraphs are defined by means of opposite edges, see Section 3.2.1.
Our far apart condition allows, in contrast, the study of hypergraphs and
hypercarriers that are not associated with opposite edges. Our definition
moreover includes hypergraphs going through the vertices of X. The hy-
percarriers we consider are therefore allowed to have cutpoints at such
vertices, cf. Figure 3.1. Such configurations do not appear in [33].

(Y Y YN
NAACALS

Figure 3.1. Examples of hypercarriers with their associated hyper-
graphs (in red) and doors (in green). Configurations on the left are
studied in detail in [33]. The configurations on the right are studied in
detail in the appendix.

DEFINITION 3.9 (convex). — A subcomplex Y is called convex if every
geodesic between two vertices of Y is contained in Y.

The following results extend Lemma 3.11 and Theorem 3.18 of [33],
cf. Proposition 3.14.

THEOREM 3.10 (cf. Prop. A.9, Cor. A.14 and Prop. A.16). — Let C be
a gallery in X. Then:

e [ts hypercarrier Y¢ is connected and simply connected and the map
ic : Y(C) = X is an embedding.

e The associated hypergraph A¢ is a tree which embeds in X.

e The subcomplex Y¢ of X is convex.
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COROLLARY 3.11. — Polygons of X are convex.

The proofs are by - now standard - small cancellation arguments, and
extend the original arguments of Wise in a straightforward way, using our
far apart condition. We give a complete account of the arguments in Ap-
pendix A.

We study several examples of galleries, hypergraphs and hypercarriers
below. In Section 3.2.1 we review Wise’s hypergraphs and hypercarriers
associated with diametrically opposed edges in the C’(1/6)—-small cancella-
tion complex X. In Section 3.3.2 we lift such hypergraphs and hypercarriers
to £G. Finally, in Section 3.3.3 we modify £G to extend the hyperplanes
in the fibres of £G. We obtain graphs of spaces whose projection to X are
hypergraphs associated with a gallery of X. In all three situations, we show
that the complement of a hypergraph defines a wall. Here Theorem 3.10 is
essential.

3.2. Walls on the building blocks

Recall that the space £G has two building blocks, the polygons of £G and
the CAT(0) cube complexes that are fibres of vertices of X. Its geometric
structure and the combination of these building blocks is controlled us-
ing the properties of the underlying C’(1/6)-small cancellation polygonal
complex X. For these three types of spaces, the C’(1/6)-small cancella-
tion polygonal complex, the polygons of £G, and the fibre CAT(0) cube
complexes, we describe the associated wallspace structures.

3.2.1. Walls of diametrically opposed edges

As usual, X denotes the C'(1/6)-polygonal complex constructed in Sec-
tion 2.2. Note that what follows can be applied to an arbitrary C’'(1/6)—
polygonal complex.

If R is a polygon of X and has an even number of edges, then we say that
two edges e and €’ are diametrically opposed if the length of the shortest
paths in the boundary of R from the midpoint of e to the midpoint of ¢’
realises the diameter of R, that is, half of the number of its edges.

Remark 3.12. — By subdividing each edge of X, we assume that every
polygon of X has an even number of edges. This is important in the general
setting of Theorem 1.1: if F' = Gy * - - - * Gy, for odd m, our relator w can
have odd free product length, and some polygons of X can otherwise have
an odd number of edges.
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We first put a wall structure on X. Then we discuss hypergraphs and
walls on polygons of EG. We define an equivalence class on the set of edges
of X as follows. Two edges e and €’ are said to be diametrically opposed
or opposite if there exists a polygon R containing them and such that e
and e’ are diametrically opposed in R. We denote by Ry, ./} the associated
polygon with doors.

DEFINITION 3.13 (Equivalence class of opposite edges). — Two edges e
and €' are equivalent if there is a sequence e = eq,...,e, = €' of edges such
that any two consecutive ones are diametrically opposed.

For an edge e of X, we define the complex with doors CX to be the disjoint
union of all the polygons with doors Ry, .,} where e, ez are diametrically
opposed and in the equivalence class of e. Observe that CX is a gallery by
definition. The far apart condition follows immediately from the fact that
X is a C'(1/6)—polygonal complex. We denote the associated hypergraph
by AX, and the associated hypercarrier by Y.X. This coincides with Wise’s
hypergraphs and hypercarriers [33, Def. 3.2 and 3.3]. Theorem 3.10 implies:

PROPOSITION 3.14 ([33, Lem. 3.11, Th. 3.18]). — Every hypergraph AX
embeds in X, is contractible and separates X into two connected compo-
nents.

DEFINITION 3.15 (Walls on X). — For every edge e of X, the associated
hypergraph AX separates X in two components. Let WX be the wall of X
associated with this decomposition. We say that WX is the wall associated
with e.

Let WX be the set of all these walls.

PROPOSITION 3.16 ([33]). — The space X with the walls WX is a
wallspace. The wall pseudometric on X is a metric.

In Section 3.3.2, we lift the walls WX to £G.

Remark 3.17 (Hypergraphs and Walls on polygons). — Consider a sin-
gle polygonal cell R on an even number of edges as a C’(1/6)-small cancella-
tion polygonal complex. It then comes with the above defined hypergraphs
and walls of diametrically opposed edges. We denote the hypergraph of R
associated with e by Aff. The corresponding wall on R is denoted by W2X.

Up to taking a subdivision of £G, this, in particular, endows each polygon
of £G with a wallspace structure.
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3.2.2. Hyperplanes in CAT(0) cube complexes

We recall some facts on hyperplanes in CAT(0) cube complexes. Let C be
a CAT(0) cube complex. The building blocks of C are cubes, each k-cubing
isomorphic to [—1, 1]* for some integer k > 0. A cube hyperplane associated
with a cube [ is obtained by setting exactly one coordinate to zero, and is
therefore of the form [—1,1]* x {0} x [~1, 1)/ with i+j = k—1. A hyperplane
on (' is a connected nonempty subspace whose intersection with each cube
I of C' is either empty or a cube hyperplane associated with I. Every edge
e of C has a unique hyperplane H, intersecting it, and two hyperplanes
H. and H. associated to edges e, e’ of C coincide if, and only if, there is
a sequence € = ey, ...,e, = ¢ of edges such that any two consecutive ones
are diametrically opposed in a 2-cell of C' (cf. Definition 3.13).

PROPOSITION 3.18 ([28, Th. 4.10, Th. 4.13]). — Let H be a hyperplane
of C.

e The hyperplane H is contractible and separates C into two con-
nected components.
e The neighbourhood of a hyperplane H is convex.

In particular, given two vertices of C' there is a hyperplane separating
them, and every hyperplane defines a wall of C. The following follows from
the work of Sageev [28].

PROPOSITION 3.19. — A CAT(0) cube complex C' with the collection
of the complements of its hyperplanes as walls is a wallspace. The wall
pseudometric on C' is a metric.

In Section 3.3.3 we extend the walls in the fibres EG,, using the walls
on the polygons of £EG. We therefore need the following observations.

LEMMA 3.20. — Let v be a vertex in X, and let EG,, be the correspond-
ing fibre in £G. Let p, r be the attaching path where R is a polygon R of
X. Suppose H is a hyperplane that crosses an edge e of p, r. Then,

e (Fibre separation) The hyperplane H separates the vertices of e in
EG,. In particular, the hyperplane intersects every path in EG,
that connects the starting and endpoint of the attaching path p, r.

e (No turns) The hyperplane H does not intersect p, r more than
once.

The first fact is immediate from the above properties of CAT(0) cube
complexes. For the second fact recall that p, g is geodesic in EG,,. Hence,
a turn would contradict the convexity of hyperplanes in CAT(0) cube com-
plexes.
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3.3. Construction of the new walls

In this section we lift the walls of X to £G, and explain how to combine
the walls on the building blocks of £G. The space £G is build up from
the various CAT(0) cube complexes EG,,, modelled after the CAT(0) cube
complexes E4 and Epg, and the various polygons of £G. We just saw that
these building blocks of £G are equipped with natural wallspace struc-
tures. The idea is to combine walls defined by the hyperplanes on the fibre
CAT(0) cube complexes with the walls of opposite edges for polygons of
EG. We now observe that there is a priori no canonical way to do this.
In particular, it is not possible to employ the viewpoint of Wise’s seminal
paper [34, Sec. 5]: To adapt to the viewpoint of Wise, view the boundary
path of a polygon R of G as a cube complex, and R as a cone over this
boundary path. It comes with the wall structure associated with opposite
edges. Combining the walls of F4, Ep and R as in [34, Sec. 5.f], cf. Def-
inition 3.29 below, does not yield walls; in particular, conditions (1), (2)
and (3) of Lemma 5.13 in [34] fail. Indeed, the subspaces we obtain with
such a procedure no longer embed. More precisely, as the small cancellation
condition over the free product of two groups does not control the length
of the attaching paths, a hypergraph of diametrically opposed edges of Ris
likely to intersect two distinct edges of the same attaching path of the same
fibre. The corresponding new hyperplane then consists of the two distinct
hyperplanes associated with the aforementioned edges of that fibre and the
hypergraph of diametrically opposed edges intersecting them. Note that we
have no control of the position of these two hyperplanes of the fibre cube
complex, meaning that they can intersect, osculate, or just not intersect
any other attaching path, hence the claim.

3.3.1. Balancing

We now modify the complex £G. This then allows us to combine the hy-
perplanes in the various CAT(0) cube complexes with the walls associated
with opposed edges in polygons of £G.

Remark 3.21. — We assume that each polygon of £G and X has an
even number of edges by uniformly:

e replacing each fibre CAT(0) cube complex in EG by its cubical
barycentric subdivision,
e by subdividing each horizontal edge of £G and each edge of X.
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In particular, there is a well defined notion of opposite edge for every edge
in the boundary path of a polygon of £G and X. Moreover, the group
action of G naturally induces a cellular action of G on the complexes so
obtained.

DEFINITION 3.22 (the subdivided complexes X and (£G)y). — Let
k > 0 be an even integer. We refine the polygonal complex X by subdividing
each edge of X exactly k times. We denote by X} the resulting polygonal
complex.

Similarly, we define a new polyhedral complex from EG by subdividing
each horizontal edge, see Definition 2.17, exactly k times. We denote by
(EGQ) this new polyhedral complex, and by

p: (SG)k — Xi
the induced projection map.

Note that this procedure does not modify the CAT(0) cubical structures
of the various fibres of £G, and it does not modify the attaching paths.
Moreover, each complex X}, does again satisfy the C’(1/6)—condition, poly-
gons of (£G) and Xj have again an even number of edges, and pieces of
X, are subdivisions of pieces of X.

The actions of G on £G and on X induce cellular actions of G on (£G)
and X}, such that py is again G-equivariant.

DEFINITION 3.23 (balanced). — We say that (£G); is balanced if for
every polygon R of (EG); and every edge e of R with opposite edge €', the
projections p(e) and p(e’) are far apart (see Definition 3.3) in Xj.

LEMMA 3.24. — There exists an even integer k > 0 such that (£G)y, is
balanced.

Proof. — Since the number of edges in the various attaching paths p, r
is uniformly bounded above by the maximum of the edge lengths of the
geodesics 4 4,7B,i, the subdivided complex (£G)j, becomes balanced for k
large enough by the C’(1/6)—condition. O

DEFINITION 3.25. — Let k > 0 be the smallest even number such that
(EG)y, is balanced. We denote by EGpq; and Xy, the complexes (EG)y and
X, respectively.

In the next section the properties of X, in combination with the prop-
erties of the fibre CAT(0) cube complexes, will be used to control the
geometric structure of £G. We first endow £G with a wall structure.
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3.3.2. Lifted hypergraphs

The polygonal complexes X and X, satisfy the small cancellation con-
dition C’(1/6), hence the hypergraphs of diametrically opposed edges of
Section 3.2.1 define a wallspace on X3, We now lift the corresponding
family of walls on Xp,; to define a first family of walls on E£Gp,;.

DEFINITION 3.26 (hypergraph associated with an edge of X4,;). — Let
e be an edge of Xy, and AX the hypergraph of diametrically opposed edges
in Xy defined in Section 3.2.1. We call Af the hypergraph associated with
the edge e of Xpgy-

We define the subset AX of EGya as the preimage of AX under p :
EGpau — Xpar- We call AX the lifted hypergraph (of £Gyq;) associated
with the edge e of Xpg.

LEMMA 3.27. — Each lifted hypergraph AX of EG associated with an
edge of Xy, Iis contractible and separates EGyp,; Into two connected com-
ponents.

Proof. — We use Proposition 3.14. Note that p restricts to a homeomor-
phism AX — AX. Hence, AX is contractible. The fact that AX disconnects
EGpq follows from the fact that Af disconnects Xy, into two components.

The fact that EGpe — AX has exactly two connected components follows
from the fact that the preimage of a connected set under p is again con-
nected. (|

DEFINITION 3.28 (wall of £Gq; associated with an edge of Xpq). — We
define the wall of £G,; associated with the edge e of Xy, as WX 1= AX.

Note that this family of walls is not large enough to define a wallspace
structure on EG whose associated CAT(0) cube complex is endowed with

a proper action, as this family of walls does not separate vertices in a given
fibre.

3.3.3. Combining the walls on the building blocks

In this section, we combine walls on the building blocks of £G to a wall
on the whole space EGp,;. Let e be an edge of EG ;. If € is a vertical edge
(that is, contained in one of the fibre CAT(0) cube complexes), we denote
by H. the hyperplane in that fibre associated with e. If e is a horizontal
edge (that is, projects to an edge of Xp,;), we denote by H, the midpoint
of e. In both cases we call H. the hyperplane associated with e.
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We now extend the construction of CX in Section 3.2.1 in order to con-
struct a system of doors of X3, associated to an edge of EGy,. First we
extend Definition 3.13 of the equivalence class of opposite edges in C’(1/6)—
polygonal complexes to our £Gpq;.

DEFINITION 3.29. — We define an elementary equivalence relation on
the set of edges of EGyy; as follows. Two edges e, e’ of EGya are said to be
elementarily equivalent, and we denote it e ~1 €', if one of the following
situations occurs:

e ¢ and ¢’ are opposite edges in some polygon of EG yq,
e ¢, ¢/ are vertical edges in the same fibre and the hyperplanes H,
and H! coincide.

The transitive closure defines an equivalence relation on the set of edges of

EGpa

DEFINITION 3.30 (systems of doors associated with an edge of EGpy).
Let e be an edge of EGpy. We associate to e a system of doors CfG of
X as follows. To every polygon R of EG together with a set {e;,es} of
diametrically opposed edges ej,es € R in the equivalence class of e, we
associate a polygon with doors of C£¢ with underlying cell p(ﬁ) and with
doors being the projections p(e;) and p(es).

We now investigate this specific system of doors C¢ in order to con-
struct our wallspace structure on £G. Let us also note that to any two
diametrically opposed edges e, ez in R in the equivalence class of e cor-
responds exactly one polygon with doors in C5¢. Any ordering of doors is

just to help the reader through our arguments.
PROPOSITION 3.31. — The system of doors CEC is a gallery.

Proof. — We have to verify the conditions listed in Definition 3.7. The
connectedness condition follows immediately from the definition. The doors
of a given polygon of CfG are far apart because £Gyy; is balanced.

Suppose by contradiction that the coherence condition is not satisfied,
that is, there is a pair of polygons with doors Ry, .y, R{s/ 1} of CEC with
the same underlying cell R, such that 7 = 7 and 72 # 75. We now use
our construction of the system of doors C£¢. As usual, let us denote by R
the polygon lifting R, and by e, €], f2, f§ the edges in the boundary of R
lifting 71, 71, T2, T4 respectively. By Definition 3.29, the edges e; and f1, as
well as e} and [} respectively, are diametrically opposed in R. As 7y # 75,
we have that fo # f4. Hence, e; and e} are distinct edges. As 7 = 79, €1
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and e} are distinct vertical edges that lie on the attaching path of R in
EG,,.
By construction, we can find a sequence of edges of EG

€1,€2,€3,...,6p—1,€En

with e, = e}, and such that e; and e; 11 are elementary equivalent. We can
further choose this sequence such that e; # e; where i # j. Note that e or
en—1 does not necessarily coincide with fy or f4 respectively.

CLAIM 1. — There are at least two edges e;,ej, 1 <i < j < n—1, that
are not in the fibre EG,,.

Indeed, suppose for each 1 < e; < n — 1, we have that e; is a vertical
edge in EG,,. Then the hyperplane H = H,, = H. would intersect the
attaching path of R in EG,, twice, contradicting Lemma 3.20. Thus, we
have at least one e; which is not in EG,,. By definition of the elementary
equivalence relation and construction, there necessarily exists a second such
edge.

By construction, we can associate to the above sequence of edges a se-
quence

Rio1 00} Rica0a)r 0 Biorn 1,00}
of polygons of CE¢ such that oy = 71, 0,, = 7|, and such that each edge €;
projects onto a door ;. Let

Ri, Ry, ..., Ry

be the associated sequence of polygons. Without restriction, let us assume
that m is minimal for the property that ¢; and o, coincide.

CrAM 2. — We have that m > 4, and hence, such a sequence has at
least three polygons.

Indeed, suppose by contradiction that there are at most two polygons R
and R,. Claim 1 implies that there are at least two edges e;, e; that are not
in the fibre £G,,. Then e; and e; are in the fibre over o3. In particular, the
intersection R1 N R contains both o1 and o5. As o1 and o9 are far apart,
Remark 3.5 implies that Ry = R,. Hence, e; and e; are two distinct edges
on the attaching path of j%vl = Rvg in EG,,, contradicting Lemma 3.20.

By minimality, the only polygons that possibly coincide and share a door
are Ry and R,,_1. As noted before, the coherence condition can only fail
in such a situation.

To conclude, there are two cases to consider. First assume that R; =
R,,_1 and these polygons share a door. It now follows from the minimality
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assumption that Ryg, o5}, R{c,._1,0,.} defines a gallery (the coherence
condition being trivially verified), and we have Ry N R,,,—1 # @ by hypoth-
esis, contradicting Theorem 3.10. In the second case R; and R,,—; do not
share a door. In this case, R, g5};- - s R{s,,_1,0,,} defines a gallery for the
same reason, contradicting Theorem 3.10. g

Let A£9 be the hypergraph in X3, associated with C£¢. It follows from
Proposition 3.31 and Proposition 3.10 that A9 is a tree.

LEMMA 3.32. — The hypergraph A% is a tree embedded in Xpq;.

DEFINITION 3.33 (wall of £G associated with an edge of EGpq1). — Let
e be an edge of £Gyy. We define the wall associated with e as a tree of
spaces over the hypergraph A€ as follows. Let R be a polygon of £G and
let e1 and es be opposite edges of a polygon R of EG a1, which are in the
equivalence class of e, see Definition 3.29. Note that the polygon p(R) of
Xpal, together with the doors p(e1) and p(ez), defines a polygon of CE€.

We define
WEC .= U (He, U Afﬁ U H,,),

er~iez
in the equivalence class of e

where AEl is the hypergraph of the polygon R defined in Remark 3.17.
WEC s called the wall of £G associated with e.

We readily observe that the above defined wall WE€ is a combination of
hyperplanes of the various CAT(0) cube complexes of £G and hypergraphs
of the various polygons of £G.

Note that the projection of the wall WegG under p : EGpa; — Xpay is the
hypergraph A% associated with the gallery C¢. Let us distinguish two
types of walls W% associated with an edge of £G4 according to their
projections AZY in Xy,

e The wall W€ and its associated hypergraph AS¢ are said to be of
first type if AS“ consists of a single vertex.
e Otherwise, W% and AS“ are said to be of second type.

Note that a wall WE¢ associated with a vertical edge e of EGp is of
first type if and only if e is contained in a fibre CAT(0) cube complex
and the associated hyperplane crosses none of the attaching paths defined
in Definition 2.18. An example where all occurring types of hypergraphs
Af%and AC are displayed is shown in Figure 3.4.

We now show that the walls of £G associated with edges of Gy, are
walls in the sense of Definition 3.1, that is, they separate £G into exactly
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Figure 3.2. A portion of a wall associated with an edge of EGyp,; of
second type, together with its hypergraph. To avoid drawing too many
edges, we assume here that £G is balanced, that is, EG = EGpq.

two connected components. As noted in the introduction, the results and
methods of [34, Sec. 5] cannot be applied to conclude in our situation.
Instead, we use, as already mentioned, the properties of hypercarriers in
the C’(1/6)—polygonal complex X and the properties of the fibre CAT(0)
cube complexes. Hence, we give a more direct approach to the cubulation
problem.

LEMMA 3.34. — A wall associated with an edge of EGq; of first type is
contractible and separates EG into two connected components.

Proof. — Let e be an edge of £Gy,; whose associated hypergraph is of
first type. The hypergraph is then completely contained in a CAT(0) cube
complex of the form EG,, that is, it coincides with one of the hyperplanes
of EG,, and such a hyperplane does not cross any attaching path. Thus,
the wall is contractible and separates £G locally into two connected compo-
nents by Proposition 3.18. Since £G is simply connected, the wall separates
EG globally into two connected components. O
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LEMMA 3.35. — A wall associated with an edge of EGy,; of second type
is contractible and separates £G into two connected components.

Proof. — Let e be an edge of £Gp,; whose associated hypergraph is of sec-
ond type. We first use properties of hypergraphs in X. Using Lemma 3.32,
we observe that the wall associated with e has a structure of tree of spaces
over A% with fibres being (contractible) hyperplanes. The contractibility
of such a wall thus follows.

Since EGypq is simply connected, it is enough to prove that the associ-
ated hypergraph separates locally £Gp,; into two connected components.
Therefore, we now use geometric properties of X to reduce the problem to
the hyperplanes in the CAT(0) cube complexes.

The only non-trivial case to consider is the preimage of a neighbourhood
of a vertex of Xy, contained in A£Y, that is, a point of AS“ whose preimage
in £Gpq is a hyperplane in the associate fibre. Let v be such a vertex of
Xpqr and H the hyperplane associated with an edge e on the attaching path
Dy,r in EG, corresponding to a polygon of X.

We now refine the polyhedral complex £Gp,; as follows. First consider
the simplicial polygon associated with each polygon of £G4 (as explained
in Section 2.2), then take its first barycentric subdivision. For the new
polyhedral complex so obtained, consider the star st(v) of v, that is, the
union of all the simplices containing v. Denote by S(v) the preimage of
st(v) under the projection map p : EGpoi — Xpar. We define a projection
map ¢, : S(v) = EG, in two steps. Let R be a polygon of X},; containing v
and R its lift to £Gyq. First retract radially RN .S(v) onto 9RNS(v), then
retract RN S(v) onto AR N EG, (see Figure 3.3). It is straightforward to
check that these projections are compatible and define a map from S(v) to
EG,. Furthermore, by definition of WSG, qy restricts to a surjective map
from S(v) \ WE¢ onto EG,, \ H.

Finally, we use the properties of CAT(0) cube complexes to conclude.
As EG, is a CAT(0) cube complex, by Proposition 3.18 the latter space
is disconnected into exactly two components. So S(v) \ W& has at least
two connected components. As the preimage under ¢, of a path of EG,
is a connected subset of S(v) and EG, \ H has exactly two connected
components, S(v) \ W& has at most two connected components, hence it
has exactly two connected components. O

We now have defined many walls on £G: lifts of walls of X, and extension
of hyperplanes of the fibre CAT(0) cube complexes to the whole space £G.
In the next section we use all these walls to define a wallspace structure on
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Figure 3.3. The construction of the projection map q,. The star of v
and its preimage in EGyy; are represented in shaded. On the left, the
various radial projections RN S(v) — RN S(v). On the right, the
various projections R N S(v) — EG,.

EG that makes EG a wallspace. We then associate a CAT(0) cube complex
to such a structure.

Remark 3.36. — We have not used at any point in this chapter that we
are working only with one relator: All we need is a cocompact action of
G on a C'(1/6)—polygonal complex with trivial edge and cubulable vertex
stabilisers. This allows, as previously noted, to construct an appropriate EG
in the general setting of Theorem 1.1, and hence to construct a wallspace
as above.

3.4. The wallspace and its associated CAT(0) cube complex

In this section we combine the walls associated with edges of X4, Defi-
nition 3.28, and the walls associated with edges of EGypq, Definition 3.33.
This yields a wallspace structure on £Gypg;. Figure 3.4 shows an example
of £G with all three types of walls, together with their corresponding hy-
pergraphs.
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Figure 3.4. Examples of the three types of walls of EG (left) and their
associated hypergraphs in X (right), in the case A = Z?, B = Z. To
avoid a busy picture, we only represent the case of a polygon of X with
4 sides. Blue: Walls/Hypergraphs associated with edges of X. Green:
Walls/Hypergraphs associated with edges of EGpa of first type. Red
and pink: Walls/Hypergraphs associated with edges of Gy, of second

type.

DEFINITION 3.37. — We denote by W the family of walls of £G4 con-
sisting of:
e the walls associated with an edge of Xy,
e the walls of first type associated with an edge of EGpq,
e the walls of second type associated with an edge of EGpq.

We call an element of W a wall of EG .

The next result follows from combining the properties of the three types
of walls that we have discussed above.

ProprosITION 3.38. — The complex £G with the previous family of
walls W is a wallspace.

The wallspace (G, W) comes with an action of G, by setting g- WX :=
WX, and g - WE? := WES respectively.

Proof of Proposition 3.38. — By definition and Lemma 3.27 every edge
in Xpq; defines a unique wall of £G. By definition and Lemmas 3.34 and 3.35
an edge of £Gy,; defines a unique wall of £EG. Two vertices of £Gp; can be
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joined by a finite path in the 1-skeleton of EGp,;. As a wall separating two
vertices must cross every path connecting them, the result follows. g

The proof immediately implies the following useful remark.

COROLLARY 3.39. — There is an upper bound on the number of walls
of £G, the hypercarriers of which contain a given polygon of X.

Remark 3.40. — We note that the wall-pseudometric on £G is a metric.
Indeed, every pair of vertices of £G is separated by a wall. To see this first
consider two vertices in the same fibre. By assumption the fibre is a CAT(0)
cube complex. Then, the proof of Lemma 3.35 implies in particular that two
such points are separated by at least one wall associated with a vertical
edge. For vertices in two different fibres, as X is a C’(1/6)—complex it
follows from the fact that the family of hypergraphs WX separates any
two vertices of X; this last statement follows directly from [33, Lem. 4.3].

Let us now associate a CAT(0) cube complex to the wallspace (EG, W),
and to the wallspace X. A vertex of this complex is a map o : W —
‘H sending each wall to one of the two half-spaces it defines, with some
additional conditions, see [4]. Two vertices o1 and oy are connected by an
edge if o1 and o9 differ on exactly one wall.

DEFINITION 3.41. — Let C)y denote the CAT(0) cube complex associ-
ated with (EG, W).

Remark 3.42. — The action of G on W induces an action of G on Cyy.

Remark 3.43. — Using the definition of the CAT(0) cube complexes as-
sociated with a wallspace [4], one can show that the embedding of wallspaces
associated with the embedding EG, — £G yields an embedding FG, —
Cyy of CAT(0) cube complexes which is equivariant with respect to the
map G, — G.

Note however that there is a priori no link between the CAT(0) cube
complex associated with the wallspace (X, WX) and C)y. Therefore, the
results of Wise [33] that are valid for C'x cannot directly be used to conclude
anything about Cyy. It would technically be possible to reason solely with
walls associated with the edges of £G4, and the associated cube complex.
However, adding walls associated with edges of X, only increases the
dimension of the cube complex acted upon. We have decided to follow
this approach as it seemed to us more natural from the viewpoint of the
combination argument.

In the next section, we will combine results of Wise on the geometric
positions of walls of WX [33, Lem. 6.4, Th. 6.9, Th. 11.1] with new results
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on the combination of such walls with the walls associated with edges of
EGpqr- This will be used to prove that the wallspace structure W on £G is
such that the induced action on the associated CAT(0) cube complex Cyy
is proper and cocompact.

4. Cubulation theorem

The aim of this section is to prove our main result.

THEOREM 4.1. — The action of G on the CAT(0) cube complex C\y is
proper and cocompact.

The following two criteria provide information about the group action
on a cube complex from the properties of the action on the wallspace used
to define this cube complex.

PROPOSITION 4.2 ([4, Theorem 3]). — Let H be a group acting by
isometries on a space with walls (Y,W(Y')), where Y is a metric space.
The H-action on the associated CAT(0) cube complex is proper if for some
y €Y, we have dyyy)(y,h -y) — oo when h — oo.

PrOPOSITION 4.3. — Let H be a group acting on a space with walls
(Y, W(Y)). The H-action on the associated cube complex is cocompact if
and only if there exist only finitely many configurations of pairwise crossing
walls of Y, up to the action of H.

Therefore, we continue to study the combination of the various type of
walls underlying Cyy.

4.1. Properness

THEOREM 4.4. — The action of G on C\y is proper.

Let us mention, once again, that we do not follow a more general ap-
proach of Wise [34, Th. 5.50]. This has an advantage of a more elemen-
tary proof. Again, we combine in an appropriate way properties of the
fibre CAT(0) cube complexes and properties of the C’(1/6)-polygonal com-
plex X.

Proof. — We first prove that the wall distance dyy is proper, that is,
for every vertex x of £EGyy and every integer M > 0, the set of vertices
separated by at most M walls from z is compact. We give an inductive
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procedure to describe the set of vertices separated of xz by at most M
walls.

Let v be a vertex of X, x, be a vertex of EG, and M > 0 an integer.
Let

Ko :={z € £G | z is a vertex of EG, and dyy(gq,) (T, x) < M},

be the ball in EG, of radius M around z,. As EG, is a locally finite
CAT(0) cube complex we see that Ky is finite.

We now orient edges e of X by setting one vertex of e the initial and
the other vertex the terminal vertex, denoted by i(e) and t(e) respectively.
Given an oriented edge e we denote by ;) and x4 the respective at-
taching points of the lift € in £G. Let us orient each edge e of X at v such
that i(e) = v. Let Ey be the set of those such edges with z;.) € Ko.

Suppose we have inductively defined sets Ky C ... C K}, of vertices of EG
and finite sets Ey C ... C Ej, of oriented edges of X such that for every such
edge e € E; we have that z;) € K;,0 < ¢ <k and zy) € K;-1,0 << k.
For every edge e € Ey — Ep_1 denote by K. the ball in EGy() of radius
M + dyy (2, 24(c)) around ,,. Denote by E. the set of edges e’ of X at t(e)
such that i(e’) € K. Set

Ky =KpU | Ke,
ecEy
and let
Eji1 = E,U U E..
ecEy,

Again, as the various spaces EG, are CAT(0) cube complexes and £G
is locally finite, the sets E}y and K}, are finite.

Since X is a C’(1/6)—polygonal complex, there exists a constant ks such
that a vertex of X at distance at least kp; from v is separated from v by
at least M walls of X. Therefore and by construction, the set of vertices of
EG which are separated from z, by at most M walls of £G is contained in
the set Ky,,. This set was shown to be finite, hence the claim.

Finally, let (g,,) be an injective sequence of elements of G. Since G acts
properly discontinuously on £G, there are for any integer m > 0 only
finitely many n > 0 such that g,z, € K,,. Thus, dyw(2y,gn2,) — 00, and
the result now follows from Proposition 4.2. O

Note that the proof of Theorem 4.4 uses only the fact that the various
fibres are locally finite CAT(0) cube complexes, and that £G is a locally
finite polyhedral complex, which follows from the fact that the fibres are
locally finite and that G is obtained by considering only finitely many
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relators in A x B. In particular, redoing the whole construction in this more
general framework, we obtain a proof of Theorem 1.3.

COROLLARY 4.5. — If A and B are only assumed to act properly on
locally finite CAT(0) cube complexes EA and EB respectively, then G
acts properly on Cyy.

4.2. Cocompactness

Here we prove the cocompactness of the action on Cy,.
THEOREM 4.6. — The action of G on C)\y is cocompact.

This follows once we have shown that W satisfies the assumptions of
Proposition 4.3. In order to do that, we combine, again, the properties
of the fibre CAT(0) cube complexes E4 and Ep with the properties of
hypergraphs in the C’(1/6)-small cancellation polygonal complex X.

In particular, we use the following properties of CAT(0) cube complexes,
of. [8, 28].

THEOREM 4.7. — Let Y be a CAT(0) cube complex.

e Given a convex subcomplex of Y, its neighbourhood, that is, the
union of all the cubes meeting it, is again convex.

e neighbourhoods of hyperplanes of Y are convex.

e (Helly’s theorem) Let (Y;) be a family of pairwise convex subcom-
plexes of Y such that any two such subcomplexes have a non-empty
intersection. Then N;Y; is non-empty.

We use the following result on the hypercarriers in X of pairwise crossing
walls of EG .

PROPOSITION 4.8. — Let W1, W5, ... be a set of pairwise crossing walls
of EG ; and let Y1, ..., Yy, k > 3, be the set of corresponding hypercarriers
of X. Then the intersection (\Y; is non-trivial.

This result extends the following result of Wise.

LEMMA 4.9 ([33, Theorem 6.9]). — Let {A1, A2, As, ...} be a set of pair-
wise crossing hypercarriers of X defined by equivalence of diametrically
opposed edges, see Section 3.2.1. If A1, Ao, A3, ... pairwise cross, then their
common intersection contains a vertex.
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Let us emphasise once again, that Lemma 4.9 cannot directly be applied
because our hypercarriers have cutpoints, and our far apart condition allows
hypercarriers that differ significantly from those defined by equivalence
classes of opposite edges.

Proof of Proposition 4.8. — We consider three cases. If all walls Wy,
W, ... are associated with vertical edges in £G,, then v is contained in
the intersection of their hypercarriers. This is the only configuration where
a wall of first type can occur. If all walls Wy, Wa, ... are walls coming from
X, associated with edges of Xpq;, then Wise’s Lemma 4.9 immediately
implies the claim. All other configurations contain no wall of first type,
and at least one wall of second type. In this case, the proof of Wise’s
Lemma 4.9 can be extended in a straightforward way, using our generalised
notions of hypergraphs and hypercarriers. Our far apart condition is again
essential. We give a full account of the arguments in Appendix A.4, see
Lemma A.24 O

THEOREM 4.10. — There is only finitely many configurations of pair-
wise crossing walls of £EG, up to the action of G.

Proof. — Let | be the maximal length of an attaching path in the fibres
of EG. Let (W;) be a system of pairwise crossing walls of £EG and denote
by (Y;) the associated system of hypercarriers in X. By Lemma 4.8, let v
be a vertex in the intersection of these hypercarriers. For each i, let K; be
the union of all the attaching paths p, r C EG,, where R is a polygon of
Y, containing v. We now describe the sets K;, depending on the relative
position of the hypergraph and the vertex v, as illustrated in Figure 4.1.

Figure 4.1. The three possible configurations, depending on the rela-
tive position of the hypergraph associated with W; and the vertex v.
In red: walls and hypergraphs. In green: K;. In blue: C;.
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If W; N EG, is empty, then the vertex v either belongs to an exterior arc
of a polygon of Y;, or v belongs to a door-tree of Y;. In the former case,
K; consists of the single attaching path p, r. We then denote by u the
starting vertex of p, g in EG,. In the latter case, all the polygons R; of Y;
containing v share a common edge containing v. Then K; consists of the
union of all the attaching path p, r,. These paths intersect in one vertex
in EG,, that we denote by u. In both cases, let C; be the 2l-ball around wu.
It follows that K; is contained in Cj;.

If W;NEG, is nonempty, then W; is a wall associated with a vertical edge
of EGyy of first or of second type. If W; is a wall of first type associated
with an edge of £G,, then W; N EG, = W;, and K; is empty. Then let C;
be the 2[-neighbourhood of the hyperplane corresponding to W;.

If W; is a wall of second type associated with an edge of of EG,, then let
C; be the 2l-neighbourhood of the hyperplane W; N EG,. By definition the
attaching path of any polygon of Y; containing v must cross the hyperplane
W; N EG,. Thus the subset K; is contained in C;.

For two given indices ¢ and j, we have that C;NC; # @. Indeed, if W; and
W cross in EG,, this is immediate. If W; and W; do not cross in G, then
choose a cell R of X4 whose preimage in £Gq; contains a point of W;NWj.
Choose a vertex w of R other than v, and consider a geodesic between v and
w. By Proposition 3.10, such a geodesic is contained in ¥;NY;. In particular,
the unique edge of that geodesic containing v is in ¥; MY}, which implies
that C;NC; # &. The various subcomplexes C; are convex by Theorem 4.7.
Thus, Helly’s theorem implies that the intersection N;C; is non-empty. Let
w be a vertex in this intersection, and let C' be the 4l-ball around w. Note
that, as FG, is a locally finite CAT(0) cube complex, the set C' is finite.

Let us now consider two cases. First suppose all hypergraphs W; intersect
in EG,. Then for each hypergraph W; there is an edge e; contained in C
such that the hyperplane associated with e; equals A; N EG,,. Therefore the
information that is necessary to reconstruct such a situation is contained
in the finite subset C of EG,,.

Now suppose that at least one hypergraph W; does not contain v, that is
W;NEG, = @. First note that there is no wall of first type in this situation.
Then observe that C' contains K;. Hence C contains the attaching paths
Dy,r contained in K; N K; for all <. Thus, C' contains an attaching path
associated with W; for all i. Again, as C is finite, there are only finitely
many attaching paths contained in C, and therefore the information that

is necessary to reconstruct such a situation is contained in the finite subset
C of EG,.
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Since the action of A on FA (resp. of B on EB) is cocompact, choose a
compact subcomplex K 4 (resp. Kp) of EG,, (resp. EG,, ) which contains
an A-translate (resp. a B-translate) of every 4l-ball of EG,, (resp. EG,,).

Let g be an element of G which sends C to a subcomplex of K4 U Kp.
In the first case above, as the fibres are locally finite there are only finitely
many possibilities for the walls (¢W4). In the second above case, let P be
the set of polygons of £G such that one of their attaching paths meet K 4
or K. This set is finite since the action of A on EA (resp. of B on EB)
is properly discontinuous. As P is finite, and by Corollary 3.39, there are
only finitely many possibilities for the walls (gW;). Hence, in total there
are only finitely many possibilities for the walls (gW;). |

Theorem 4.6 now follows from Proposition 4.3 and Theorem 4.10.

Appendix A. Small cancellation polygonal complexes

Let us denote by X a C’(1/6)-polygonal complex. Here, we study the
geometry of X. The results can then be applied to the C’(1/6)—polygonal
complex defined in Section 2.2.

A.1. Classification of disc diagrams

DEFINITION A.1 (disc diagram over X, reduced disc diagrams, arcs).
A disc diagram D over the C’(1/6)-polygonal complex X is a contractible
planar polygonal complex endowed with a map D — X which is an em-
bedding on each polygon. A disc diagram D over X is called reduced if no
two distinct polygons of D that share an edge are sent to the same polygon
of X.

For a disc diagram D, we denote by 0D its boundary and D its interior.
The area of a diagram D, denoted Area(D), is the number of polygons of
D. For a polygon R of D, the intersection OR N 0D is called the outer
component of R (and the outer path if such an intersection is connected),
the closure of DR N D is called the inner component of R (and the inner
path if such an intersection is connected).

A diagram is called non-degenerate if its boundary is homeomorphic to
a circle, degenerate otherwise. An arc of D is a path of D whose interior
vertices have valence 2 and whose boundary vertices have valence at least
3. Such an arc is called internal if its interior is contained in ﬁ, external if
the arc is fully contained in 0D.
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We have the following fundamental result:

THEOREM A.2 (Lyndon—van Kampen). — Every loop of X is the
boundary of a reduced disc diagram.

All disc diagrams considered in this Appendix will be reduced without
further notice. We now present a classification theorem for reduced disc
diagrams.

DEFINITION A.3 (ladder). — A reduced disc diagram D of X is a ladder
if it can be written as a union D = ¢y U . ..U ¢,, where the c; are edges or
polygons of X and such that:

e D\ ¢ and D\ ¢, are connected,
e D\ ¢; has exactly two connected components for 1 < i < n.

DEFINITION A.4 (shell, spur). — Let D be a reduced disc diagram of
X. A shell of D is a polygon of D such that OR N 0D is connected and
whose inner path is the concatenation of at most 3 internal arcs of D. A
spur of D is an edge of D with a vertex of valence 1.

Remark A.5. — Note that the internal arcs involved in the previous
definition are automatically sent to pieces of X by the properties of a
reduced disc diagram.

The following is the fundamental result of small cancellation theory (a
version of the well-known Greendlinger Lemma, see Theorem 4.5 in [19,
Chap. V.4]). This version follows directly from Theorem 9.4 of [23].

THEOREM A.6 (Classification Theorem for disc diagrams). — Let D be
a reduced disc diagram of X. Then either:

e D consists of a single vertex, edge or polygon,
e D is a ladder,
e D contains at least three shells or spurs.

The proof of this theorem is based on a negative curvature phenomenon
described via a version of Gaufl-Bonnet’s Theorem. We now explain this
theorem as it is used later.

DEFINITION A.7 (corner, disc diagram with angles). — A corner of a
(reduced) disc diagram D of X is a pair (v, R) where v is a vertex of D
and R a polygon containing it. We denote by Corner(v) (resp. Corner(R))
the set of corners of the form (v, R') (resp. (v, R)).

We say that D is a disc diagram with angles if each corner c is assigned
an angle Z(c) > 0.
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For a vertex v of D, we define its curvature:
K(v) =2 — 7 x(link(v)) = > Z(c).
c€Corner(v)

For a polygon R of X, we define its curvature:

K(R)= Y Z(c)—m-|0R| +2m.
c€Corner(R)

THEOREM A.8 (GauB-Bonnet Theorem). — For a (reduced) disc dia-
gram of X with angles, we have:

> k) + > K(R)=2m

v vertex of D R polygon of D

A.2. Hypercarriers embed

Galleries were defined in Definition 3.7. We prove the following result,
which generalises a result of Wise [33, Lem. 3.11]:

PROPOSITION A.9. — Let C be a gallery. Then its hypercarrier Y¢ is
connected and simply connected and the map i¢c : Y(C) — X is an embed-
ding.

The proof of this proposition is using all three properties of a gallery,
in particular the far apart condition. Extending the arguments of [33] in a
straight-forward way, we give the detailed proof below.

LEMMA A.10. — Let C be a gallery and let Ry, .,y be a polygon of C.
Let P, P> C Ry, 1,y be distinct paths such that the concatenations 11 P
and 1o Py are pieces of X. Then no connected component of OR \ (11 Py U
ToPs) is covered by a single piece, and P; and Py are disjoint.

Proof. — If a connected component C of R\ (71 Py UTe P») is covered by
a single piece, the path from 71 to 7 covering C' consists of at most three
pieces. This contradicts the far apart condition. If P; and P, intersect,
the path covering 71 P; and 1P, consists of at most two pieces, again
contradicting the far apart condition. O

DEFINITION A.11 (canonical decomposition of 2-cells, exterior arc,
door-tree). — Let C be a gallery with hypercarrier Yc and let Ry, .,y
be a polygon of C. Let Pi, P, P,, Py C OR(, .,; be maximal paths such
that the concatenations T Py, 11 P|, 7o Pa, 7o Py are pieces, where the pieces
T71P1, 9Py (respectively T P|, 7o P) are read using the same orientation
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of the boundary path ORy;, ;,), and the pieces 71 Py, 71 P| are read using
different orientations of OR ., ;,}-

Let A, A" C OR¢,, 7,) be the paths joining the extremities of Py, P, and
Py, Py, called the exterior arcs of R, .3

The union of all the paths of the form 71 Py and 1 P{, where R runs
over the polygons of C containing 11 as door, is a tree, called the door-tree
associated with the door 7.

By definition of Ye, no edge of A or A’ is identified to the edge of a
distinct polygon of Y¢ which is glued to Ry, ., along either 71 or 7. This
implies in particular that two distinct polygons of Y sharing a door of C
are sent to different polygons of X. As the map ic : Yo — X is already an
immersion at the level of the 1-skeleton, the following follows:

COROLLARY A.12. — Let C be a gallery of X. Then the map ic : Yo —
X is an immersion.

LEMMA A.13. — Let C be a gallery of X. Let R be a polygon of X
meeting i¢c(Ye) which does not contain a door of C. Let P be a path of
OR N ic(Ye) which admits a lift to Yz under ic. Then P is covered by the
concatenation of at most two pieces.

Proof. — Lemma A.10 implies that P cannot cover a complete exterior
arc A. Thus, either P is a proper subpath of A, or P intersects exactly two
polygons of C. In the former case, P is covered by one piece, in the latter
case P is covered by two pieces. |

Note that we have, so far, not used the connectedness nor the coherence
condition in the definition of a gallery, see Definition 3.7.

Proof of Proposition A.9. — The fact that Y¢ is connected is a direct
consequence of the connectedness condition.

We say that a path P of Y is essential if it is a loop representing a
non-trivial element of the fundamental group of Yg, or if it is a path with
distinct extremities which are sent to the same vertex of X. In the latter
case, we call such a vertex of X the unique singular vertex of i¢(P). The
proposition amounts to proving that there exists no essential path in Ye.

We reason by contradiction. Let P be such an essential path of Y¢. Since
X is simply-connected, the loop ic(P) is the boundary of a disc diagram
D. Notice first that D cannot be a single vertex or edge. Without loss of
generality, we can assume that the number of polygons of D is minimal
among such diagrams. In particular, D is non-degenerate and each path of
its boundary ic(P) that does not contain the singular vertex of ic(P) lifts
to a path of P C Y¢.
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First suppose that D is a single polygon. By hypothesis on P, D cannot
be contained in i¢(Y¢). Let us decompose the boundary of D as the union
of two paths P; and P, neither of which contains the singular vertex of
ic(Ye) in their interior. Both paths P; and Ps thus lift to paths of Y¢. By
Lemma A.10, this implies that P; and P, can be covered by the concate-
nation of two pieces, and so the boundary of D is covered by fours pieces,
contradicting the condition C’(1/6).

By the classification theorem A.6, this implies that the disc diagram D
contains at least two shells, and we can choose one of these shells, say
R, so that its outer path does not contain the singular vertex of ic(Yc)
in its interior. Such a shell must be contained in ic(Y¢), for otherwise
Lemma A.13 would imply that R N 0D is covered by two pieces, making
the boundary of R covered by five pieces, a contradiction with condition
C’(1/6). Thus R C ic(Ye) and we can push the path P through the lift
of R in Y¢ to obtain a new essential path, the image of which in X is the
image in X of the boundary of the disc diagram D \ R. As such a diagram
contains strictly fewer polygons than D, we get a contradiction. (|

COROLLARY A.14. — For every gallery C, the associated hypergraph
Ac¢ is a tree which embeds in X.

Proof. — 1t is enough by Proposition A.9 to see that the associated hy-
percarrier Y retracts by deformation onto A¢. Such a deformation is easily
defined using the canonical decomposition of a polygon of C introduced in
Definition A.11. O

Remark A.15 (minimal ladder between two simplices of a hypercarrier).
Let C be a gallery and 7 and 7’ be two simplices of Yz that are not contained
in the same door-tree of Yz. There exists a unique non-degenerate ladder
of minimal area containing 7 and 7/, which we call the (minimal) ladder of
Y. between T and T'.

A.3. Convexity of hypercarriers

Here we prove the following:

PRrROPOSITION A.16. — Let C be a gallery. Then the subcomplex Y¢ of
X is convex, that is, a geodesic between two vertices of Y¢ is contained
in Yc.

We will prove that proposition by contradiction. Let us assume that
there exists a geodesic P between two vertices of Yy and such that P is
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not contained in Y¢. Let @ be a path of Y¢ joining the two extremities of
P. The union of P and @ yields a loop of X, and thus there exists a disc
diagram with such a loop as boundary. We choose P, @ and D in such a way
that (|P], Area(D)) is minimal for the lexicographic order. In particular, P
does not cross the hypergraph Ac. We now study separately three cases.

LEMMA A.17. — The diagram D cannot consist of a single polygon.

Proof. — By contradiction, suppose that D consists of a single polygon
R of X. Since R is not contained in Y by assumption, the path Q@ = RNYe
is covered by at most two pieces by Lemma A.13. Thus, condition C’(1/6)
implies that |Q| < $|0D|, hence |P| > 3|0D| > |Q|, contradicting the fact
that P is a geodesic. |

LEMMA A.18. — The diagram D cannot contain three shells.

Proof. — By contradiction, suppose that D contains three shells. We can
thus choose one of them, say R, whose outer boundary is contained either
in P orin Q.

First assume that such an outer path is contained in P. We can thus
push P through R to get a new path P’ such that the union P’ U Q is the
boundary of the disc diagram D\ R. Let L be the concatenation of the inner
arcs of R. Since R is a shell, the C’(1/6)—condition implies |L| < $|OR],
hence |P’| < |P|, a contradiction.

Assume now that this outer path of R is contained in (. First notice
that R has to be contained in Yg, for otherwise such an arc would be
covered by two pieces by Lemma A.13 and since R is a shell the whole of
OR would be covered by five pieces, contradicting the C’(1/6)—condition.
Thus R C Y and we can push @ through R to obtain a new path Q' of Y¢
such that P U Q' is the boundary of the disc diagram D \ R, contradicting
the minimality of D. |

LEMMA A.19. — The disc diagram D cannot be a ladder.

Proof. — By contradiction, suppose that D is a (non-trivial) ladder. The
minimality assumption implies that D is non-degenerate. Let us write D =
Ry URyU... and let P; be the portion of P contained in Ry, and P, its
complement in R;.

We can push P through R; to obtain a new path Pj. Since P does not
cross A¢, Ry is not contained in Ye and thus R1NY¢ is covered by two pieces
by Lemma A.13. As R; N Ry is also a piece, it follows that P, is covered
by three pieces, and condition C’(1/6) now implies |P,| < £|0R:1| < |Py,
a contradiction. (|
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Proof of Proposition A.16. — This follows from Lemmas A.17, A.18,
A.19, together with the classification theorem for disc diagrams A.6. [

COROLLARY A.20. — Polygons of X are convex.

A.4. Intersections of hypercarriers

In this section, we extend the following results of Wise.

LEMMA A.21 ([33, Lemma 6.4]). — Let Y1, Y2 and Y3 be hypercarri-
ers of X defined by equivalence of diametrically opposed edges, see Sec-
tion 3.2.1. If Y1, Y5 and Y3 pairwise cross, then their common intersection
is non-trivial.

LEMMA A.22 ([33, Theorem 6.9]). — Let {Y7,Y>,Y5,...} be a set of
pairwise crossing hypercarriers of X defined by equivalence of diametrically
opposed edges, see Section 3.2.1. If Y1, Y5 and Y3 pairwise cross, then their
common intersection contains a vertex.

Again, the proofs are extensions of Wise’s original proofs, the small dif-
ference being related to cut-points in hypercarriers. The generalised hyper-
carriers coming from the far apart condition play no particular role here,
as we treat them with the results of the previous sections. However, the
corresponding results of [33] are not sufficient.

LEMMA A.23. — Let Y1, Y5, Y3 be three pairwise crossing hypercarriers
of Xpqi. Then the intersection Y1 N'Ys N Y3 contains a vertex.

Proof. — We can restrict to the case where Y7 NY5NY3 does not contain
a polygon. First choose cells 01 2 C Y1NY3, 003 C YaNYzand 031 C YaNY;
of maximal dimension such that the preimage of o;; in £Gpq contains a
point of W; N W;. The cell o; ; is either a polygon R; ; or a vertex v; ;. In
the former case, the hypergraphs of Y; and Y; intersect in the apex of R; ;,
in the latter, the fibre over v; ; contains both, a hyperplane of ¥;, and a
hyperplane of Y.

If two of these cells o;; coincide, then it defines a cell in Y7 N Yy N
Y3. Suppose this is not the case. For pairwise distinct i,j,k € {1,2,3},
consider the minimal ladder L; in Y; between o; ; and o; . We choose such
a configuration in such a way that the number of polygons in L1 ULyU Lg is
minimal. Denote by Ay C L; the portion of the hypergraph Ay associated
with Y7 which is the geodesic of A; joining the barycentres of o2 and
03,1, and define similarly Ao C Lo and A3 C L3. Subdivide the polygons of
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L1 ULs U Ls in a minimal way such that A\; U Ay U A3 defines a triangle of
the 1-skeleton of X. Denote by v; ; the vertex associated with the cell oy ;.
Consider now a reduced disc diagram whose boundary path is A\; U Aa U A3.
We now endow D with a structure of disc diagram with angles:
e If 0; ; is a polygon R; ;, the corner at the vertex corresponding to
R; ; is given the angle W
the polygon of D containing that vertex. Note that by minimality
of the number of polygons in L U Lo U L3, we necessarily have
n;; = 4. If 0, ; is a vertex v; j, then by minimality of the number
of polygons of Ly ULy U L3, there are at least two distinct polygons
of D containing v; ;.

, where n; ; is the number of sides of

e Each other corner of D relying on an edge of 0D is given an angle 5.
e All remaining corners are given an angle %’T

It is straightforward to check that with such a choice of angles, every poly-
gon and every vertex of D has non-positive curvature by the C’(1/6)-
condition, apart maybe from the the vertices corresponding to the various
R; ;. The curvature at each such vertex being at most 27, it must be ex-
actly 2F by the Gauss Bonnet Theorem A.8 (in particular, each o;; is a
polygon R; ;). Thus, there is no vertex or polygon with negative curvature.
In particular, since an internal polygon of D would have at least 7 sides
by the C’(1/6)—condition, and since such a cell would have negative curva-
ture, D contains no internal polygon. Thus the image of D is contained in

LiULyULgz and LiNLyN L3, hence Y1 NYs NY3, must be non-empty. [

LEMMA A.24. — Let Y7,...,Ys, k > 3, be a set of pairwise crossing
hypercarriers of Xy, Then the intersection (Y; contains a vertex.

Proof. — We again use the methods we have developed in Section 3.3.3
and this Appendix to extend the original arguments of Wise’s proof of
Lemma A.22. We prove the result by induction on k > 3, the case k = 3
being Lemma A.23. For a subset S of I := {1,...,k}, we denote by Yg the
intersection of the hypergraphs Y; for i € S.

By the induction hypothesis, the intersections Y7 _(1y, Y72} and Y7_(3
contain a vertex, denoted respectively vy, vo and vs. Choose a geodesic be-
tween v; and v; for 1 < ¢ # j < 3, which we denote F; ;. By Proposi-
tion A.16, we have that P; ; C Y;_(; ;3 C Vs

If Y; is a hypercarrier defined by equivalence of diametrically opposed
edges, see Section 3.2.1, its boundary 9Y; is the disjoint union of two trees,
0+Y; and 0_Y; and Y; retracts by deformation on each of these trees. The
situation is slightly different here since vertices can be local cut-points of
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Y;. However, by reasoning separately on the closure of each component of
Y; with its cut-points removed, we can write JY; as the union of two trees
0+Y; and 0_Y; whose intersection is contained in the set of cut-points of
Y; and such that Y; retracts by deformation on each of these two trees.

We now consider two cases, depending on the relative position of v, v
and v3 inside Yy. First assume that vy, vo and v are contained in the same
boundary component of Yy, say 0;Yj. We can thus replace the paths P; ;
by immersed paths Pi’7 ; between v; and vj;, and which is contained in the
tree 04 Y. In particular, the intersection P NP5 3N P; ; contains a vertex,
which is thus contained in Y7110y N Y7 (233 N Y7 (31} = ¥7.

Let us now assume that v; and v, are contained in the same component
04+Y% and vz is contained in J_Yj. For ¢ = 1,2, consider the minimal
ladder L; 3 C Y}, between v; and v3 and define the path Pi’,3 = L; 3N 04Y%.
Consider the sequence of doors between v3 and v1, and between v3 and vs.
If these sequences do not share the same initial door, then v3 belongs to
one of the exterior arcs of some polygon R of Yj. Since both doors of R
also belong to Y7_y3y, this subcomplex contains a subpath of OR of length

@ by Corollary A.20. This implies that R C Y;_3) by Lemma A.13, and
thus the other exterior arc of R is contained Py , NY7_(3y C Y7. Otherwise
consider the last door in this initial common subsequence. Then one of the
vertices of this door is contained in Pf , NY7_g3y C Y7. O
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