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AN ALGEBRA
OF PSEUDODIFFERENTIAL OPERATORS

AND QUANTUM MECHANICS IN PHASE SPACE (*)
by A. GROSSMANN, G. LOUPIAS and E. M. STEIN

Introduction.

The main concern of this paper is the relationship between
the phase-space formulation of quantum mechanics and the
theory of pseudo-differential operators.

« Quantum mechanics » stands here for: The quantum-
mechanical description, at a given time, of a finite number
of non-relativistic particles.

In classical statistical mechanics, a « state » of this system
is a probability measure on the phase space (direct sum of the
space of coordinates and of the space of momenta). Let In be
the dimension of this space. In particular, a measure concen-
trated at a point describes a pure state, corresponding to classi-
cal mechanics. An « observable » is a measurable function
defined on phase space (See e.g. Mackey [19]). The expecta-
tion value of the observable f in the state p is

(I.I) fff(x, p} dp (x, p)

where x (resp. p) are the coordinates (resp. momenta).
In quantum mechanics, the same system is defined as

follows :
We are given a Hilbert space H, and 2n self-adjoint

(*) This work was begun while one of the authors (G. L.) enjoyed the kind hospi-
tality of M. L. Motchane at the Institut des Hautes etudes Scientifiques, while
another (A. G) had the pleasure of being with the Service de Physique Theorique
C.E.A. Saclay.

It was partially supported by the grant D.R.M.E n° 180/67.
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operators Xj, Pj (j = 1, ..., n) satisfying the commutation
relations

(1.2) X,P,~P,X,=^,,
Here h is Planck's constant, divided by 2'n:.

The « observables » of our system are the operators Xy
(« coordinates ») Pj (« momenta ))) and suitable « functions »
of the Xy and Pj. The problem of giving a suitable definition
of such « functions of non-commuting variables » arose at the
very beginning of the development of quantum mechanics.
We do not intend to review here the suggestions made in this
context. It suffices to mention the definition of Weyl [I],
which will be studied in Sec. 1.

A similar problem is encountered in the theory of pseudo-
differential operators where one has to define operators
corresponding to a symbol. (See Kohn and Nirenberg [3],
and in particular the footnote on page 304). Very roughly
speaking, then, a symbol is a « classical observable » corres-
ponding to a « quantum-mechanical operator ».

Returning now to quantum mechanics: A state of our
system is now a positive definite operator p of unit trace
acting in H. The expectation value of the observable f
is the number tr(p/*). It is natural to ask whether this number
can also be written in the form (I.I), in analogy to the case
of classical statistical mechanics. Wigner [14] (See also [8],
[12], [6]) has shown that this is indeed possible, but that the
function p(rr, p) in (I.I) need not be pointwise positive any
more. In this form, one has what can be called « quantum
mechanics in phase space ».

It can be seen that the phase space formulation of quantum
mechanics corresponds to a representation of the commutation
relations (1.2) in which the coordinates and the momenta play
similar roles. This is not the case in the representation most
commonly used by physicists (the rc-representation) in which
the Xy are represented by multiplications and the Pj by
differentiations (times -i).

Viewed from this angle, the theory of pseudo-differential
operators, as developed e.g. in [3] or [16] is bound to the
^-representation. Accordingly, the two sets of variables in a
symbol are not on the same footing. It is natural to ask,
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then, whether a « phase space » formulation, in which the X
and the P have similar roles, would simplify the theory.

Conversely, the use of techniques borrowed from the theory
of pseudo-differential operators, should allow the extension
of the Weyl correspondance to new classes of functions.
It is also tempting to try finding a physical interpretation of
the fact that, in the algebra of pseudo-differential operators,
« the main parts are commutative » and correspond to point-
wise multiplication of their symbols. Such statements have a
vague resemblance to the words one hears about the classical
limit of quantum mechanics.

Our paper starts with a formal review of the Weyl corres-
pondence [I], and its comparison with the correspondence
used by Kohn and Nirenberg (Sect. 2). At this point, we do not
commit ourselves yet to any particular representation of the
canonical commutation relations. The operator product corres-
ponds to « twisted multiplication )) [5] of functions.

The formal expansion (Sect. 3) of a twisted product in a
power series of h looks very similar to the « Leibniz formulas »
of [3] and [16] (See appendix). We mention next some of
the well-known representations of the canonical commutation
relations and in particular the ones in which the coordinates
and momenta play symmetric roles (Sect. 4). The physical
interpretation is discussed in Sect. 6. It is based on some
known results reviewed in Sect. 5. Sect. 7 introduces the
algebra of pseudo-differential operators in phase space. They
are C00 functions with « regular <( asymptotic behaviour.
It is shown that they form, in a suitable sense, an algebra
under twisted multiplication, that they are bounded operators
between suitable topological spaces and that they are pseudo-
local.

1. The Weyl correspondence.

Let X^ and Py (/c, j' = 1, ..., n) be operators satisfying the
canonical commutation relations :

(1) [X,, P,] = ̂ 3,,.
Consider the old problem [1] of giving a reasonable though

partly arbitrary definition of an operator a(X, P) corres-
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ponding to a function a(x^ p') of 2n real variables (x\ p').
For the moment we proceed formally without choosing a
specific representation of (1).

Following Weyl [I], we begin with the exponentials
^(P^-^'P) y^^ ^ ^j p ^^ fixed vectors in R" and xp
denotes the euclidean scalar product; the arbitrary minus sign
in the exponential has been chosen with ulterior purposes.
There are three obvious ways of defining the corresponding
« function of X and P », namely

(2) ^(P'X-^P)
(2') ^X^T

(2") ^T^p'X

They are related by
^ , ,

(3) e1^-^ = e 2 x p e-^e^

= e^^^^'P.

The correspondences (2) are then extended by linearity to
superpositions of exponentials. Let a(//, x ' ) be defined by

(4) a(p\ x ) = (2^-nffe-i^x-x^a(x, p) dx dp

so that

(4') a(x, p) = {2^-nffei^-x^a{p, x ) dp dx\

The function a(p', x ' ) is the « symplectic Fourier transform »
of a(x, p) [2]. It results from a special identification between
the dual of R2" and R2" itself. The three choices (2) give
then, respectively, the operators

(5) W° == (27l)-nJy^x-^p)a(p', x ' ) dp dx'
W) A/1 = (271)-" ff e^a{p, x^e-^ dp dx
(5") A0 == (2^)-" ffe-^^p, ^e1^ dp dx

For suitable functions a, the operators (5), (5'), (5") are candi-
dates for the description of the quantum mechanical observable
corresponding to the classical quantity a. The notations in
(5') and (5") are essentially the same as those of Kohn and
Nirenberg [3]. (See Appendix).
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2. Twisted convolution and twisted multiplication.

It is natural to try to express the operator product W^W6

in the form W0 and to ask for an explicit formula giving c.
The calculation is easy because of (3) which gives

(6) ^'X-xT)^pllX-x'P) ̂  ^^'"^"^W+P11^-^'-}-^]^

One obtains

(7) WW =ffe^x-xp\a X b){p, x) dp dx

where a X b is defined by

(8) (a X S)(p, x)

= {2^-2nffer^plx~x>p)a(p, x)b{p - p', x - x ' ) dp' d x ' .

If we define a o b by

(9) a X b = (2-n;)-na^6

we obtain by (5)

(10) WW^W006

Expressions similar to (10) can be found for A^6 and Jlo" .̂
(See Appendix).

The function a X b (8) is essentially the « twisted convo-
lution » of a and S [4]. The function a o b could be called
the « twisted product » of a and &. It has been studied by
Pool [5] who has also proved equation (10). The reader should
be warned about a discrepancy in notations. Pool writes X
to denote our o . The normalizations are not the same
either. The product o is associative and so is X . Notice
however that, in general, (a o fc) x f ~=^ a o (b X /*).

The operations (8) and (9) depend on the value of the para-
meter h introduced in (1). At A == 0, the operation X
is ordinary convolution (x), and o is the pointwise multi-
plication. A somewhat pedantic but precise notation would

(1) Except for the normalization factor (27r)~2".
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be o and X. It should be emphasized that h appears
~h 'h,

only in the definition of X and o . It does not appear in the
expression (5) for W".

Given a function a(x, p) we can define « twisted powers »
(11) (ao)^ == a o a o ... o a

k terms

and a « twisted exponential »

(12) (.'-) = S ̂y=o / !

3. Formal expansions in powers of h.

Notations:

(13)

Consequently,
Furthermore

f=a, g=f>
^ = (p, x) e R2"
^= (x, — p) e R2"
o/p - p'.r = ?̂

a ^ {"'i) • • • , ag,}, a, integers >- 0
|a| = a^ + • • • + 02,

(14)
Ca — Ca, ^a,n
S — Sl • • • i;2n

^A V1 / ^_\'1" / JL V""1

^i/ \0a;,/ \i>pi)
'-^-Y' /A-YY_ ̂ y"*-
v^pi/ wj \ ^i/

&« ==
ft"' == i

^\a»

^Pn/
_^\^"

^xj

Then (8) can be written as

(/• X g)(E) == (S^)-2"/^1^)^^ - ri) ̂
00 1 / /! \w /* —

= (2^)-2" 5 ̂ (^ih) \ (W^S^ - ri) ̂
m=o i i ^ • \ ̂  / J

and (9) becomes

(15) (a o fe)(v/^) = (^)-2re//^^+^+^(^^^^^^^^^^ ^ ̂
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Notice that ^Y) == ^(S; — T]) since the form ^TQ is symplectic.
So

W = {(I - W = s ^^-T))"
a a !

)a|=w

and we obtain
/ 1 V^ 1

f X g = (2^» S (- ih\ ^ (^ . (^g)

where * denotes ordinary convolution. The sum is over all
multi-indices a. By (9) then,

(16) a o 6 = = s ( ^ - ^ ) ^a)^)
1 ..V2! 1

T1') a *
A \m \
-1- • i. \ v^ -1

a> / 1 \m 1 -

-S^) S -(^a)(^)
m=o \ z / a a 1m=o \ ^ / a

|a|==m
oo / A \m

==^[^-ih) (a o f c)-
m=o \ z /

In (16), the term with m = 0 is the pointwise product
of a and fc. The term with m = 1 is proportional to the
Poisson bracket. The terms with even (odd) m are symmetric
(antisymmetric) with respect to the interchange of a and b.
The commutator a o b — b o a is essentially the Moyal
bracket [6] of a and fc. The expressions (16) can be further
simplified if a and b are constant on « sufficiently large »
hypersurfaces. For instance, if a(^) = a^({r^)), b(^) == &i((^)),
then

(17) a.b=ab+^{^C)a[b[

Here YJ and ^ are fixed vectors in R2" and a[ is the deri-
vative of the function Oi which depends on a single variable
(the scalar product of Y) and ^).

In particular, (17) shows that for functions depending on x
only (or on p only), or for functions linear in x and p, the
twisted powers (11) or twisted exponentials (12) coincide with
the usual ones.

There are several ways to give a meaning to the formal
expansion (16). One sees for example that suitable assumptions
on |^a(0)| and 1^6(0)1 make a o b entire analytic in h.
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We shall study below some cases in which (16) is an asymptotic
series for « large arguments » (See sections 7 and 9). In order
to motivate this, we need some results about the realizations
of (1).

4. Representations
of the canonical commutation relations.

From an abstract point of view, the problem of finding
realizations of X and P as self adjoint operators in a Hilbert
space is solved by a theorem of Von Neumann [7]. It states
that, under mild regularity conditions, there is only one
irreducible representation of (1), up to unitary equivalence.
Nevertheless, it is important to have at one's disposal several
concrete realizations of (1), each adapted to different problems.
We mention briefly some of them, ignoring questions of
domains of definition.

(a) The x-representation: it operates in LgfR"), The
operator X is the multiplication by the independent variable

x, while P == — ih—'? ^x
(a) The p-representation: obtained from (a) by Fourier

transform. P is the operator of multiplication by p and

X=ih^-.
Op

(?) The Bargmann-Segal representation [8] : It operates in
the space 9^ of entire analytic functions g(z)

{z= {z,, . . . , zJ^C")
such that

(18) f ig^expS- ^h\^\dnz<^
J ( i 2 )

Here d^z == II dx,, Ft dy^
The operators X and P are respectively

(19' ^-i2^^
<20' ^i^^-'i
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(y) The regular representations: As contrasted to (a) and
(P), these representations are reducible. They act on the space
Lg^R2") of functions square integrable on the 2n-dimensional
phase-space. We consider the following two :

(Yi) where X is the operator of twisted convolution by
^ ?^i —° and P the operator of twisted convolution by — i —°
^P v ^x

(see [4]). Here §o ls ^e Dirac measure at the origin.
(y^) where X is the operator of twisted multiplication

by x and P the operator of twisted multiplication by p.

So X==f:r+4-^-^ and P = ( p - i i h - 6 - \\ ' 2 ^p) V 2 ^p/
A more detailed description of (y) and of its irreducible

subrepresentations will be given in the next section.

5. The algebras L^R2"; A) and L^R2"; h).

If f and g belong to L^R2") and if h ̂  0, then their
twisted convolution f X g is defined and belongs to La(R2").
(For the proof, see [2], [10]).

Similarly [5], if f, geI^R2") and h -=f=. 0, then their
twisted product f o g also belongs to L^R271).

We shall denote by L^R271; A) frespectively L^R2"; h))
the algebra consisting of the space Lg^R2") with the operation
X (respectively o ).

The mapping:

(21) t : /•^^-Y

is an isomorphism from Lg^R2"; A) onto L^(R2"; A) as is
seen from (9). Notice that (21) fails to be exactly unitary in
l^R2") because of the factor (2-n)-".

It A^=0 , then

(22) a(.)->a(A-^.)

is an isomorphism from L^fR2"; 1) onto L^R2"; A). Other
isomorphisms are obtained by composition of (21) and (22).
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By the theorem of Von Neumann mentioned above, the regular
representation of the algebra L^(R2"; h) (corresponding to
(yi) of the preceding section) is a denumerable direct sum
of mutually equivalent irreducible representations. We write

(23) L,(R^) = © I,(h)
k==o

to denote this decomposition. We shall now exhibit the irre-
ducible sector lo{h) (which is denoted by 3^ in [4] and [2]).

Consider the gaussian
_ A(a;i_L.n»\

(24) Q^)=(2^e ^

which is an idempotent in L^R2"; A), h -=f=. 0.
Then lo(^) can be defined as the closure of the set

(25) [L^R2")] xQf tc4(R^)

with respect to the norm of L^R2").
Similarly one obtains a decomposition

(26) L,(R2»)=eW
fc==0

for the regular representation of the algebra L^R2"; K).
The ideal I^(A) consists of all symplectic Fourier transforms
of functions of Ifc(A). The ideal lo(h) can also be defined
as the closure of the set

(27) [L^R^o^cL^R271)

where
^+P2

(28) W) - 2^ ^

with respect to the norm of LgfR2").
Notice that I(/A) and lo(^) are closed Hilbert subspaces

of L^R2").
We consider now the restriction of the regular representation

of Lg^R271; h) to the ideal Io(A) and define ^(f) by

(29) ^(f)g = f X g, /•<= L,<(R271; A), g e Io(A)
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Similarly we consider the restriction of the regular represen-
tation of L^(R271; h) to lo{h) and define r(a) by

(30) r(a)6 = a o b, a e L^R2"; A), 6 e Io(A)

The following result is well known (see [2], [5], [10]):

PROPOSITION 1. — For every ae I^R2"), the operator -re(a)
{respectively r(a)) is of Hilbert-Schmidt type (2) in lo{h)
{respectively in Io(A)). Conversely, every Hilbert-Schmidt
operator in l^k) {respectively !o(A)) can be written in the
form ^(a) {respectively r(a)) for some a e L2(R2").

The associativity of twisted convolution and of twisted
multiplication gives

(31) ^{f x g) = ̂ Wg)
(32) r(a o b) == T(a)r(fc).

To end this section, we mention how the unitary equiva-
lences between, for instance, the representations (a), (?)
and 11 can be realized.

If f{z)=f{z^ ...^J^n,

then ([2], section 4)
4 n

(33) (^)ne~TisllziltAZ)5 ^x^iP

is the corresponding element of lo(^).
On the other hand, if 9(6) e La(R'1), then

f^=f^l{z, 6)9(6)^9

is the corresponding element of ^ where W(^, 9) is given
by ([2], section 4)

i !L 7re s~A^lQ»+v^.,ej
(34) W(z, e)=2^4A^^ 4 ^ 2 J J J

(2) For terminology about Hilbert-Schmidt and trace-class operators see e.g.
Schatten [9].

12
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6. Statistical interpretation.

By Proposition 1 above, the operators of trace class in Io^)
(resp. Io(A)) are all of the form

(35) ^)Tc(g) = ̂  x g), /•, geL,(R271)
(36) (resp. T(a)r(6) = r(a o 6), a, & e L^R2"))

It has been shown in [2] that f X g is a continuous function
of S; and that

(37) Trt(/'Xg)=^;(/-Xri(0)

-(^•J^-^

PROPOSITION 2. — For any a, 6 e L^R2") one has

(38) TrT(a.6)=^^.J'a(!;)ii(-!;)d!;

-(^•J"'''-^

Proof. — The first equality follows from (37) by symplectic
Fourier transformation. The second equality follows from

^("xSXO)-^/'^)^

-(^•J"^-^'^
If r(a) is of trace class, then

(39) TrT(a)=^-^^)^

One should notice that r(a) may be of trace class even if
a(^) is not absolutely integrable [13].

PROPOSITION 3. — Denote by T*(a) the adjoint of the
operator r(a). Then

(40) T*(a) = r(a)
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where a is the complex conjugate (3) of a. Then it is easy to
verify that

(41) a o 5 == fe o a.

Consequently, L^R2"; A) is a Banach *-algebra with complex
conjugation as the * operation. The positive elements of
H(R2"; A) (i.e. the elements of the form a o a (aeI^R2"))
will be called Wigner functions [14]; a Wigner function will
be usually denoted by p and if

/p(^=(2^W,

then p will be said normalized. It is well known that p(^),
while real, need not be pointwise positive [12]. (See also [18].)

We shall consider as observables suitable functions a(^)
such that a = a. The expectation value of a in the state p is

(42) <a> == Tr T(a)r(p) = Trr(a o p) = ̂ ^J\(^p(_ ̂  ̂

Notice that we allow a to be unbounded.

Remark. — Equation (42) allows to write quantum-mecha-
nical expectation values in a « classical form » (as integrals
over phase space). In the construction of observables a(^)
one should remember, however, to use twisted multiplication
instead of the ordinary one. A well-known example [15]
illustrating this is the following: let H = W^^ = X2 + P2

be the hamiltonian of the harmonic oscillator. Then its square
is

H2 = W^^W^24^2 == W^24"^ ° ̂ +^2) =£: W^24^2

The use of {x2 + p2)2 in (42) would give wrong expectation
values.

We add some results about « Gallilei translations » of
observables. They are independent of representations and
could have been written down in section 1.

A simple calculation shows that

• ( ^ -A ^ - • ( c - -d- \
(43) e^^ A ^ W ^ l^ h-}=^

(3) There should be no confusion with the notation ^ to denote the vector symple-
tically contravariant to $.



356 A. GROSSMANN, G. LOUPIAS AND E. M. STEIN

where
b{x, p) = a{x — d, p — c)

So formula (42) gives

(44) (^-^a.-1^-^))
1 C

== (^)3n^ f a^ ~ ̂  P — ^P^ ̂  - P) ^^P

and we see that it is interesting to study the asymptotic
behaviour of a.

7. The algebra S.

Notations. — 1) If i; = (re, p), then |^| is defined as

{^+p2)12^
2) S denotes the set of complex-valued infinitely differen-

tiable functions a defined on R2" and such that, for a real
number s and for every multi-index a,

(45) (^(^(W^l), |^| -^oo

Any such number s will be called order of a.
The formal equation (15) shows that the mapping u —> a o u

is defined by the kernel

(46) K(^, vi) = (2^t)-»^y'la^(^ - T)))<^

PROPOSITION 4 . — L e t ae2. Then the Fourier transform a,
defined as in (4), is a tempered distribution with the following
properties

(i) a^C^R^-W)
(ii) if 0 is any open set containing the origin, then in R2" — 0

the restriction of a coincides with the restriction of some function
belonging to ^(R2").

(4) The introduction of |^( is only a convenience in the study of asymptotic
behaviour. It does not imply any special role of the orthogonal group 0(2n). The
essential transformation properties in, say (16), are given by symplectic group
Sp(n, C).
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Proof. — a) If a e S and if y ;> 0 is a multi-index, then
^ae2 (immediate verification).

b) If a e 2?, then there exists an integer m ̂  0 such that
|a|>m gives ^a e= L^R271). It follows that ^a is conti-
nuous and bounded on R271.

c) If y .̂ 0 is arbitrary, then there exists an m, which
may depend on y, such that S;Wa is continuous and bounded
whenever [ a [ ^ > m . Consequently, a es C^R2" — {0}) and
^a = 0(| S;!"01) for every a as |^[ ~> oo.

THEOREM 1. — (Pseudolocality). Let ae2 andlet ueg^R2")
be a distribution of compact support.

Then:
(i) a o ues^R2")
(ii) i/' 0 i5 OTI open 5e( containing supp u, (Aen, in R2" — 0,

the restriction of a o u coincides with the restriction of some
function belonging to ^(R2").

Proof. — a) The fact that a o uetf^R2") can be deduced
from ([II], section 1). It is enough to realize that

8'(W) c 0:(W)

where W is the Weyl group. One sees from (15) that

(47) a o u == (2^l)raf2yraa(2^ X u
\h / ^in

where a^21^ is the distribution defined by

(a^), y > = = C^x^^^dx.
J \ L I

The symbol X has been defined in section 2.
4/^

b) Let ^ ^ supp u. Let 3rf be the euclidean distance
between ^ and supp u. By proposition 4, a can be written
as the sum

a=T+f
(. 9/7^

where T is a distribution such that supp T c ^ : |S| <—^
( ' h )
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and where /^(R271) vanishes for |^| <-"- The twistedh
convolution T^2^ X u vanishes at S;. Consequently

4/A

(aou)(^=(u, G(E;,)>
where

( 9 \2n / 0 \ 2l. vi?
G(^)=(2^)-» ̂  /^-^<K.

The assertion (ii) follows because u has compact support
and because G(^, Y]) e C^R2"), G($, Y]) e ̂ (R2").

Remark. — The singularity of a(^) at the origin will contain,
in general, a sum of derivatives of the Dirac ^-measure.
They give rise to the first terms of the expansion (16).

Let k be a real number. Define a Hilbert space (5) L^ by
(48) 4=L,(R271; (i+|S;|2)^)

i.e. as the space of functions square integrable with respect
to the measure (1 + \^\2)k d^. Let us remark that

^(R2") c H c L^ c ̂ (R271), I > k

and that it is possible to identify the dual of L§ with L^.
Let 8'(K) be the set of distributions with support contained

in the compact K c R2". Define B^K) as

(49) BTO^^gTOr

and B^K) as the closure of B^K) in L^. Let

(50) B^ljBTO
K

where K runs, say, over all closed euclidean spheres centered
at the origin.

THEOREM 2. — Let ueBk where k is arbitrary. Let aeS
be of order s. Then the twisted product a o u is defined and
the function a o u belongs to L^. The mapping u —> a o u

(5) If one does not want to lose symplectic invariance, one should consider L|[
as a hilbertisable space because its norm (but not its topology) depends on the choice
of a symplectic basis in R2". We denote by \\u\\^ the norm of ueLJ
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is bounded from B^K) to L^~5 for some K. So this mapping
is continuous from B^ (provided with the inductile limit topo-
logy) into H~\

Proof. — We adapt a proof found in [16]. The formula (9)
and the fact that u has compact support shows that a o u
is defined at least as a tempered distribution. Let then k
and I be real numbers such that k + I ̂  s. We shall show
that, for every v e tf(E) c L^

(51) | < a o u , ^|<C||uUMh
which is equivalent to

(52) l|ao<.,<C||u|l,

where C depends only on the support of u.
In fact,

(a o u , ^ > = (27:)nJ^)(a^)(0^

So, by the formula (15),

< a o u , p)^^)-"^)271

^^}^at—^ + ̂ yW^i) ̂  ̂

where 9 is a C00 function with compact support, constant
and equal to 1 on a neighbourhood of the support of u. Then
we can write

(a o u, (.) = W-^^^af-^ + yi')^-^9(-/i)u(S)^^^

^^-^yp^i+i^t
a^+^W^ A

•^———^—————^ u(^)(l + IS; ) 2 ) 2 ^ ̂  <f(.
( l + l ^ l ^ ^ i + l ^ l 2 ) 2

It is then sufficient in order to get (51), to prove that

F(S» (:)=(!+ W^i + |^|2)4 f^-^a(4i: + ̂ l̂) ̂J \ ^ /
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is such that
/|F(^, 0| ̂ <C for every ^

and J'|F($,O|(^<C for every ^

Integrating by parts and using the condition (45), we get

r^-^a(^+yi)y(ri)^
J \ ̂  /

< C(l + K - ^|)-1«1 ^e^-^y\a(-^ + Tj)^)?^

<C(l+|S-S;imi+|^

Then, using the triangle inequality

(i + W2 < (i + ici2)"2fc (i + K - w
we get

k 4- I _5_

|F(^ ^KCd+I^^D-'^^^+l^l2) ' ' 2 + 2

which is sufficient because s ̂  k + I and | a| can be chosen
arbitrarily large.

The function a e= S will be said of order — oo if (45) is
true for every value of s. So a is of order — oo if and only
if a belongs to ^(R2"). Then the kernel (46) is such that
K(^yj)e^(R2n) , K(^)^(R2").

If a and b e £, the twisted product a o b need not be
defined.

Following the methods of the theory of pseudo-differential
operators, we shall however define a twisted multiplication
« modulo elements of order — oo » in 2.

THEOREM 3. — The set S/if is an associative ^-algebra with
respect to twisted multiplication and to the correspondence
a —> a, where a is the complex conjugate of a.

The idea of the proof is to notice that the terms of the
formal series (16) become arbitrarily « small at infinity »
if m is sufficiently large. This allows us to construct an
« asymptotic sum » of (16) by methods patterned after ([17]
Chapter 1). For any given S;, this sum involves only a finite
number of terms; this number increases indefinitely as ^
tends to infinity.
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If ae£ and b e S, then {a o b)^ (m == 0, 1, 2, ...) is
defined by

(53) (ao6),= S -l(^a)(^)
|a|=m ̂  .

This is motivated by (16). It is clear that (a o b)^ e C^R2").

LEMMA 1. — For every m, the function (a o &)^ belongs
to S. More precisely, if s and t are orders of a and b
respectively and if ? is any multi-index, then there exists a
constant Cp^ such that

(54) l^ao^KCpJ^I^-2'"-!?!.

Proof. — A straightforward application of the ordinary
Leibniz formula.

Consider now a function 9(r) e C°°(R1) such that |9(r)[ < 1

10 for r < 0

(55) ^ 1 for .>1

LEMMA 2. — Let a be any given multi-index. Then there
exists a sequence of positive numbers ^\m === 0, 1, 2, . . .)
tending to + °° ^^ m an(^ suc^ ^at /or 1^1 > ̂ ) 4- 1-?
one has

(56) |o«[e(|^| - Wa o 6)^(^)]| < C^ISI^-^-i"

Proof. — Choose X^>2'"Can, where Cam is defined by (54).
Then, for |^|>^+1,

I^EOd^l - W(a o &)^(^)]| = l^a o &)J < CJSI^'-2'"-1"
•>(a) j C | _ 1 1

<^ Am- I ?j 5+<-2m-|al <^L:9J____J:|S|5+<-2m-|a| ̂  - | j:j^+^2m-|a!+l
^ Qm I'9! ^ ^m l^l ^^ml'9!

LEMMA 3. — The series

(57) K^i^W-WaobU^
OT=0 \ ^ /

converges pointwise and defines an element of S,
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Proof. — The convergence and infinite differentiability of
(57) are immediate since only a finite number of terms contri-
bute for any \.

Furthermore, if \\\ > Max {X^ + 1, ^p) +1},

^s(±^ye(|^|-^))(ao&),
m \ ̂  /

<s(yAyi^{e( |S|-^)(ao6ui
=^(l-h}m\^{W-W{aob)^

m \ ^ /<s(4"A)CT^I^+t-'pl~2m+l

=SsI^l-2mil^+'-lpl+l,( m )
thanks to lemma 2. So, when |^| -> oo,

^ S (-1^T 6 ( 1 ^ 1 - W^ ° bW = OdSI^1-1?1)
m \ ^ /

The function defined by (57) will be called the twisted
product (modulo elements of ^(R2")) of a and b and denoted
a o fc. It defines an element of Sfif thanks to the following
lemma.

LEMMA 4. — The class of a o b does not depend on the
choice of a and b within a class, on the choice of the function 6
nor on the choice of the sequence X^.

Proof. — Let a' and V be the elements of ^(R2"). Then,
by the definition (57),

(^ 4- a ) o {b + &') = a o b + a o b + a o &' + a o &'.

Each one of the last three terms belongs to tf(R2"). For
instance, the last relation in the proof of lemma 3 asserts that

^a 'o&)==0( |^ |5+ t+ l- lPl)

for any value of s.
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Let now 6 and 9' two « mollified step functions » (see (55)).
Then

S (^ihXw - Wa o &),- S ( / l lA)m9 '^l-^o))(ao6)m

m \ ^ / m \ ^ / .

-Sf1-^^9--9^^!-^^0^m \ ^ /

is a function of ^(R271) because 9 — 0' is a C'-function
with compact support.

Finally, let ^w and [^ two sequences satisfying the
conditions of lemma 2. The proof of the independence of the
choice of these sequences is analogous to the preceding one
because

W-^)-W-^)
is a C^-function with compact support.

LEMMA 5. — With the operation of complex conjugation for
the *, Sf^ becomes an associative ^-algebra.

From (16), it is clear that the antilinear correspondence
a -> a is such that a o b = 5 o a.

The verification of associativity requires a somewhat
lengthy calculation. One can use e.g. the formal integral

(58) (a o b o c){\/h 0 = (2^)-" fff^ - a + P - y)
^2i(ap+pT+^)a(\/Aa)6(\/Ap)c(\/AT) da d^ dy.

Remark. — If u and v belong to .^(R271), then

(59) ( a o u , ^)==(u, a o ^ )

So the operation a -> a corresponds to the transposition
of the corresponding operators.

Finally we have to check the following result.

LEMMA 6. — Let a e S and b e £. Whenever a o b is
directly defined, (e.g. by (9)) it lies in the same class as the
function defined by (57).

Proof. — For the sake of definiteness, consider the case
where a is the Fourier transform of a distribution with com-
pact support. Here a o b will be the function defined by (9).
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a o b == (2Tt)» S^ = {{2'R)-" f e^^ o(Y])^ - ̂  d^}~

- {(2^-" i — (4- ̂  f (^)ma(y1)s(^ - Y)) ̂
m=o w • \ L / J

f \ V+1 r ^-iM-fi f?Y^N+l

+ (2u)- (-1- ̂  J . - ̂  ̂ _^ a(yi)6(^ - Y]) ̂ }-

where 0 <; £ <; 1 (Taylor formula with remainder). So,
for |^| > X^ + 1, the difference between (9) and the first N
terms of (57) is majorized by

^-^^\ / Q \

^a X W, (2- ̂ \
%£ \ V^ /

5 — W x ^b <s
|a|=N-+-l OC ! ^i|a!

a^ v ^a;= S ^ .S^aXb^ i f 2 -^lai a! ( ^ ) \ ^ /

== (2^)-2" 5 -1 f ^y]«a(Y])^6 ( / 2 $ - ̂  ̂lai a! j \hs. j

(2^-2»S f-1!^^)!^/^^-^^laiJ a! \A£ /< (2Tt)-2"
|a|

=0(|^|^-i)

where ( is any order of 6.
Since the preceding integral is absolutely convergent for N

large enough, the proof works in the same way for every
derivative.

COROLLARY. — The twisted product of a and b is of order
s + ^ The commutator a o b — b o a is of order s + ( — 1.

In the algebra £, the most « singular » part of a o b is the
pointwise product of a and of &.

8. Examples and remarks.

1. The twisted algebra of the polynomials :

Consider the subset SQ c S defined as follows : SQ is the
algebra generated by the components of ^ (i.e. by x and p)
with twisted multiplication. For elements of So, the formula
(16) reduces to a finite sum; consequently all the elements
of So are polynomials. It can be shown (see [II], (8) for the



AN ALGEBRA OF PSEUDODIFFERENTIAL OPERATORS 365

« Fourier transformed statement») that every polynomial
belongs to SQ.

Let aes3?o, and let r(a) be defined as in Sec. 5. Then
r(a) is unitarily equivalent to a partial differential operator
with polynomial coefficients, acting in the representation
space (a) of Sec. 4. Conversely every partial differential
operator with polynomial coefficients, acting in the space (a)
is unitarily equivalent to some r(a) (a e 3?o).

The algebra SQ contains the operators corresponding to
the kinetic energy and to the angular momentum components
of particles.

2. A class of interaction energies :

We leave it as an exercise to the reader to determine the
interaction energies that satisfy (45).

3. We get a subalgebra of S by considering the subset of ^
of functions a such that, for every a,

(60) (^a)(XS) ̂  SX^aW(^), X -^ + oo

where 5W(/ = 0, 1, 2, ...) is a decreasing sequence of reals
tending to — oo and where the aW are functions everywhere
defined. The series is assumed to be asymptotic in the follo-
wing sense: for any integer N and every compact
K c R 2 " — {0} there exists C = C(N, K) such that

(61) X^ {^a)W - "S^aW^) < C

for all ^ e K .
The number s^ is the order of a and the formal series

S a^(i;) is the symbol of a.

It is easy to prove the following facts
i) a^ is C°° everywhere but at the origin.

ii) ^L^-YaTO? == (W^l),^ -> oo.
( ° )

iii) a® is homogeneous of degree s^\
iv) (^a)(^) r^ I^f-^afW.

So sW == 5® — |a| and we can write ^0) == Sj.
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Then if
a(^2X^)
b^^^jb^)

the symbol of a o b is

^ s i(4^y 2 -L(^)?)
/. fc m-ft \ ^ / _y 0 1j\k m=o\ ^ / a

|a|=TO

This algebra is in some sense similar to that of [16].

Remarks. — a) Many results of Section 7 remain true (with
appropriate modifications) if the set S is replaced by any
set of functions which become asymptotically smaller when
differentiated. This includes, roughly speaking, functions such
as exp { I S ] 2 } (e < 1). The disadvantage of working with
these more general algebras is that the elements of order
— oo can still be growing at infinity.

6) It might be interesting to study the division problem
in twisted multiplication (and convolution). One should also
have a look at the evolution equation igt == a o g^.

Appendix.

We study here in more detail the relationship to the algebra
^ of [3]. The main points of difference are :

i) We use the correspondence a ->• W" whereas they use
a -> A0 and a -> Jb0 (see (5)).

ii) We use the representation (yg) of Section 4 whereas
they use (a).

iii) Our conditions on a{x, p) = a(^) are « equally strong »
in the rc-direction and the p-direction, which is not the case
in [3].

The Leibniz formula of [3] can be obtained in a way entirely
analogous to our derivation of (16). With the help of (3) and
(5') one sees that

A^6 = A6
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where
c(p, x) = (2^ ffe^-^ a(p\ x^p - p', x - ̂ ') ̂ ' dp'

/ *i-\|a| /^ r*

= (211)-'' S ̂ -t- ( ( "(^ ^(PT^P - P'' a; - a/)a a I J J

(a; — a/)" ̂ ' d p ' .

Here a === {a^ ... a^} is now only an n-tuple of integers.
Fourier transformation gives

/;i,Ma|
(63) c^^^WW

where
,a ̂  /^al . . . /JLY"
"3; ^.ri/ ^/

and
,« / & y- / o Y"^''^J •••W

Equation (63) is identical to Equation (4.3)" of [3].
It should be compared with our Equation (16), in which

a = {ai . . . OgJ.
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