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TOWERS FOR COMMUTING ENDOMORPHISMS, AND
COMBINATORIAL APPLICATIONS

by Artur AVILA & Pablo CANDELA

Abstract. — We give an elementary proof of a generalization of Rokhlin’s
lemma for commuting non-invertible measure-preserving transformations, and we
present several combinatorial applications.
Résumé. — Nous donnons une démonstration élémentaire du lemme de Rokh-

lin pour les transformations non inversibles commutantes préservant la mesure, et
nous présentons des applications combinatoires.

1. Introduction

Throughout this paper we denote by (X,X , µ) a standard probability
space, and T denotes an endomorphism on X, that is, a measure-preserving
transformation X → X. By an n-tower (or tower of height n) for T we
mean a sequence B, T−1B, . . . , T−(n−1)B of pairwise-disjoint successive
preimages of some measurable set B ⊆ X. By the measure of such a tower
we mean simply µ

(⋃n−1
j=0 T

−jB
)
.

Towers play an important role in proofs of several central results in er-
godic theory, especially by providing ways to approximate a given endo-
morphism by a periodic one. Originally these methods focused on invertible
transformations (automorphisms). The main tool powering these methods
is the following well-known result, which was stated explicitly for the first
time(1) by Rokhlin [12], and which concerns any automorphism T on X

that is aperiodic, meaning that we have µ({x ∈ X : Tnx = x}) = 0 for
every positive integer n.

Keywords: Rokhlin’s lemma, commuting endomorphisms, linear equations.
Math. classification: 28D05, 37A05, 05D99, 11B30.
(1)A simple proof can be given for an ergodic map T using the so-called skyscrapers of
Kakutani (see [11]) and his name is also often associated with the result.
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Theorem 1.1 (Rokhlin). — Let ε > 0 and let n be a positive inte-
ger. Then for every aperiodic automorphism T on an atomless standard
probability space, there exists an n-tower for T of measure at least 1− ε.

The literature related to this very useful result is rich(2) ; we refer the
reader to [9, 14] for more detailed expositions. In particular, the result has
been generalized in several directions.
In one central direction, the Z-action generated by T is replaced with

other group actions. Let us mention here the generalization to Zd-actions
proved by Conze [3] and independently by Katznelson and Weiss [8], and
let us refer again to [9, 14] for information on other such extensions.
Another direction, less covered in the literature, concerns non-invertible

maps. This starts with the version of Theorem 1.1 in which T is just an
endomorphism. Up to the early 2000s, this version was part of the folklore
(some explicit mentions of the result outline ways to prove it by modify-
ing some of the existing proofs of the versions for automorphisms; see for
instance [9]). The first publication containing a full proof of a version for
endomorphisms seems to be [6].
It is natural to ask then for an analogue, for non-invertible maps, of the

extension of Theorem 1.1 to Zd-actions. This analogue is also motivated by
some applications that we describe below. The main result in this paper
provides such an analogue, with an elementary proof.
The statement of the result uses the following terminology. Let N,N0

denote the set of positive integers and non-negative integers respectively.
We consider a measure-preserving action of Nd0 on X, that is a map f :
Nd0 × X → X such that for each n =

(
n(1), . . . , n(d)

)
∈ Nd0 the map

fn : X → X, x 7→ f(n, x) is an endomorphism on X, with f0 being the
identity map, and such that for every m,n ∈ Nd0 and x ∈ X we have
fm+n(x) = fm(fn(x)). Equivalently, f(n, x) = T

n(1)
1 ◦ Tn(2)

2 ◦ · · · ◦ Tn(d)
d (x)

where T1, . . . , Td are commuting endomorphisms on X.
We say that the action f is free if for every distinct k, ` ∈ Nd0 we have

(1.1) µ({x ∈ X : fk(x) = f`(x)}) = 0.

For k, ` ∈ Nd0, we write k < ` (respectively k 6 `) if for every j ∈ [d] =
{1, 2, . . . , d} we have k(j) < `(j) (resp. k(j) 6 `(j)). For n ∈ Nd and
B ∈ X , we denote by B(n) the union of preimages

⋃
06k<n f

−1
k (B). If these

preimages are pairwise disjoint we say that B(n) is an n-tower for f with
base B.

(2)The result is often referred to as Rokhlin’s lemma, but in light of its importance it
can also be stated as a theorem; see [8].

ANNALES DE L’INSTITUT FOURIER
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Our main result is the following multiparameter version of Theorem 1.1
for non-invertible maps.

Theorem 1.2. — Let ε > 0 and let n ∈ Nd. Then for every free measure-
preserving action f of Nd0 on an atomless standard probability space, there
exists an n-tower for f of measure at least 1− ε.

The proof given in [6] for the case d = 1 of this theorem uses mostly
elementary arguments, and involves also Zorn’s lemma and the Poincaré
recurrence theorem. We did not find a simple modification of this proof (or
of the arguments in [3, 8]) yielding Theorem 1.2. We were also interested in
whether Zorn’s lemma could be avoided (note that this lemma is used also
in several proofs of Theorem 1.1 itself, for instance in [4, 7]). Our proof of
Theorem 1.2, presented in Section 2, is completely elementary.
In Section 3 we discuss some applications of Theorem 1.2. In the setting of

invertible maps, the applications of towers in ergodic theory are numerous
and well documented (see [9, 14]). Some of these results involving Zd-actions
may be extended to non-invertible maps using Theorem 1.2, but for this
paper we have chosen to treat different applications, of more recent origin
and of combinatorial nature. The simplest one concerns the problem of
finding solutions to an equation c1x1 = c2x2 with integer coefficients ci
and with variables xi lying in a given subset of a compact abelian group.
A central quantity related to this problem is the following.

Definition 1.3. — Let c1, c2 be non-zero integers and let G be a com-
pact abelian group with Haar probability µ on the Borel σ-algebra BG. We
say a set A ∈ BG is (c1, c2)-free if there are no solutions (x1, x2) ∈ A2 to
the equation c1x1 = c2x2. We define

(1.2) d(c1,c2)(G) = sup
{
µ(A) : A ⊆ G is (c1, c2)-free

}
.

Using [6, Theorem 2.5] (the case d = 1 of Theorem 1.2), Fiz-Pontiveros
showed that for the circle group T = R/Z one has d(1,λ)(T) = 1/2 for
every non-zero integer λ 6= 1 (see [5, Proposition 3.2]). The case d = 2 of
Theorem 1.2 enables us to extend this result as follows (in particular this
answers [5, Question 2]).

Proposition 1.4. — Let c1, c2 be distinct non-zero integers. Then

d(c1,c2)(T) = 1/2 .

The result holds for more general groups; see Proposition 3.1. This result
is in fact a simple application of a general connection that Theorem 1.2
establishes between a certain natural combinatorial problem concerning

TOME 66 (2016), FASCICULE 4



1532 Artur AVILA & Pablo CANDELA

free measure-preserving actions of Nd0 and a problem concerning subsets
A of Zd whose difference set A − A avoids a prescribed finite set. This
connection is developed in Subsection 3.2. We then relate this further to a
similar problem on the circle group. Through this connection we obtain, in
particular, the following generalization of Proposition 1.4.

Proposition 1.5. — Let c0 = 1, let c1, . . . , cd be multiplicatively inde-
pendent non-zero integers,(3) and let Γ be a bipartite graph on {0, 1, . . . , d}.
Then for every ε > 0 there is a Borel set A ⊆ T such that µ(A) > 1/2− ε
and A is (ci, cj)-free for every edge ij in Γ.

The value 1/2 is clearly optimal for non-empty bipartite graphs. Propo-
sition 1.5 is a special case of a similarly optimal result that we obtain
concerning the more general class of star-extremal graphs; see Proposi-
tion 3.10.

2. Proof of Theorem 1.2

Given a measure-preserving action f of Nd0 on X, and n ∈ Nd, we say
that a set B ∈ X is n-admissible if it is a base of an n-tower for f .

Our starting point is the following result, which we shall then iterate in
order to find n-admissible sets of positive measure.

Proposition 2.1. — Let f and g be commuting endomorphisms on
(X,X , µ) satisfying

µ({x ∈ X : f(x) = g(x)}) = 0.

Then for every set Y ∈ X and every ε > 0, there exists a measurable set
B ⊆ f−1(Y ) satisfying µ(B) > 1

4 (µ(Y )− ε) and f−1(B) ∩ g−1(B) = ∅.

Recall that the atomless probability space (X,X , µ) is isomorphic, mod-
ulo a null set, to the interval [0, 1] with Lebesgue measure [1, Theorem 9.4.7].
In particular, for some set X ′ ∈ X with µ(X ′) = 1, there is a sequence
P0,P1,P2, . . . of finite measurable partitions of X ′ with the following prop-
erties: we have P0 = {X ′}; for each r the partition Pr+1 refines Pr (that is
every atom of Pr is a union of atoms of Pr+1); the sequence (Pr) separates
the points of X ′, that is, for every x 6= y in X ′ there exists r and distinct
atoms A,B in Pr such that x ∈ A, y ∈ B.

We shall use the following fact.

(3)This means that if ck1
1 · · · c

kd
d

= 1 with ki ∈ Z, then ki = 0 for every i.

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.2. — Let F = {x ∈ f−1(X ′) : f(x) = g(x)}, and for each
positive integer r let Ωr =

⊔
A∈Pr f

−1(A) ∩ g−1(A). Then F =
⋂
r∈N Ωr.

In particular, we have µ(Ωr)→ 0 as r →∞.

Proof. — We have F ⊆ Ωr for every r, so F ⊆
⋂
r∈N Ωr. Since the

sequence (Pr) separates the points of X ′, we also have F ⊇
⋂
r Ωr. Finally,

note that Ωr ⊇ Ωr+1 for each r, since Pr+1 refines Pr. Hence µ(Ωr) →
µ(F ) = 0. �

Proof of Proposition 2.1. — Let Y ′ = X ′ ∩ Y and for each positive
integer r let Qr denote the partition of Y ′ induced by Pr, namely the
partition into sets Q = P ∩ Y ′, P ∈ Pr.

It suffices to show that there is a measurable set D ⊆ Y ′ satisfying

(2.1) µ
(
f−1(D) \ g−1(D)

)
>

1
4(µ(Y )− ε).

Indeed, if this holds then the measurable set B = f−1(D) \ g−1(D) has
the required properties, in particular we have f−1(B) ⊆ X \ g−1f−1(D)
whereas g−1(B) ⊆ g−1f−1(D), whence f−1(B) ∩ g−1(B) = ∅.
To see that such a set D exists, fix an arbitrary positive integer r, and let

Dr ⊆ Y ′ be generated randomly by letting each set A ∈ Qr be contained in
Dr independently with probability 1/2 (and contained in Y ′\Dr otherwise).
We have

EDr µ
(
f−1(Dr) \ g−1(Dr)

)
= EDr µ

(
f−1(Dr)

)
− EDr µ

(
f−1(Dr) ∩ g−1(Dr)

)
=
µ
(
Y
)

2 −
∑

A,B∈Qr

P
(
(A ∪B) ⊆ Dr

)
µ
(
f−1(A) ∩ g−1(B)

)
.

The last sum equals

1
4

∑
A6=B∈Qr

µ
(
f−1(A) ∩ g−1(B)

)
+ 1

2
∑
A∈Qr

µ
(
f−1(A) ∩ g−1(A)

)
= 1

4
∑

A,B∈Qr

µ
(
f−1(A) ∩ g−1(B)

)
+ 1

4
∑
A∈Qr

µ
(
f−1(A) ∩ g−1(A)

)
= 1

4µ
(
f−1(Y ) ∩ g−1(Y )

)
+ 1

4
∑
A∈Qr

µ
(
f−1(A) ∩ g−1(A)

)
6

1
4
(
µ
(
Y
)

+ µ(Ωr)
)
.

TOME 66 (2016), FASCICULE 4



1534 Artur AVILA & Pablo CANDELA

Therefore EDr µ
(
f−1(Dr) \ g−1(Dr)

)
> 1

4
(
µ
(
Y
)
− µ(Ωr)

)
. It follows that

for each r ∈ N there exists a measurable set Dr ⊆ Y ′ such that

µ
(
f−1(Dr) \ g−1(Dr)

)
>

1
4
(
µ
(
Y
)
− µ(Ωr)

)
.

By Lemma 2.2, we can satisfy (2.1) with D = Dr for r = r(ε, f, g) suffi-
ciently large. �

Given Y ∈ X , we now iterate Proposition 2.1 to find, in some preimage
of Y , an n-admissible set of measure proportional to µ(Y ).
For n =

(
n(1), . . . , n(d)

)
∈Nd we denote by π(n) the product n(1) · · ·n(d).

Lemma 2.3. — Let n ∈ Nd and let Y ∈ X . Then, for someN ∈ Nd0, there
exists an n-admissible set B ⊆ f−1

N (Y ) such that µ(B) > µ(Y )/5(π(n)
2 ).

Proof. — Let us fix any distinct k1, `1 ∈ Nd0 with k1, `1 < n. We apply
Proposition 2.1 with f = fk1 , g = f`1 , to obtain B1 ⊆ f−1

k1
(Y ) with µ(B1) >

µ(Y )/5 and f−1
k1

(B1) ∩ f−1
`1

(B1) = ∅. Now we apply the proposition again
with Y = B1 and fk2 , f`2 for some other pair of distinct k2, `2 < n, to obtain
B2 ⊆ f−1

k2
(B1) ⊆ f−1

k1+k2
(Y ) such that µ(B2) > µ(B1)/5 and f−1

k2
(B2) ∩

f−1
`2

(B2) = ∅. Proceeding in this way for each of the remaining pairs k, ` <
n, the result follows. �

We shall now enhance Lemma 2.3, by showing that the measure of the
n-tower B(n) can be guaranteed to be at least a fixed fraction (independent
of n) of the measure of the original set Y .

Lemma 2.4. — Let n ∈ Nd and let Y ∈ X . Then for every ε > 0 there
exists N ∈ Nd0 and an n-admissible set B ⊆ f−1

N (Y ) such that µ
(
B(n)

)
>

2−dµ(Y )− ε.

Proof. — Let ρ = sup{µ(B) : B ⊆ f−1
N (Y ) is n-admissible, N ∈ Nd0}

and suppose for a contradiction that ρ < µ(Y )/(2dπ(n)). Let δ = µ(Y ) −
2d π(n) ρ > 0. By definition of ρ, there exists N0 ∈ Nd0 and an n-admissible
set D ⊆ f−1

N0
(Y ) satisfying µ(D) > ρ− δ 5−(π(n)

2 ). Let Y ′ = f−1
N0+n(Y ) and

B′ = f−1
n (D) ⊆ Y ′.

By Lemma 2.3 applied to Y ′\D(2n), where 2n=
(
2n(1), 2n(2), . . . , 2n(d)

)
,

there exists N1 ∈ Nd0 and an n-admissible set B′′ ⊆ f−1
N1

(Y ′ \ D(2n)) ⊆
f−1
N1

(Y ′ \ B′(n)) such that µ(B′′) > µ(Y ′ \D(2n)) 5−(π(n)
2 ) > δ 5−(π(n)

2 ). Let
B = f−1

N1
(B′) tB′′, and note that B ⊆ f−1

N (Y ) where N = N0 +N1 + n.

ANNALES DE L’INSTITUT FOURIER
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We claim that B is n-admissible. Indeed, for any distinct k, ` ∈ Nd0 with
k, ` < n, we have

f−1
k (B) ∩ f−1

` (B) =
(
f−1
N1+k(B′) t f−1

k (B′′)
)
∩
(
f−1
N1+`(B

′) t f−1
` (B′′)

)
=
(
f−1
N1+k(B′) ∩ f−1

N1+`(B
′)
)
t
(
f−1
k (B′′) ∩ f−1

N1+`(B
′)
)

t
(
f−1
N1+k(B′) ∩ f−1

` (B′′)
)
t
(
f−1
k (B′′) ∩ f−1

` (B′′)
)
.

Here the first and fourth intersections are empty, since f−1
N1

(B′) and B′′

are n-admissible. The second intersection is also empty, since f−1
k (B′′) lies

in the complement of f−1
N1+k(D(2n)) while f−1

N1+`(B′) lies in f−1
N1+n+`(D) ⊆

f−1
N1+k(D(2n)). Similarly, the third intersection is empty, so our claim holds.
Thus we have obtained a set B ⊆ f−1

N (Y ) that is n-admissible and that
satisfies µ(B) = µ(D) + µ(B′′) > ρ, a contradiction. �

We can now prove our main result.
Proof of Theorem 1.2. — For each N ∈ Nd, let

cN = sup{µ(B(N)) : B ∈ X is N -admissible}.

For each n ∈ Nd, the sequence (c2kn)k∈N is decreasing. Indeed, given
any k ∈ N, if A is a 2k+1n-admissible set, then the following set is 2kn-
admissible:

B =
⊔

t1,t2,...,td ∈{0,1}

f−1(
t12kn(1),...,td2kn(d)

)(A),

and so µ(A(2k+1n)) = µ(B(2kn)) 6 c2kn, whence c2k+1n 6 c2kn.
Now fix any n ∈ Nd and let c = infk∈N c2kn. By Lemma 2.4 applied with

Y = X, we have c > 2−d. We shall prove that c > 1.
Suppose for a contradiction that c < 1, fix N = 2kn for an arbitrary

k ∈ N, and fix an arbitrary δ ∈ (0, c). Let K ∈ N be sufficiently large so
that firstly d 2−K 6 δ and secondly there exists a 2KN -admissible set B′
satisfying

(2.2)
∣∣µ(B′(2KN)

)
− c

∣∣ 6 δ.
Let Y ′ = X \B′(2KN). By Lemma 2.4 applied with Y = Y ′, there exists N ′

and an N -admissible set B′′ ⊆ f−1
N ′ (Y ′) satisfying µ(B′′(N)) > 2−d−1µ(Y ′).

Let D be the following N -admissible set:

D =
⊔

t1,...,td ∈{1,...,2K−1}

f−1(
t1N(1),...,tdN(d)

)
+N ′

(B′).

Note that D lies in f−1
N ′ (B′(2KN)) and is therefore disjoint from B′′. Let

B = B′′ t D.

TOME 66 (2016), FASCICULE 4



1536 Artur AVILA & Pablo CANDELA

We claim that B is N -admissible. Indeed, for every distinct i, j < N , we
have

f−1
i (B) ∩ f−1

j (B) = (f−1
i (B′′) t f−1

i (D)) ∩ (f−1
j (B′′) t f−1

j (D))

= [f−1
i (B′′) ∩ f−1

j (B′′)] t [f−1
i (D) ∩ f−1

j (B′′)]

t [f−1
i (B′′) ∩ f−1

j (D)] t [f−1
i (D) ∩ f−1

j (D)].

Here the first and fourth intersections are empty since B′′, D are both
N -admissible. The second intersection is empty, for if there existed z ∈
f−1
i (D) ∩ f−1

j (B′′) then fj(z) would lie in B′′ ⊆ X \ f−1
N ′ (B′(2KN)), yet we

would also have

fj(z) ∈ fj(f−1
i (D)) ⊆

⋃
t1,...,td ∈{1,...,2K−1}

fj(f−1
(t1N(1),...,tdN(d))+N ′+i(B

′))

⊆
⋃

t1,...,td ∈{1,...,2K−1}

f−1
(t1N(1),...,tdN(d))+N ′+i−j(B

′)

⊆ f−1
N ′ (B

′
(2KN)),

a contradiction. Similarly the third intersection is empty, so B is indeed N -
admissible. The fact that f−1

i (D), f−1
j (B′′) are disjoint for all 0 6 i, j < N

also implies that B′′(N) and D(N) are disjoint.
We have thus obtained an N -admissible set B satisfying

µ(B(N)) = µ(B′′(N)) + µ(D(N))

> 2−d−1µ(Y ′) + µ(B′(2KN))− µ(B′(N)) d (2K)(d−1).

Since µ(B′(N)) = µ(B′(2KN)) 2−Kd, we therefore have, using (2.2), that

cN > 2−d−1µ(Y ′)+µ(B′(2KN))(1−d 2−K) > 2−d−1(1−c−δ)+(c−δ)(1−δ).

Since δ was arbitrary, we deduce that c2kn > c+ 2−d−1(1− c), and since k
was arbitrary, we deduce that c > c+2−d−1(1−c) > c, a contradiction. �

3. Applications

3.1. 2-variable equations on compact abelian groups

A central topic in additive combinatorics consists in determining the
greatest size that a subset of an abelian group can have without containing
solutions to a given integer linear equation. The simplest non-trivial case is
that of a 2-variable homogeneous equation, which we write in general form
as c1x1 = c2x2, for fixed non-zero integer coefficients c1, c2. For a compact

ANNALES DE L’INSTITUT FOURIER
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abelian group G and an integer n, let Tn : G → G, x 7→ nx, and for a set
A ⊆ G let nA denote the set Tn(A) = {na : a ∈ A}. We consider the
problem of determining the quantity d(c1,c2)(G) from Definition 1.3, that is

d(c1,c2)(G) = sup
{
µ(A) : A ∈ BG, Tc1(A) ∩ Tc2(A) = ∅

}
.

If Tc1 , Tc2 are both surjective then they preserve µ and, since T−1
ci TciA ⊇ A,

we then have µ(Tci(A)) > µ(A); it follows that d(c1,c2)(G) 6 1/2. Theo-
rem 1.2 yields a simple proof that in fact d(c1,c2)(G) = 1/2 under quite
general conditions on G. More precisely, this holds provided that the triple
(G,BG, µ) yields an atomless standard probability space and that the en-
domorphisms fn = T

n(1)
c1 ◦Tn(2)

c2 form a free action of N2
0 on this space. We

record this as follows.

Proposition 3.1. — Let G be a polish divisible compact abelian group.
Then for every distinct non-zero integers c1, c2, we have d(c1,c2)(G) = 1/2.

Proof. — We can suppose that c1, c2 are coprime; indeed, given a com-
mon divisor `, with ci = `c′i for i = 1, 2, we have by the divisibility of G
that d(c1,c2)(G) = d(c′1,c′2)(G).
Let us suppose first that both |c1|, |c2| are greater than 1. Then by unique

factorization, for every distinct elements m,n ∈ N2
0, we have cm(1)

1 c
m(2)
2 6=

c
n(1)
1 c

n(2)
2 , and it follows that

µ
(
{x ∈ G : cm(1)

1 c
m(2)
2 x = c

n(1)
1 c

n(2)
2 x}

)
= µ

(
T−1
c
m(1)
1 c

m(2)
2 −cn(1)

1 c
n(2)
2
{0}
)

= 0.

We can therefore apply Theorem 1.2 to the free action f of N2
0 on G, where

fn(x) = T
n(1)
c1 ◦ Tn(2)

c2 x. Fix δ > 0, and apply the theorem with ε = δ/2
and N = (t, 2) with t > 1/δ. Let A be the N -admissible set given by the
theorem, with µ(A(N)) > 1− δ/2. Now let

(3.1) B =
⊔

j∈[t−1]

(T jc1
◦ Tc2)−1(A).

(Recall that [t−1] = {1, . . . , t−1}.) We have µ(B) > (1−δ/2)/2−1/(2t) >
1/2 − δ. We also have Tc1(B) ∩ Tc2(B) = ∅. Hence d(c1,c2)(G) > 1/2 − δ.
Since δ was arbitrary, the result follows.
When one of |c1|, |c2| equals 1, the case d = 1 of Theorem 1.2 implies

immediately that d(c1,c2)(G) = 1/2. �

Remark 3.2. — The supremum 1/2 in Proposition 3.1 need not be at-
tainable. This was already observed in [5] in the case c1 = 1, |c2| > 1: for
instance, for G = T, attainment of this supremum would contradict the
ergodicity of Tc2

2
.
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In the proof above, Theorem 1.2 is used to reduce the problem to that of
finding a set S of maximal density inside a rectangle in Z2 such that some
translates of S are disjoint, namely the translates S − (1, 0) and S − (0, 1).
In the next subsection we elaborate on this use of Theorem 1.2 to obtain a
more general connection between two very natural problems.

3.2. Sets with some disjoint images, and a problem of Motzkin

The first problem in question here concerns general free measure-preser-
ving actions of Nd0.

Definition 3.3. — Let f be a free action of Nd0 on (X,X , µ), let V be
a finite subset of Nd0, and let Γ be a graph with vertex set V . We say that
a measurable set A ∈ X is Γ-admissible for f if for every edge u v in Γ we
have fu(A) ∩ fv(A) = ∅. We define

dΓ(X, f) = sup
{
µ(A) : A is Γ-admissible for f

}
.

The general problem consists in determining dΓ(X, f). This includes the
following problem, which extends the one treated in the previous subsec-
tion.

Example 3.4 (Avoiding several 2-variable equations). — Letm1,m2, . . . ,

md be multiplicatively independent non-zero integers. Given a polish di-
visible compact abelian group G, for each n ∈ Nd0 let fn : G → G,
x 7→ m

n(1)
1 · · ·mn(d)

d x. One checks from the definitions that these maps
form a free measure-preserving action f of Nd0 on (G,BG, µ). Now let F be
a finite family of 2-variable equations cix1 = cjx2 with non-zero integer co-
efficients ci, in which every coefficient is of the (unique) formm

v(1)
1 · · ·mv(d)

d

for some v ∈ Nd0. Let V be the subset of Nd0 formed by these elements v, and
let Γ be the graph on V defined by letting u v be an edge if and only if the
equation mu(1)

1 · · ·mu(d)
d x1 = m

v(1)
1 · · ·mv(d)

d x2 is in F . Call a set A ⊆ G

an F-free set if there are no solutions in A2 to any of the equations in
F . The problem is to determine dF (G) := sup{µ(A) : A ∈ BG is F-free}.
Note that dF (G) = dΓ(G, f).

Recall that for N ∈ Nd we denote the product N(1) · · ·N(d) by π(N).
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Definition 3.5. — Let Γ be a graph on some finite subset V of Nd0.
We say that a set S ⊆ Zd is Γ-admissible if for every edge u v of Γ the
translates S − u, S − v are disjoint. We define

MΓ(N) = max
{
|S|/π(N) : S ⊆

d∏
i=1

[
0, N(i)

)
is Γ-admissible

}
.

Theorem 1.2 enables us to relate dΓ(X, f) and MΓ(N) as follows.

Proposition 3.6. — Let Γ be a graph on some finite subset V of Nd0,
let m ∈ Nd be such that m > v for all v ∈ V , and let N ∈ Nd. Then for
every free action f of Nd0 on (X,X , µ), we have

(3.2) π(N)
π(N +m) MΓ(N) 6 dΓ(X, f) 6 MΓ(N) +

∑
i∈[d]

1
N(i) .

As a consequence we have the following result, to the effect that dΓ(X, f)
does not depend on X, f .

Corollary 3.7. — Let Γ be a graph on some finite subset V of Nd0.
Then for every free action f of Nd0 on a space (X,X , µ), we have that
MΓ(Nj) converges to dΓ(X, f) for every sequence (Nj) of elements of Nd
satisfying mini∈[d]Nj(i)→∞ as j →∞.

Proof of Proposition 3.6. — We begin with the inequality on the left
in (3.2). Given an arbitrary ε > 0, we apply Theorem 1.2 to obtain an
(N + m)-tower for f with base B and measure at least 1 − ε. Let S ⊆∏
i∈[d]

[
0, N(i)

)
be Γ-admissible with |S| = MΓ(N)π(N), and let A =⊔

n∈S+m f
−1
n (B). Since the shifted sets S+m− v, v ∈ V , are all contained

in
∏
i∈[d]

[
0, N(i) + m(i)

)
, and (S + m − u) ∩ (S + m − v) = ∅ for every

edge uv in Γ, the set A must be Γ-admissible for f . Hence

dΓ(X, f) > µ(A) > (1− ε) |S|
π(N +m) >MΓ(N) π(N)

π(N +m) − ε.

Letting ε→ 0, the inequality follows.
For the inequality on the right in (3.2), fix again an arbitrary ε > 0, and

let A ∈ X be Γ-admissible for f with µ(A) > dΓ(X, f)− ε/2. Theorem 1.2
gives us a base B of an N -tower for f of measure at least 1−ε/2. We define
the following measurable function on X:

F (x) =
∑

0<n<N
1A(fn(x)).
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The integral of F over f−1
N (B) equals roughly µ(A). Indeed, we have∫

f−1
N

(B)
F (x) dµ(x)

=
∑

0<n<N

∫
X

1A(fn(x)) 1B(fN−n ◦ fn(x)) dµ(x)

=
∑

0<n<N
µ
(
A ∩ f−1

N−n(B)
)

> µ(A ∩B(N))− π(N)−1 |{0 6 n < N : ∃ i ∈ [d], n(i) = 0}|

> µ(A)− ε

2 −
∑
i∈[d]

1
N(i) .

Since µ(f−1
N (B)) 6 π(N)−1, we conclude that there exists x∗ ∈ f−1

N (B)
such that

π(N)−1F (x∗) > µ(A)− ε

2 −
∑
i∈[d]

1
N(i) .

We now set
S := {n : 0 < n < N, fn(x∗) ∈ A}.

Suppose that for some edge u v in Γ we had (S − u) ∩ (S − v) 6= ∅, so that
n1 − u = n2 − v for some n1, n2 ∈ S. Let x1 = fn1(x∗) ∈ A and x2 =
fn2(x∗) ∈ A. Then we have fu(x2) = fn2+u(x∗) = fn1+v(x∗) = fv(x1), so
fu(A) ∩ fv(A) 6= ∅, a contradiction. Therefore S is Γ-admissible. We then
have

MΓ(N) > |S|/π(N) = F (x∗)/π(N) > dΓ(X, f)− ε−
∑
i∈[d]

1
N(i) .

Letting ε→ 0, the result follows. �

From now on we shall write dΓ for this quantity

dΓ(X, f) = lim
j→∞

MΓ(Nj).

Given a set V and a graph Γ on V as above, consider the (symmetric)
partial difference set of V along Γ, that is the set(4)

D = {u− v, v − u : u, v ∈ V, u v an edge of Γ} ⊆ Zd.

(4)This is a version for graphs of the partial difference set V
Γ
− V defined for bipartite

graphs in [13, §2.5].
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A set A ⊆ Zd is Γ-admissible if and only if the difference set A − A is
disjoint from D. Writing δ(A) for the upper density of A, that is

δ(A) = lim sup
r→∞

|A ∩ [−r, r)d|/(2r)d,

a straightforward argument shows that dΓ = sup{δ(A) : A ⊆ Zd, (A−A)∩
D = ∅}.
The general problem of determining the supremum of upper densities

of sets A ⊆ Zd with differences avoiding a given finite set goes back to
Motzkin (who posed it originally for sets A ⊆ N; see [2]). This problem
is vast and we shall not explore it fully here. However, we shall give an
estimate for dΓ for a family of graphs which, thanks to the connection with
the quantities dF (G) established in Example 3.4, will yield in particular a
nontrivial generalization of Proposition 3.1, namely Proposition 3.10 below.
The family just mentioned involves the graphs Γ that have as vertex set

{0, e1, . . . , ed}, where the elements ei form the standard basis of Rd.

3.2.1. Estimation of dΓ for graphs Γ on {0, e1, . . . , ed}.

Our aim here is to give bounds for dΓ in terms of known graph param-
eters. To this end, we first express dΓ as a natural quantity on the circle
group T.

Definition 3.8. — Let Γ be a finite graph, with vertex set V . We say
that a Borel set A ⊆ T is a coloring base for Γ if there exists a map ϕ :V →T
such that for every edge uv of Γ we have (A + ϕ(u)) ∩ (A + ϕ(v)) = ∅.
We denote by σT(Γ) the supremum over all probability Haar measures of
coloring bases for Γ.

Lemma 3.9. — For every graph Γ on V = {0, e1, . . . , ed} we have
dΓ = σT(Γ).

Proof. — Let us view T as [0, 1) with addition mod 1.
To see that dΓ 6 σT(Γ), let α1, . . . , αd be real numbers in [0, 1) such that

1, α1, . . . , αd are independent over Q. This implies that for every distinct
m,n ∈ Nd0 we have

m(1)α1 + · · ·+m(d)αd 6= n(1)α1 + · · ·+ n(d)αd mod 1.

Therefore the maps fn : T→ T, x 7→ n(1)α1 + · · ·+n(d)αd + x form a free
Nd0-action f on X = (T, µ). Corollary 3.7 implies that dΓ = dΓ(X, f). By
definition we then have dΓ(X, f) 6 σT(Γ). Indeed, if A ⊆ T is Γ-admissible
for f then let ϕ : V → T be defined by ϕ(0) = 0, ϕ(ei) = αi.
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To see that σT(Γ) 6 dΓ, let us write v0 = 0, vi = ei for i ∈ [d], and
fix any ε > 0. Let A ⊆ T be a Borel set with µ(A) > σT(Γ) − ε/4 and
let ϕ : V → T be such that (A + ϕ(vi)) ∩ (A + ϕ(vj)) = ∅ for every edge
vivj of Γ. We may assume that ϕ(v0) = 0. By standard properties of the
Lebesgue measure, for some ` ∈ N there exists a set A′ ⊆ T that is a
union of some intervals of the form [(j − 1)/`, j/`) with j ∈ [`], such that
µ(A∆A′) 6 ε/(8e(Γ)) (where e(Γ) is the number of edges of Γ). Letting
Ai = A + ϕ(vi), A′i = A′ + ϕ(vi), we have µ(A′i ∩ A′j) 6 µ(Ai ∩ Aj) +
µ(A′i∆Ai) +µ(A′j∆Aj) 6 ε/(4e(Γ)) for every edge vivj . Now let α1, . . . , αd
be real numbers in [0, 1) such that α1, . . . , αd, 1 are independent over Q
and such that |αi − ϕ(ei)| 6 ε/(16 `e(Γ)) for every i ∈ [d]. To see that
such αi exist, note first that if we fix any β1, . . . , βd ∈ [0, 1) such that
1, β1, . . . , βd are independent over Q, then for any positive integer n the
elements nβ1 mod 1, . . . , nβd mod 1 ∈ [0, 1) and 1 are also independent.
Moreover, the orbit {(nβ1, . . . , nβd) : n ∈ N} is dense in Td, by Kronecker’s
theorem. Hence we can set αi = nβi for some n. Letting α0 = 0, we have
µ
(
(A′ + αi)∆A′i

)
6 2` |αi − ϕ(ei)| 6 ε/(8e(Γ)) for each vi ∈ V . We deduce

that µ
(
(A′ + αi) ∩ (A′ + αj)

)
6 ε/(2e(Γ)) for every edge vivj . Removing

the unwanted intersections from A′, it follows that there is a set A′′ ⊆ A′

of measure at least µ(A′)− ε/2 which is Γ-admissible for the free Nd0-action
on T generated by the translations x 7→ x+ αi. Hence dΓ > σT(Γ)− ε. �
The circular chromatic number (or star-chromatic number) of a finite

graph Γ, denoted χc(Γ), is the infimum over all real numbers q such that for
each vertex v of Γ there exists an open interval Av ⊆ T with µ(Av) = 1/q,
such that Au ∩Av = ∅ for every edge uv in Γ (see [15]).
The fractional chromatic number of Γ, denoted χf (Γ), is the infimum

over all real numbers q such that for each vertex v there exists a measurable
set Av ⊆ [0, 1) with µ(Av) = 1/q such that Au ∩Av = ∅ for every edge uv
in Γ.
It is a standard fact that χc(Γ), χf (Γ) are both rational numbers satis-

fying
ω(Γ) 6 χf (Γ) 6 χc(Γ) 6 dχc(Γ)e = χ(Γ),

where ω(Γ), χ(Γ) are the clique number and chromatic number respectively.
From the definitions it follows that for every finite graph Γ we have

(3.3) 1/χc(Γ) 6 σT(Γ) 6 1/χf (Γ).

If χf (Γ) = χc(Γ) then Γ is said to be star-extremal (see [15, §6]).
We deduce the following result, of which Proposition 1.5 is a special case.
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Proposition 3.10. — Let c0 = 1, let c1, . . . , cd be multiplicatively in-
dependent non-zero integers, let Γ be a star-extremal graph on {0, 1, . . . , d},
and let F be the family of 2-variable equations {cix1 = cjx2 : ij an edge
of Γ}. Then for every polish divisible compact abelian group G we have
dF (G) = 1/χc(Γ) = 1/χf (Γ).

Proof. — Consider the free action f of Nd0 on G generated by the maps
x 7→ cix, thus for each n ∈ Nd0 we have fn : G→ G, x 7→ c

n(1)
1 · · · cn(d)

d x. By
the argument from Example 3.4, applied here with V = {0, e1, . . . , ed}, we
have dF (G) = dΓ(G, f) = dΓ. Combining this with Lemma 3.9 and (3.3),
the result follows. �

We shall not pursue further in this paper the problem of determining dΓ
for more general graphs. Let us end with a question related to this problem.
A set S ⊆ Zd is said to be periodic if there exist linearly independent

vectors v1, . . . , vd ∈ Zd such that S + vi = S for all i ∈ [d].

Question 3.11. — Does there exist, for each graph Γ on a finite subset
of Nd0, a periodic Γ-admissible set S ⊆ Zd with density equal to dΓ?

Equivalently, does there exist, for each finite set D ⊆ Zd, a periodic set
S ⊆ Zd with (S − S) ∩D = ∅ and of density equal to ν(D) := sup{δ(A) :
A ⊆ Zd, (A−A)∩D = ∅}? (The case d = 1 is given a positive answer in [2,
Theorem 5].)
Note that if D = Q −Q for some finite set Q ⊆ Zd then ν(D) 6 1/|Q|,

with equality if Q tiles Zd, that is if there exists S ⊆ Zd such that Zd =⊔
r∈S Q + r. Thus, a question related to the one above is whether, given

that a finite subset Q ⊆ Zd tiles Zd, there must exist a periodic set S such
that Zd =

⊔
r∈S Q+ r. The periodic tiling conjecture posits an affirmative

answer to the latter question (see [10]).
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