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ON COTANGENT MANIFOLDS, COMPLEX
STRUCTURES AND GENERALIZED GEOMETRY

by Liana DAVID (*)

Abstract. — We develop various properties of symmetric generalized com-
plex structures (in connection with their holomorphic space and B-field trans-
formations), which are analogous to the well-known results of Gualtieri on skew-
symmetric generalized complex structures. Given an adapted (symmetric or skew-
symmetric) generalized complex structure J and a linear connection D on a mani-
fold M , we construct an almost complex structure JJ ,D on the cotangent manifold
T ∗M and we study its integrability. For J skew-symmetric, we relate the Courant
integrability of J with the integrability of JJ ,D. We consider in detail the case
when M = G is a Lie group and J , D are left-invariant. We also show that our
approach unifies and generalizes various known results from special complex geom-
etry.
Résumé. — Nous développons plusieurs propriétés des structures complexes

généralisées symétriques (en relation avec leurs espaces holomorphes et les “B-field”
transformations), qui sont similaires aux résultats bien connus de Gualtieri sur les
structures complexes généralisées anti-symétriques. Étant données une structure
complexe généralisée adaptée (symétrique ou anti-symétrique) J et une connexion
D sur une variété M , nous construisons une structure presque-complexe JJ ,D

sur la variété cotangente T ∗M et nous étudions son intégrabilité. Pour J anti-
symétrique, nous relions l’intégrabilité de J au sens de Courant avec l’intégrabilité
de JJ ,D. Nous considérons en détail le cas où M = G est un groupe de Lie et
J , D sont invariants à gauche. Nous montrons aussi que notre approche unifie et
généralise plusieurs résultats connus en géométrie spéciale complexe.
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2 Liana DAVID

1. Introduction

1.1. Motivation

The starting point of this note is a result proved in [1], which states that
the cotangent manifold of a special symplectic manifold (M,J,∇, ω) in-
herits, under some additional conditions, a hyper-Kähler structure. Recall
that a manifold M with a complex structure J , a flat, torsion-free con-
nection ∇ and a symplectic form ω is special symplectic if d∇J = 0 (i.e.
∇X(J)(Y ) = ∇Y (J)(X), for anyX,Y ∈ TM) and∇ω = 0. The connection
∇, acting on the cotangent bundle π : T ∗M →M , induces a decomposition

(1.1) T (T ∗M) = H∇ ⊕ π∗(T ∗M) = π∗(TM ⊕ T ∗M)

into horizontal and vertical subbundles. Assume now that the (1, 1)-part
of ω (with respect to J) is non-degenerate and satisfies ∇ω1,1 = 0. Under
these additional conditions, the hyper-Kähler structure on T ∗M mentioned
above is given, by means of (1.1), by (the pull-back of)

J1 :=
(
J 0
0 J∗

)
, J2 :=

(
0 −(ω1,1)−1

ω1,1 0

)
, g :=

(
g1,1 0
0 (g1,1)−1

)
where g1,1 := ω1,1(J ·, ·). A key fact in the proof that (J1, J2, g) is hyper-
Kähler is the integrability of J1 and J2. The integrability of J2 follows
from a local argument, which uses ∇-flat coordinates and ∇ω1,1 = 0. For
the integrability of J1, one notices, using the special complex condition
d∇J = 0, that H∇ ⊂ T (T ∗M) is invariant with respect to the canonical
complex structure Jcan of T ∗M induced by J . Hence, J1 coincides with
Jcan and is integrable. These arguments were developed in [1].

With special geometry as a motivation, in this note we consider the fol-
lowing setting: a manifoldM with a linear connection D and a smooth field
of endomorphisms J of the generalized tangent bundle TM := TM⊕T ∗M ,
such that J 2 = −Id. Following [10] (rather than the usual terminology
from generalized geometry), we call J a generalized complex structure.
Motivated by J1 and J2 above, we assume that J is adapted, i.e. either
symmetric or skew-symmetric with respect to the canonical metric of neu-
tral signature of TM . From D and J we construct an almost complex
structure JJ ,D on the cotangent manifold T ∗M and we study its integra-
bility. This provides a new insight, from the generalized complex geometry
point of view, on the above arguments from [1]. Along the way, we prove
various properties we need on symmetric generalized complex structures.
The relation with the Courant integrability is also discussed. As a main
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COTANGENT MANIFOLDS AND COMPLEX STRUCTURES 3

application, we construct a large class of complex structures on cotangent
manifolds of real semisimple Lie groups.
In the remaining part of the introduction we describe in detail the results

and the structure of the paper.

1.2. Structure of the paper

In Section 2 we prove basic facts we need from generalized geometry.
While skew-symmetric generalized complex structures are well-known (see
e.g. [6] for basic facts), the symmetric ones do not seem to appear in the lit-
erature. We begin by studying symmetric generalized complex structures
on (real) vector spaces (see Definition 2.1). We find the general form of
their holomorphic space (see Proposition 2.4) and we show that any sym-
metric generalized complex structure on a vector space is, modulo a B-field
transformation, the direct sum of one determined by a complex structure
and another determined by a pseudo-Euclidean metric (see Example 2.6
and Theorem 2.7). Therefore, there is an obvious analogy with the theory
of skew-symmetric generalized complex structures developed by Gualtieri
in [6]. We discuss this analogy in Subsection 2.2. For our purposes it is
particularly relevant the common description of the holomorphic space
Lτ (E,α) of a symmetric or, respectively, skew-symmetric generalized com-
plex structure on a vector space V , in terms of a complex subspace E ⊂ V C

and a skew-Hermitian, respectively skew-symmetric 2-form α on E, satis-
fying some additional conditions (see Corollary 2.8). These results extend
pointwise to manifolds (see Subsection 2.3). Despite the above analogies,
there is an important difference between symmetric and skew-symmetric
generalized complex structures on manifolds: unlike the skew-symmetric
ones, the symmetric generalized complex structures are never Courant in-
tegrable (see Lemma 2.13).
In Section 3 we consider a manifoldM together with a connection D and

an adapted generalized complex structure J (see Definition 2.9). Using D
and J we define an almost complex structure JJ ,D on T ∗M (see Defini-
tion 3.1) and we discuss its integrability. It turns out that the integrability
of JJ ,D imposes obstructions on the curvature of D and the data (E,α)
which defines the holomorphic bundle L = Lτ (E,α) of J . In particular,
the complex subbundle E ⊂ TCM must be involutive and α must satisfy a
differential equation involving D (see Theorem 3.3). As a straightforward
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4 Liana DAVID

application of Theorem 3.3, we relate the Courant integrability of a skew-
symmetric generalized complex structure J with the integrability of JJ ,D
(see Corollary 3.4). In particular, we deduce that a left-invariant, skew-
symmetric, generalized complex structure J on a Lie group G is Courant
integrable, if and only if the almost complex structure JJ ,Dc on T ∗G is
integrable, where Dc is the left-invariant connection on G which on left-
invariant vector fields is the Lie bracket (see Example 3.5). A systematic
description of Courant integrable, left-invariant, skew-symmetric general-
ized complex structures on real semisimple Lie groups was developed in [2].
This is the motivation for our treatment from the next section.
Section 4 is devoted to applications of Theorem 3.3 to Lie groups. Our

main goal here is to describe a large class of left-invariant symmetric (rather
than skew-symmetric) generalized complex structures J on a semisimple
Lie group, which, together with a suitably chosen left-invariant connection
D0, determine an integrable complex structure JJ ,D0 on the cotangent
group. (The connection D0 plays the role of Dc above). In the first part of
Section 4, intended to fix notation, we briefly recall the basic facts we need
on the structure theory of semisimple Lie algebras. We follow closely [9],
Chapter VI. In Subsection 4.2 we develop an infinitesimal description, in
terms of the so-called admissible triples (k,D, ε), of pairs (J , D) formed by a
left-invariant adapted generalized complex structure J and a left-invariant
connection D on a (not necessarily semisimple) Lie group G, such that the
associated almost complex structure JJ ,D on T ∗G is integrable (see Def-
inition 4.2 and Proposition 4.3). In this description, the pair (k, ε) defines
the fiber Lτ (k, ε) at e ∈ G of the holomorphic bundle of J and D is the
restriction of D to the space of left-invariant vector fields. The notion of
admissible triple generalizes the notion of admissible pair, defined in [2] to
encode the Courant integrability of left-invariant skew-symmetric general-
ized complex structures on Lie groups. When G is semisimple, we define the
notion of regularity for the structures involved (see Definition 4.2); in the
above notation, this means that k is a regular subalgebra of gC, normalized
by a maximally compact Cartan subalgebra of g. The preferred connection
D0 is introduced in Definition 4.8 and our motivation for its choice is ex-
plained before Lemma 4.7. Our main result in this section is Theorem 4.9,
which provides a description (in terms of admissible triples) of regular
symmetric generalized complex structures J on a semisimple Lie group G,
which, together with the connection D0, determine an (integrable) com-
plex structure on T ∗G. The description from Theorem 4.9 requires further
clarifications: one needs to construct the constants {να, α ∈ Rsym

0 }, which
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COTANGENT MANIFOLDS AND COMPLEX STRUCTURES 5

are subject to conditions (4.20), (4.21) and to study the non-degeneracy
of the (symmetric) bilinear form g∆. A method to construct the να’s is
provided by Lemma 4.10. When the root system R0 of the regular subal-
gebra k is not only σ-parabolic, as required by Theorem 4.9, but σ-positive
(see Definition 4.5), the non-degeneracy of g∆ is straightforward (see Re-
mark 4.11) and we obtain, on any semisimple Lie group G, a large class
of regular symmetric generalized complex structures J , such that JJ ,D0

is integrable. In the special case when G is (semisimple) of inner type, the
root system R0 of k is always a positive root system and we obtain a full
explicit description of all regular symmetric generalized complex structures
J , such that JJ ,D0 is integrable (see Theorem 4.14).

In Section 5 we use Theorem 3.3 in order to reobtain and generalize var-
ious well-known results from special complex geometry, with emphasis on
those from [1], already mentioned at the beginning of this introduction.

2. Symmetric generalized complex structures

In this section we study symmetric generalized complex structures. Sub-
sections 2.1 and 2.2 are algebraic, while in Subsection 2.3 we discuss the
Courant integrability.

2.1. Linear symmetric generalized complex structures

Let V be a real vector space. We denote by

(2.1) gcan(X + ξ, Y + η) = 1
2 (ξ(Y ) + η(X)) , X + ξ, Y + η ∈ V ⊕ V ∗

the canonical pseudo-Euclidian metric of neutral signature on V ⊕ V ∗.

Definition 2.1. — A generalized complex structure on V is an endo-
morphism J ∈ End(V ⊕V ∗), such that J 2 = −Id. The generalized complex
structure J is called symmetric (respectively, skew-symmetric) if it is sym-
metric (respectively, skew-symmetric) with respect to gcan. The generalized
complex structure J is called adapted if it is symmetric or skew-symmetric.

Remark 2.2. — In the classical terminology of generalized geometry
(see e.g. [6, 8]), a generalized complex structure is, by definition, skew-
symmetric. In this note we prefer the language of [10], where generalized
complex structures are not assumed, a priori, to be compatible in any way
with gcan.

TOME 66 (2016), FASCICULE 1



6 Liana DAVID

In the following proposition we describe the holomorphic space of sym-
metric generalized complex structures. Before we need to introduce a no-
tation which will be used along the paper.

Notation 2.3. — For a complex subspace E ⊂ V C, we denote by Ē the
image of E through the antilinear conjugation V C 3 X → X̄ ∈ V C with
respect to the real form V of V C. In particular, Ē is a complex subspace
of V C (not to be confused with the conjugate vector space of E).

Proposition 2.4. — A complex subspace L of (V ⊕ V ∗)C is the holo-
morphic space of a symmetric generalized complex structure on V if and
only if it is of the form

(2.2) L = L−(E,α) := {X + ξ ∈ E ⊕ (V C)∗, ξ|Ē = iXα},

where E is any complex subspace of V C, such that E + Ē = V C, and
α ∈ E∗ ⊗ Ē∗ is any complex bilinear form satisfying the following two
conditions:
i) it is skew-Hermitian, i.e.

(2.3) α(X, Ȳ ) + α(Y, X̄) = 0, ∀X,Y ∈ E;

ii) Im(α|∆) is non-degenerate. Here ∆ ⊂ V is the real part of E ∩ Ē, i.e.
∆C = E ∩ Ē.

Proof. — Let J be a symmetric generalized complex structure on V ,
with holomorphic space L. Thus L is a complex subspace of (V ⊕ V ∗)C,
with L⊕L̄ = (V ⊕V ∗)C, and L is gcan-orthogonal to L̄ (from the symmetry
of J ). We denote by

π1 : (V ⊕ V ∗)C → V C, π2 : (V ⊕ V ∗)C → (V C)∗

the natural projections. We define E := π1(L) and we let

(2.4) α : E → Ē∗, α(X) := π2 ◦ (π1|L)−1(X)|Ē .

We claim that α ∈ E∗ ⊗ Ē∗ is well defined. To prove this claim, we use

(2.5) ξ(Ȳ ) + η̄(X) = 0, ∀X + ξ, Y + η ∈ L,

(which holds because L is gcan-orthogonal to L̄). Thus, if X + ξ1, X + ξ2 ∈
(π1|L)−1(X), i.e. X + ξ1, X + ξ2 ∈ L, then, from (2.5), ξ1 = ξ2 on Ē and
we obtain that α is well-defined, as required. From the very definition of
α, L ⊂ L−(E,α) and, being of the same dimension, we deduce that L =
L−(E,α). Since L is gcan-orthogonal to L̄, α is skew-Hermitian. Moreover,
L⊕L̄ = (V ⊕V ∗)C implies that E+Ē = V C. We now claim that L∩L̄ = {0}
implies that Im(α|∆) is non-degenerate. To prove this claim, we assume,
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COTANGENT MANIFOLDS AND COMPLEX STRUCTURES 7

by absurd, that there is X 6= 0 in the kernel of Im(α|∆). Define ξ ∈ (V C)∗
by

ξ(Z) = α(X, Z̄), ξ(Z̄) = α(X, Z̄), ∀Z ∈ E.
Using that X ∈ Ker(Im(α|∆)), one can check that ξ is well-defined and
X + ξ ∈ L ∩ L̄, which is a contradiction. We proved that the holomorphic
space L of J is of the required form.

Conversely, it may be shown that any subspace E ⊂ V C, which satisfies
E + Ē = V C, together with a skew-Hermitian form α ∈ E∗ ⊗ Ē∗, which
satisfies the non-degeneracy property ii), define, by (2.2), the holomorphic
space of a symmetric generalized complex structure on V . �

Corollary 2.5. — Let J be a symmetric generalized complex struc-
ture on V , with holomorphic space L−(E,α). Then Re(α|∆) is a 2-form
and Im(α|∆) is a pseudo-Euclidean metric on ∆ (the real part of E ∩ Ē).

Proof. — Straightforward, from (2.3) and the non-degeneracy of Im(α|∆).
�

The second example below shows that symmetric generalized complex
structures exist on vector spaces of arbitrary dimension.

Example 2.6.
i) A complex structure J on V defines a symmetric generalized complex

structure
J :=

(
J 0
0 J∗

)
,

where J∗ξ := ξ◦J , for any ξ∈V ∗. Its holomorphic space is L−(V 1,0, 0)=
V 1,0 ⊕ Ann(V 0,1), where V 1,0 and V 0,1 are the holomorphic and anti-
holomorphic spaces of J .

ii) A pseudo-Euclidean metric on V , seen as an isomorphism g : V → V ∗,
defines a symmetric generalized complex structure

J :=
(

0 g−1

−g 0

)
.

Its holomorphic space is L−(V C, igC), where gC ∈ (V C ⊗ V C)∗ is the
complex linear extension of g.

iii) If J is a symmetric generalized complex structure on V , then so is
its B-field transformation exp(B) · J := exp(B) ◦ J ◦ exp(−B), where
B ∈ Λ2(V ∗) and the B-field action is defined by

exp(B) : V ⊕ V ∗ → V ⊕ V ∗, X + ξ → X + iXB + ξ.

TOME 66 (2016), FASCICULE 1



8 Liana DAVID

If L−(E,α) is the holomorphic space of J , then L−(E,α + BC|E⊗Ē)
is the holomorphic space of exp(B) · J , where BC ∈ Λ2(V C)∗ is the
complex linear extension of B.

In following theorem we show that any symmetric generalized complex
structure can be (non-canonically) obtained from a complex structure, a
pseudo-Euclidean metric and a B-field transformation.

Theorem 2.7. — Any symmetric generalized complex structure on a
vector space V is a B-field transformation of the direct sum of one de-
termined by a complex structure and another determined by a pseudo-
Euclidean metric (as in Example 2.6).

Proof. — Let J ∈ End(V ⊕ V ∗) be a symmetric generalized complex
structure, with holomorphic space L = L−(E,α). Let ∆ be the real part
of E ∩ Ē (i.e. ∆ ⊂ V and ∆C = E ∩ Ē) and N a complement of ∆ in V .
Thus

(2.6) V = ∆⊕N, E = ∆C ⊕ (E ∩NC), Ē = ∆C ⊕ (Ē ∩NC).

We notice that ∆ comes with a pseudo-Euclidean metric, namely g∆ :=
Im(α|∆), and N with a complex structure JN , with holomorphic space
E ∩NC (and anti-holomorphic space Ē ∩NC). We claim that there is B ∈
Λ2(V ∗) such that (as vector spaces with symmetric generalized complex
structures)

(2.7) (V, exp(B) · J ) = (∆, g∆)⊕ (N, JN ),

or, in terms of their holomorphic spaces,

(2.8) L−(E,α+BC|E⊗Ē) = L−(∆C, i(g∆)C)⊕
(
E ∩NC ⊕Ann(Ē ∩NC)

)
.

From the second and third relation (2.6), we obtain that (2.8) holds if and
only if, for any X ∈ E, the covector iX(α+BC) ∈ Ē∗ is given by

(2.9) iX(α+BC)|∆C = i(g∆)C(pr∆C(X), ·), iX(α+BC)|Ē∩NC = 0,

where pr∆C : V C → ∆C and prNC : V C → NC are the natural projections
determined by the decomposition V C = ∆C ⊕NC. Moreover, it is easy to
see that (2.9) is equivalent to

(Re(α) +B)|∆⊗∆ = 0, (α+BC)|(E∩NC)⊗∆C = 0,

(α+BC)|E⊗(Ē∩NC) = 0.
(2.10)

Hence, we are looking for a (real) 2-form B ∈ Λ2(V ∗) such that (2.10) is
satisfied. In order to define B, we use V = ∆ ⊕N and NC = (E ∩NC) ⊕
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COTANGENT MANIFOLDS AND COMPLEX STRUCTURES 9

(Ē ∩NC). For any X,Y ∈ ∆ and Z,W ∈ N , let

B(X,Y ) := −Re(α)(X,Y ), B(Z,W ) := −2Re(α)(z, w̄)

and
B(X,Z) = −B(Z,X) := 2Re(α)(z,X),

where z, w ∈ E ∩NC (uniquely determined) are such that Z = z + z̄ and
W = w + w̄. Since α ∈ E∗ ⊗ Ē∗ is skew-Hermitian, B is skew-symmetric
and its complexification satisfies (2.10) (easy check). This concludes our
claim. �

2.2. Analogy with skew-symmetric generalized complex
structures

The theory of symmetric generalized complex structures from the pre-
vious section is similar to the theory of skew-symmetric generalized com-
plex structures developed by Gualtieri in [6] and owing to this, one can
treat these two types of structures in a unified way, using the notion of
adapted generalized complex structure (see Definition 2.1). More precisely,
it is well-known (see e.g. [6]) that complex and symplectic structures de-
fine skew-symmetric generalized complex structures and this corresponds
to Example 2.6 i) and ii) from the previous section. In the same frame-
work, Theorem 2.7 above is analogous to Theorem 4.13 from [6], which
states that any skew-symmetric generalized complex structure, is, modulo
a B-field transformation, the direct sum of a skew-symmetric generalized
complex structure of symplectic type and of one of complex type.
The following unified description of the holomorphic space of symmetric

and skew-symmetric generalized complex structures on vector spaces is a
rewriting of Proposition 2.4 from the previous section and of Propositions
2.6 and 4.4 from [6]. We shall use it in the statement of Theorem 3.3.

Corollary 2.8. — A complex subspace L ⊂ (V ⊕ V ∗)C is the holo-
morphic space of an adapted generalized complex structure J if and only
if it is of the form

(2.11) L = Lτ (E,α) = {X + ξ ∈ E ⊕ (V C)∗, ξ|τ(E) = iXα}

where E ⊂ V C is a complex subspace with E+Ē = V C and α ∈ E∗⊗τ(E)∗
is complex bilinear, such that

(2.12) α(X, τ(Y )) + τ(α(Y, τ(X))) = 0, ∀X,Y ∈ E

and Im(α|∆) is non-degenerate (where ∆ ⊂ V , ∆C = E ∩ Ē).

TOME 66 (2016), FASCICULE 1



10 Liana DAVID

In (2.11) and (2.12) the maps τ : V C → V C and τ : C→ C are both the
standard conjugations (J symmetric), respectively both the identity maps
(J skew-symmetric).

2.3. Remarks on integrability

The generalized tangent bundle TM = TM⊕T ∗M of a smooth manifold
M has a canonical metric of neutral signature, defined like in (2.1), and the
theory developed in the previous sections extends pointwise to manifolds,
in an obvious way.

Definition 2.9. — A (symmetric, respectively skew-symmetric) gen-
eralized complex structure on a manifold M is a smooth field of endo-
morphisms J of TM , which, at any p ∈ M , is a (symmetric, respectively
skew-symmetric) generalized complex structure on TpM. An adapted gen-
eralized complex structure on M is a generalized complex structure which
is either symmetric or skew symmetric.

Remark 2.10. — As opposed to the usual terminology, we do not assume
that generalized complex structures on manifolds are Courant integrable
(see Definition 2.11 below). In fact, the generalized complex structures we
are mainly interested in, namely, the symmetric ones, turn out not to be
Courant integrable (see Lemma 2.13).

Definition 2.11. — A generalized complex structure J on a manifold
M is called Courant integrable if the space of sections of its holomorphic
bundle L ⊂ TCM (the i-eigenbundle of J ) is closed under the Courant
bracket, defined by

[X + ξ, Y + η] = [X,Y ] + LXη − LY ξ + 1
2 (ξ(Y )− η(X))) ,

for any vector fields X, Y and 1-forms ξ, η.

The holomorphic bundle L of an adapted generalized complex structure
on M may be described in terms of a complex subbundle E ⊂ TCM (the
image of L through the natural projection TCM → TCM) and a smooth
section α ∈ Γ(E∗⊗τ(E)∗), with the algebraic properties from Corollary 2.8
(we assume that all points are regular, i.e. E is a genuine complex vector
bundle). There is a basic result of Gualtieri (see [6, Propostition 4.19])
which expresses the Courant integrability of a skew-symmetric generalized
complex structure in terms of its holomorphic bundle. Since we shall use it
repeatedly, we state it here:

ANNALES DE L’INSTITUT FOURIER



COTANGENT MANIFOLDS AND COMPLEX STRUCTURES 11

Proposition 2.12. — [6] A skew-symmetric generalized complex struc-
ture on a manifoldM , with holomorphic bundle L = L(E,α), is Courant in-
tegrable, if and only if the subbundle E ⊂ TCM is involutive and dEα = 0,
where dEα ∈ Γ(Λ3E∗) is the exterior differential of α ∈ Γ(Λ2E∗), defined
by

(dEα)(X,Y, Z) := X (α(Y,Z)) + Z (α(X,Y )) + Y (α(Z,X))
+ α(X, [Y,Z]) + α(Z, [X,Y ]) + α(Y, [Z,X]),

for any X,Y, Z ∈ Γ(E).

The following simple lemma holds.

Lemma 2.13. — A symmetric generalized complex structure is never
Courant integrable.

Proof. — As proved in Proposition 3.26 of [6], a Courant integrable sub-
bundle of TCM is either gcan-isotropic or of the form (∆⊕ T ∗M)C, where
∆ ⊂ TM is involutive (and non-trivial). Hence, it cannot be the holomor-
phic bundle L of a symmetric generalized complex structure (recall that L
is gcan-orthogonal to L̄, L⊕ L̄ = TCM and gcan is non-degenerate). �

3. Integrable complex structures on cotangent manifolds

Let (M,J , D) be a manifold with a generalized complex structure J
and a linear connection D. The connection D acts on the cotangent bundle
π : T ∗M →M and induces a decomposition

(3.1) T (T ∗M) = HD ⊕ T vert(T ∗M) = π∗(TM)

into horizontal and vertical subbundles. Above, we identified the horizontal
bundle HD with π∗(TM) and the vertical bundle T vert(T ∗M) of the pro-
jection π with π∗(T ∗M). From now on, we shall use systematically, with-
out mentioning explicitly, the identification (3.1) between T (T ∗M) and
π∗(TM).

Definition 3.1. — The almost complex structure JJ ,D := π∗(J ) on
the cotangent manifold T ∗M is called the almost complex structure defined
by J and D.

In this section we study the integrability of JJ ,D, under the assumption
that J is adapted. We begin by fixing notation.
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Notation 3.2. — In computations, we shall use the notation X̃∈X (T ∗M)
for the D-horizontal lift of a vector field X ∈ X (M). Forms of degree one
on M will be considered as constant vertical vector fields on the cotangent
manifold T ∗M. With these conventions, the Lie brackets [·, ·]L of various
vector fields on T ∗M are given by: at any γ ∈ T ∗M ,

(3.2) [X̃, Ỹ ]L(γ) = [̃X,Y ](γ) +RDX,Y (γ), [X̃, ξ]L = DXξ, [ξ, η]L = 0

where X,Y ∈ X (M), ξ, η ∈ Ω1(M) and

RDX,Y := −DXDY +DYDX +D[X,Y ]

is the curvature of D.

The main result from this section is the following.

Theorem 3.3. — Let (M,J , D) be a manifold with a generalized com-
plex structure J and a linear connection D. Assume that J is adapted
and let Lτ (E,α) be its holomorphic bundle, where E ⊂ TCM and α ∈
Γ(E∗ ⊗ τ(E)∗) satisfy the algebraic properties from Corollary 2.8. The al-
most complex structure JJ ,D from Definition 3.1 is integrable, if and only
if the following conditions hold:
i) E is an involutive subbundle of TCM ;
ii) the complex linear extensions of D and RD satisfy

(3.3) DΓ(E)Γ(τ(E)) ⊂ Γ(τ(E)), RD|E×E(τ(E)) = 0.

iii) for any X,Y, Z ∈ Γ(E),

(3.4) (DXα)(Y, τ(Z))− (DY α)(X, τ(Z)) + α(TDX Y, τ(Z)) = 0,

where TD is the complex linear extension of the torsion of the connec-
tion D.

Proof. — We need to prove that the holomorphic bundle π∗Lτ (E,α) ⊂
TC(T ∗M) of JJ ,D is involutive if and only if the conditions i), ii) and
iii) from the statement of the theorem hold. For this, we will compute
the Lie brackets of basic sections of π∗Lτ (E,α). (By a basic section of
π∗Lτ (E,α) we mean a vector field on the cotangent manifold T ∗M , of
the form X̃ + ξ, where X + ξ is a section of Lτ (E,α)). Therefore, let
X + ξ, Y + η ∈ Γ(Lτ (E,α)). Then

(3.5) X,Y ∈ Γ(E), ξ, η ∈ Γ(TCM)∗, ξ|τ(E) = iXα, η|τ(E) = iY α.

From (3.2), at any γ ∈ T ∗M ,

(3.6) [X̃ + ξ, Ỹ + η]L(γ) = [̃X,Y ](γ) +RDX,Y (γ) +DXη −DY ξ.
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We obtain that [X̃ + ξ, Ỹ + η]L is a section of π∗Lτ (E,α) if and only if

[X,Y ] +RDX,Y (γ) +DXη −DY ξ

belongs to the fiber of Lτ (E,α) at π(γ), for any γ ∈ T ∗M , i.e.

(3.7) [X,Y ] ∈ Γ(E), RDX,Y (γ)|τ(E) = 0

and

(3.8) (DXη −DY ξ)(τ(Z)) = α([X,Y ], τ(Z)), ∀Z ∈ Γ(E).

We now rewrite (3.8). From (3.5), the left hand side of (3.8) is equal to

Xα(Y, τ(Z))− Y α(X, τ(Z))− η(DX(τ(Z))) + ξ(DY (τ(Z)))

and (3.8) becomes

Xα(Y, τ(Z))− Y α(X, τ(Z))− η(DX(τ(Z)))+ξ(DY (τ(Z)))
= α([X,Y ], τ(Z)),

(3.9)

for any Z ∈ Γ(E). From (3.5) again, ξ|τ(E) = iXα, but ξ can take any
values on a complement of τ(E) in TCM. Similarly, the only obstruction
on η is η|τ(E) = iY α. Thus, if (3.9) holds for any sections X + ξ and Y + η

of Lτ (E,α), then

DX(τ(Z)) ∈ Γ(τ(E)), ∀X,Z ∈ Γ(E)

and relation (3.9) becomes (3.4). We proved that π∗Lτ (E,α) is involutive
if and only if

[Γ(E),Γ(E)] ⊂ Γ(E), RD|E×Eτ(E) = 0,
DΓ(E)Γ(τ(E)) ⊂ Γ(τ(E))

(3.10)

and relation (3.4) holds. Our claim follows. �

We end this section by relating the Courant integrability of a skew-
symmetric generalized complex structure J with the integrability of the
almost complex structure JJ ,D. This is a straightforward application of
Theorem 3.3.

Corollary 3.4. — Let J be a skew-symmetric generalized complex
structure, with holomorphic bundle L(E,α), and D a linear connection on
M . Suppose that E is involutive, DΓ(E)Γ(E) ⊂ Γ(E), RDE,EE = 0 and the
relation

(3.11) (DZα)(X,Y ) + α(TDZ X,Y ) + α(X,TDZ Y ) = 0, ∀X,Y, Z ∈ Γ(E)

holds. Then JJ ,D is integrable if and only if J is Courant integrable.
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Proof. — From Proposition 2.12 and Theorem 3.3, we need to prove that
dEα = 0 is equivalent to (3.4) (with τ : TCM → TCM the identity map).
This is a consequence of (3.11) and the following general identity: for any
2-form β and vector fields X,Y, Z,

(DXβ)(Y,Z)− (DY β)(X,Z) + β(TDX Y, Z)

= (dβ)(X,Y, Z)−
(
(DZβ)(X,Y ) + β(TDZ X,Y ) + β(X,TDZ Y )

)
.

(3.12)

�

Example 3.5. — Let J be a left-invariant skew-symmetric generalized
complex structure on a Lie group G and Dc the (flat) left-invariant con-
nection on G given by Dc

XY = [X,Y ], for any left-invariant vector fields
X,Y. Then Dc satisfies (3.11), for any left-invariant 2-form α. We obtain
that J is Courant integrable if and only if JJ ,Dc is integrable.

4. Complex structures on cotangent manifolds of Lie
groups

We begin by recalling basic facts we need about semisimple Lie algebras.

4.1. Semisimple Lie algebras

Let gC be a complex semisimple Lie algebra and

(4.1) gC = h + g(R) = h +
∑
α∈R

gα

a Cartan decomposition. We identify h with h∗, using the restriction of the
Killing form B of gC to h. By means of this identification, we denote by
hR ⊂ h the real span of the set of roots R ⊂ h∗ of gC relative to h and
by Hα ∈ hR the vector which corresponds to the root α ∈ R. Recall that
a Weyl basis of the root part g(R) :=

∑
α∈R gα consists of root vectors

{Eα, α ∈ R}, satisfying the following conditions:

[Eα, E−α] = Hα, B(Eα, E−α) = 1, N−α,−β = −Nαβ , Nαβ ∈ R,

where the structure constants Nαβ are defined by

[Eα, Eβ ] = NαβEα+β , ∀α, β, α+ β ∈ R.

A simple argument which uses the Jacobi identity for Eα, Eβ , Eγ shows
that for any α, β, γ ∈ R, such that α+ β + γ = 0,

(4.2) Nαβ = Nβγ = Nγα
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(see e.g. [7], page 146).
Recall now that a real form g of gC is the fixed point set of an antilinear

involution
σ : gC → gC, x→ σ(x) = x̄,

i.e. an automorphism of real Lie algebras, which is complex antilinear and
satisfies σ2 = Id. We review, following Theorem 6.88 of [9], the structure of
such real forms. The idea is that g is determined (up to isomorphism) by
its Vogan diagram, which is the Dynkin diagram of gC (representing a set
of simple roots Π relative to a chosen Cartan subalgebra h) together with
two pieces of data: an involutive automorphism θ : Π → Π of the Dynkin
diagram and some painted nodes, in the fixed point set of θ. Choose a Weyl
basis {Eα} of g(R), where R = [Π] is the set of roots of gC relative to h. The
action of θ on Π extends by linearity to h∗R

∼= hR and this action preserves
R. The antiinvolution σ preserves h and it acts on R by

σ : R→ R, σ(α) := α ◦ σ.

This action coincides, up to a minus sign, with the action of θ: σ|R = −θ|R.
On root vectors from the chosen Weyl basis, σ acts as

(4.3) σ(Eα) = −aαEσ(α), ∀α ∈ R,

where {aα, α ∈ R} (determined by the painted nodes in the Vogan diagram)
is a set of constants, satisfying

(4.4) aα = a−α = aσ(α) ∈ {±1}, ∀α ∈ R

and

(4.5) aα+β = −aαaβN−1
αβNσ(α)σ(β), ∀α, β, α+ β ∈ R.

The real form hg = hσ = h+ + h−, where

(4.6) h+ := 〈i(Hα +H−σ(α)), α ∈ R〉, h− := 〈Hα +Hσ(α), α ∈ R〉

(the sign 〈· · · 〉 means the real span of the respective vectors) is a Cartan
subalgebra of g. Up to isomorphism, g can be recovered from its Vogan
diagram as

(4.7) g = (gC)σ = hg +
∑
α∈R

R(Eα − aαEσ(α)) +
∑
α∈R

Ri(Eα + aαEσ(α)).

Remark 4.1. — Since θ permutes Π, there is no root α ∈ R such that
σ(α) = α. This means that hg is a maximally compact Cartan subalgebra
of g (see [9, Proposition 6.70]). The real form g (and any Lie group G with
Lie algebra g) is called of inner type if σ(α) = −α for any α ∈ R (the
automorphism θ of the Vogan diagram is the identity). Any compact real
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form is of inner type, with aα = 1, for any α ∈ R. A real form g (and any
Lie group G with Lie algebra g) which is not of inner type is called of outer
type. For more details on real semisimple Lie algebras, Vogan diagrams,
maximally compact Cartan subalgebras, see e.g. [9], Chapter VI.

4.2. Admissible triples on Lie groups

Let G be a Lie group. We identify TeG with the space of left-invariant
vector fields on G and with the Lie algebra g of G, in the usual way. The
following definition encodes the conditions from Theorem 3.3, whenM = G

and J , D are left-invariant. Recall that a connection D is left-invariant if
DXY is left-invariant, when X and Y are so.

Definition 4.2. — A (symmetric or skew-symmetric) g-admissible
triple is a triple (k,D, ε), with the following properties:
i) k is a complex subalgebra of gC, such that k + k̄ = gC;
ii) D : g × g → g, (X,Y ) → DX(Y ), is a bilinear map whose complex

linear extension satisfies

(4.8) Dkτ(k) ⊂ τ(k)

and
RDX,Y Z := −DXDY (Z) +DYDX(Z)+D[X,Y ](Z) = 0,

∀X,Y ∈ k, ∀Z ∈ τ(k).
(4.9)

iii) ε ∈ k∗ ⊗ τ(k)∗ satisfies

ε(X, τ(Y )) + τ(ε(Y, τ(X))) = 0, ∀X,Y ∈ k

and
ε(X,DY (τ(Z)))− ε(Y,DX(τ(Z))) = ε([X,Y ], τ(Z)),

∀X,Y, Z ∈ k
(4.10)

and, moreover, g∆ := Im(ε|∆) is non-degenerate on ∆ = (k ∩ k̄)σ.
Above, the maps τ : gC → gC and τ : C→ C are both standard conjuga-

tions (symmetric case) or both the identity maps (skew-symmetric case).

The following correspondence holds and will play a key role in our treat-
ment from the next subsection.

Proposition 4.3. — There is a one to one correspondence between:
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i) pairs (J , D) formed by a left-invariant adapted generalized complex
structure J and a left-invariant connection D on G, such that the as-
sociated almost complex structure JJ ,D on T ∗G is integrable;

ii) g-admissible triples (k,D, ε).
In this correspondence D is the restriction of D to the space of left-

invariant vector fields, k := Ee and ε := α|k×τ(k), where Lτ (E,α) is the
holomorphic bundle of J .

Proof. — Using the left-invariance of E and α, one may check that the
conditions from Theorem 3.3, on the integrability of JJ ,D, become the
conditions for (k,D, ε) to be a g-admissible triple. For example, to prove the
equivalence between (3.4) and (4.10), we notice that (3.4) holds if and only
if it holds for any X,Y, Z ∈ Γ(E) left-invariant, and for such arguments,
α(Y, τ(Z)) and α(X, τ(Z)) are constant (because α is left-invariant). �

4.3. Regular admissible triples and regular generalized complex
structures

Here and until the end of Section 4 we fix a complex semisimple Lie
algebra gC, a real form g = (gC)σ given by (4.7), and a Lie group G with
Lie algebra g. A (complex) subalgebra k ⊂ gC is called regular, if it is
normalized by the (maximally compact) Cartan subalgebra hg of g. It is
known (see e.g. [11], Proposition 1.1, page 183) that such a subalgebra is
of the form

(4.11) k = hk + g(R0) = hk +
∑
α∈R0

gα

where hk = k ∩ h and R0 ⊂ R is a closed subset of roots (i.e. if α, β ∈ R0
and α+ β ∈ R, then α+ β ∈ R0). Remark that

(4.12) k̄ = σ(k) = h̄k +
∑
α∈R0

gσ(α), k ∩ k̄ = hk ∩ h̄k +
∑

α∈R0∩σ(R0)

gα.

Definition 4.4. — Let J be a left-invariant adapted generalized com-
plex structure on G and Lτ (k, ε) the fiber at e ∈ G of its holomorphic
bundle. Then J is called regular if the subalgebra k ⊂ gC is regular. Simi-
larly, a g-admissible triple (k,D, ε) is called regular if the subalgebra k ⊂ gC

is regular.

We need to recall the notions of σ-parabolic and σ-positive systems [2].
They reduce, when g is of inner type, to the usual notions of parabolic and
positive root systems, respectively (see e.g. [3]).
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Definition 4.5. — A closed set of roots R0 ⊂ R is called a σ-parabolic
system, if R0 ∪ σ(R0) = R. If, moreover, R0 ∩ σ(R0) = ∅, then R0 is called
a σ-positive system.

The following simple lemma holds.

Lemma 4.6. — If a regular subalgebra k as in (4.11) belongs to a g-
admissible triple, then its root part R0 is a σ-parabolic system and its
Cartan part hk satisfies hk + h̄k = h. If, moreover, R0 is a σ-positive system,
then k ∩ k̄ = hk ∩ h̄k.

Proof. — From the definition of g-admissible triples, k + k̄ = h. This
relation, together with (4.12), implies the statement of the lemma. �

4.4. Complex structures on T ∗G

Our aim in this section is to define a natural left-invariant connection D0

onG and to determine all regular symmetric generalized complex structures
J , with the property that the almost complex structure JJ ,D0 on T ∗G is
integrable, or, equivalently (from Proposition 4.3), the associated triple
(k,D0, ε) is g-admissible (and regular, symmetric). From Definition 4.2, a
bilinear map D : g × g → g can belong to a symmetric g-admissible triple
(k,D, ε) only if its complex linear extension D : gC×gC → gC satisfies (4.8)
and (4.9) (with τ = σ, hence τ(k) = k̄). Recall now that k is of the form
(4.11) and k̄ of the form (4.12). From these relations, it is immediate that
if

(4.13)
Dgα(gβ) ⊂ gσ(α)+β , Dh(gβ) ⊂ gβ ,

Dgβ (h) ⊂ gσ(β), Dh(h) = 0,

for any α, β ∈ R (with gσ(α)+β := 0 if α+σ(β) /∈ R), then (4.8) is satisfied.
A map whose complex linear extension satisfies (4.13) and (4.9) is provided
by the following lemma.

Lemma 4.7. — Let D0 : gC× gC → gC be a complex bilinear map given
by

D0
Eα(Eβ) = −aα[Eσ(α), Eβ ], D0

H(Eβ) = σ(β)(H)Eβ ,

D0
Eβ

(H) = σ(β)(H)aβEσ(β), D0
H(H̃) = 0

for any α, β ∈ R and H, H̃ ∈ h. Then D0 satisfies

(4.14) D0
k (k̄) ⊂ k̄, D0

g(g) ⊂ g, RD
0

= 0.
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Proof. — We already explained that D0
k (k̄) ⊂ k̄. We now prove D0

g(g) ⊂ g.

For any α ∈ R, let Aα := Eα − aαEσ(α) and Bα := i(Eα + aαEσ(α)). By a
straightforward computation, which uses (4.4), we obtain:

D0
Aα(Aβ) =− aα

(
[Eσ(α), Eβ ] + aαaβ [Eα, Eσ(β)]

)
+
(
[Eα, Eβ ] + aαaβ [Eσ(α), Eσ(β)]

)
,

D0
Bα(Bβ) =

(
[Eα, Eβ ] + aαaβ [Eσ(α), Eσ(β)]

)
+ aα

(
[Eσ(α), Eβ ] + aαaβ [Eα, Eσ(β)]

)
,

D0
Aα(Bβ) = i

(
[Eα, Eβ ]− aαaβ [Eσ(α), Eσ(β)]

)
+ aβi

(
[Eα, Eσ(β)]− aαaβ [Eσ(α), Eβ ]

)
,

D0
Bα(Aβ) =− i

(
[Eα, Eβ ]− aαaβ [Eσ(α), Eσ(β)]

)
− iaα

(
[Eσ(α), Eβ ]− aαaβ [Eα, Eσ(β)]

)
.

Moreover, for any α, β ∈ R and H ∈ h+,

D0
Aα(H) = iα(H)aαBσ(α), D0

Bα(H) = iα(H)Aα
D0
H(Aα) = iα(H)Bα, D0

H(Bα) = −iα(H)Aα,

while for any α, β ∈ R and H ∈ h−,

D0
Aα(H) = α(H)aαAσ(α), D0

Bα(H) = α(H)Bα
D0
H(Aα) = α(H)Aα, D0

H(Bα) = α(H)Bα.

We now remark that for any α, β ∈ R, the expressions

[Eα, Eβ ] + aαaβ [Eσ(α), Eσ(β)], i
(
[Eα, Eβ ]− aαaβ [Eσ(α), Eσ(β)]

)
belong to g. We also know that aα = aσ(α) ∈ {±1}. Moreover, any root
takes real values on h− and purely imaginary values on h+. Therefore, the
above computations show that D0

g(g) ⊂ g, as required.
It remains to prove that RD0

X,Y Z = 0, for any X,Y, Z ∈ gC. Without
loss of generality, we assume that X,Y, Z are either root vectors from the
Weyl basis or vectors from the Cartan subalgebra h.With this assumption,
the above relation follows from a long but straightforward computation,
which uses the definition of D0. Consider for example the case when X :=
Eα, Y := Eβ and Z := Eγ are all root vectors from the Weyl basis (the
remaining situations, with at least one argument from h, can be treated
similarly). We distinguish three subcases: I) σ(α)+γ 6= 0 and σ(β)+γ 6= 0;
II) σ(α)+γ = 0 and σ(β)+γ 6= 0; III) σ(α)+γ = σ(β)+γ = 0. In subcase
III), RD0

Eα,Eβ
Eγ = 0 (trivial, α = β). Let us study I) in more detail. We
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need to distinguish two further subcases of I), namely α + β 6= 0 and,
respectively, α + β = 0. Suppose first that α + β 6= 0. Since σ(β) + γ 6= 0,
[Eσ(β), Eγ ] is either a root vector (when σ(β) + γ ∈ R) or [Eσ(β), Eγ ] = 0
(when σ(β) + γ /∈ R). We obtain, from the definition of D0,

(4.15) D0
EαD

0
Eβ
Eγ = −aβD0

Eα([Eσ(β), Eγ ]) = aαaβ [Eσ(α), [Eσ(β), Eγ ]].

Similarly, since α+ β 6= 0, [Eα, Eβ ] is either a root vector or [Eα, Eβ ] = 0.
We obtain

(4.16) D0
[Eα,Eβ ]Eγ = NαβD0

Eα+β
Eγ = −aα+βNαβ [Eσ(α+β), Eγ ]

(with Eα+β = Eσ(α+β) = 0 and aα+β = Nαβ = 0 when α + β /∈ R). From
(4.15), (4.16) and the Jacobi identity, we deduce that

(4.17) RD
0

Eα,Eβ
Eγ = aαaβ [Eγ , [Eσ(α), Eσ(β)]] + aα+βNαβ [Eγ , Eσ(α+β)].

On the other hand, it is easy to check that

aα+βNαβEσ(α+β) = −aαaβ [Eσ(α), Eσ(β)].

It follows that RD0

Eα,Eβ
Eγ = 0, as required. Suppose now that I) holds and

α+ β = 0. Using again the definition of D0, we obtain

RD
0

Eα,E−αEγ =
(
σ(γ)(Hα)− γ(Hσ(α))

)
Eγ .

But this last expression is zero: using σ(Hα) = Hσ(α) (easy check) and
γ(Hσ(α)) ∈ R, we obtain σ(γ)(Hα) = γ(Hσ(α)). The remaining case II) can
be treated similarly. Our claim follows. �

The preferred connection we are looking for is defined as follows.

Definition 4.8. — The connectionD0 is the unique (flat) left-invariant
connection on G which on left-invariant vector fields coincides with the map
D0 from Lemma 4.7.

With the above preliminary considerations, we can now state our main
result from this section. Below we denote by {ωα ∈ (gC)∗, α ∈ R} the
covectors defined by ωα(Eβ) = δαβ for any α, β ∈ R and ωα|h = 0. We use
the notation Rsym

0 := R0 ∩ (−R0) for the symmetric part of R0.

Theorem 4.9. — Consider a triple (k,D0, ε), with k the regular subal-
gebra (4.11), D0 as in Lemma 4.7 and ε ∈ k∗ ⊗ k̄∗ skew-Hermitian. Assume
that

(4.18) (α+ β)|hk
6= 0, ∀α, β ∈ R0 ∪ {0}, α+ β 6= 0.

Then (k,D0, ε) is a (symmetric) g-admissible triple (and the associated
pair (J , D0) defines a complex structure JJ ,D0 on T ∗G) if and only if the
following conditions hold:
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i) the root system R0 of k is a σ-parabolic system (see Definition 4.5) and
the Cartan part satisfies hk + h̄k = h;

ii) the skew-Hermitian 2-form ε ∈ k∗ ⊗ k̄∗ is given by

(4.19)

ε = ε0 +
∑
α∈R0

µα(α⊗ ωσ(α) + aαωα ⊗ σ(α))

−
∑

α,β,α+β∈R0

aαµα+βNσ(α)σ(β)ωα ⊗ ωσ(β)

+
∑

γ∈Rsym
0

νγωγ ⊗ ω−σ(γ)

where ε0 ∈ h∗k ⊗ h̄∗k is skew-Hermitian (trivially extended to k), µα, νγ
(α ∈ R0, γ ∈ Rsym

0 ) are any real constants, such that the να’s satisfy

(4.20) να + ν−α = 0, ∀α ∈ Rsym
0

and, for any α, β, γ ∈ Rsym
0 , with α+ β + γ = 0,

(4.21) aανα + aβνβ + aγνγ = 0.

iii) The pseudo-Riemannian metric g∆ := Im(ε|k∩g) is non-degenerate and

(4.22) ε0(H,Hσ(α)) = 0, ∀H ∈ hk, ∀α ∈ Rsym
0 .

Proof. — From Definition 4.2, Lemma 4.6 and Lemma 4.7, we need to
prove that ε satisfies

(4.23) ε(X,D0
Y (Z̄))− ε(Y,D0

X(Z̄)) = ε([X,Y ], Z̄), ∀X,Y, Z ∈ k

if and only if it is of the form (4.19) and conditions (4.20), (4.21) and (4.22)
are satisfied. In order to prove this statement, we choose various arguments
in (4.23). Below, H, H̃ ∈ hk and α, β, γ ∈ R0. First, let X := H, Y := H̃

and Z := Eα. With these arguments, (4.23) becomes

α(H̃)ε(H,Eσ(α)) = α(H)ε(H̃, Eσ(α)).

From (4.18), α|hk
is non-trivial. Choosing H̃ such that α(H̃) 6= 0, we deduce

that the above relation is equivalent to

(4.24) ε(H,Eσ(α)) = µαα(H), ∀H ∈ hk, ∀α ∈ R0,

for a constant µα ∈ C. By letting X := H, Y := Eα and Z := H̃ in (4.23),
we obtain that µα ∈ R, for any α ∈ R0.

Next, let X := Eα, Y := H and Z := Eβ in (4.23). We obtain

ε(Eα,D0
H(Ēβ))− ε(H,D0

Eα(Ēβ)) = ε([Eα, H], Ēβ)

or

(4.25) (α+ β)(H)ε(Eα, Eσ(β)) + aαε(H, [Eσ(α), Eσ(β)]) = 0.
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If α+β 6= 0, then (α+β)|hk
is non-trivial, by (4.18), and the above relation,

together with (4.24), gives
ε(Eα, Eσ(β)) = −aαµα+βNσ(α)σ(β), ∀α, β, α+ β ∈ R0,

ε(Eα, Eσ(β)) = 0, ∀α, β ∈ R0, α+ β /∈ R ∪ {0}.
(4.26)

If α+ β = 0, relation (4.25) gives (4.22).
We now remark that conditions (4.24) and (4.26) imply that ε is of

the form (4.19), with µα ∈ R (α ∈ R0) and να := ε(Eα, E−σ(α)) ∈ C
(α ∈ Rsym

0 ).
We still need to consider (4.23), with the remaining two types of argu-

ments: X = Eα, Y = Eβ , Z := H, and, respectively, X := Eα, Y := Eβ ,
Z := Eγ (from the definition of D0, (4.23) holds when all X, Y , Z belong
to the Cartan part hk).

Let X = Eα, Y = Eβ , Z := H. Relation (4.23) gives

(4.27) β(H)aβε(Eα, Eσ(β)) + α(H)aβε(Eα, Eσ(β)) = ε([Eα, Eβ ], H̄).

When α + β 6= 0, relation (4.27) follows from (4.24) and (4.26) (and the
skew-Hermitian property of ε). When α + β = 0, relation (4.27) implies
that να ∈ R, for any α ∈ Rsym

0 . Since ε is skew-Hermitian and να ∈ R,
relation (4.20) holds.
Finally, letX := Eα, Y := Eβ , Z := Eγ in (4.23). From (4.24), (4.26) and

µα, νβ ∈ R, relation (4.23) is automatically satisfied, when α + β + γ 6= 0;
when α+ β + γ = 0, we obtain

(4.28) aβNσ(β)σ(γ)να + aαNσ(γ)σ(α)νβ +Nβανγ = 0.

Using now the relations

Nσ(β)σ(γ) = −aβ+γaβaγNβγ , Nσ(γ)σ(α) = −aα+γaαaγNγα

and Nαβ = Nβγ = Nγα (because α + β + γ = 0; see Subsection 4.1), we
obtain that (4.28) is equivalent to (4.21). Our claim follows. �

The statement of Theorem 4.9 requires various comments. First, we need
to explain how the constants να can be constructed, such that (4.20) and
(4.21) are satisfied. Next, we need to study the non-degeneracy of g∆. This
will be done in the following paragraphs.

4.4.1. The construction of να

Let R0 be a σ-parabolic system of R (we remark that the following
argument holds for any closed subsystem of R, not necessarily σ-parabolic).
In this paragraph, we describe a method to construct real constants να,
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α ∈ Rsym
0 , such that conditions (4.20) and (4.21) from Theorem 3.3 hold.

Since Rsym
0 is closed and symmetric, it is a root system (see e.g. [3], page

164). Let Π := {α0, · · · , αk} be a system of simple roots of Rsym
0 . Define,

as usual, the height of α = n1α1 + · · · + nkαk ∈ Rsym
0 with respect to Π,

by n(α) := n1 + · · ·+ nk.

Lemma 4.10. — The constants να := aαn(α), for any α ∈ Rsym
0 , satisfy

(4.20) and (4.21).

Proof. — The hight function n : Rsym
0 → Z is additive. In particular,

n(−α) = −n(α) and if α+ β + γ = 0, then n(α) + n(β) + n(γ) = 0. Recall
also that a2

α = 1 and a−α = aα for any α. The claim follows. �

4.4.2. The non-degeneracy of g∆

We begin with the simplest case, when R0 is a σ-positive system.

Remark 4.11. — We consider a triple (k,D0, ε) satisfying the conditions
i) and ii) of Theorem 4.9. We assume, moreover, that R0 is a σ-positive
system (not only σ-parabolic). Then ∆ = (k∩ k̄)σ reduces to (hk ∩ h̄k)σ and
the non-degeneracy of g∆ = Im(ε|∆) concerns only the Cartan part ε0 of
ε. Our aim is to show that, under a mild additional assumption, we can
choose the Cartan part ε0 of ε such that g∆ is non-degenerate and (4.22)
is satisfied as well. More precisely, assume that the subspace

S := SpanC{Hα, α ∈ Rsym
0 }

is transverse to its conjugate

S̄ = σ(S) = SpanC{Hσ(α), α ∈ Rsym
0 }.

(We remark that this holds for many σ-positive systems, see Subsections
5.1-5.3 of [2]). A simple argument (see [2], Section 5), then shows that the
Cartan subalgebra hk of k decomposes as a direct sum

(4.29) hk = (hk ∩ h̄k)⊕ S ⊕W

where W ⊂ hk is any complementary subspace of (hk ∩ h̄k) ⊕ S. Choose
ε0 ∈ h∗k ⊗ h̄∗k such that

ε0(S, ·) = ε0(·, S̄) = 0

(i.e. (4.22) is satisfied) and g∆ = Im(ε|(hk∩h̄k)σ ) is non-degenerate. With this
choice, all conditions of Theorem 4.9 are satisfied, (k,D0, ε) is a symmetric
g-admissible triple and the associated pair (J , D0) has the property that
JJ ,D

0 is integrable.
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In order to study the non-degeneracy of g∆ in general (i.e. when R0 is
σ-parabolic, not necessarily σ-positive) we choose a preferred basis of ∆
and we compute g∆ in this basis. To simplify the arguments, we assume
that R0 ∩ σ(R0) is symmetric (this is always satisfied, when g is of inner
type). Then k ∩ k̄ is reductive. Its real form ∆ = (k ∩ k̄)σ is given by

∆ = hk ∩ hg +
∑

α∈R0∩σ(R0)

RAα +
∑

α∈R0∩σ(R0)

RBα,

where, as in the proof of Lemma 4.7, Aα := Eα − aαEσ(α) and Bα :=
i(Eα + aαEσ(α)). Since R0 ∩ σ(R0) is symmetric, Hα = [Eα, E−α] ∈ k ∩ k̄,
for any α ∈ R0 ∩ σ(R0). Define new vectors

F+
α := Hα +Hσ(α), F

−
α := i(Hα −Hσ(α)), ∀α ∈ R0 ∩ σ(R0).

They belong to hk ∩ hg. It follows that

hk ∩ hg = SpanR{F+
α , α ∈ R0 ∩ σ(R0)}⊕ SpanR{F−α , α ∈ R0 ∩ σ(R0)}⊕ C,

where
C = Ann(R0 ∩ σ(R0))|hk∩hg

.

Let {c1, · · · , cs} be a basis of C. Choose a maximal system of linearly in-
dependent vectors {F+

1 , · · · , F+
p } from {F+

α , α ∈ R0 ∩ σ(R0)} and sim-
ilarly, a maximal system of linearly independent vectors {F−1 , · · · , F−q }
from {F−α , α ∈ R0 ∩ σ(R0)}. It follows that the system of vectors

B := {ck, F+
r , F

−
t , Aα, Bα, α ∈ R0 ∩ σ(R0)}

(where 1 6 k 6 s, 1 6 r 6 p, 1 6 t 6 q) form a basis B of ∆.

Lemma 4.12. — Let ε ∈ k∗ ⊗ k̄∗ be given by (4.19), such that condition
(4.22) is satisfied. Assume, moreover, that R0 ∩ σ(R0) is symmetric. With
respect to the basis B above, all the entries of g∆ = Im(ε|∆) are zero except:

g∆(Aα, Bβ) =− aαNσ(α)β(µα+σ(β) + aσ(α)+βµσ(α)+β)
+Nαβ(µσ(α+β) + aα+βµα+β)

g∆(F+
r , Bα) =(µσ(α) + aαµα)α(F+

r )

g∆(F−t , Aα) =i(µσ(α) + aαµα)α(F−t )

(where Nδγ = µδ+γ = 0 for δ, γ ∈ R0, such that δ + γ /∈ R). In particular,
if g∆ is non-degenerate, then

(4.30) dimR〈α+σ(α), α ∈ R0∩σ(R0)〉 = dimR〈α−σ(α), α ∈ R0∩σ(R0)〉.
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Proof. — One can check, using (4.19) and (4.22), that the entries of g∆
have the required form (for example, (4.22) means that F+

r and F−t belong
to the kernel of g∆|hk∩hg

). It is also easy to check that if the matrix which
represents g∆ in the basis B is non-degenerate, then p = q, i.e. relation
(4.30) is satisfied. �

Remark 4.13. — We end this discussion by analysing the condition
(4.30) from Lemma 4.12. Let R0 ⊂ R be a closed subset of roots, such
that R′0 := R0 ∩ σ(R0) is symmetric and (4.30) holds. Since R′0 is symmet-
ric and closed, it is the root system of the σ-invariant complex semisimple
subalgebra

(g′)C := h′ +
∑
α∈R′0

gα ⊂ gC,

where h′ := SpanC{Hα, α ∈ R′0} is a σ-invariant Cartan subalgebra of
(g′)C. The action of σ on the subset of roots R′0 ⊂ R is induced by an
antilinear involution of (g′)C, namely by the restriction σ′ of σ to (g′)C. Let
g′ = (g′)C ∩ g be the real form of (g′)C defined by σ′. Then h′g′ := (h′)σ′ is
a maximally compact Cartan subalgebra of g′. If we assume, in addition,
that R′0 is irreducible, then (g′)C is a simple Lie algebra. It is easy to see
that condition (4.30) holds if and only if the automorphism of the Vogan
diagram of g′ has no fixed points. By inspecting the Vogan diagrams of
simple, non-complex real Lie algebras (see e.g. [9], Appendix C) we deduce
that (4.30) holds if and only if (g′)C is isomorphic to sl(2n + 1,C) and g′

is the real form sl(2n+ 1,R) ⊂ sl(2n+ 1,C).

4.4.3. Symmetric g-admissible triples of inner type

Theorem 4.9 provides a complete explicit description of symmetric g-
admissible triples (k,D0, ε) of inner type, as follows.

Theorem 4.14. — Let g be a real form of inner type of gC, given by
(4.7) (with σ(α) = −α for any α ∈ R). Consider a triple (k,D0, ε) with k

the regular subalgebra (4.11), D0 as in Lemma 4.7 and ε ∈ k∗ ⊗ k̄∗ skew-
Hermitian. Then (k,D0, ε) is a (symmetric) g-admissible triple (and the
associated pair (J , D0) defines a complex structure JJ ,D0 on T ∗G) if and
only if:
i) the root system R0 of k is a positive root system (R0 = R+) and the

Cartan part satisfies hk + h̄k = h;
ii) ε is of the form

ε = ε0 +
∑
α∈R+

µα(α⊗ ω−α − aαωα ⊗ α) +
∑

α,β,α+β∈R+

aαµα+βNαβωα ⊗ ω−β
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where ε0 ∈ Λ2(hk) is trivially extended to k, and µα (α ∈ R+) are
arbitrary real constants;

iii) Im(ε0|hk∩ihR) is non-degenerate.

Proof. — We use Theorem 4.9. Since σ|R = −Id, R0∩σ(R0) is symmetric
and relation (4.30) implies that R0 ∩ (−R0) = ∅. Since R0 ∪ (−R0) = R,
from a result of Bourbaki we obtain that R0 = R+ is a positive root system.
Condition (4.18) is satisfied (this follows from hk + h̄k = h and σ|R = −Id).
Conditions (4.20), (4.21) and (4.22) do not apply (R+ is skew-symmetric)
and the intersection k ∩ k̄ reduces to its Cartan part hk ∩ h̄k. �

5. Special complex geometry

In this section we develop further applications of Theorem 3.3, in relation
to special complex geometry.

Proposition 5.1. — Let (M,J,D) be a manifold with an almost com-
plex structure J and a linear connection D. The almost complex structure
J± := JJ

±,D on T ∗M , defined by D and the generalized complex structure

J± :=
(
J 0
0 ±J∗

)
is integrable if and only if J is a complex structure, DX(J) = ±JDJX(J)
and

(5.1) (RDX,Y −RDJX,JY )(Z)± (RDJX,Y +RDX,JY )(JZ) = 0,

for any X,Y, Z ∈ TM.

Proof. — The generalized complex structure J + is symmetric, with holo-
morphic bundle T 1,0M ⊕Ann(T 0,1M), while J− is skew-symmetric, with
holomorphic bundle T 1,0M⊕Ann(T 1,0M). From Theorem 3.3, if J± is inte-
grable, then the bundle T 1,0M is involutive, i.e J is an (integrable) complex
structure. Also, DΓ(T 1,0M)Γ(T 1,0M) ⊂ Γ(T 1,0M) if and only if DX(J) =
−JDJX(J), while DΓ(T 1,0M)Γ(T 0,1M) ⊂ Γ(T 0,1M) if and only if DX(J) =
JDJX(J), for any X ∈ TM. The condition RD|T 1,0M,T 1,0M (τ(T 1,0M)) = 0
from Theorem 3.3 translates to (5.1). Condition (3.4) from Theorem 3.3 is
also satisfied, because α = 0 (in both cases). Our claim follows. �

As already mentioned in the introduction, the first statement of the fol-
lowing corollary was proved in [1] using different methods.

Corollary 5.2. — Consider the setting of Proposition 5.1.
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i) If (J,D) is a special complex structure, i.e. J is integrable and D is
flat, torsion-free, such that

(dDJ)X,Y := DX(J)(Y )−DY (J)(X) = 0, ∀X,Y ∈ TM,

then J+ is integrable.
ii) If D = Dg is the Levi-Civita connection of an almost Hermitian struc-

ture (g, J), then J+ is integrable if and only if (g, J) is Kähler and
J− is integrable if and only if J is integrable and the curvature of g
satisfies

(RDX,Y −RDJX,JY )(Z)− (RDJX,Y +RDX,JY )(JZ) = 0, ∀X,Y, Z ∈ TM.

iii) If D is the Chern connection of a Hermitian structure (J, g), then both
J± are integrable.

Proof. — The claims follow from Proposition 5.1. For i), we remark that
the special complex condition dDJ = 0 implies DX(J) = JDJX(J) for any
X ∈ TM. For ii), we use that Dg

X(J) = −JDg
JX(J), for any X ∈ TM , if

and only if J is integrable (see [5] or [4, Proposition 1]). This proves the
statement for J−. The statement for J+ follows as well: if J is integrable
and Dg

X(J) = JDg
JX(J), then DgJ = 0 and (g, J) is Kähler. For iii), we use

that the Chern connection is Hermitian with curvature of type (1, 1). �

The following lemma is a mild improvement of Lemma 6 of [1].

Lemma 5.3. — Let (M,ω,D) be a manifold with a non-degenerate 2-
form ω and a linear connection D. The almost complex structure on T ∗M
defined by D and the (skew-symmetric) generalized complex structure

J ω =
(

0 ω−1

−ω 0

)
is integrable if and only if D is flat and, for any X,Y, Z ∈ X (M),

(dω)(X,Y, Z)− (DZω)(X,Y )− ω(TDZ X,Y )− ω(X,TDZ Y ) = 0.

Proof. — The holomorphic bundle of J ω is L(TCM, iωC) and the claim
follows from Theorem 3.3 and relation (3.12). �
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