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ON MINIMAL SINGULAR METRICS OF CERTAIN
CLASS OF LINE BUNDLES WHOSE SECTION RING IS

NOT FINITELY GENERATED

by Takayuki KOIKE (*)

Abstract. — Wea are interested in the regularity of a minimal singular metric
of a line bundle. One main conclusion of our general result in this paper is the
existence of smooth Hermitian metrics with semi-positive curvatures on the so-
called Zariski’s example of a line bundle defined over the blow-up of P2 at twelve
points. This is an example of a line bundle which is nef, big, not semi-ample,
and whose section ring is not finitely generated. We generalize this result to the
higher dimensional case when the stable base locus of a line bundle is a smooth
hypersurface with a holomorphic tubular neighborhood.
Résumé. — On s’intéresse à la régularité d’une métrique singulière minimale

d’un fibré en droites. Une des conséquences principales du résultat général de cet
article est l’existence des métriques Hermitiennes lisses à courbure semi-positive sur
X. Ici, X denote l’exemple de Zariski d’un fibré en droites défini sur l’éclatement
du plan projectif en douze points. C’est un exemple de fibré en droites qui est nef,
gros et non semi-ample et dont l’anneau des sections n’est pas de type fini. Nous
généralisons ce résultat au cas de la dimension supérieure lorsque le lieu de base
stable d’un fibré en droites est une hypersurface lisse avec un voisinage tubulaire
holomorphe.

1. Introduction

Our interest is a regularity of a minimal singular metric of a line bundle.
One main conclusion of our general result in this paper is the existence of
smooth Hermitian metrics with semi-positive curvatures on the so-called
Zariski’s example ([8, 2.3.A]).

Keywords: minimal singular metrics, tubular neighborhoods, Zariski’s example.
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Theorem 1.1 (Example 4.3). — Let C ⊂ P2 be a smooth elliptic curve,
π : X → P2 the blowing-up at general twelve points p1, p2, . . . , p12 ∈ C, H
the pulled back divisor of a line in P2, and let D be the strict transform of
C. Then the line bundle L = OX(H +D) is semi-positive (i.e. L admits a
smooth Hermitian metric with semi-positive curvature).
This L is nef and big, however has a pathological property that D ⊂

Bs |L⊗m| holds for all m > 1, |L⊗m ⊗ OX(−D)| is globally generated for
all m > 1, and that the section ring

⊕
m>0H

0(X,L⊗m) of L is not finitely
generated. When the twelve points p1, p2, . . . , p12 ∈ C is special, the line
bundle L is semi-ample and thus it is semi-positive. Minimal singular met-
rics of a line bundle L are metrics of L with the mildest singularities among
singular Hermitian metrics of L whose local weights are plurisubharmonic.
Minimal singular metrics have been introduced in [5, 1.4] as a (weak) an-
alytic analogue of the Zariski decomposition, and always exist when L is
pseudo-effective ([5, 1.5]). The main theorem is as follows.
Theorem 1.2. — Let X be a smooth projective variety, D a smooth

hypersurface of X, L a pseudo-effective line bundle over X, and let hmin
be a minimal singular metric of L. Assume that L ⊗ OX(−D) is semi-
positive, OX(−D)|D is ample, OD(−KD − D|D) is nef and big, and that
D has a holomorphic tubular neighborhood (i.e. an open neighborhood in
X which is biholomorphic to an open neighborhood of the zero section in
the normal bundle ND/X). Then hmin|D 6≡ ∞ holds if and only if L|D is
pseudo-effective, moreover in this case hmin|D is a minimal singular metric
of L|D.
One of the typical cases of the situations in Theorem 1.2 is when X is

a surface and the self-intersection number (D2) is (sufficiently) negative.
It is followed by a special case of Grauert’s theorem [7, Satz 7]: A smooth
compact complex curve D with genus g embedded in a complex surface X
has a holomorphic tubular neighborhood if (D2) < min{0, 4 − 4g} holds.
Thus, we can apply our main theorem to Zariski’s example to obtain Theo-
rem 1.1, and we also can show the existence of a smooth Hermitian metric
with semi-positive curvature for the same type examples introduced by
Mumford ([8, 2.3.A], or Example 4.3 here). When (L⊗OX(−D))|D is am-
ple, we can write down more concretely a minimal singular metric of L
around D by using equilibrium metrics, which are special minimal singular
metrics, of R-line bundles (L⊗OX(−tD))|D for 0 6 t 6 1 (see Theorem 2.2
and Remark 3.3).
Another application of Theorem 1.2 we can expect is a concrete descrip-

tion of minimal singular metrics of a pseudo-effective line bundle which is
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not big. It is because, it follows from next Theorem 1.3, which is a version
of Theorem 1.2, that we can apply Bergman kernel construction argument
even when L is not big but merely pseudo-effective. In more detail, the
line bundle OP(A⊕L)(1) in Theorem 1.3 is big if we chose A as an ample
line bundle. Thus we can use Bergman kernel construction argument for
this line bundle and we can study minimal singular metrics of L itself by
restricting argument.

Theorem 1.3. — Let X be a smooth projective variety, A a semi-ample
line bundle on X, and let L be a pseudo-effective line bundle on X. Then
the restriction of a minimal singular metric of OP(A⊕L)(1) on P(A⊕ L) to
the divisor P(L) ⊂ P(A ⊕ L) corresponding to the projection A ⊕ L → L

gives a minimal singular metric of L on X via the natural identification
(P(L),OP(L)(1)) ∼= (X,L) (see Remark 2.3).

We can prove Theorem 1.3 directly by constructing an appropriate sin-
gular metric of OP(A⊕L)(1) from minimal singular metrics of A and L. In
the proof of Theorem 1.2, we use the assumption on the existence of holo-
morphic tubular neighborhoods to reduce the situation in Theorem 1.2 to
that in Theorem 1.3. Since L in Theorem 1.2 admits a singular Hermitian
metric which is smooth on X \D and may be singular along D, all we have
to do is to modify this metric around D. We will replace this metric on the
tubular neighborhood of D by the metric constructed in the situation of
Theorem 1.3.
The organization of the paper is as follows. In §2, we treat the case when

X has a suitable P1-bundle structure and L is the relative hyperplane
bundle. In §3, we prove Theorem 1.3 and Theorem 1.2. Finally we give
some examples in §4.

Acknowledgement. — The author would like to thank his supervisor
Prof. Shigeharu Takayama whose enormous support and insightful com-
ments were invaluable during the course of his study. He also thanks Prof.
Shin-ichi Matsumura who gave him invaluable comments.

2. The P1-bundle case

In this section, we treat the case when X has a suitable P1-bundle struc-
ture and L is the relative hyperplane bundle. Here we give a minimal sin-
gular metric of L concretely by using equilibrium metrics of R-line bundles
of the base space of X. First we define the equilibrium metrics for smooth
Hermitian metrics on pseudo-effective line bundles.
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Definition 2.1. — Let X be a smooth projective variety, L a pseudo-
effective line bundle over X, and let h = e−ϕ be a smooth Hermitian metric
on L. We denote by he the equilibrium metric, whose local weight function
ϕe is defined by

ϕe = ϕ+ sup∗{ψ : X → R ∪ {−∞} | ψ is a ϕ-psh function, ψ 6 0},

where sup∗ stands for the upper semi-continuous regularization of the supre-
mum.

Equilibrium metrics are minimal singular metrics ([5, 1.5]). Using this
notion, we prove the following theorem.

Theorem 2.2. — Let X be a smooth projective variety, A an ample
line bundle on X, and let L be a pseudo-effective line bundle on X. Let
hL = e−ϕL be a smooth Hermitian metric of L and let hA = e−ϕA be a
smooth Hermitian metric of A satisfying ddcϕA > 0. Fix a local coordinate
system by (z, x) 7→ [zs∗A(x) + s∗L(x)] ∈ P(A⊕L), where s∗A and s∗L are local
trivializations of A−1 and L−1, respectively. Then the metric of the relative
hyperplane line bundle OP(A⊕L)(1) on P(A⊕L) defined by the local weights

ϕ̃(z, x) = log max
t∈[0,1]

|z|2te(tϕA+(1−t)ϕL)e(x)

is a minimal singular metric, where (tϕA+(1− t)ϕL)e is the local weight of
the equilibrium metric associated to htAh

1−t
L , which is a smooth Hermitian

metric of the “R-line bundle A⊗t ⊗ L⊗(1−t)”.

We denote by X̃ the variety P(A ⊕ L), by π : X̃ → X the canonical
projection mapping, and by L̃ the relative plane line bundle OP(A⊕L)(1) on
X̃.

Remark 2.3. — Let us denote by X ′ the subset P(L) of X̃, and X ′′

the subset P(A). Then O
X̃

(X ′) = L̃ ⊗ π∗A−1 and L̃|X′ = π∗L|X′ hold
as equalities of line bundles on X̃ and X ′, respectively. Therefore we can
regard the restriction of a metric of L̃ to X ′ as a metric of L, and by
regarding X ′ ⊂ X̃ as P(OX) ⊂ P(OX ⊕ (L−1 ⊗ A)), we can identify X̃ \
X ′′ and X ′ with the total space of the normal bundle N

X′/X̃
, which is

isomorphic to the bundle L⊗A−1 via π, and its zero-section.
We also remark here that L̃ is big if A is ample (see [8, 2.3.2]).

From now on, we prove Theorem 2.2. Here we denote by U the do-
main of definition of s∗A, s∗L and x. We also use the smooth Hermitian
metric h̃∞ = e−ϕ̃∞ of L̃, whose local weight is defined as ϕ̃∞(z, x) =

ANNALES DE L’INSTITUT FOURIER
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log
(
|z|2eϕA(x) + eϕL(x)) . To prove Theorem 2.2, it is sufficient to show the

following two propositions.

Proposition 2.4 (Plurisubharmonicity of ϕ̃). — The function

ϕ̃(z, x) = log max
t∈[0,1]

|z|2te(tϕA+(1−t)ϕL)e(x)

is plurisubharmonic and {e−ϕ̃} glue up to define a singular Hermitian met-
ric of L̃.

Proposition 2.5 (Minimal singularity of ϕ̃). — There is a constant C
such that (ϕ̃∞)e 6 ϕ̃+ C holds.

2.1. Proof of Proposition 2.4

Since log |z|2te(tϕA+(1−t)ϕL)e(x) is plurisubharmonic and a local weight
of a singular Hermitian metric of L̃ for each t ∈ [0, 1], it is sufficient to
show that ϕ̃ is upper semi-continuous, and it follows immediately from
Lemma 2.7.

Let us denote by ψt the function

sup∗{ψ : X → R ∪ {−∞} | ψ is a (tϕA + (1− t)ϕL)-psh function, ψ 6 0}.

For proving Lemma 2.7, we need the following lemma.

Lemma 2.6.
(1) The sequence { ψt1−t}t∈[0,1] is monotonically increasing with respect

to t.
(2) For all t ∈ [0, 1), lims↓t

ψs
1−s = ψt

1−t holds.

Proof.
(1) Let t 6 s be elements of [0, 1]. Since

sϕA + (1− s)ϕL + 1− s
1− t ψt = 1− s

1− t (tϕA + (1− t)ϕL)e + s− t
1− tϕA

holds, 1−s
1−tψt is a (sϕA + (1 − s)ϕL)-psh function. As 1−s

1−tψt 6 0,
1−s
1−tψt 6 ψs holds.

(2) According to (1), it is sufficient to show that lims↓t
ψs

1−s 6
ψt

1−t holds.
Since the sequence s

1−sϕA + ϕL + ψs
1−s (= 1

1−s (sϕA + (1− s)ϕL)e)
is monotonically increasing psh functions, the limit t

1−tϕA + ϕL +
lims↓t

ψs
1−s is also psh. As lims↓t

ψs
1−s 6 0, (1 − t) lims↓t

ψs
1−s 6 ψt

holds. �

TOME 65 (2015), FASCICULE 5
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Lemma 2.7. — The function F : C×U × [0, 1]→ R∪ {−∞} defined by
F (z, x, t) = (tϕA + (1− t)ϕL)e(x) + t log |z|2 is upper semi-continuous.

Proof. — Let us set the function H : U× [0, 1]→ R∪{−∞} as H(x, t) =
ψt(x)
1−t . Since F (z, x, t) is a sum of upper semi-continuous functions and

(1− t)H(x, t), it is sufficient to show that H is upper semi-continuous. Let
us fix an element (x0, t0) ∈ U× [0, 1) and sufficiently small positive number
ε. Then, by Lemma 2.6 (1),

lim sup
(x,t) 7→(x0,t0)

H(x, t) = lim
r↓0

sup
|x−x0|<r
|t−t0|<r

H(x, t) 6 lim
r↓0

sup
|x−x0|<r

H(x, t0 + ε)

holds. As H(−, t0 + ε) = ψt0+ε
1−(t0+ε) is upper semi-continuous, we obtain an

inequality lim sup(x,t)7→(x0,t0)H(x, t) 6 H(x0, t0 + ε). By Lemma 2.6 (2),
we can show that the equality lim sup(x,t)7→(x0,t0)H(x, t) 6 H(x0, t0) holds.
We can also show this inequality when t0 = 1 by the same argument, and
this shows the lemma. �

2.2. Proof of Proposition 2.5

Next we prove Proposition 2.5. Let us fix a (sufficiently positive) Kähler
metric ω of X and define

ω̃ = π∗ω + ddc log(|z|2eϕA + eϕL)− |z|
2eϕAπ∗ddcϕA + eϕLπ∗ddcϕL

|z|2eϕA + eϕL
,

where ddc =
√
−1

2π ∂∂. This ω̃ defines a global smooth (1, 1)-form on X̃,
since ddc log(|z|2eϕA + eϕL) is the curvature form of the smooth Hermitian
metric of L̃ associated to the Finsler metric of A ⊕ L induced from hA
and hL, and both of the coefficients |z|2eϕA/(|z|2eϕA + eϕL) of π∗ddcϕA
and eϕL/(|z|2eϕA + eϕL) of π∗ddcϕL glue up to define R-valued functions
defined on whole X̃. It is because, the values |z|2eϕA , eϕL , and |z|2eϕA + eϕL

can be regarded as the norms of the points (z, 0), (0, 1), and (z, 1) of a
fiber of the vector bundle A−1 ⊕ L−1, respectively, computed by using the
metric induced from hA and hL. Thus ratios of these values define genuine
functions on the whole of X̃.

Lemma 2.8. — The form ω̃ and the measures dVω = ωn

n! of X and
dV

ω̃
= ω̃n+1

(n+1)! of X̃ satisfy the following properties when ω is sufficiently
positive.

(1) ω̃ is a smooth strictly positive (1, 1)-form on X̃.
(2) For all x ∈ X,

∫
z∈π−1(x) ω̃|π−1(x) = 1 holds.

ANNALES DE L’INSTITUT FOURIER
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(3) For all R-valued measurable function F on X̃, the equation∫
(z,x)∈X̃

F (z, x) dV
ω̃

=
∫
x∈X

(∫
z∈π−1(x)

F (z, x) dV
ω̃
|π−1(x)

)
dVω

holds.
(4) Moreover, when F depends only on x and |z|, an equation∫

(z,x)∈X̃
F (z, x) dV

ω̃
=
∫
x∈X

(∫ ∞
0

2rG(r, x)eϕA(x)+ϕL(x)

(r2eϕA(x) + eϕL(x))2 dr

)
dVω

holds, where G is the function such that G(|z|, x) = F (z, x) holds.

Proof. — By straightforward computations, we can obtain the formula

ω̃ = π∗ω + C(η ∧ η + dz ∧ η + η ∧ dz + dz ∧ dz),

where C =
√
−1

2π
eϕA+ϕL

(|z|2eϕA+eϕL )2 and η = z∂(ϕA − ϕL). From this formula,
it is shown that ω̃n+1 = (n+ 1)Cdz ∧ dz ∧ (π∗ω)n holds, which shows the
lemma. �

We also use the following lemma, which can be proved by straightforward
computations.

Lemma 2.9.

− log
∫
z∈π−1(x)

|z|2te−ϕ̃∞(z,x) ω̃|π−1(x)

= tϕA(x) + (1− t)ϕL(x)− log Γ(1 + t)Γ(2− t)
4

holds for all t ∈ [0, 1] and x ∈ X, where Γ stands for the Gamma function.

The following lemma can be shown by using the approximation theorem
[3, 13.21].

Lemma 2.10. — Let Y be a smooth projective variety, dVY a smooth
volume form of Y , M a pseudo-effective line bundle over Y , and let hM =
e−ψ∞ be a smooth Hermitian metric of M . Fix points y0, y1, . . . yN ∈ Y

and local coordinates systems around each yj such that
⋃N
j=0{y | |y−yj | <

1√
π
} = Y holds. Let hM,1 = e−ψ1 and hM,2 = e−ψ2 be singular Hermitian

metrics given by

ψ1 = ψ∞+ sup∗
{

1
m

log |f |2hm
M

∣∣∣∣m ∈ N, f ∈ H0(Y,mM), log |f |2hm
M
6 0
}
,

ψ2 = ψ∞+ sup∗
{

1
m

log |f |2hm
M

∣∣∣∣m ∈ N, f ∈ H0(Y,mM),
∫
Y

|f |2hm
M
dVY 6 1

}
.
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Let C ′ = C ′1 + C ′2 with C ′1 = maxj
(

max|y−yj |6 2√
π
ψ∞(y) −

min|y−yj |6 2√
π
ψ∞(y)

)
and C ′2 = log maxj max|y−yj |6 2√

π

dλ
dVY

, where dλ is
the Euclidean measure. Then an inequality ψ2 − C ′ 6 ψ1 6 (ψ∞)e holds.
Moreover, if M is big, then an inequality ψ2 − C ′ 6 ψ1 6 (ψ∞)e 6 ψ2
holds.

Proof of Proposition 2.5.
(1) We fix points x0, x1, . . . xN ∈ X and local coordinates systems

around each xj such that
⋃N
j=0{x | |x − xj | < 1√

π
} = X holds.

Let us denote by ϕ∞,t the weight of the “smooth Hermitian met-
ric" tϕA + (1 − t)ϕL − log Γ(1+t)Γ(2−t)

4 of tA + (1 − t)L. We let
C = C1 + C2 + log 2 with

C1 = max
j

 max
|x−xj |6

2√
π

t∈[0,1]

ϕ̃∞,t(x)− min
|x−xj |6

2√
π

t∈[0,1]

ϕ̃∞,t(x)

 ,

C2 = log max
j

max
|x−xj |6 2√

π

dλ

dVω
.

Since (ϕ∞,t)e = (tϕA + (1 − t)ϕL)e − log Γ(1+t)Γ(2−t)
4 holds, it is

sufficient to show that

(ϕ̃∞)e 6 log max
t∈[0,1]

|z|2te(ϕ∞,t)e(x) + C

holds. According to the last part of Lemma 2.10, this is reduced to
show that for each F ∈ H0(X̃,mL̃) such that

∫
X̃
|F |2e−mϕ̃∞ dV

ω̃
6

1, an inequality
1
m

log |F |2 6 log max
t∈[0,1]

|z|2te(ϕ∞,t)e(x) + C

holds.
(2) We show the last inequality. The holomorphic section F (z, x) can

be expanded as F (z, x) =
∑m
`=0 z

`f`(x) with f` ∈ H0(X, `A+(m−
`)L). We first show that an inequality∫

X̃

|z`f`|2e−mϕ̃∞ dVω̃ 6 1(∗)

holds for ` = 1, 2, . . . ,m. For proving (∗), we use an inequality

|f`(x)|2 =
∣∣∣∣ 1
`!
∂`

∂z`
F (0, x)

∣∣∣∣2 6 1
2π

∫ 2π

0

|F (re
√
−1θ, x)|2

r2` dθ

ANNALES DE L’INSTITUT FOURIER
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for each positive number r. We denote by ϕ̃∞(r, x) the function such
that ϕ̃∞(|z|, x) = ϕ̃∞(z, x) holds. By multiplying the metric terms
and integrating these with r, we obtain the following inequality.

∫ ∞
0

2r(r2`|f`(x)|2e−mϕ̃∞(r,x))eϕA(x)+ϕL(x)

(r2eϕA(x) + eϕL(x))2 dr

6
1

2π

∫ ∞
0

(∫ 2π

0

2r(|F (re
√
−1θ, x)|2e−mϕ̃∞(r,x))eϕA(x)+ϕL(x)

(r2eϕA(x) + eϕL(x))2 dθ

)
dr

=
∫
z∈π−1(x)

|F (z, x)|2e−mϕ̃(z,x) dV
ω̃
|π−1(x).

This inequality and Lemma 2.8 (2), (3), (4) implies the inequality
(∗).

Then, by Lemma 2.8 (3),

1 >
∫

(z,x)∈X̃
|z`f`(x)|2e−mϕ̃∞(z,x) dV

ω̃

=
∫
x∈X
|f`(x)|2

(∫
z∈π−1(x)

|z`|2e−mϕ̃∞(z,x) dV
ω̃
|π−1(x)

)
dVω

=
∫
x∈X
|f`(x)|2

(∫
z∈π−1(x)

(
|z|2 `

m e−ϕ̃∞(z,x)
)m

dV
ω̃
|π−1(x)

) 1
m

·

(∫
z∈π−1(x)

1
m
m−1 dV

ω̃
|π−1(x)

)m−1
m

m

dVω

>
∫
x∈X
|f`(x)|2

(∫
z∈π−1(x)

|z|2 `
m e−ϕ̃∞(z,x)

)m
dVω

holds (Here we used Hölder’s inequality). Therefore, by Lemma
2.9,

∫
x∈X |f`(x)|2e−mϕ∞,t(x) dVω 6 1 holds for t = `

m . Then by
Lemma 2.10, we obtain an inequality 1

m log |f`|2 6 (ϕ∞,t)e+C1+C2.
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Thus
1
m

log |F (z, x)|2 6 1
m

log
m∑
l=0
|z`f`(x)|2

6
1
m

log
(

(m+ 1) max
`
|z`f`(x)|2

)
= 1
m

log(m+ 1) + log max
06`6m

|z|2 `
m |f`(x)| 2

m

6 log 2 + log max
t∈[0,1]

|z|2te(ϕ∞,t)e(x)+C1+C2

= log max
t∈[0,1]

|z|2te(ϕ∞,t)e(x) + C

holds. �

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 and Theorem 1.3. We first prove
Theorem 1.3.

Proof of Theorem 1.3. — As Theorem 1.3 immediately follows from
Theorem 2.2 when A is ample, we show the theorem when A is merely semi-
ample (Although we can not obtain a concrete description of a minimal
singular metric of OP(A⊕L)(1) as in Theorem 2.2 in this case, we can show
the theorem). Let h̃min be a minimal singular metric of OP(A⊕L)(1), hA
be a smooth Hermitian metric of A with semi-positive curvature, and hL
be a minimal singular metric of L. Let us consider the singular Hermitian
metric h̃ with local weight function log(|z|2eϕA(x) + eϕL(x)) where (z, x)
is the coordinates just as in Theorem 2.2 and ϕA, ϕL is the local weight
of hA, hL, respectively. Since h̃min is less singular than h̃ and h̃|P(L) = hL
holds, there exists a positive constant C such that

h̃min|P(L) 6 C · h̃|P(L) = C · hL

holds, which shows that the metric h̃min|P(L) has minimal singularity. �

Proof of Theorem 1.2. — Let X be a smooth projective variety, D a
1-codimensional smooth subvariety of X, and let L be a pseudo-effective
line bundle over X. We assume that A = L ⊗ OX(−D) is semi-positive
and that there is an open neighborhood U of D ⊂ X biholomorphic to an
open neighborhood U ′ of the zero section of the normal bundle ND/X . Here
we may assume that U ′ = {ξ ∈ ND/X | |ξ|hX/D < ε0} for some smooth
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Hermitian metric hX/D with negative curvature of ND/X and a positive
number ε0.
Since L|D has no singular Hermitian metric of with psh local weights

(which is not identically equal to −∞) when L|D is not pseudo-effective,
all we have to do is showing the existence of a singular Hermitian metric
of L with psh local weights which is an extension of a minimal singular
metric of L|D assuming L|D is pseudo-effective but not big. We set X ′ as
the total space π : P(L|D ⊕ A|D) → D and L′ as the relative hyperplane
bundle OP(L|D⊕A|D)(1). Let us fix a minimal singular metric hL′ = e−ϕL′

of L′. We set V ′ as the subset {ξ ∈ ND/X | |ξ|hX/D < ε0
2 }. By Remark 2.3,

we can regard U ′ and V ′ be neighborhoods of D′ = P(L|D) ⊂ X ′. From the
assumption, the natural biholomorphic mapping π|D′ : D′ → D extends to
a biholomorphic mapping f : U ′ → U . We denote by V the set f(V ′) ⊂ U .

By Proposition 3.1 (2) below, there exists a line bundle F on U ′ which
admits a flat structure and f∗(L|U ) ∼= L′|U ′ ⊗F holds. We fix a flat metric
hF = e−ϕF of F . By choosing appropriate local trivialization, we may
assume ϕF ≡ 0. Thus we can regard (f−1)∗ϕL′ as the local weight function
of the singular Hermitian metric (f−1)∗hL′hF of L|U . To show the theorem,
according to Theorem 1.3, it is sufficient to construct a singular Hermitian
metric e−ϕL of L with ddcϕL > 0 and ϕL|V = (f−1)∗ϕL′ |V ′ holds. Let
hA = e−ϕA be a smooth Hermitian metric of A with ddcϕA > 0 and let
fD ∈ H0(X,OX(D)) be a section which vanishes only on D. Without loss
of generality, we may assume ϕA > 0, (f−1)∗ϕL′ 6 −1 holds on each fixed
open set Wj(j = 1, 2, . . . , N) covering the whole U , and log |fD|2 > −1
holds on each intersection Wj ∩ (U \ V ). We define ϕL as the function
max{ϕA+log |fD|2, (f−1)∗ϕL′} on each Wj ∩U . Since ϕL = ϕA+log |fD|2

holds on each intersection Wj ∩ (U \V ), e−ϕL on U and e−(ϕA+log |fD|2) on
X \V glue up to define a new singular Hermitian metric of L, which proves
the theorem. �

Proposition 3.1. (1) (a version of Rossi’s theorem) The natural map
H1(U ′,OU ′)→ H1(U ′,OU ′/InD′) is injective for some n > 1, where
ID′ the defining ideal sheaf of D ⊂ U .

(2) There is a line bundle E on D′ such that c1(E) = 0 and f∗(L|U ) ∼=
(L′ ⊗ π∗E)|U ′ hold.

(3) The groups Pic (U) and Pic (D) are isomorphic.

Proof of Proposition 3.1.

(1) We intrinsically use Rossi’s theorem [10, Theorem 3]. Here we remark
that, from the assumption that OX(−D)|D is ample, U ′ is a strongly
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pseudoconvex domain. Thus, from Rossi’s theorem, it turns out that
there exists an ideal sheaf J ⊂ OU ′ satisfying the condition that
(i) V (J) ⊂ D′ ∪ {p1, p2, · · · .pl} for some finitely many points p1, p2,

· · · , pl ∈ U ′ \D′, where V (J) ⊂ U ′ stands for the zero set of the
ideal sheaf J , and that

(ii) the natural map H1(U ′,OU ′)→ H1(U ′,OU ′/J) is injective.
Here we remark that H1(U ′,OU ′/J) = H1(D′,OU ′/J) holds. It is
because the condition (i) and the fact that the first sheaf cohomology
vanishes on the zero-dimensional sets p1, p2, · · · , pl.
Let us denote by ID′ the defining ideal sheaf ofD′, by Ipj the defining

ideal sheaf of pj for 1 6 j 6 l, and by Ĵ the ideal sheaf Ip1Ip2 · · · IplID′ .
By Hilbert’s Nullstellensatz, there exists an integer n such that Ĵn ⊂ J
holds. Thus the natural map H1(U ′,OU ′) → H1(U ′,OU ′/J) is de-
composed into the composition of two natural maps H1(U ′,OU ′) →
H1(U ′,OU ′/Ĵn) and H1(U ′,OU ′/Ĵn) → H1(U ′,OU ′/J). From the
condition (ii), it turns out that the mapH1(U ′,OU ′)→ H1(U ′,OU ′/Ĵn)
is also injective, and since H1(U ′, OU ′/Ĵn) = H1(D′,OU ′/Ĵn) =
H1(D′, OU ′/InD′) holds, this proves the first assertion.

(2) The projection π : U ′ → D and the injection i : D′ → U ′ induce
the maps π∗ : H1(D′,OD′) → H1(U ′,OU ′) and i∗ : H1(U ′,OU ′) →
H1(D′,OD′), respectively. Since π ◦ i = idD′ , π∗ is injective.

H1(U ′,OU ′)
α //

	

H1(U ′,O∗U ′)
δ // H2(U ′,Z)

H1(D′,OD′)
β //

π∗

OO

H1(D′,O∗D′)

π∗

OO

We first check that f∗(L|U )⊗L′|−1
U ′ is topologically trivial line bun-

dle. Indeed, (f∗(L|U ) ⊗ L′|−1
U ′ )|D′ is the trivial bundle and i ◦ π is

homotopic to idU ′ . Thus we conclude that δ(f∗(L|U )⊗L′|−1
U ′ ) = 0 and

we can take an element ξ ∈ H1(U ′,OU ′) satisfying α(ξ) = f∗(L|U ) ⊗
L′|−1

U ′ . When ξ lies in the image of π∗, we can take an element η ∈
H1(D′,OD′) such that π∗(η) = ξ holds. In this case, f∗(L|U )⊗L′|−1

U ′ =
π∗β(η) holds and since β(η) is a flat line bundle, f∗(L|U ) ⊗ L′|−1

U ′ is
also a flat line bundle.
Thus all we have to do is showing that the inequality dimH1(U ′,

OU ′) 6 dimH1(D′,OD′) holds. Let us consider the short exact se-
quence 0 → I lD′/I

l+1
D′ → OU ′/I

l+1
D′ → OU ′/I lD′ → 0 for l > 1. Then it

follows that the natural map H1(U ′,OU ′/I l+1
D′ )→ H1(U ′,OU ′/I lD′) is

injective. It is because H1(U ′, I lD′/I
l+1
D′ ) = H1(U ′, I lD′ ⊗ (OU ′/ID′)) =
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H1(D′,OD′(−lD′|D′)) vanishes for each l > 1, since OD′(−KD′ −
lD′|D′) = OD′(−KD′−D′|D′)⊗OD′(−(l−1)D′|D′) is nef and big from
the assumption. From this combined with the injection in Lemma 3.1
(1), it holds that the natural map H1(U ′,OU ′)→ H1(U ′,OU ′/ID′) =
H1(D′,OD′) is injective, and thus we obtain the inequality dimH1(U ′,
OU ′) 6 dimH1(D′,OD′).

(3) By the same argument in the proof of Lemma 3.1 (2), it can be shown
that the restriction map Pic (U ′) → Pic (D′) is the inverse map of
π∗ : Pic (D′)→ Pic (U ′). �

Remark 3.2. — When O(KD) is semi-negative, we can prove H1(U ′,
OU ′) ∼= H1(D′,OD′) more shortly. Let us consider the short exact se-
quence 0 → ID′ → OU ′ → OU ′/ID′ → 0 and the induced exact sequence
H1(U ′, ID′) → H1(U ′,OU ′) → H1(D′,OD′) → H2(U ′, ID′). By the as-
sumption that OD(−KD) = OU (−KU − D)|D is semi-positive and by
Ohsawa’s theorem [9, 4.5], it follows that the cohomology groupHp(U ′, ID′)
vanishes for all p > 0. Thus H1(U ′,OU ′) ∼= H1(D′,OD′) holds.

Remark 3.3. — In the above proof of Theorem 1.2, we compared the
singular Hermitian metric of L with that of L′ around the tubular neigh-
borhoods of the divisors. By using this technique, it turns out to be clear
that the metric e−ϕL we constructed above is a minimal singular metric.
Moreover, ϕL′ in the above proof of Theorem 1.2 can be taken as in The-
orem 2.2 when A|D is ample, and thus we can conclude that the minimal
singular metric we constructed has just the same form as the metric in The-
orem 2.2 around D (up to smooth harmonic function). This means that we
here determined a minimal singular metric of L around D by only using
equilibrium metrics of tA|D + (1 − t)L|D for 0 6 t 6 1 in the above proof
in this case.

When L in Theorem 1.2 satisfies that L|D is semi-positive, we can say
that L is also semi-positive.

Corollary 3.4. — Let X,D,L be those in Theorem 1.2. When L|D is
semi-positive, L is also semi-positive.

Proof. — We use notations in the proof of 1.2. By the proof of Theo-
rem 1.3, it is clear that we can choose smooth hL′ when L|D is semi-positive.
We define ϕL as the function M(ϕA + log |fD|2, (f−1)∗ϕL′) (instead of
max{ϕA+log |fD|2, (f−1)∗ϕL′}) on each Wj ∩U , where M is a regularized
max function (see [2, §5.E] for the definition). Then {e−ϕL} glues up to
define a smooth Hermitian metric of L with semi-positive curvature. �
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We here remark that the idea to use a regularized max function instead
of the function “max" is pointed out by Prof. Shin-ichi Matsumura.

4. Some examples

4.1. Nef and big line bundles with no locally bounded minimal
singular metrics

One can obtain the following corollary immediately from Theorem 1.3.

Corollary 4.1. — Let X be a smooth projective variety, L a nef line
bundle over X and let A be an ample line bundle over X. Then a minimal
singular metric of L is locally bounded if and only if a minimal singular
metric of OP(A⊕L)(1) over P(A⊕ L) is locally bounded.

We remark that the line bundle OP(A⊕L)(1) above is nef and big ([8,
2.3.2]).

Example 4.2. — Let (X,L) be these in Example 1.7 of [4], which are
defined as the relative hyperplane bundle on X = P(E), where E is a vector
bundle defined over an elliptic curve C given by the non-spitting extension
0→ OC → E → OC → 0. In this example, L is nef, not big, and possesses
no locally-bounded minimal singular metric. Then we can conclude that
the nef and big line bundle OP(A⊕L)(1) defined on P(L⊕A) for some ample
line bundle A on X also has no locally-bounded minimal singular metric.
We remark that the similar example is introduced in [1, 5.4], [6, 5.2].

4.2. Zariski’s and Mumford’s examples

We can apply Theorem 1.2 to Zariski’s and Mumford’s examples [8,
2.3.A].

Example 4.3. — Let C ⊂ P2 be a smooth elliptic curve and let p1, p2,

. . . , p12 ∈ C be twelve general points. We define X as the blow up of
P2 at these twelve points. We denote by H the pulled back divisor of X
of a line in P2 and by D the strict transform of C. In this case, since
(D2) = 9 − 12 = −3 and the genus g(D) = 1, we can apply Grauert’s
theorem [7, Satz 7] (see §1 here) to see that X,L = OX(H + D), and D

satisfy the condition of Theorem 1.2. Moreover, for L|D is semi-positive,
we can apply Corollary 3.4. Thus L is semi-positive.
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There is a generalization of this Zariski’s example pointed out by Mum-
ford (see also [8, 2.3.1]). Let X be a smooth projective surface, A a very
ample divisor on X, and let D ⊂ X be a curve with (D2) < 0 holds and the
restriction map Pic(X)→ Pic(D) is injective. We denote by a, b the positive
number (A.D),−(D2), respectively. Then the line bundle L = OX(bA+aD)
is nef, big, satisfyingD ⊂ Bs |L⊗m| for allm > 1, and there exists a positive
integer p0 such that |L⊗m⊗OX(−p0D)| is generated by global sections for
all m > 1. These X,L, and D satisfy the condition of Corollary 3.4 also in
this situation when D is smooth, b is sufficiently large, and p0 = 1. Thus,
such L is semi-positive, too.
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