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GREEN FUNCTIONS, SEGRE NUMBERS,
AND KING’S FORMULA

by Mats ANDERSSON & Elizabeth WULCAN (*)

Abstract. — Let J be a coherent ideal sheaf on a complex manifold X with
zero set Z, and let G be a plurisubharmonic function such that G = log |f | + O(1)
locally at Z, where f is a tuple of holomorphic functions that defines J . We give
a meaning to the Monge-Ampère products (ddcG)k for k = 0, 1, 2, . . ., and prove
that the Lelong numbers of the currents MJ

k
:= 1Z(ddcG)k at x coincide with

the so-called Segre numbers of J at x, introduced independently by Tworzewski,
Gaffney-Gassler, and Achilles-Manaresi. More generally, we show that MJ

k
satisfy

a certain generalization of the classical King formula.
Résumé. — Soit J un faisceau cohérent d’ideaux sur un variété complexe

lisse X, et soit Z la variété de J . Soit G une fonction plurisousharmonique telle
que G = log |f | + O(1) localement sur Z, où f est un n-uple de fonctions ho-
lomorphes qui définit J . Nous donnons un sens au produit de Monge-Ampère
(ddcG)k pour k = 0, 1, 2, . . ., et nous montrons que les nombres de Lelong des
courants MJ

k
:= 1Z(ddcG)k en x coïncident avec les nombres de Segre de J en x,

introduits indépendemment par Tworzewski, Gaffney-Gassler et Achilles-Manaresi.
Plus généralement, nous montrons que les MJ

k
satisfont une certaine généralisation

de la formule de King.

1. Introduction

Let X be a complex manifold of dimension n and let J → X be a
coherent ideal sheaf with variety Z. Given a point x ∈ X, Tworzewski,
[24], and Gaffney and Gassler, [14], have independently introduced a list of
numbers, e0(J , X, x), . . . , en(J , X, x), that we, following [14], call the Segre
numbers at x. They are a generalization of the classical local intersection
number at x in case the ideal Jx is a complete intersection. The definition

Keywords: Green function, Segre numbers, Monge-Ampère products, King’s formula.
Math. classification: 32U35, 32U25, 32U40, 32B30, 14B05.
(*) The authors were partially supported by the Swedish Research Council.
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in both papers is based on a local variant of the Stückrad-Vogel procedure,
[23]. In [1, 2] is given an algebraic definition of these numbers generalizing
the classical Hilbert-Samuel multiplicity of J at x.
In this paper we show that if J is generated by global bounded functions

there is a canonical global representation of the Segre numbers of J as
the Lelong numbers (of restrictions to Z) of Monge-Ampère masses of the
Green function G = GJ with poles along J . This function was introduced
by Rashkovskii-Sigurdsson in [20, Definition 2.2] as a generalization of the
classical Green function Ga with pole at a point a ∈ X. It is defined
as the supremum over the class FJ of all negative psh (plurisubharmonic)
functions u on X that locally satisfy u 6 log |f |+C, where f = (f1, . . . , fm)
is a tuple of local generators of J and C is a constant.
Note that even if X is hyperconvex there might not exist non-trivial

functions in FJ . For example, if X is the ball in C, and J is the radical
ideal of functions vanishing at points a1, a2, . . . ∈ X, then there are negative
psh functions with poles at aj if and only if aj satisfy the the Blaschke
condition. However, if J is globally generated by bounded functions fj ,
then log |f | + C is itself in FJ for some constant C. Then locally G is of
the form

(1.1) G = log |f |+ h,

where h is locally bounded, see [20, Theorem 2.8]. In particular, the un-
bounded locus of G equals Z and thus the Monge-Ampère type products

(1.2) (ddcG)k, k 6 p := codimZ

are well-defined, see, e.g., [9, Theorem III.4.5]. Here and throughout dc =
(i/2π)(∂̄ − ∂). By Demailly’s comparison formula for Lelong numbers, [11,
Theorem 5.9],

(1.3) `x(ddcG)k = `x(ddc log |f |)k

for x ∈ X, where `x denotes the Lelong number at x. Moreover, recall that
King’s formula, [15], asserts that (ddc log |f |)p admits the Siu decomposi-
tion, [21],

(1.4) (ddc log |f |)p =
∑

βj [Zpj ] +R,

cf. [11, Section 6]. Here [Zpj ] are the currents of integration along the irre-
ducible components Zpj of codimension p of Z, βj are the generic Hilbert-
Samuel multiplicities of f along Zpj , see, e.g. [13, Chapter 4.3]. In fact, the
remainder term R has integer Lelong numbers, see, e.g. [4, Theorem 1.1],
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and therefore the set where R has positive Lelong numbers is an analytic
set of codimension > p. From (1.3) and (1.4) one deduces that

(1.5) (ddcG)p =
∑

βj [Zpj ] +R,

where βj and Zpj are as above, and R has the same Lelong numbers as
R in (1.4), cf. the proof of Theorem 2.8 in [20]. In particular, if Z is a
point a, then (ddcG)n =

∑
β[a] + R, where [a] is the point evaluation at

a and β is the Hilbert-Samuel multiplicity of J . This generalizes the fact
that (ddcGa)n = [a], [10, page 520]. The (Lelong numbers of the) Monge-
Ampère products (1.2) are related to the integrability index of G (and
thus the log-canoncial threshold of J ), see, e.g., [12, 19, 22]; in particular,
Demailly-Pham [12] recently gave a sharp estimate of the integrability index
of G in terms of the Lelong numbers of (1.2) for all k 6 p.

Recall that (1.2) can be defined inductively as

(1.6) ddc(G(ddcG)k−1).

In this paper we give meaning to (ddcG)k for any k if G is any psh function
of the form (1.1): Inductively we show that

G1X\Z(ddcG)k−1

has locally finite mass and define

(ddcG)k := ddc(G1X\Z(ddcG)k−1),

see Proposition 4.1. When k 6 p it follows from the dimension principle for
closed positive currents, cf. Lemma 3.1 below, that 1Z(ddcG)k−1 = 0 and
so our definition coincides with the classical one for k 6 p. Our definition is
modeled on the paper [3] by the first author, in which currents (ddc log |f |)k
are defined for all k inductively as above. In fact, (ddc log |f |)k can also be
defined as a certain limit of smooth forms coming from regularizations of
log |f |:

(1.7) lim
ε→0

(ddc log(|f |2 + ε)1/2)k = (ddc log |f |)k

for any k, see [3, Proposition 4.4]. However, one cannot hope for such
a suggestive definition of (ddcG)k in general, cf. Example 4.2. Also, our
definition of (ddcG)k does not coincide with the non-pluripolar product of
ddcG, as introduced in [6, 8], since our (ddcG)k charges pluripolar sets in
general, cf. the text after the proof of Proposition 4.1.
Our main result is the following generalization of (1.5). Let π+ : X+ → X

be the normalization of the blow-up of X along J and let Wj be the
various irreducible components of the exceptional divisor inX+. Recall that

TOME 64 (2014), FASCICULE 6
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the (Fulton-MacPherson) distinguished varieties of J are the subvarieties
π+(Wj) of X, see, e.g., [16, Chapter 10.5]. In particular, the distinguished
varieties of codimension p are precisely the irreducible components of Z of
codimension p.

Theorem 1.1. — Let X be an n-dimensional complex manifold, let J
be a coherent ideal sheaf on X generated by global bounded functions, and
let G be the Green function with poles along J . Moreover, let Z be the
variety of J and Zkj the Fulton-MacPherson distinguished varieties of J
of codimension k. Then

(1.8) MJk := 1Z(ddcG)k =
∑
j

βkj [Zkj ] +NJk =: SJk +NJk ,

where the βkj are positive integers and the NJk are positive closed cur-
rents. The numbers nk(J , X, x) := `x(NJk ) are nonnegative integers that
only depend on the integral closure class of J at x, and the set where
nk(J , X, x) > 1 has codimension at least k + 1.

The Lelong numbers at x ofMJk and 1X\Z(ddcG)k are precisely the Segre
number ek(J , X, x) and the polar multiplicity mk(J , X, x), respectively,
of Jx.

For the notion of polar multiplicities see Section 2. Notice that MJk = 0
if k < codimZ and that NJp = 0, cf., Lemma 3.1 below. Also, notice that
(1.8) is the Siu decomposition, [21], of MJk .

Remark 1.2. — If J is generated by a global tuple f , then Theorem 1.1
holds with G replaced by any psh function of the form (1.1).

The analogous statement to Theorem 1.1 when G is replaced by log |f |,
where f is a tuple of global generators, was proved by the authors and
Samuelsson Kalm and Yger in [4, Theorem 1.1]. The case k = p corre-
sponds to the classical King formula, (1.4). The main idea in the proof of
Theorem 1.1 is to prove that for any psh G of the form (1.1),

(1.9)
`x(1Z(ddcG)k) = `x(1Z(ddc log |f |)k),

`x(1X\Z(ddcG)k) = `x(1X\Z(ddc log |f |)k)

for x ∈ X, see Lemma 6.1 below. Using this the theorem follows from the
corresponding result in [4]. In some sense, (1.9) can be seen as a generaliza-
tion of Demailly’s comparison formula, (1.3), to higher k, but for the very
special class of psh functions of the form (1.1).

ANNALES DE L’INSTITUT FOURIER
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In [4], X is allowed to be singular. Given that there is a proper definition
of G when X is singular so that (1.1) still holds, the results in this paper
will extend as well.

Theorem 1.1 gives us a canonical representation of the Segre numbers of
J in the case when J is generated by global bounded functions. Let X be
a, say hyperconvex, domain in Cn, and let J be a coherent ideal sheaf on
X. If we exhaust X by reasonable relatively compact subsets X`, for each
` we then have currents MJ`

k , J` = J |X`
, whose Lelong numbers at each

point are the Segre numbers. If for some reason these currents converge
to currents MJk , we would have a canonical representation of the Segre
numbers of J on X, cf. Remark 4.3.

This paper is organized as follows. In Section 2 we recall the construc-
tion of Vogel cycles and Segre numbers. In Section 4 we show that the
currents (ddcG)k are well-defined and discuss some properties. The proof
of Theorem 1.1 occupies Section 6. In Sections 3 and 5 we give some back-
ground on psh functions and positive currents needed for the proofs.

Acknowledgment

The work on this paper started when Pascal Thomas was visiting Göte-
borg. We are grateful to him for interesting and inspiring discussions on
the subject. We would also like to thank Zbigniew Błocki and David Witt
Nyström for valuable discussions.

2. Segre numbers

We will briefly recall the construction of Segre numbers from [24, 14].
Throughout we will assume that X is a complex manifold of dimension
n and that J is a coherent ideal sheaf on X with variety Z. Fix a point
x ∈ X. A sequence h = (h1, h2, . . . , hn) in the local ideal Jx is called a
Vogel sequence of J at x if there is a neighborhood U ⊂ X of x where the
hj are defined, such that

(2.1) codim
[
(U \ Z) ∩ (|H1| ∩ · · · ∩ |Hk|)

]
= k or ∞, k = 1, . . . , n;

here |H`| are the supports of the divisors H` defined by h`. Notice that if
f1, . . . , fm generate Jx, any generic sequence of n linear combinations of
the fj is a Vogel sequence at x. Set X0 = X, let XZ

0 denote the irreducible

TOME 64 (2014), FASCICULE 6



2644 Mats ANDERSSON & Elizabeth WULCAN

components of X0 that are contained in Z, and let XX\Z
0 be the remaining

components(1) so that
X0 = XZ

0 +X
X\Z
0 .

By the Vogel condition (2.1), H1 intersects XX\Z
0 properly. Set

X1 = H1 ·XX\Z
0

and decompose analogously X1 into the components XZ
1 contained in Z

and the remaining components XX\Z
1 , so that X1 = XZ

1 + X
X\Z
1 . Define

inductively Xk+1 = Hk+1 ·XX\Z
k , XZ

k+1, and X
X\Z
k+1 . Then

V h := XZ
0 +XZ

1 + · · ·+XZ
n

is the Vogel cycle(2) associated with the Vogel sequence h. Let V hk denote
the components of V h of codimension k, i.e., V hk = XZ

k . The irreducible
components of V h that appear in any Vogel cycle, associated with a generic
Vogel sequence at x, are called fixed components in [14]. The remaining
ones are called moving. It turns out that the fixed Vogel components of J
coincide with the distinguished varieties of J , see, e.g., see [14] or [4].
It is proved in [14] and in [24] that the multiplicities ek(J , X, x) :=

multxV hk and mk(J , X, x) := multxXX\Z
k are independent of h for a

generic h, where however “generic” depends on x, cf., Remark 2.1; these
numbers are called the Segre numbers and polar multiplicities, respectively.

Remark 2.1. — Recall that if W is an analytic cycle in X, then the
Lelong number at x ∈ X of the current of integration [W ] along W is
precisely the multiplicity multxW of W at x.
Assume that x is a point for which nk(J , X, x) > 1 for some k, where we

use the notation from Theorem 1.1. Moreover, let V h be a generic Vogel
cycle such that multxV hk = ek(x). Then V hk = SJk + W , where we have
identified SJk in Theorem 1.1 with the corresponding cycle and W is a
positive cycle of codimension k, such that multxW = nk(J , X, x). Since
nk(J , X, y) > 1 only on a set of codimension> k+1, at most points y on V hk
we have that ek(J , X, y) = multy(SJk ) and hence multyV hk > ek(J , X, y).
As soon as there is a moving component at x it is thus impossible to find a
Vogel cycle that realizes the Segre numbers in a whole neighborhood of x.

(1)Since we assume X is smooth and connected, XZ
0 is empty unless J = 0, in which

case it equals X.
(2) If J is the pullback to X of the radical sheaf of an analytic set A, this is precisely
Tworzewski’s algorithm, [24]. The notion Vogel cycle was introduced by Massey [17, 18].
For a generic choice of Vogel sequence the associated Vogel cycle coincides with the Segre
cycle introduced by Gaffney-Gassler, [14], see Lemma 2.2 in [14].

ANNALES DE L’INSTITUT FOURIER
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In [4] Theorem 1.1 with G replaced by log |f | was proved by showing
thatMf

k := 1Z(ddc log |f |)k can be seen as a certain average (of currents of
integration) of Vogel cycles. The fixed Vogel components then appear as the
leading part SJk in the Siu decomposition of Mf

k , whereas the remainder
term Nf

k is a mean value of the moving parts.

3. Preliminaries

Let µ be a positive closed current onX. Recall that ifW is any subvariety,
then 1Wµ and 1X\Wµ are positive closed currents as well; this is the Skoda-
El Mir theorem, see, e.g., [9, Chapter III.2.A].

Lemma 3.1. — Let µ be a positive closed current of bidegree (p, p) that
has support on a subvariety of codimension k. If k > p then µ = 0. If k = p,
then µ = α1[W1] + · · ·+ αν [Wν ] where Wj are the irreducible components
of W and αj > 0.

We refer to the first part of Lemma 3.1 as the dimension principle. A
proof can be found in [9, Chapter III.2.C].
If b is psh and locally bounded and T is any positive closed current,

then T∧(ddcb)k is a well-defined positive current for any k, and if bj is a
decreasing sequence of bounded psh functions converging pointwise to b,
then
(3.1)
T∧(ddcb)k = lim

j
T∧(ddcbj)k, T∧b(ddcb)k = lim

j
T∧bj(ddcbj)k, k 6 n.

See, e.g., [9, Theorem III.3.7]. The case T ≡ 1 was first proved by Bedford
and Taylor, [5].

Proposition 3.2. — Assume that v, b are psh and that b is (locally)
bounded.
(i) For k 6 n− 1,

v(ddcb)k

has locally finite mass; more precisely, for any compact sets L,K, such that
L ⊂ int(K), we have

(3.2) ‖v(ddcb)k‖L 6 CK,L‖v‖K(sup
K
|b|)k.

(ii) Moreover, if the unbounded locus of v has Hausdorff dimension< 2n−1,
then

(3.3) ddc(v(ddcb)k) = ddcv∧(ddcb)k.

TOME 64 (2014), FASCICULE 6
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If vj is a decreasing sequence of psh functions converging pointwise to v,
then

(3.4) vj(ddcb)k → v(ddcb)k,

and

(3.5) ddcvj∧(ddcb)k → ddcv∧(ddcb)k

in the current sense.

The first part of Proposition 3.2 follows immediately from Proposition 3.11
in [9, Chapter III]. Moreover, Proposition 4.9 in loc. cit. applied to u1 = v

and uj = b implies (3.4) and (3.5). If we choose vj smooth, then

ddc(vj(ddcb)k) = ddcvj∧(ddcb)k.

Thus (3.3) follows from (3.4) and (3.5). In fact, the assumption about the
Hausdorff dimension is not necessary; an elegant and quite direct argument
has been communicated to us by Z. Błocki, [7].

Corollary 3.3. — If b is psh and (locally) bounded on X and W is
an analytic variety of positive codimension, then for each k > 0,

(3.6) 1W (ddcb)k = 0.

Proof. — It is enough to consider the case whenW is a smooth hypersur-
face. The general case follows by stratification. Since it is a local statement,
we may choose coordinates z = (z′, w) so that W = {w = 0}. Notice that
in a set |w| 6 r, |z′| 6 r′, we have that 1W (ddcb)k is the value at λ = 0 of

−(|w|2λ − 1)(ddcb)k.

Since |w|2λ−1 is psh, (3.6) follows from (3.2) since the total mass of |w|2λ−1
tends to 0 when λ→ 0. �

Lemma 3.4. — If b is psh and (locally) bounded on X and i : Y → X

is a smooth submanifold, then for k 6 n,

(3.7) [Y ]∧(ddcb)k = i∗(ddci∗b)k, [Y ]∧b(ddcb)k = i∗
(
i∗b(ddci∗b)k

)
.

Proof. — First assume that b is smooth. Then∫
X

[Y ]∧(ddcb)k∧ξ =
∫
Y

(ddci∗b)k∧i∗ξ =
∫
X

i∗
(
(ddci∗b)k

)
∧ξ

and similarly ∫
X

[Y ]∧b(ddcb)k∧ξ =
∫
X

i∗
(
i∗b(ddci∗b)k

)
∧ξ,

ANNALES DE L’INSTITUT FOURIER
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so that (3.7) holds in this case. Now let b be bounded and psh and let bj
be a decreasing sequence of smooth psh functions converging pointwise to
b. Now (3.7) follows from the smooth case and (3.1). �

4. Higher Monge-Ampère products

Let G be a psh function of the form (1.1). We will give meaning to

(4.1) (ddcG)k

by inductively defining it as (ddcG)0 = 1 and

(4.2) (ddcG)k := ddc
(
G1X\Z(ddcG)k−1), k > 1.

Proposition 4.1 below asserts that this definition makes sense and that
(ddcG)k are positive and closed. As pointed out in the introduction this
definition coincides with the iterative definition (1.6) for k 6 p.

Proposition 4.1. — Let X be a complex manifold of dimension n, let
f be a tuple of global functions of X, let G be a psh function of the form
(1.1), and let Gj be a decreasing sequence of smooth psh functions in X

converging pointwise to G. Assume that (4.1) is inductively defined via
(4.2) for a fixed k. Then

G1X\Z(ddcG)k := lim
j
Gj1X\Z(ddcG)k

has locally finite mass and does not depend on the choice of sequence Gj .
Moreover (ddcG)k+1 = ddc(G1X\Z(ddcG)k) is positive and closed.

The proof below relies heavily on the fact that G is of the form (1.1).
It could be interesting to investigate whether Proposition 4.1 holds for a
wider class of psh functions G with unbounded locus Z.

Proof. — Let π : X̃ → X be a smooth modification such that π∗J is
principal and its divisor is of the form

(4.3) D =
∑

αjDj ,

where Dj are smooth hypersurfaces with normal crossings. In particular,
then π∗f = f0f ′, where f0 is a section of the line bundle LD that defines
D and f ′ is a non-vanishing tuple of sections of L−1

D .
Locally on X̃ we can choose a frame for LD and in this frame we have,

cf. (1.1),

(4.4) π∗G = log |f0|+ log |f ′|+ π∗h =: log |f0|+ b.

TOME 64 (2014), FASCICULE 6
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Since log |f0| is pluriharmonic outside

|D| := ∪jDj

it follows that
b = log |f ′|+ π∗h

is psh there; furthermore it is locally bounded at |D|. By a standard ar-
gument b has a unique (bounded) psh extension B across |D|. Notice that
ddcB is a global positive closed current on X̃ and

ddcπ∗G = [D] + ddcB.

Let Gj be a decreasing sequence of smooth psh functions converging
pointwise to G. Since

ddcGj = π∗(ddcπ∗Gj)→ π∗
(
ddcπ∗G

)
= π∗

(
[D] + ddcB

)
it follows that

ddcG = π∗
(
[D] + ddcB

)
.

Let us now assume that we have proved Proposition 4.1 as well as the
equality

(4.5)
(
ddcG

)` = π∗
(
[D]∧(ddcB)`−1 + (ddcB)`

)
for ` 6 k. We are to see that then:
(i) G1X\Z(ddcG)k := limj Gj1X\Z(ddcG)k has locally finite mass.
(ii) If

(ddcG)k+1 := ddc
(
G1X\Z(ddcG)k

)
,

then (4.5) holds for ` = k + 1.
As soon as (i) and (ii) are verified, Proposition 4.1 follows.
Notice that if µ is a closed positive current, then

(4.6) 1Zπ∗µ = π∗(1|D|µ).

In view of Corollary 3.3 we have that

(4.7) 1|D|(ddcB)k = 0.

From the induction hypothesis (4.5), (4.6) and (4.7) we get

(4.8) 1X\Z
(
ddcG

)k = π∗(ddcB)k.

By Proposition 3.2, (π∗G)(ddcB)k has locally finite mass, and

(π∗Gj)(ddcB)k → (π∗G)(ddcB)k

ANNALES DE L’INSTITUT FOURIER
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if Gj is any decreasing sequence of psh functions that tends to G. If Gj are
smooth we have by (4.8) that

Gj1X\Z(ddcG)k = π∗
(
(π∗Gj)(ddcB)k

)
,

which tends to

(4.9) G1X\Z(ddcG)k = π∗
(
(π∗G)(ddcB)k

)
,

which has locally finite mass. Thus (i) is verified.
We now consider (ii). We claim that

(4.10) ddc
(
π∗G∧(ddcB)k

)
= [D]∧(ddcB)k + (ddcB)k+1.

Recall that locally π∗G = v + B, where v = log |f0| and B is psh and
bounded. Take smooth psh vj that decrease to v. Then vj +B are psh and
decrease to v +B and thus, by Proposition 3.2,

vj(ddcB)k +B(ddcB)k = (vj +B)(ddcB)k → (v +B)(ddcB)k.

It follows that

(v +B)(ddcB)k = v(ddcB)k +B(ddcB)k.

From Proposition 3.2 we get that

ddc
(
v(ddcB)k

)
= [D]∧(ddcB)k,

which proves the claim. In view of (4.9) and (4.10) the statement (ii) now
follows. �

For future reference we notice that

(4.11) MJk = π∗
(
[D]∧(ddcB)k−1), 1X\Z(ddcG)k = π∗(ddcB)k.

In fact 1X\Z(ddcG)k equals the non-pluripolar product 〈ddcG〉k as defined
in [6, 8].
It follows from the proof above and Proposition 3.2 that if Gj is any

decreasing sequence of psh functions converging pointwise to G, then
Gj1X\Z(ddcG)k−1 → G1X\Z(ddcG)k−1 and

ddc(Gj∧1X\Z(ddcG)k−1) = ddcGj∧1X\Z(ddcG)k−1 → (ddcG)k.

Recall that if Gj are psh functions that decrease to G, then

lim
j

(ddcGj)k = (ddcG)k, k 6 p,

see, e.g., [9, Proposition III.4.9]. However, for k > p one cannot hope for
a definition of (ddcG)k that is robust in this sense. In fact, even if Gj and
G̃j are sequences of smooth psh functions decreasing to G and (ddcGj)k
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and (ddcG̃j)k converge to positive closed currents T and T̃ , respectively, T
might be different from T̃ , as is illustrated by the following example.

Example 4.2. — Let ϕ = (w, zw). Then

ddc log |ϕ| = ddc log |w|+ ddc log(1 + |z|2)1/2 = [w = 0] + ddcα,

where [w = 0] denotes the current of integration along {w = 0} and α =
log(1 + |z|2)1/2. Thus by (4.2),

(ddc log |ϕ|)2 = [w = 0] ∧ ddcα.

Let Gε = log(|ϕ|2 + ε)1/2 and G̃ε = log(|w|2 + ε)1/2 + α. Then Gε and G̃ε
are smooth psh functions that decrease towards log |ϕ| as ε tends to 0. On
the one hand, by (1.7),

lim
ε→0

(ddcGε)2 = (ddc log |ϕ|)2.

On the other hand, again using (1.7), but now for (ddc log |w|)2,

(ddcG̃ε)2 = (ddc log(|w|2 + ε)1/2)2 + 2ddc log(|w|2 + ε)1/2∧ddcα
−→ 2[w = 0] ∧ ddcα.

Remark 4.3. — Assume that X` is an exhaustion of X by relatively
compact subsets such that the restriction J` of J to X` is generated by
global bounded functions. It would be interesting to know whether, or
under what assumptions, the currents MJ`

k then converge. Convergence
would give us a global canonical representation of the Segre numbers of J .

Assume that J is indeed generated by global bounded functions and let
G` denote the Green function with poles along J`. Then, arguing as in the
proof of Proposition 4.1 and using the notation from that proof,

π∗G` = log |f0|+B`,

where B` is psh and bounded, and moreover

(ddcG`)k = π∗([D] ∧ (ddcB`)k−1 + (ddcB`)k).

Assume that G` decrease towards G. Then B` decrease towards B, as de-
fined in (4.4), and thus lim`(ddcG`)k = (ddcG)k in light of (3.1) and (4.5).

5. Lelong numbers

Let T be a positive closed (k, k)-current. If k = n, following [4, Section 5],
we let

Mξ
0∧T := 1{x}T.
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Otherwise
Mξ
n−k∧T := 1{x}

(
(ddc log |ξ|)n−k∧T

)
;

here we inductively define

(ddc log |ξ|)`∧T :=

ddc
(

log |ξ|∧(ddc log |ξ|)`−1∧T
)

= lim
j
ddc
(
vj∧(ddc log |ξ|)`−1∧T

)
,

where vj is a decreasing sequence of smooth psh functions converging point-
wise to log |ξ|. Because of the dimension principle it is not necessary to
insert 1X\{x} in this definition, cf., Section 4. See Remark 5.1 below for an-
other possible definition of Mξ

n−k∧T . Clearly M
ξ
n−k∧T is an (n, n)-current

with support at x, and it is in fact equal to α[x], where α is the Lelong
number of T at x, see, e.g, [4, Lemma 2.1].

Remark 5.1. — As is pointed out in [4, Section 5] one can defineMξ∧T
as the value at λ = 0 of the current-valued analytic function

λ 7→ ∂̄|ξ|2λ∧∂|ξ|2

2πi|ξ|2 ∧(ddc log |ξ|)n−k−1∧T.

6. Proof of Theorem 1.1

We will prove the slightly more general formulation of Theorem 1.1 stated
in Remark 1.2, i.e., we let G be any psh function of the form (1.1).

We still assume that π : X̃ → X is a smooth modification and use the
notation from the proof of Proposition 4.1. Notice that LD has a Hermitian
metric such that |f0|LD

= |π∗f |. By the Poincaré-Lelong formula,

(6.1) ddc log |π∗f | = [D] + ωf ,

where ωf is the first Chern form for L−1
D .

Let us fix a local holomorphic frame so that log |f ′| is a well-defined
function as above. Since

log |π∗f | = log |f0|+ log |f ′|,

from (6.1) we have that

(6.2) ωf = ddc log |f ′|.

Let b be the psh bounded function outside |D| defined in (4.4). If we choose
another local frame for LD, then log |f ′| is changed to log |f ′|+ α where α
is pluriharmonic, and b is thus changed to b̃ := b+α. Moreover B̃ := B+α
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is the unique psh extension of b̃ across |D|, cf. the proof of Proposition 4.1.
It follows that A, locally defined as

(6.3) A := B − log |f ′|,

is a global upper semicontinuous extension of π∗h across |D|. Notice also
that A(ddcB)` is well-defined on X̃ and, in light of (6.2) and (6.3), that

(ddcB)k−1 − ωk−1
f = ddc

(
A

k−2∑
`=0

(ddcB)`∧ωk−2−`
f

)
.

Assume now that Y ⊂ X̃ is a smooth submanifold and that i : Y → X̃ is the
natural inclusion. Then i∗B is psh and bounded, i∗ log |f ′| is smooth, and,
in the same way as above, i∗A is a global upper semi-continuous function
on Y and

(6.4) (ddci∗B)k−1 − i∗ωk−1
f = ddc

(
i∗A

k−2∑
`=0

(ddci∗B)`∧i∗ωk−2−`
f

)
.

In view of Lemma 3.4, (6.4) implies that

[Y ]∧
(

(ddcB)k−1 − ωk−1
f

)
= ddci∗

(
i∗A

k−2∑
`=0

(ddci∗B)`∧i∗ωk−2−`
f

)
.

The currents (ddc log |f |)k andMf
k are defined in a completely analogous

way as (ddcG)k and MJk , just replacing G by log |f |, cf., the introduction
and the end of Section 2 and also [4]. Arguing as in the proof of Proposi-
tion 4.1, we get, cf., (4.11), that

Mf
k = π∗([D]∧ωk−1

f ), 1X\Z(ddc log |f |)k = π∗ω
k
f

Lemma 6.1. — The currents MJk and Mf
k have the same Lelong

number at each point x ∈ X. Moreover, the currents 1X\Z(ddcG)k and
1X\Z(ddc log |f |)k have the same Lelong number at each point x ∈ X.

Proof. — Let us fix a point x ∈ X and let ξ be a tuple of functions
that defines the maximal ideal mx at x. We can choose the modification
π : X̃ → X so that also π∗mx is principal, i.e., π∗ξ = ξ0ξ′, where ξ0 is a
section of a line bundle LE that defines the exceptional divisor E, and ξ′
is a non-vanishing tuple of sections of L−1

E . Let us assume that

(6.5) E =
∑
κ

βκEκ,
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where Eκ are irreducible with simple normal crossings and βκ are integers.
We may also assume that, for each j, cf., (4.3), either Dj ⊂ |E| or all Eκ
intersect Dj properly and that

EDj
κ := Eκ ∩Dj

are smooth. Let ωξ be the first Chern form of L−1
E with respect to the

metric induced by ξ, so that

ωξ = ddc log |ξ′|,

cf., (6.2), and
ddc log |π∗ξ| = [E] + ωξ.

Let ij : Dj → X̃ be the injection of Dj as a submanifold of X̃. It follows
from (4.3), (4.11) and Lemma 3.4 that

(6.6) MJk =
∑
j

αjπ∗(ij)∗
(
(ddc(ij)∗B)k−1).

In order to prove the first part of the lemma, it is enough to consider one
single term in (6.6) and verify that

TJk := π∗i∗
(
(ddci∗B)k−1)

and
T fk := π∗i∗

(
i∗ωk−1

f

)
have the same Lelong numbers, where we write D = Dj and i = ij for
simplicity.
Let us first assume that k = n. If D ⊂ |E|, then TJn and T fn both have

support at x. In view of (6.4), with Y = D, we have that

TJk − T
f
k = ddcπ∗i∗

(
i∗A

k−2∑
`=1

(ddci∗B)`∧i∗ωk−2−`
f

)
=: dW,

where W has support at x. By Stokes’ theorem thus∫
(TJn − T fn ) =

∫
dW = 0,

which means that TJn and T fn have the same Lelong number at x. If D is
not contained in E, then i−1E has positive codimension in D and therefore,

1{x}TJn = π∗i∗(1|i−1E|(ddci∗B)n−1) = 0

by Corollary 3.3. In the same way we see that 1{x}T fn = 0.
Let us now assume that k < n. If D ⊂ |E|, then TJk and T fk are positive

closed (k, k)-currents with support at x, so by the dimension principle they
both vanish. We can therefore assume that i∗π∗ξ does not vanish identically
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on D; by assumption it then defines a smooth divisor ED on D. Locally
on D,

log |i∗π∗ξ| = log |i∗ξ0|+ log |i∗ξ′|,
and thus

(6.7) ddc log |i∗π∗ξ| = [ED] + i∗ωξ,

where [ED] is the Lelong current on D associated to ED. If vj are as in
Section 5, then

ddci∗π∗vj → [ED] + i∗ωξ.

Now
ddc(vjTJk ) = π∗i∗

(
ddci∗π∗vj∧(ddci∗B)k−1)

so that

ddc log |ξ|∧TJk = π∗i∗
(
([ED] + i∗ωξ)∧(ddci∗B)k−1)

by Proposition 3.2 and (6.7). Moreover, since π∗i∗
(
[ED]∧(ddci∗B)k−1) has

support at x, by the dimension principle,

ddc log |ξ|∧TJk = π∗i∗
(
i∗ωξ∧(ddci∗B)k−1).

By induction we get

(ddc log |ξ|)n−k∧TJk = π∗i∗
(
([ED] + i∗ωξ)∧i∗ωn−k−1

ξ ∧(ddci∗B)k−1).
Therefore, by Corollary 3.3,

Mξ
n−k∧T

J
k = 1{x}(ddc log |ξ|)n−k∧TJk

= π∗i∗
(
[ED]∧i∗ωn−k−1

ξ ∧(ddci∗B)k−1).
Let ικ : EDκ → D be the natural injection. By (6.5) and Lemma 3.4 we have
that

Mξ
n−k∧T

J
k =

∑
κ

βκπ∗i∗(ικ)∗
(
(ικ)∗i∗ωn−k−1

ξ ∧(ddc(ικ)∗i∗B)k−1).
By analogous arguments,

Mξ
n−k∧T

f
k =

∑
κ

βκπ∗i∗(ικ)∗
(
(ικ)∗i∗ωn−k−1

ξ ∧(ικ)∗i∗ωk−1
f

)
.

For simplicity in notation let us assume that ED has just one irreducible
component and let ι : ED → D be the natural injection. By (6.4) applied
to ED we have that

Mξ
n−k∧T

J
k −M

ξ
n−k∧T

f
k =

ddcπ∗i∗ι∗

(
ι∗i∗A ι∗i∗ωn−k−1

ξ ∧
k−2∑
`=0

(ddcι∗i∗B)`ι∗i∗ωk−1−`
f

)
=: dW,
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where W has support at x. It follows by Stokes’ theorem that the integral
of this current is zero, and thus the Lelong numbers at x of TJk and T fk
coincide. Thus the first part of the lemma is proved.
By analogous arguments we get that π∗(ddcB)k and π∗(ωf )k have the

same Lelong number at x, which proves the second part of the lemma, cf.
(4.11) and (6.5). �

We can now conclude the proof of Theorem 1.1.
Proof of Theorem 1.1. — Let D`

j be the irreducible components of D
such that π(D`

j) have codimension `. Then

MJk = π∗
(
[D]∧(ddcB)k−1) = π∗

(∑
`6k

∑
j

([D`
j ]∧(ddcB)k−1)

since terms with ` > k vanish because of the dimension principle. We claim
that

(6.8)
MJk = π∗

(∑
j

([Dk
j ]∧(ddcB)k−1)+ π∗

(∑
`<k

∑
j

([D`
j ]∧(ddcB)k−1)

=: SJk +NJk

is the Siu decomposition of MJk . First notice that since

π∗
(
[Dk

j ]∧(ddcB)k−1)
is a (k, k)-current with support on the set Z := π(Dk

j ) of codimension k it
must be of the form α[Z] where α is a constant, see Lemma 3.1.

It is now enough to see that if W is a subvariety of codimension k, then
1WNJk = 0, i.e.,

1Wπ∗
(
[D`

j ]∧(ddcB)k−1) = 0

if ` < k. Let i : D`
j → X̃ be the natural injection. By Lemma 3.4 we have

1Wπ∗
(
[D`

j ]∧(ddcB)k−1) = 1W (π∗i∗
(
ddci∗B)k−1)

= π∗i∗
(
1(π◦i)−1(W )(ddci∗B)k−1).

Notice that since π(D`
j) is irreducible and not contained in W it follows

that π−1(W ) ∩D`
j has positive codimension in D`

j , and hence

1(π◦i)−1(W )(ddci∗B)k−1 = 0

in view of Corollary 3.3.
Thus (6.8) is the Siu decomposition. Since MJk and Mf

k have the same
Lelong number at each point by Lemma 6.1 and the set where NJk and
Nf
k have positive Lelong number have codimension > k we conclude that

SJk = Sfk , see Remark 2.1. Since also 1X\Z(ddcG)k and 1X\Z(ddc log |f |)k
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have the same Lelong numbers at x by Lemma 6.1, Theorem 1.1 follows
from the analogous result, Theorem 1.1, for Mf in [4]. �
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