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A CLASSIFICATION THEOREM ON FANO BUNDLES

by Roberto MUNOZ,
Gianluca OCCHETTA & Luis E. SOLA CONDE (*)

ABSTRACT. —  In this paper we classify rank two Fano bundles £ on Fano
manifolds satisfying H?(X,Z) = H*(X,7Z) = Z. The classification is obtained via
the computation of the nef and pseudoeffective cones of the projectivization P(E),
that allows us to obtain the cohomological invariants of X and £. As a by-product
we discuss Fano bundles associated to congruences of lines, showing that their
varieties of minimal rational tangents may have several linear components.

RESUME. Dans cet article, on classifie les fibrés de Fano de rang deux &
sur les variétés de Fano satisfaisant H2(X,Z) = H*(X,7Z) = Z. La classification
est obtenue par le calcul des cones nef et pseudoeffectif de la projectivation P(E),
ce qui nous permet d’obtenir des invariants cohomologiques de X et £. Comme
un sous-produit, nous discutons des fibrés associés & Fano congruences de droites,
montrant que leurs variétés de tangentes rationnelles minimales peuvent avoir plu-
sieurs composants linéaires.

1. Introduction

One of the most important open problems in the theory of vector bundles
on complex projective manifolds is the existence of indecomposable vector
bundles of low rank on the projective space. In fact, the extense literature on
the subject shows that, even for rank two, the problem is complicated. One
way in which one may try to tackle it is by studying the space of numerical
classes of divisors on the projectivization P(£) of the bundle, and the cones
(nef, pseudoeffective) contained in it. In our previous paper [20] we have
considered this type of argumentation in the setting of rank two vector
bundles on Fano manifolds X with H?(X,Z) =& H*(X,Z) = Z, obtaining
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a number of results regarding the structures of the nef and pseudoeffective
cones of P(E) and their relation with the decomposability of the bundle, as
well as some applications.

On the other hand, if £ is a Fano bundle, i.e., if P(£) is a Fano manifold,
we have a second contraction 7’ : P(£) — X', that we may use to infer im-
portant properties about £ (stability, for instance) and the cones of divisors
of P(&); see Section 2 below. In this paper we use these techniques to clas-
sify rank two Fano bundles on manifolds with H?(X,Z) & H*(X,Z) £ Z
(see Notation 1.1):

THEOREM 1.1. — Let X be a Fano manifold satisfying H*(X,Z) =
HY(X,Z) = 7Z, and let £ be an indecomposable rank two Fano bundle
on X. Then, up to a twist with a line bundle, £ is the pull-back of the
universal quotient bundle on a Grassmannian G(1,m) by a finite map 1 :
X — G(1,m) where either

e ¢ is one of the embeddings given by
1) P? = G(1,2),
P2) Q® = LG(1,3) C G(1,3),
P3) IP3 =~ G(1,4)g: C G(1,4),
4) Q° = G(1,13)k(c,) C G(1,13),
5) K(G2) = FG(1,6) C G(1,6),
1) P? C G(1,4)gs (set of lines in Q* meeting a fixed line),
2) va(P?) C G(1,3) (set of secant lines to vz(P!) C P?),
3) V2 C G(1,4) (set of trisecant lines to the isomorphic projection
of va(P?) into P*),
(C6) V2 C G(1,3) (smooth quadric section of the Pliicker embed-
ding); or
e 1 factorizes by a finite covering ¥ : X — X of one of the sub-
manifolds of types (P1),(P2),(P3),(P4),(P5) above and, either
(C1) X = X; = P? and 1), is given by a base point free two dimen-
sional linear subsystem of conics, or
(C2-5) X; =Q3, P3, Q° or K(Gy), X is a quadric section of the cone
with vertex one point over the natural embedding of X; and
11 is the projection form the vertex of the cone.
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Our assumptions are satisfied by many significative examples of Fano
manifolds, see Remark 2.2. Rank two Fano bundles over projective spaces
and quadrics were already completely classified (see [32, 31, 30, 1]). With
our approach we recover those classifications (clearly with the exception of
Q? and Q*, which do not satisfy our assumptions).
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Note that we proved in [22] and [21] that, up to twists, the only indecom-
posable rank two Fano bundle in G(1,m) is the universal quotient bundle
Q. A case by case analysis of the Fano bundles appearing in the above
theorem allows us to state the following:

COROLLARY 1.2. — Let X be a Fano manifold satisfying H*(X,7) =
HY(X,Z) 2 Z, and let €& be an indecomposable rank two Fano bundle on
X. Then there exists an integer m and a finite map ¢ : X — G(1,m) such
that ¢* (Nef(P(Q))) = Nef(P(£)).

To our best knowledge it is still an open problem to find examples of
rank two Fano bundles on manifolds of Picard number one in which this
does not hold.

The paper is organized as follows. Section 2 is devoted to the prelimi-
nary results about vector bundles we have obtained in [20]. In particular
we recall the classification of Fano bundles £ whose projectivization P(€)
has two different P'-bundle structures. If this is not the case, our hypoth-
esis on H*(X,Z) implies that P(£) has either a conic bundle structure or
a divisorial contraction, according to a structure theorem (see 2.4). In Sec-
tion 3 we present examples of Fano bundles constructed upon subvarieties
of Grassmannians, showing in particular that the list of Theorem 1.1 is
effective.

We then study the two remaining scenarios separately: the existence of a
divisorial contraction (Section 4) or of a conic bundle structure (Section 5)
on P(£). In each case the classification involves computing the possible
discrete invariants of £ and the base manifold X, as well as some other ad
hoc arguments.

Finally, we have included an appendix devoted to the relations between
Fano bundles and congruences of lines, paying special attention to their va-
rieties of minimal rational tangents. In particular we show that the VMRT
of the congruence of trisecant lines to an isomorphic projection of a Sev-
eri variety has three linear components, providing negative answers to two
problems posed by Hwang and Mok, see A.9.

1.1. Terminology

Throughout this paper we will work over the field of complex numbers.
Let us introduce some notation regarding complex projective manifolds
that will appear in this paper.

TOME 64 (2014), FASCICULE 1
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As usual, P will denote the projective space of dimension m, and vy
the k-th Veronese embedding. A non singular quadric of dimension m in
P! will be denoted by Q™, and a Del Pezzo manifold of degree d and
dimension m by V.

The Grassmannian of lines in P will be denoted by G(1,m). The uni-
versal quotient bundle on G(1,m) is the rank two vector bundle Q whose
determinant is the ample generator of Pic(G(1, m)) and whose projectiviza-
tion is the universal family of lines in P". Given a subvariety M C P™,
G(1,m)ps stands for the subscheme of G(1,m) parametrizing lines con-
tained in M. Note that for m = 2, we have an isomorphism G(1,2) = P2,
so that P(Q) has two P!-bundle structures over P2; note also that in this
case P(Q) is the complete flag of the Lie group SI(3).

Finally we need to refer to two special subvarieties of grassmannians.
Given a symplectic form L in C*, the subvariety of G(1,3) parametriz-
ing lines in P? = P(C*) that are isotropic with respect to L is denoted by
LG(1,3). It is well known that this variety is a linear section of (the Pliicker
embedding of) G(1,3), hence isomorphic to Q3. The evaluation morphism
on the projectivization P(Q|gs ) defines a P'-bundle structure over P?, which
provides an isomorphism P? = G(1, 4)gs. In this case IP’(Q‘Qs) is the com-
plete flag of the Lie group Sp(4).

We have a similar situation in the case of the group Gs. Up to the choice
of a maximal abelian subgroup, this group has two maximal parabolic sub-
groups, whose corresponding quotients may be identified with the contact
homogeneous manifold K (Gy) C P3 (that appears as the closed orbit of
the adjoint representation of the group Gs), and the quadric Q° C PS.
The quotient F(Gy) of Go by the Borel subgroup has two structures of
P!'-bundle that allow us to describe it as the universal family of lines
parametrized by G(1,13)kq,) = Q?, or as the universal family of lines
in P% that are isotropic with respect to a non-degenerate 4-form in C”
(which is parametrized by a submanifold FG(1,6) C G(1,6)gs, isomorphic
to K(Gz)). The only rank two vector bundle over Q° with ¢; = —1 whose
projectivization is F'(Gg) is classically known as the Cayley bundle (cf.
126]).

2. Setup and preliminary results

Notation 2.1. — Throughout this paper we will consider pairs (X, &),
where X is a complex Fano manifold of dimension n such that H?(X,Z) =
H*(X,Z) = Z and € is a rank 2 indecomposable Fano bundle on X. More-
over, we will set the following:
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Hx: divisor associated to the ample generator of Pic(X) & H?(X,Z).
¥: positive generator of H*(X,7Z).

i1:=—Kx/Hx € Z: index of X.

d:=H%/Y €Z.

Y :=P(€); by hypothesis on &, it is a Fano manifold.

7 :Y — X: natural projection.

a1 :=c1(6)/Hx € Z, ¢ := c2(€)/E € Z: first and second Chern
classes of €.

A = ¢ — 4cy/d € Q: discriminant of £.

f: general fiber of .

L: divisor associated to the tautological divisor on Y.

H =n*Hx.

K := Ky — 7 Kx = —2L + ¢1 H: relative canonical divisor of .
N (Y)R: vector space of numerical classes of R-divisors in Y.
Nef(Y) € NY(Y)g: nef cone of Y.

T=7(&):=inf{t e R : —K + tH is ample}; since £ is Fano, then
generalities of Mori theory tell us that 7 € [0,i) NQ and —K +7H
is semiample.

7' .Y — X': elementary contraction associated to the extremal ray
of Nef(Y) C NY(Y)r generated by —K + 7H.

f': rational curve in Y of minimum anticanonical degree between
curves contained in fibers of 7.

Eff(Y) c NY(Y)g: pseudoeffective cone of Y, i.e., the closure in
NY(Y)R of the cone generated by classes of effective divisors.
p=p€):=min{t € R : —K +tH is pseudoeffective}.

Remark 2.2. — Our assumptions are satisfied by many significative ex-
amples. For instance Fano manifolds which are complete intersections in
PV of dimension at least five (by the Lefschetz Hyperplane Theorem),
Fano manifolds X C P¥ whose codimension is smaller than or equal to
dim X — 4 (by Barth’s Theorem) and Fano threefolds of Picard number
one (by Poincaré duality). Furthermore, if X is a Fano manifold of dimen-
sion greater than or equal to 5 satisfying our assumptions, then every Fano
manifold obtained as a cyclic covering of X satisfies them, too (cf. [6]).

The following result follows from [20, Theorems 2.3, 6.1, 6.3]:

LEMMA 2.3. — Let (X, &) be a pair satisfying 2.1. With the same no-
tation as above:

(1)
(2)

T is strictly positive,
every fiber of w' has dimension smaller than or equal to one,

TOME 64 (2014), FASCICULE 1
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(3) & is stable unless X = P? and Y is the blow up of Q3 along a line,
and
(4) the discriminant A is strictly negative.

As a consequence of the second item of Lemma 2.3, we may apply [33,
Theorem 1.2] (see also [20, Lemma 6.1]) in order to obtain the following
result:

LEMMA 2.4. — With the same notation as above, then:

(P) either ' is a Pl-bundle, —Ky - f' =2, or

(D) 7' is the blow-up of a codimension two smooth subvariety, —Ky -
f'=1,or

(C) =’ is a conic bundle with reducible fibers, —Ky - f' = 1.

In all cases X' is smooth and Fano of Picard number one, and
Ky-f . K-f

= + 1 =
H - f/ H - f/
This result suggests considering separately the three cases, to which we
will refer to as pairs (X, &) of types (P), (D) or (C). The following Lemma
(cf. [20, Proposition 4.12]) describes how p and 7 behave in these three

> 0.

cases:

LEMMA 2.5. — With the same notation as in Lemma 2.4, it follows that:
(1) if (X, &) is of type (P) or (C), then p = 7;
(2) if (X,€) is of type (D) then 0 < p < 7 and —K + pH is numerically
proportional to the exceptional divisor of 7'.

Moreover, in every case p and T are related by the equation:
(2.1) n arg (T-i-\/Z) + (p+\/§) =.
In particular, in cases (P) and (C) n is necessarily equal to 2,3 or 5.

Since X’ is a Fano manifold by Lemma 2.4, we may introduce the fol-
lowing notation.

Notation 2.6. — With the same notation as above, we set:

e Hy/: ample generator of Pic(X").

1= —KX//HX/ € Z: index of X'.

H’ = W/*HX/.

K/ = Ky—ﬂ'/*KX/.

i =inf{t eR : —K'+¢x*H' is ample}.
A=—Ky-f,u=H-f,p/=H -fv=K-f,V:=K"-f.
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Noting that
(2.2) in—v=-Ky-f'=X and iy —v =—Ky- f=2,

one may easily obtain the relation

o (-6 D00 )4

where:
v 2A — v/’
A A’
A= H
peooow
A WA

Note that the sets {—K, H} and {—K’, H'} generate subgroups of Pic(Y)
of indices two and A, respectively. In particular (—2/X\)(u/p') = det(A) =
12/ and we get

LEMMA 2.7. — With the same notation as above, the minimal H'-
degree of a curve contracted by m and the minimal H-degree of a curve
contracted by ' are equal.

The following proposition gives the complete list of Fano bundles whose
projectivization has a second P!-bundle structure. Note that the list corre-
sponds to items (P1) to (P5) in Theorem 1.1:

ProprosiTION 2.8. — With the same notation as above, assume that
(X,&) is of type (P). ThenY is isomorphic to G/B, where G is a simple Lie
algebra of type As, By or Go, and B is its Borel subgroup. Each contraction
of Y corresponds to one of the two possible choices of a maximal parabolic
subgroup of G.

Let us sketch the proof of this result here; we refer the interested reader
to [20, Theorem. 6.5] for further details.

Proof. — By assumption we may consider Y as the projectivization of
a Fano bundle £ over X’; let us denote its discriminant by A’. Using
equation (2.3), the integer —K H™ can be written in terms of —K’ and
H'. Since H™ = 0 and K"? = A’H'?, we may reduce this polynomial to a
multiple of —K'H'™:

n—1 Im (T'—I-\/E)

Ve (—K'H'™).

(5

TOME 64 (2014), FASCICULE 1
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Note that A < 0 by Lemma 2.3. Moreover, applying equation (2.1) from
Lemma 2.5 one may rephrase the above equality as:

n—1

(—K'H™).

/

uT
2 cos (#)
Joining this formula with its symmetric, obtained by writing —K'H'™ in
terms of —K H", we get:

—KH" =

p2r7r’ = 4cos? (ﬂ) =1,2,3, for n = 2,3, 5, respectively.
n+1

From this one may easily obtain that, up to exchange X and X', X is either
P? = G(1,2), P? = G(1,4)gs or Q° = G(1, 13) k(G,), and that the Chern
classes of £ coincide with those of the corresponding universal quotient
bundles. We conclude by noting that £ is stable by Lemma 2.3 and that
these universal bundles are determined by their Chern classes among stable
bundles (cf. [11, 8.1], [25, Lemma 4.3.2], [26]). O

Throughout the rest of the paper we will always assume that A =1, i.e.,
that (X, &) is of type (D) or (C). Hence we may write:

v — 9 vo2—w/
_l/ — -
(2.4) A= poo|, oAat=| 2 2
i ; lad v
2 2

We finish this section by stating an straightforward lemma that will be
useful later.

LEMMA 2.9. — With the same notation as above, it follows that:

(1) if (X, &) is of type (D) or (C), then ¢; — i and p are odd, and

(2) if (X, &) is of type (D), then
v —2

Iz

Proof. — The first assertion follows from equation (2.2) and the fact that
(=K + c1H)/2 = L is an integral divisor, so that

1 a g (ar—v av'p—vv +2 c 72
2 2 2 2%

(2.5) p=

The second follows from the definition of p, since in case (D) we have
E=K' O
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3. Examples

This section is devoted to the construction of examples of rank two Fano
bundles on Fano manifolds satisfying 2.1. Since it is well known that a rank
two vector bundle on a projective manifold may be regarded as the pull-
back of a twist of the universal quotient bundle on a Grassmannian of lines,
the natural way of constructing examples of that kind is by considering
special subvarieties of Grassmannians G(1,m), as well as finite coverings
of them.

Example 3.1. — Complete intersections in Grassmannians.

Let X be a complete intersection of k general hypersurfaces of degrees
dy, ..., d in the Pliicker embedding of G(1,m), and assume that k < 2m—5
and d; +---+di < m. Then X is, by Lefschetz Theorem, a Fano manifold
of Picard number one, and by adjunction, the restriction Q|x is a Fano
bundle on X. Moreover, by [18, Theorem 3.1], Q|x is semistable of degree
one, hence it is also indecomposable.

a) If k < m —2, then the restriction of the evaluation map ' : P(Q|x) —
P™ is a fiber type contraction, and the nef cones of P(Q,x) and P(Q) coin-
cide. The general fiber of 7’ is a complete intersection of type (dy, ..., dy) in
P~1. On the other hand, by Lefschetz Theorem again, this procedure can-
not provide examples of Fano bundles over manifolds with H*(X,Z) = Z
unless k = 2m — 5. More concretely, one obtains precisely the submanifolds
listed as (P2) and (C6) in Theorem 1.1.

b) If k = m —1thendy = - =dp =1 and X is a general linear
section of G(1,m). But then the map «' is determined by a morphism
(’){13,” — Qpm (2), whose degeneracy locus has been described by Bazan and
Mezzetti (see [3, Section 2] and [7, Proposition 2.4]): using their results
it follows that in this case 7' : P(Q|x) — P™ is a divisorial contraction,
and the image of the exceptional divisor has codimension two (it is either
a rational variety if m is even, or the closure of a scroll parametrized by
an open set of a hypersurface in P =2 if m is odd). Finally, imposing the
condition H*(X,Z) = 7Z leaves us with the case m = 4 and k = 3, which is
case (D3) in Theorem 1.1.

In general, given any finite morphism ¢ : X — G(1,m) from a Fano
manifold X of Picard number one, the bundle ¢*(Q) is Fano if ¢; (¢*(Q))
is smaller than the index i of X. In the next example we will construct
subvarieties of Grasmannians satisfying this property that are not complete
intersections, with special emphasis on those satisfying H*(X,Z) = Z.

TOME 64 (2014), FASCICULE 1
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Example 3.2. — Other subvarieties of Grassmannians.

a) The subvarieties described in (P3), (P4) and (P5) of Theorem 1.1
provide the first examples of Fano bundles constructed upon subvarieties
of Grassmannians that are not complete intersections. Note that in the
three cases the degree of the restriction of Q equals i — 2, hence we obtain
more examples of Fano bundles by considering general hyperplane sections
X of the manifolds (P3), (P4) and (P5). However, the only case satisfying
H?*(X,Z) = H*(X,Z) = Z (see Lemma 4.5 below) is the hyperplane section
of (P3): this is (D1), classically known as the Veronese surface parametriz-
ing the set of lines in Q3 meeting a fixed one 2.

Note that the manifolds (P3) and (P5) are examples of linear congru-
ences of lines, i.e., subvarieties of dimension m — 1 of G(1,m), obtained
by cutting G(1,m) with a (not necessarily general) linear space. To our
best knowledge, the classification of linear congruences of lines with Picard
number one is still open. See Appendix A for more details.

b) In the same manner, Quadric Grasmannians G(1,m)gm-1 and Isotro-
pic Grassmanians LG(1, m), as well as some of their complete intersections,
provide examples of Fano submanifolds of Grassmannians of Picard num-
ber one, on which the corresponding restrictions of Q@ are Fano bundles.
Moreover, apart of the obvious exceptions, they are not complete inter-
sections in Grassmannians. However, they do not provide new examples
satisfying 2.1.

c¢) Case (D2) in Theorem 1.1 corresponds to the embedding of a Veronese
surface vo(P?) in G(1,3), which is clearly not a complete intersection. It
may be described as the family of secant lines to a rational normal cubic
I's ¢ P3. In fact, since I's has no trisecants, it follows that the family is
parametrized by the second symmetric power of I's, that is P2, and it is
easy to see that the restriction of the Pliicker embedding to this P? is the
complete linear system |Op2(2)|. Set, as usual, £ := Q|,,,(p2). Since for every
point P in P3 \ I'3 there exists a unique line secant to I's passing by P,
then the evaluation morphism 7’ : P(€) — P3 is the blow-up of P? along
T'5. Its exceptional divisor F is isomorphic to I's x I'3 and the restriction
7| g is the natural quotient onto P2, which is a two-to-one finite morphism.

Finally, we will show some examples of Fano bundles that arise via non
injective morphisms ¢ : X — G(1,m).

Example 3.3. — Finite coverings.

a) Cyclic coverings. Let X; be a Fano manifold with H?(X,Z) = Z and
&1 an indecomposable Fano bundle over X;. Let ¢ : X — X3 be the d-cyclic
covering of X7 determined by the ample generator Hx, of Pic(X7). Let Y3

ANNALES DE L’INSTITUT FOURIER
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and Y be the projectivizations of & and & := ¥*&;, respectively, and let
H; be the pull-back of Hx, to Y;. Since —Ky = ¢*(—Ky, — (d — 1)Hy),
then £ is Fano whenever —Ky, — (d — 1)H; is ample or, equivalently, if
7(&€1) + d — 1 is smaller than the index of X;.

For instance, starting from (P1), (P2), (P3), (P4) or (P5) the only pos-
sibility is d = 2 and the output of this process can be described in terms of
the following geometric construction. Consider the second P!'-bundle struc-
ture of Yy, 71 : Y1 = P(€]) — X{, and let Hx; be the ample generator
of Pic(X]). Note that in each case the bundle & ® Ox;(sHx;) is globally
generated and not ample for some s. Setting

(‘:/ = g{ ®OX{(3H{) @Oxi,

the image of the second contraction of P :=P(£’) is, by construction, the
cone C(X7) of X7 over a point O. Let Y be a general divisor in the linear
system |Op(2)|, m be the restriction of the second contraction of P, with
image X := n(Y), and 7' : ¥ — X’ := X the restriction of the natural
projection.

Y X’

|

1)<—P=P¢") — X]

]

X <——Vv = P(&)) —>X1

C

R

It follows that Y is a P'-bundle over X via 7 and a conic bundle over X’
via 7’. Furthermore, the linear projection from the point O defines a two-
to-one morphism ¢ : X — X4, so that 7 : Y — X is the fiber product of
m Y1 — X1 over ¥

X<"—Y

4

Xl &YI

Using this construction we obtain cases (C2), (C3), (C4) and (C5) out of
the corresponding (P)’s. Starting from (P1) we obtain a Fano bundle over
Q2= P! xPL

Note that (C6) gives another example of a Fano bundle on V} of type
(C). Although its Chern classes are the same as those of the bundle cor-
responding to case (C2), the bundles themselves are different, since the

TOME 64 (2014), FASCICULE 1
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corresponding second contractions are clearly different (see Section 5 be-
low).

b) Non-cyclic coverings. Let P be the cartesian product P? x P2 Y C P
be a general divisor on P of type (1,2) and 7 and 7’ be the restrictions to
Y of the natural projections.

P2 <— P = P2 x P2 —> P?

] .

P2 z Y P2

By construction 7 is a P!-bundle and 7’ is a conic bundle. Following [32], the
P!-bundle structure on Y is given by the vector bundle £ on IP? that appears
as the cokernel of a surjective morphism Op2(—2) — O3,. In other words,
the manifold Y is the incidence variety of the correspondence between
points of P? and conics of a 2-dimensional base point free linear subsystem
of |Op2(2)]. This is case (C1) in Theorem 1.1.

4. Rank two Fano bundles with a divisorial contraction

The aim of this section is to classify pairs (X, &) of type (D). Before
beginning, we need to introduce some notation regarding codimension two
cycleson X, X’ and Y.

Notation 4.1. — Let T C X' be the center of the blow-up n’, and
E := 7/7Y(T) C Y the exceptional divisor. Following [10, p. 605], H*(Y,Z)
is, on one hand, generated by the Z-basis

{LH,H?/d}
and, on the other, naturally isomorphic to
(4.1) HNX',Z)® HY(E,Z)/HNT,Z) = H'(X',Z) ® (—Ep)H*(T, 7).

Note that the last isomorphism follows from Chern-Wu relation on the P!-
bundle E — T. In particular we obtain that H*(X’,Z) is freely generated
by a (positive) cycle X' and H?(T,Z) is freely generated by the class of an
ample divisor Hy of the form %H '|7, for some positive integer b. Let us
also introduce the integer d’, defined by H'? = d'Y'.

Note that this description provides a second Z-basis of H*(Y, Z), namely
{-EH'/b,H?/d'} .
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The relation between the two Z-bases is

—EH'/b LH
=B
H?/d H?/d
where, using (2.3) and Chern-Wu relations:
-1 d
e — (VA + 201 (1 — v/ p+ v(v — 2))
b 4bp
B =
Vi d
T 4—d,(Aﬂ2 —2civp + v?)

As a first step towards classification, we will show that the images into X
and X’ of the fibers of 7’ and m, respectively, have degree one with respect
to the ample generator of the corresponding Picard group.

PROPOSITION 4.2. — Let (X, &) be a pair of type (D). With the same
notation as in Section 2, it follows that uy = H - f' = H'- f = 1, and in
particular r=v € Z and 7' =V’ € Z.

Set y := ged(d, p), i := /7, d := d/~. In the proof of 4.2 we will make
use of the following auxiliary result:

LEMMA 4.3. — With the same notation as above, ged(d, ju) = 1.

Proof. — Note first that all the entries of B are integers, in particular
Bi1= (' —1)/b€ Z. Since vv/ — 1 = 1 modulo p, it follows that

(4.2) ged(b, p) = 1.
The determinant of B is a unit, hence we get
(4.3) d(v* — Ap?) = +4bd'.

Since the left hand side is positive (by Lemma 2.3(4)) and v = 1 modulo
i, we get that d = 4bd’ modulo p and, in particular

(4.4) v = ged(d, p) = ged(4bd’, ) = ged(d', u).
The last equality follows by Lemma 2.9 and equation (4.2).
Set d’ := d'/~. Dividing by 7 in equation (4.3), the same argument as
above provides:
(4.5) ged(d, p) = ged(4bd’, i) = ged(d', ).

We conclude by showing that ged(d’, u) = 1. Since By ; = vu/d' = vii/d'
is an integer and ged(fr, d') = 1, it follows that v/d’ is an integer, too. But
v = 1 modulo u, then d’ and p are coprime. O
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Proof of Proposition 4.2. — By Lemma 2.9 we have p = 7 — SO

v'p?

equation (2.1) in Lemma 2.5 reads as:

arg(<7'+\/g— jﬂ) (T+\/Z)") =
In other words, we get:
V' uIm ((7’ + \/Z)”'H) =2Im ((T + \/Z)”) :

Multiplying by p"dl%)/v/=A, all the terms of the corresponding expan-
sions of both sides of this equatlon are integers. Furthermore, since v; = —i
mod u, if we take classes modulo p we get:

(=2)(=1)™(n+ 1)d"/? = (=1)"'2nd "2 mod p.

This implies, being 1 odd by Lemma 2.9 and ged(d, ;) = 1 by Lemma 4.3,
that p = 1. a

In order to complete the classification of Fano bundles of type (D), we will
study the restricted morphism 7 : £ — X. Note that, by Proposition 4.2
and the change of base (2.3) we may write
(1t —c1)—2 2
% H op=r-2
and assert that 7 g is a generically finite morphism of degree 7’. The next
result studies the case in which 75 is not finite.

(4.6) E=K =7L+

PROPOSITION 4.4. — Let (X,€) be a pair of type (D). With the same
notation as above, assume that E contains a fiber of w. Then (X, &) is of

type (D1).

Proof. — Since E contains a fiber f of m, we can compute the intersection
of Hy with n'(f), getting 1 = H' f = bn"*Hrp f. In particular b = 1.
Moreover, by Propostition 4.2, we know that 7; = Ba1 is an integer.
Considering the determinant of B one may write
(12 — A)d
d/

A
= By 1d (T—) < By qdr (1—|—tan2 (ﬂ>>,
’ T ’ n+1

where the last inequality follows from Lemma 2.5. It follows that:
o eithern=2,7=2, Byjd=1and A =—4, or
e ne {34}, 7=1,Bs1d=3,A=—-1/3, or
. n€{3,4},7':37 Bg’lzdzl,A:—?).

4 = 4det(B) =
(4.7)
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Note also that, by equation (4.6) and Proposition 4.2, we have p = 7—2/7/,
so equation (2.1) reads as:

narg(T—l—\/Z)-l-(T—f,-l-\/K):W.

Plugging the data above into this formula, we may compute the value of
7' in each case, obtaining the following possibilities:

~
<

&

(nlifr]e [e]d[d][r]7]
2[3]2[0 [1[1[2]1]3
32111 ]3]1]2]4
AEEEINEREE

A3 1|1 [1][3]1]3

Since the fourth Betti number of a 4-dimensional quadric is two, neither
X nor X’ can be isomorphic to Q*, and we may rule out the rows two
and four. In the first case T is an irreducible smooth submanifold of Q3
containing the image by 7’ of a fiber of 7. Since u = 1 by Proposition 4.2
it follows that T is a line, and then it is straightforward that (X, &) is of
type (D1). Finally in the third case X’ = Q% and X is a Mukai manifold
whose degree is multiple of d?> = 9, hence a hyperplane section of K(Gz)
by [19]. This contradicts that H*(X,Z) = Z by the following lemma. O

LEMMA 4.5. — Let X be a hyperplane section of the Pliicker embedding
of K(Gy) into P*3. Then H*(X,Z) = 7.

Proof. — Let F(Gs) be the complete flag associated to the Lie group
Ga, and let m; : F(Gg) — K(Gg) and 7} : F(Gg) — QP be its two P!-
bundle structures (see Section 1.1). The latter is the projectivization of
the Cayley bundle C on Q°, so that 7 corresponds to evaluation of global
sections of the twist C(2); this follows from the base change (2.3) (see also
[20, Theorem 6.5]).

Then, the inverse image Y = m; *(X) may be identified with the blow-
up of Q5 along the smooth zero locus of a general section of C(2) which,
by [26, Theorem 3.7], is isomorphic to P(Tpz). Since H?(P(Tp2),Z) = 72,
equation (4.1) tells us that H*(Y,Z) = Z3, and so H*(X,Z) = 7>. O

Let us finally consider the case in which 7 is finite. The main tool we
will use is the following;:

LEMMA 4.6. — [17, Theorem 2.1] Let ¢ : M — N be a finite morphism
between smooth projective varieties, and let F denote the cokernel of the
natural inclusion Oy — @Oy, which is a vector bundle on N of rank
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deg(p)—1. If FV is ample and dim(N) > deg(p)+1, then ¢* : H*(N,Z) —
H?*(M,Z) is an isomorphism.

Since we know that H?(E,Z) % Z = H*(X,Z), this result applied to B
implies that:

LEMMA 4.7. — Let (X, £) be a pair of type (D). With the same notation
as above, if mp is finite, then either X' = P+l oori=2.

Proof. — Considering the exact sequence
0 — Op(g)(—E) — Op(g) — OE — 0
and applying 7, we obtain:
0 - Ox — (W‘E)*OE — Rlﬂ'* (O]p(g)(—E)) — 0.
Setting F := R'm, (Op(g)(—FE)) and using (4.6), one gets:
poss e (T 1),
This bundle is ample whenever
ST ta-1 T
T =2 2
that is, if ¢ > 2. Note that ¢ is strictly bigger than one, since Proposition 4.2
implies that X is covered by rational curves of — K x-degree equal to i. Since
moreover deg(7|g) = 7' = i’ —2 by equation (4.6), the result follows directly

from Lemma 4.6, and the fact that the only (n + 1)-dimensional manifold
of index bigger than or equal to n + 2 is P**1, O

We already have all the necessary ingredients to conclude the classifica-
tion of Fano bundles of type (D).

PROPOSITION 4.8. — Let (X, &) be a pair of type (D). With the same
notation as above, if m|g is finite, then (X, &) is of type (D2) or (D3).

Proof. — We claim first that X’ = P"+!. Assuming the contrary, we
have i’ < n + 1 and, by Lemma 4.7, i« = 2. In particular, by Lemma 2.9,
¢1 = —1 and we may write E = 7'L+ (7' — 1)H, so that E corresponds to
a nowhere vanishing section of the bundle (S™ £)(7/ —1). Since the rank of
this bundle is 7/ + 1 = ¢/ — 1 < n, its top Chern class must then be equal
to zero. The condition on the top Chern class reads as:

ﬁ((r’—j)_lJ”/ZJrj_l_\/ZJrr’—l):0.

, 2 2
7=0
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This means that (7/ — 2j)vV/A + 7/ — 2 = 0 for some j. Since A < 0 (see
Lemma 2.3), it follows that 7 = 2. In particular £ = 2L + H = —K and
p = 0, so that, applying equation (2.1), we conclude:

arg (\/Z(l + \/K)”) = .

Then v/—A = tan (£ ) which is only possible for n = 2 or 3 (cf. [23]). Since
the first option contradicts 1=2, and we have calculated that i’ =7"+2=4,
the only possibility is that X’ is a 4-dimensional quadric, contradicting
that H4(X',Z) 2 Z.

Let us finally consider the case X’ = P**!. Computing intersection num-
bers it is easy to see that a curve in Y is a fiber of 7 if and only if it is
the strict transform in Y of an n-secant line of 7. Hence through a general
point of P"*! there is exactly one such line, and we may assert, in the lan-
guage of [7], that X is the (irreducible) first order congruence of n-secants
to T, and that T is a codimension two subvariety of P**! with one appar-
ent n-tuple point. Such varieties are classified in [7, Theorem 0.1], and the
only ones which have Picard number one are the twisted cubic vz(P!) C P3
and the isomorphic projection of vy(P?) into P*. In other words, (X, &) is
of type (D2) or (D3). O

5. Rank two Fano bundles with a conic bundle structure

In this section we will study pairs (X, &) of type (C). Note that in this
case we already know that n equals 2, 3 or 5 (cf. Lemma 2.5). We will start
by introducing some notation.

Notation 5.1. — Following [2], the coherent sheaf £ := m, (Oy (—K")) is
locally free of rank three, and the natural map 7*&" — Oy (—K') provides
an embedding of Y into the P2-bundle p’ : P := P(£") — X'. We will denote
with L’ the tautological line bundle of P(£’) and the Chern classes of &’
by ¢y, c¢b and c}; ¢} € H*(X',Z) will be identified with the corresponding
integer; by abuse of notation the pull-back p"* Hx will be denoted again by
H'. Denoting by F the kernel of 7"*E" — Oy (—K’), the normal bundle of
(the natural embedding of) Y into P X x+ Y can be written as Ny px v =
FY(=K"). Since the relative tangent bundle of P x x, Y over P restricted
to Y is —K’, we conclude that:

Ny p=det(FY(-K')) — (-K') = —2K' — 7"* det(&’).
In particular it follows that

(5.1) Y =y, 2L — 4 H'.
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Finally, we will denote by R C Y the closed subset of Y where the rank
of dn’ is not maximal. Abusing of notation we will denote its cohomology
class by R, too.

It is known that n'(R) is a divisor with normal crossing singularities
whose smooth points correspond to conics consisting of two distinct lines
and whose singular points correspond to double lines (cf. [28]). The follow-
ing result shows some well known cohomological properties of R that will
be useful later on.

LEMMA 5.2. — With the same notation as above, the following equali-
ties hold:
(52) R = 7K/7T,*KX/ + CQ(Ty) — W/*CQ(TX/),
(5.3) 12¢\Hyr = 7', (13K + c2(Ty)) + 2K x/,
(5.4) 7R=—n' . (K"?) = —¢|Hx/,
(5.5) mR=(V+2)(w/ —1)+2w+1)) Hx — w7 co(Tx).

Proof. — From the definition of R as the degeneracy locus of dn’ : Ty —
T/, its cohomology class may be computed using Porteous formula, that
provides equation (5.2).

On the other hand, Grothendieck-Riemann-Roch Theorem applied to 7’
and & = 7', Oy (—K') states that

ch(&)td(Tx/) = 7'« (ch(Oy (= K")) td(Ty)) .

The codimension one part of this equality gives us:
3

= 7, G;’K’? + % c2(Y) + §K’7r’*KX/) .
Since 7' (K'nm"™* Kx/) = —2K x/, equation (5.3) follows.

The first equality of (5.4) follows from [5, Proposition 6]: the author
shows that —7/,(K%) = 4K x/ + 7. (R); substituting Ky by n"*(Kx/) + K’
we obtain the desired formula. The second follows from the combination of
(5.2) and (5.3). Finally, (5.5) follows from (5.2) by projection formula and
equation (2.3). O

The next proposition is based on Lemma 2.5. It shows that, as in the
cases (P) and (D), p is equal to one. As a by-product we obtain two useful
numerical identities.
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PROPOSITION 5.3. — With the same notation as in Section 2 let us
further assume that (X, ) is of type (C). Then:

(5.6) w=1,
(5.7) ¢ = 8 cos? [ 2~ ) —4r'
’ 17 n+1 ’
n—1
(5.8) HY, = T H.

21 cos—1 il
n+1

Proof. — We claim first that the following formula holds:
(5.9) K'2K' +HYH™ ! =0.

In fact, we may consider the Chern-Wu relation for £, whose intersection
with H'm~! provides (L"® — ¢, H'L'*)H'™~1 = 0. Using equation (5.1), this
is equivalent to:

2
L/ <(Y +2C€I_H/> . CS_H/Y_‘_CIJ-H/) H/n—l _ 0)

which, since H™*! = 0, may be written as L'Y?H'"~! = 0. Restricting to
Y, we finally obtain equation (5.9).
We will also use the following equalities, that follow from using reduction

modulo (K? — AH?) and the fact that arg (T+ \/Z) = 7/(n+ 1) by
Lemma 2.5:

(5.10)
n—1 2 n—2
H(*K‘FTH)”:Ti’ H2(*K+TH)’”’71:T7.
cosn—1 (%H) cos—3 (nil)
Since
_K'H™ = —vp" K+ (77— 2 H|(-K+tH)"
- 2n+1 Iuy/
Mn—l
we obtain:
n—1
(5.11) gt — W) (—KH").
2n cosn—1 (#)
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Analogously, we get

(5.12)
n—3,n—2
K"?gmt = o7 (20052 <2:1> - V/,U,T) (—KH"™).
n— n— ™ n
2n—1 cogn—1 (Tﬂ)
Using equation (5.9) together with (5.11) and (5.12) we get:
K/QH/nfl 2 9 T

(513) Cll = 2W = ﬁ <4COS (n—|—1> — 2Vl//> .

Denoting by k the integer 4 cos? (#), it follows that 2(k — 4) = 0 mod
. For n = 3,5 this and Lemma 2.9 imply that u4 = 1. For n = 2 we have
necessarily X ~ X’ ~ P2, so that i = 3 and v is even. Hence 1 = 1 in any
case and equation (5.7) follows from (5.13).

Finally, the third claimed equation follows from (5.11) by substituting
=1 and noting that 2H% = (—KH™) and 2H%, = (-K'H'™). O

Note that, by construction, Pic(Y) = Pic(P) = Z(L/, H') and we may
compare the nef cones of Y and P inside of N1(Y)g = N*(P)g:

LEMMA 5.4. — Let (X,€) be a pair of type (C). With the same nota-
tion as above, Nef(P) C Nef(Y) and equality holds unless Y - f > 0. In
particular, if Y - f € {0,—1}, then P is a Fano manifold.

Proof. — The obvious inclusion Nef(P) C Nef(Y) is strict if and only
if there exists an irreducible curve C' C P, not contained in Y, satisfying
C-(L'+7'H'") < 0. By equation (5.1) this is equivalent to 0 < CY < — (¢} +
27")C- H'. In particular, using (5.1) again, together with Proposition 5.3, it
follows that Y- f = —(cju+27") = — (¢} +27) > 0. For the second part, note
that if Nef(P) = Nef(Y), then P is Fano if and only if the anticanonical
degree of f and f’ is negative. Then the result follows by adjunction. [

5.1. Determining the invariants of (X, &)

Using Proposition 5.3, Lemma 2.5, Lemma 2.9 and the fact that 7/ > 0,
we get the following possibilities for the cases n = 2,3:

nfrlifd|Hy [ [7][Hy [a] A || X[X[q[Y-/]

212131 1 301 |0 |—-12|3|P?|P?|-3| 1

g L]2]4] 4 40 1 | =1 =1 2|V} PP |4
2(3[2] 2 [1]3] 2 |[0]—-4]2[Q|Q*|-2| 0
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In the case of fivefolds, we will see that the only possibilities are:

nfrfH 7 Hy (e | A [ X[ X [4]V-F]
4 [ 1|18 | =1 =3 | d | V | K(Ga)|—-2] 0
1136 [ 3] 2 [ —-1|-1/3|d/3|Wy%| Q@ |-6] 0

5

where W3 is a fivefold of degree 36.

In order to see this, it is enough to show that if n = 5, then the only
possible values for (7,7’) are (1,3) and (3,1). Then the rest of invariants
follow by using Proposition 5.3, Lemma 2.5 and Lemma 2.9. The rest of
this section is devoted to the determination of (,7").

LEMMA 5.5. — Let (X, €) be a pair of type (C). With the same notation
as above, if n = 5, then

(7, 7—/) €{(1,3),(1,4),(2,1),(3,1)}.

Proof. — Note first that equation (5.7) tells us that 6/7 = ¢} + 47" € Z,
hence 7 € {1,2,3}. Moreover we know that 1 < 7/ =4’ — 2 hence the the
classification of Fano manifolds of coindex < 3 (cf. [9], [19]) provides a finite
number of possible values of H%,. Comparing this list with equation (5.8),
that for n = 5 says

18
HY = ﬁHi,,

one easily gets that if 7 is equal to 2 or 3, then 7" = 1.

Assume now that 7 = 1, and let us show that in this case X’ is P°
or Q°, that is 7/ > 3. If 7/ = 1, then equations (5.4) and (5.7) provide
m'«R = —c} = —2, a contradiction. If 7 = 2 then X’ is a del Pezzo
fivefold, whose classification allows us to compute the list of possible values
of co(X’). Plugging them into equation (5.5) one gets:

—9Hyx if H} =1
—3Hx if H, =2
—Hx ifH% =3
0 it HS, = 4.
Note that we have not considered the del Pezzo fivefold of degree 5 because
its fourth Betti number equals 2. Since 7, R is effective, we may exclude
the first three cases. In the fourth case, m.R = 0 tells us that 7(R) has
codimension bigger than one. But 7 = 1 implies that £(1) isnefand ¢; = —1
(cf. Lemma 2.9), hence & is uniform on lines, with splitting type (0, —1).
In particular there is a section of P(E) over the general line ¢ contracted

TR =

by 7/, hence meeting R, a contradiction. (|
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LEMMA 5.6. — With the same notation as in Lemma 5.5, (1,7") # (2,1).

Proof. — Assume the contrary. Then by equation (5.8) X and X’ are
two Fano manifolds of Picard number one and coindex three whose degrees
satisfy Hy = 2HY%.,. Using [19], one finds that the only possibility is Hy =
18, H%, = 16, that is X is K(G2) and X' is a hyperplane section of the
Lagrangian Grassmannian LG(3,6).

Moreover ¢; = —1 by equation (5.7), so that one may compute Y - f =
—1 < 0 and Lemma 5.4 implies that 7 extends to an elementary contraction
p: P — Z. Since the exceptional locus of p is Y and all the exceptional
fibers of p are P!’s, it follows that p is the smooth blow-up of Z along X. In
particular, since Pic(P) — Pic(Y) is an isomorphism, the restriction map
Pic(Z) — Pic(X) is an isomorphism, too. As usual, let us denote by Hz the
ample generator of Pic(Z). Since moreover ¢; = 0 and Y)y = —2K'+ H' =
K/24+H = L+ H -by Lemma 2.9 and equations (2.3), (5.1) it follows that
the normal bundle to X in Z is £(1) and, by adjunction, —(Kz) x = 5Hx.
We may then assert that —K; = 5H; and that, in particular, the degree
of Z must be smaller than or equal to 22 (cf. [19]).

Note also that, arguing as in 4.1, since H*(X',Z) = Z by Lefschetz
Theorem, necessarily H*(Z,Z) = Z as well. Let us denote by X7 the pos-
itive generator of H*(Z,7Z), and set X = mYy, H% = dzXz. From the
computations
m
dz
one may conclude dz = 1, so that, in particular 18 = mHZ. But on the
other hand, since X? = ¢(£(1)) = 3H%, we get m*Hy = X?H}
3H3 X = 24, a contradiction.

22> Hy =dyHz¥?, and 18=HyX = —Hy = dymHz%?,

(I

LEMMA 5.7. — With the same notation as in Lemma 5.5, (1,7") # (1,4).

Proof. — If (1,7') = (1,4) then X’ = P° and X is a Fano manifold of
index 3 and degree 36 by equation (5.8). In particular we may identify all
the Chern classes of &' with integers, that we will denote by ¢}, ¢5 and cj
as well.

In order to exclude this case, it is enough to show that ¢ is odd; in
fact, since ¢ = —10 is even —by equation (5.7)—, this implies that £ does
not satisfy Schwarzenberger condition ¢} ¢ = ¢4 (mod 2). Moreover, using
recursively the Chern-Wu relation of £ we get

15 /2 /3 /) /
LPH™ = ¢y —2c1¢5 + c3,

so that it suffices to show that L'°H'? is odd.
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Using that Y = 2L" — ¢| H', we may write:

(5.14) L°H? = Lpagrey 4 C4—I1L’3H’3Y + %LQH"*Y + %L’H’SY

2
(5 15) _ EK/4H/2 _ ﬁKlng3 + iKQHMl _ £K/H/5 =395
' 2 4 8 16 '
Note that, by Lemma 2.5, A = —72 tan? (%) = —1/3, so that we have an

equality K2 = —H?/3, that in terms of K’ and H' reads as K'> —5K'H’ +
TH'? = 0. Then reducing (5.14) modulo this polynomial one finally gets:

395

LPH? = 7K'H’5 = —3095.

5.2. Proof of Theorem 1.1 (C)

In this section we will complete the proof of Theorem 1.1, by showing
that the only pairs (X, ) of type (C), whose possible numerical invariants
have been computed in Section 5.1, are the pairs of types (C1-6). In order to
see this, we will consider the universal family ¢ : U/ — M of curves of Hx-
degree one in X’. By Proposition 5.3, there exists a morphism ¢ : X — M
such that 7 : Y — X is the pull-back of ¢:

’
T

X<"—y "> x

|,

M<~—U—X'

Note that, according to Section 5.1, in each case M is a smooth Fano
manifold of Picard number one. Let us denote by Ha the ample generator
of Pic(M) and by 7o the positive number such that —Kya+7a1q" Haq is
nef and not ample on U, whose computation in each case is straightforward.

L X | M [ X 7]
P? P? 2 | P? |1
P3 G(1,3) R
Q3 P3 2 | Q|2
K(Gs) Q° 3 VY3
Q° | G(1,6)gs | 1 | Wi |1
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In particular, since the pull-back of —Kyap+7mq Hpm to Y is —K+7H,
we may write

(516) w*HM = LM Hx,
T
and conclude the following:

PROPOSITION 5.8. — Let (X, €) be a pair of type (C). With the same
notation as above, if X is P2, Q3 or V7, then (X, &) is of type (C1), (C3),
or (C4), respectively. If X is V2, then (X, €) is of type (C2) or (C6).

Proof. — In the case X = P2, from the previous discussion we get
* Hp2 = 2Hp2, so that 9 is given by a base point free 2-dimensional linear
system on P? of degree two, i.e., (X, &) is of type (C1).

If X is Q® or V2, then ¢* Hpq = Hx is very ample, so 1) consists of a linear
projection of the associated embedding by the complete linear system |H x |.
If X is Q3, this already tells us that v : Q% — P3 is necessarily the two-to-
one morphism given by a projection from any outer point; this construction
provides a pair of type (C3). If X = V2, then ¢ : X C P" — Q° C P must
be the projection from one of the (eight) points that are vertices of the
singular quadrics containing X, and (X, £) is of type (C4).

If X =V}, we have two possibilities for the morphism ¢ : X C P° —
G(1,3) C PP. If v is given by the complete linear system |Hx|, then V}
is the complete intersection of G(1,3) with another quadric, and (X, &) is
of type (C6). If this is not the case, then ¢(X) lies in a linear section of
G(1, 3). Since the degree of these sections is two, necessarily 1 is 2 to 1
onto a 3-dimensional quadric; the center of projection is, again, one of the
(six) points that are vertices of the singular quadrics containing V3. Note
that (X)) is smooth since this X = V2 is not contained in quadrics of rank
smaller than 5 (see [27, Proposition 2.1]). O

Finally we will consider the case X = W3, X’ = Q°. Here our line of
argumentation goes through the analysis of p’ : P — X'. Note that we
have seen in Section 5.1 that in this case Y - f = 0, hence Lemma 5.4 tells
us that P is a Fano manifold and that 7 : Y — X extends to a contraction
p: P — Z. Note also that, since Y - f = 0 implies that the restriction of
Tp to f is nef, p is of fiber type.

PROPOSITION 5.9. — Let (X, €) be a pair of type (C), with X = W.
Then (X, &) is of type (C5).

Proof. — We begin by proving that p : P — Z has at most a finite
number of fibers that are different from reduced P'’s. In fact, since p is
elementary and Y - f = 0 it follows that fibers of p meeting Y must be
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contained in Y. In particular the general fiber of 7 is 1-dimensional and,
since p*Hx/ - f = 1, every fiber of dimension one is irreducible and reduced.
On the other hand, Y - f = 0 tells us that Y is nef on P and that it has
positive intersection number with curves not contracted by p, so that we
may assert that the set J of points in Z whose inverse image have dimension
greater than one is discrete.

Note that, in particular, ¢ : X — M = G(1,6)gs extends to a morphism
Z\ J — M, that we denote by ¥.

We claim that there exists a point 2y € J such that p~!(z0) dominates
X' = @Q°. Assume the contrary; then p'~!(z) N p~1(J) = 0 for the general
point x, and we have a non constant morphism

(Ymop) () 9 (2) ZP? = M

whose image is contained in the family of lines in X’ passing by x, which
is isomorphic to Q3. On the other hand, by equation (5.16) and Proposi-
tion 5.3 we have

(T"¢*"Hpm) - f'=n"Hx - f'=H-f =1,

so (hp o p)l*p,,l(x)HM = Hpo, contradicting the fact that Q* does not
contain planes.

We will study now the splitting type of £ on lines in X’. Note first
that, since 7/ = 3 and ¢} = —6, (see Section 5.1), £'(3) is a nef (and not
ample) bundle of degree 3. Given any line £ € X’ the previous claim tells
us that P(£’(3)|,) meets Fyy := p~'(z0) along a curve that is contracted by
p, i.e., that £'(3)), has a trivial summand. If £ € ¥(X), there is a section
of P(£'(3)) over £ contained in Y and contracted by p. Since Fy N'Y = 0,
this section is different from the one contained in P(£'(3)) N Fy and, as
c1(€'(3)) = 3, it follows that £'(3), = OF? @ O,(3). Conversely if £ is a line
for which £’(3) has splitting (0,0, 3), then Y meets the locus of minimal
sections of P(E'(3)|,), hence £ € ¥(X). Furthermore, since £'(3) is nef, the
splitting type of £'(3) on a line of M \ (X) must be (0,1,2).

Now we will prove that ¢(X) C M is isomorphic to the natural embed-
ding of K(G2) into M = G(1,6)qs. Let Fj be an irreducible component of
Fy dominating Q5. By the previous arguments F}) meets the general p'~1(z)
precisely in one point. Since Q7 is normal, F}, is a section of P(£’), given by
a quotient £'(3) — Ogs. Denote by F its kernel. By [4, Proposition 1.2] F
is a nef rank two bundle on Q°, with first Chern class equal to 3. Then F
is a Fano bundle, of type (P) by Lemma 2.9 and so, by Proposition 2.8, it
is a twist of a Cayley bundle C on Q° with Ogs(2). Since H'(Q%,C(2)) =0
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(cf. [26, Theorem 3.1]), it follows that
(5.17) E'(3) =2 Ogs ®C(2),

and 1 (X) may be described as the set of jumping lines of C(2), which is
K(Go).

Finally, the isomorphism (5.17) tells us that Z is a cone with vertex a
point over ¥(X) = K(Gs), and that p*Hz = L' + 3H', where Hy is the
extension to Z of the line bundle (Haq)jy(x)- Then, since Y is linearly
equivalent to 2L' + 6H' = 2p*H z, it follows that X is a quadric section of
Z, i.e., that (X, &) is of type (C5). O

Appendix A. Fano bundles and congruences of lines

Congruences of lines have been an object of study by algebraic geometers
since the nineteeth century. In this appendix we will consider them in re-
lation to our work on rank two vector bundles, since some of them provide
interesting examples of Fano bundles (see Lemma A.3 below). One of their
most remarkable properties is that, under certain hypotheses, their vari-
eties of minimal rational tangents (VMRT for short) might be linear and
reducible (Proposition A.5). We present in Proposition A.8 an example of
this particular type of congruences, giving a negative answer to a problem
posed by Hwang and Mok on the irreducibility and non linearity of the
VMRT.

DEFINITION A.1. — A subvariety X C G(1,m) of dimension m — 1
is called a congruence of lines in P™. Denoting by Y the projectivization
]P’(Q|X) of the restriction to X of the universal quotient bundle Q and by
7w and 7' the corresponding projections w: Y — X and ' : Y — P™, we
define the order of X as the number of lines parametrized by X passing
through a general point of P™, which is zero if ' is of fiber type or equal to
the degree of ™’ otherwise. A point y € P™ is called fundamental if the fiber
7'~Y(y) has dimension greater than m — dim(7’(Y’)), and the fundamental
locus Z will be the set of the fundamental points. Finally, we will say that
a congruence has linear fibers if the images of the fibers of @' are linear
spaces in G(1,m).

Notation A.2. — Throughout this appendix, X will denote a smooth
congruence of lines of order one in P™ satisfying Pic(X) = Z. With the
same notation as above, we will denote by Z C P its fundamental locus,
and by E the exceptional locus of 7' : Y = P(Q|x) — P™, i.e., the inverse
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image of Z. Since 7’ is birational between smooth varieties, then E is a
divisor. As usual, we denote by L the divisor associated to the tautological
divisor of P(Q|x) and by H the pull-back to Y of the ample generator of
Pic(X).

The next result shows that congruences satisfying these assumptions pro-
vide examples of Fano bundles.

LEMMA A.3. — Let X be a congruence of lines satisfying A.2. Then
X and Y are Fano manifolds. If moreover X has linear fibers, then X is
covered by lines and, in particular, Pic(X) is generated by the restriction
to X of the Pliicker line bundle in G(1,m).

Proof. — We will prove that —Ky is positive on fibers of 7/, since then
Y will be a Fano manifold by the Kleiman criterion, and so also X will be
Fano by [31, Theorem 1.6].

The intersection of the exceptional divisor E with the strict transform ¢

of a line in P is zero. Then since the class of ¢ lies in the interior of NE(Y)
(it is not contracted neither by 7 nor by 7’) and the class of F is of the
form oL+ 8H, a > 0, it follows that E is negative on curves contracted by

' and a > 0. Moreover —Ky = —7"* Kpm — cE with ¢ > 0, and the claim
follows.

To show the last assertion it is enough to note that F dominates X, and
this holds because a > 0. O

The next result describes the second contraction of the universal family
of lines on a congruence satisfying A.2.

LEMMA A.4. — Let X be a congruence of lines satisfying A.2. Then its
fundamental locus Z is irreducible and ' : Y — P™ is the normalization
of the blow-up of P™ along Z.

Proof. — As we have seen in Lemma A.3, 7’ is a Fano-Mori contraction
with exceptional locus E. Moreover since Pic(X) = Z, «n’ is elementary,
hence E and its image Z C P™ (which is the fundamental locus of X) are
irreducible. By the universal property of the blow-up b : B — P™ of P™
along Z, m' factorizes through a surjective morphism ¢ : Y — B, that is
finite because the Picard number of B is not one. Since ¢ is generically one
to one, it factors via an isomorphism from Y to the normalization of B. O

Given a smooth variety X and a family of rational curves parametrized
by M such that M, is proper for the general point x € X, the variety of
minimal rational tangents (VMRT for short) of X at 2 with respect to M
is the closure of the set of points in P(2x ;) corresponding to the tangent
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lines of the general curves of the family M passing by x. We refer to [12]
for a complete account on the VMRT. The next result shows that, at a
general point, the VMRT of a congruence of Picard number one, order one
and with linear fibers is a disjoint union of linear spaces.

ProPOSITION A.5. — Let X be a congruence of lines satisfying A.2
and having linear fibers. Let z := dim(Z) and set o := E - f € Z, where
f denotes the cohomology class of a fiber of w : Y — X. Then oo = (m —
1)/(m —z—1), X has index m — z and the VMRT of X at a general point
is the disjoint union of « linear spaces of dimension m — z — 2.

Proof. — Denote by f’ the class of a line in a fiber of #/, which, by
hypothesis, is a minimal section of Y over a line in X.

By Lemma A .4, outside of the set of singular points of Z, 7’ is the smooth
blow-up of Z, hence E - f' = -1 and Ky = 7"*Kpm + (m — 2z —1)E. In
fact Ky — 7"* Kpm is proportional to F, and their ratio may be computed
outside of the singular points of Z. Since L - f' =0, H- f' =1, L- f =1,
H - f =0, we can write
(A1) E=alL—-H
from which it follows that o = (Ky - f+m+1)/(m—2z—1) = (m—1)/(m—
z—1)and ix =m — z.

To finish the proof we observe that, given any line £ in X, 7’ contracts
the minimal section of P(Q|,) over ¢, hence, given a general point v € X
the lines passing through x are contained in the « linear subspaces passing

through = which are images of the «a fibers of 7/ meeting 7~!(x). This
spaces have dimension m — z — 1 by Lemma A.4. (|

The next proposition shows that the fundamental locus of a congruence
with linear fibers satisfying A.2 cannot be a complete intersection in P™.

PrOPOSITION A.6. — Let X be as in Proposition A.5, and assume
z > 0. Then deg(Z) < a™~% and, in particular, Z cannot be a complete
intersection.

Proof. — For k > z we have in Y that L* EH™~#~1 = 0, therefore, using
equation (A.1), we get

(A.2) Lka™=F = LA H™ R for every k > 2.
On the other hand the degree of Z is given by

deg(Z) _ LzEHm—z—l — aLz-i—le—z—l _ Lsz—z’
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hence, since L*H™ % > 0 (because z > 0) and L™ = 1, using recursively
equation (A.2) we get

deg(Z) < aL*TtH™ *71 = o™=,

For the second part, note that if Z were a complete intersection, it would
be contained in a hypersurface of degree smaller than «. This contradicts
the fact that by a general point of P there passes an a-secant line of Z. [

Let us concentrate in the case Z smooth in order to use the examples
appearing in the different classifications of smooth varieties with one ap-
parent multiple point (see for instance [7] and the references therein). If
moreover z = dim Z > 2m/3, m > 7, then Z is conjectured to be a com-
plete intersection. Hence the natural range to look for possible fundamental
loci is z < 2m/3, where we have the following:

COROLLARY A.7. — With the same notation as above, assume that Z
is smooth and that 0 < z < 2m/3. Then the possible values of («, z, m)
are:

(3,2k,3k + 1) with k>0, (4,3,5), (4,6,9) and (5,4,6).

Proof. — Let us first show that a > 2. If @ = 2 then, by Proposition A.5,
X is a Fano manifold of Picard number one, covered by linear spaces of
dimension m — z — 1 = dim X/2. This implies that X is a projective space,
a quadric or a Grassmannian of lines by [29, Main Theorem], [24, Corol-
lary 5.3]. On the other hand, by Proposition A.5 again, the index of X is
m — z = dim X/2 + 1, then the only possibility is X = Q2, whose Picard
number is not one. Now a simple computation shows that the only possible
cases are (o, z,m) = (3,2k,3k + 1), (4,3,5), (4,6,9), (5,4,6). O

We will finally discuss the existence of examples of congruences satisfying
the properties that we have imposed in this appendix, paying attention to
their VMRT’s.

Examples of type (3,2k,3k + 1) appear by considering congruences of
trisecant lines of smooth projections of Severi varieties. Let us recall that
a Severi variety is a smooth 2k-dimensional projective variety S C P3++2
which can be isomorphically projected to P3*+1. They have been classified
by Zak (cf. [34, Chapter 4]), who proved, in particular, that the only pos-
sible values of k are 1,2,4 and 8. The last part of this appendix is devoted

to showing the following
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PROPOSITION A.8. — Let X C G(1,3k+1) be the closure of the family
of trisecant lines to a general isomorphic projection Z C P3*+1 of a 2k-
dimensional Severi variety S C P3**2, Then X is a smooth congruence of
order one with linear fibers.

Remark A.9. — 1In particular Proposition A.5 tells us that the VMRT
at a general point of X consists of the disjoint union of three linear spaces
of dimension k — 1. Hence this gives (for k = 2,4, 8) a negative answer to
the problems of irreducibility (cf. [12, Question 2]) and non linearity ([15,
Conjecture, p. 52]) of the VMRT of a Fano manifold of Picard number
one, which are related with other open problems on Fano manifolds (see
for instance [14]). Note also that Hwang has shown that the number of
irreducible components of the VMRT at a general point is at least three
(cf. [13, Proposition 2]).

In [16] the authors showed, using techniques of Representation Theory
and Jordan Algebras, that the congruences of Proposition A.8 are in fact
linear. We will show how A.8 may be obtained by using the following result
due to Ein and Shepherd-Barron (see [8, Theorem 2.6]):

LEMMA A.10. — Let S C P32 be a 2k-dimensional Severi variety.
The linear system of quadrics containing S provides an involutive Cremona
transformation v : P3k+2 — P3k+2 fitting in a diagram:

where o and ¢’ denote, respectively, the blow-up of P3*+2 along S and the
blow-up of P3**+2 along S' = S.

Proof of Proposition A.8. — As usual we denote by 7 : Y — X the
universal family of lines over X, and by 7’ the evaluation morphism to
P3#+1 Let O be the center of the projection from P3¥+2 to P3**1 which is
a general point in P3*+2,

We begin by showing that X is a congruence of order one. In fact we
will show that by every P € P3¥+1\ Z there passes a unique trisecant line
to Z. This is equivalent to prove that there is a unique plane A in P3%+2
containing the line (O, P) which is trisecant to S. Since, by construction,
the line (O, P) does not meet S, then the strict transform of (O, P) via ¢
is a conic C'. Since 1) is involutive, C' must meet S’ in three points, and the
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strict transform via v of the plane A’ containing this conic is a plane A,
containing (O, P), which is trisecant to S.

Set E := 7/~Y(Z). We will prove that w(7'~1(P)) is a k-dimensional
linear space for all P € Z. From this it follows that £ C Y is an irreducible
divisor and, by the universal property of the blowing up, the morphism
7’ factors via a finite morphism from Y to the blow up ]I~D%k+1. Since we
have already seen that 7’ is birational, then we may assert that Y is in fact
isomorphic to @%kﬂ. In particular Y is smooth of Picard number two, and
we may conclude that X is smooth of Picard number one.

Let P € Z be any point and consider the line (O, P). The strict transform
of (O, P) by v is a line meeting the exceptional locus of ¢’ in one point,
that we denote by Rp. Set Qp := o(Rp), denote by Xp the (k + 1)-linear
space o(0’~1(o'(Rp))) and by Qp the family of lines in ¥p passing by
Qp. Since, by construction, O ¢ Y p, for every line ¢ € Qp the linear span
(O, £) is a plane containing (O, P). Since the line ¢ gets contracted by 1) it
follows that ¢ meets S in a subscheme of length at least two, and the plane
(O, ) is trisecant. In particular, for every P € Z we may identify Qp with
a k-dimensional linear subspace contained in X, whose union is a closed
subset that we denote by Q C X.

Conversely, given a general trisecant plane II containing a line (O, P),
with SNIT = {P, P', P"}, since 91 is the standard Cremona trasformation
with base points {P, P’, P"}, then the point Qp coincides with (O, P) N
(P’,P") and (P, P") € Qp. This shows that {2 contains a dense open set
of X, so that necessarily 2} = X.

Finally, this may only occur if the obvious inclusion Qp C 7/~1(P) is an
equality for all P. In fact, take an element r in 7#'~1(P). It lies in X = ,
so it belongs to Qps for some P’ € Z. The plane (O,r) contains (O, P),
by hypothesis, and it contains a line ¢ contained in ¥ ps. But the strict
transform of (O, P) in B meets the exceptional divisor of ¢’ in one point
Rp, whose image Q) p via o is necessarily /N OP. This shows that  belongs
to Qp. O

For the types (4,3,5) and (5,4,6) the VMRT at the general point is
a finite set of points; an example of type (4,3,5) appears by considering
the congruence of 4-secant lines to a Palatini threefold in P5 (see [7, Theo-
rem 0.1]), but there are not known examples of type (5,4, 6) with Z smooth.
As for (4,6,9), an anonymous referee informed us that C. Peskine and F.
Zak have provided and example. In fact they have shown that the linear
congruence of lines appearing as the center of a general complex of planes
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in P? provides a variety of this type. Its fundamental locus is known as the
Peskine variety.
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