i

S %
2oy ANNALES

DE

L INSTITUT FOURIER

Pramod N. ACHAR & Simon RICHE

Koszul duality and semisimplicity of Frobenius
Tome 63, n°4 (2013), p. 1511-1612.

<http://aif.cedram.org/item?id=AIF_2013__63_4_1511_0>

© Association des Annales de 1’institut Fourier, 2013, tous droits
réserves.

L’acces aux articles de la revue « Annales de I’institut Fourier »
(http://aif.cedram.org/), implique 1’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie de cet article sous quelque forme que
ce soit pour tout usage autre que 1’utilisation a fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/


http://aif.cedram.org/item?id=AIF_2013__63_4_1511_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

Ann. Inst. Fourier, Grenoble
63, 4 (2013) 1511-1612

KOSZUL DUALITY AND SEMISIMPLICITY
OF FROBENIUS

by Pramod N. ACHAR & Simon RICHE

ABSTRACT. — A fundamental result of Beilinson—-Ginzburg—Soergel states that
on flag varieties and related spaces, a certain modified version of the category
of ¢-adic perverse sheaves exhibits a phenomenon known as Koszul duality. The
modification essentially consists of discarding objects whose stalks carry a non-
semisimple action of Frobenius. In this paper, we prove that a number of common
sheaf functors (various pull-backs and push-forwards) induce corresponding func-
tors on the modified category or its triangulated analogue. In particular, we show
that these functors preserve semisimplicity of the Frobenius action.

RESUME. — D’aprés un résultat fondamental de Beilinson—Ginzburg—Soergel,
sur les variétés de drapeaux et certains autres espaces, une version modifiée de la
catégorie des faisceaux pervers f-adiques posseéde des propriétés liées a la dualité de
Koszul. Cette catégorie modifiée est obtenue en éliminant les objets ou ’action du
Frobenius sur les fibres n’est pas semi-simple. Dans cet article, nous démontrons
que de nombreuses opérations faisceautiques s’étendent a cette catégorie modifiée
et sa version triangulée. En particulier, ces foncteurs préservent la semi-simplicité
de l'action du Frobenius.

1. Introduction

Let X be a variety over a finite field F,. In Deligne’s work on the Weil
conjectures [16, 17], a central role is played by the category of “mixed
constructible complexes of Q,-sheaves” on X, denoted DWel(X) in the
present paper. (Henceforth, we will avoid calling this category “mixed,” as
that conflicts with the terminology of [9].) In order to belong to DWVeill(X),
a complex F must have the property that the eigenvalues of the Frobenius
action on stalks of F at Fyn-points of X are of a certain form. One of the
main results of Deligne’s work states that this constraint on eigenvalues of
Frobenius is preserved by all the usual sheaf operations [17, §6.1].

Keywords: Koszul duality; perverse sheaves; flag variety.
Math. classification: 16537, 14F05, 14M15.



1512 Pramod N. ACHAR & Simon RICHE

However, since the work of Beilinson—Ginzburg—Soergel [9], it has been
known that DWeil(X) and its abelian subcategory PWVell(X) of perverse
sheaves are “too large” for certain applications in representation theory.
For instance, when X is the flag variety of a reductive algebraic group G,
the category PV}E“(X ) of perverse sheaves smooth along the stratification
7 by Bruhat cells is very close to being a Koszul category (see Section 2.4).
To achieve Koszulity, one must replace it by the full subcategory PZ*(X)
consisting of objects on which the Frobenius action is semisimple and has
integral eigenvalues. A similar phenomenon occurs at the level of the de-
rived category in work of Arkhipov—Bezrukavnikov—Ginzburg [4]; see the
remarks at the end of the introduction.

For a variety X with a fixed stratification .%, we may pose two general
questions:

(Q1) Is there a triangulated category D'Z*(X) C DWe!(X) analogous to
PZ*(X) on whose objects the Frobenius action is semisimple and
has integral eigenvalues?

2) Following Deligne, do the usual sheaf operations preserve these
g g
stronger conditions on the action of Frobenius?

These questions (along with (Q3) below) are closely related to the “stan-
dard conjectures on algebraic cycles” and to the Tate conjecture; see [25,
§2.9] or [21, Proposition 1.15]. The aim of this paper is to supply pos-
itive answers in certain very special cases. In fact, the flag variety is the
archetype for the cases we are able to treat; the Koszul duality phenomenon
is an essential ingredient in our proofs.

Let us explain what form the answers to the questions above might take,
starting with (Q1). It is fairly easy to write down (see Section 6.4) a con-
dition on objects that generalizes the definition of PZ*(X). However, the
resulting full subcategory, which we denote D'Z*¢(X) and call the misci-
ble category, has a severe disadvantage: it is not a triangulated category.
The problem lies in the word “full”: D'Z*¢(X) contains morphisms with no
cone, so to give a satisfactory answer to (Q1), we must discard some mor-
phisms from that category so that what remains is a triangulated category.
Equivalently, we could answer (Q1) by constructing a triangulated category
DUX(X) together with a triangulated functor ¢ : DEX(X) — DY(X)
such that the following conditions hold:

(D1) ¢ is faithful (but not full in general).

(D2) The essential image of ¢ is D'ZS¢(X).

One additional desideratum we might impose on D'Z*(X) and ¢ is as fol-
lows:
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KOSZUL DUALITY AND SEMISIMPLICITY OF FROBENIUS 1513

(D3) DZ*(X) admits a ¢-structure whose heart can be identified with
PZ*(X), and ¢ is t-exact and induces a fully faithful functor ¢ :
PZX(X) — PYe(X).

Turning now to (Q2), we say that a functor F : DY (X) — DYel(Y)
is miscible if F(D'$°(X)) C D'%*¢(Y). A positive answer to (Q2) consists
of showing that the usual sheaf operations are miscible. However, the re-
stricted functor F : D'B¢(X) — D'2*¢(Y) is not one that can be studied
with the usual tools of homological algebra, because the categories involved
are not triangulated.

In retrospect, we see that (Q2) was too coarse a question, because it was
only about preserving a certain class of objects. Instead, we really ought
to ask:

(Q3) Do the usual sheaf operations preserve the class of morphisms in
the image of ¢ : D'Z*(X) — DL(X)?
Let us make this more precise. A miscible functor F : DW(X) —

DY(Y) is said to be genuine if there is a functor of triangulated categories
F : DZX(X) — DZ*(Y) making the diagram

D(X) —= DY*(X)

‘| |+

Dfrglix (Y) 4L> Df;isc (Y)

commute. (Q3) asks us to show that the usual sheaf operations are genuine.
The definition of genuineness suggests that we should go back and add one
more desideratum to our list:

(D4) For any genuine functor F : DYe(X) — DYWeil(Y), the induced
functor F' : D'Z¥(X) — DB*(Y) is unique up to isomorphism.

In this paper, we consider a very special class of stratifications, called
affable stratifications. For varieties with an affable stratification, we explain
how to construct the category D'Z*(X) and the functor ¢ : DE*(X) —
DWeil(X) satisfying desiderata (D1)—(D4), answering (Q1). We prove that
a number of common functors (proper push-forwards, tensor products, etc.)
are at least miscible, answering (Q2). For some of these (notably, locally
closed inclusions, and push-forward along a smooth proper map), we further
prove that they are genuine, answering (Q3).

The paper is divided into three parts. Part 1 introduces various no-
tions and results in abstract homological algebra that are needed later. In
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1514 Pramod N. ACHAR & Simon RICHE

particular, Section 3 introduces a class of additive categories, called infin-
itesimal extensions, that are “almost triangulated.” Section 4 introduces
Orlov categories, which are a useful tool for constructing morphisms be-
tween functors of triangulated categories. Orlov categories also turn out
to be closely related to Koszul duality, of which we give a self-contained
account in Section 5.

Part 2 is the core of the paper. It contains the definition of affable strati-
fication, and the definition of the category D2 (X). (This definition relies
on the fact that D'Z5¢(X) is an infinitesimal extension.) The main results,
which assert the miscibility or genuineness of various functors, appear in
Section 9. Their proofs rely heavily on the theory of Orlov categories.

Finally, Part 3 gives two brief applications of these results to repre-
sentation theory, both related to the work of Arkhipov—Bezrukavnikov—
Ginzburg [4] mentioned earlier. That paper deals with the affine Grass-
mannian Gr for a semisimple algebraic group, stratified by orbits of an
Iwahori subgroup. Realizing that Dvyye“(Gr) was the wrong category for
their purposes, the authors of that paper substituted the derived cat-
egory DPPZX(Gr). It turns out that in this case, the natural functor
DPPu(Gr)  —  DYel(Gr) is faithful and induces an equivalence
DPPBX(Gr) = DWX(Gr). Using the sheaf operations on this category
that are made available by the results of Part 2, we prove two small results
about Andersen—Jantzen sheaves and about Wakimoto sheaves.

In a subsequent paper [1], the authors will use the theory developed here
to show that a derived version of the geometric Satake equivalence coming
from [4] is compatible with restriction to a Levi subgroup.
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Part 1. Homological algebra
2. Mixed and Koszul categories

We begin by collecting a number of definitions related to abelian and
triangulated categories. Fix a field k. In this section, and throughout Part 1,
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all additive categories will be k-linear, and all functors between additive
categories will be assumed to be additive and k-linear as well.

In any additive category <, we write Ind(?) for the set of isomorphism
classes of indecomposable objects in <7, or, by an abuse of notation, for a
chosen set of representative objects of those isomorphism classes. Similarly,
in an abelian category .#, we write Irr(.#) for the set of isomorphism
classes of simple objects, or for a chosen set of representatives of those
isomorphism classes. For any L € Irr(.#), the ring End(L) is a division
ring over k. We say that .# is split if

End(L) 2k for all L € Irr(.4).

Finally, we say that .# is a finite-length abelian category if it is both
noetherian and artinian.

2.1. Mixed categories

Let .# be a finite-length abelian category. As in [9], a mixed structure
on . is a function wt : Irr(.#) — Z such that

Ext'(S,8') =0  if S,5" are simple objects with wt(S") > wt(S).

(2.1)

This function is called a weight function. The set of weights of an object X

is simply the set of values of wt evaluated on the composition factors of X.

An object is said to be pure if all its simple composition factors have the

same weight. It is a consequence of (2.1) that pure objects are automatically

semisimple. Every object X is endowed with a canonical weight filtration,

denoted

WeX,

such that Wj X is the unique maximal subobject of X with weights < k.

2.2. Mixed triangulated categories

Suppose that we have a triangulated category Z equipped with a boun-
ded t-structure whose heart is .#. A mixed structure on 2 is simply a
mixed structure on .# that satisfies the following stronger version of (2.1):

HomY,(S,S') =0 if S,8" € .4 are simple and wt(S’) > wt(S) — .
(2.2)

TOME 63 (2013), FASCICULE 4
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Here, as usual, we write Hom'(S,5") for Hom(S, S’[i]). When i = 1, this
condition is equivalent to (2.1), by [7, Remarque 3.1.17(ii)]. An object M €
2 is said to have weights < w (resp. have weights > w, be pure of weight
w) if each cohomology object H* (M) € .# has weights < w + ¢ (resp. has
weights > w + 4, is pure of weight w + 7).

In the special case where 2 = DP(.#), condition (2.1) implies (2.2),
because any morphism in Homi(S, S’) is a composition of morphisms in
various Hom!-groups. In other words, the bounded derived category of a
mixed abelian category automatically has a mixed structure. The following
basic facts are well-known.

LEMMA 2.1. — Let .# be the heart of a t-structure on %, and suppose
9 has a mixed structure.

(1) If X, Y € @ are objects such that X has weights < w and Y has
weights > w, then Hom(X,Y) = 0.

(2) Let X be an object of 9 with weights > a and < b. For any w € Z,
there is a distinguished triangle

X 55X 5 X"

where X' has weights > a and < w, and X" has weights > w
and < b.

(3) Every pure object X € P is semisimple. That is, if X is pure of
weight w, then X = @, H(X)[—i], where each H(X) € .4 is a
pure (and therefore semisimple) object of weight w + 1. O

Note that neither the distinguished triangle in part (2) nor the direct-sum
decomposition in part (3) is canonical in general.

2.3. Tate twists; mixed and graded versions

Suppose now that .# is a mixed abelian category endowed with an
autoequivalence, denoted M — M(1), such that for a simple object S,
wt(S(1)) = wt(S) + 1. Suppose also that we have an exact functor ( :
M — A" to another finite-length abelian category .#’, together with an
isomorphism ¢ : ¢ o (1) — (. Assume that every simple object of .#’ lies
in the essential image of . Then .# is called a mixed version of .#" if for
all objects M, N € .#, ¢ induces an isomorphism

@D Hom. 4 (M, N (n)) = Hom 4 ((M,CN). (2.3)
nez

ANNALES DE L’INSTITUT FOURIER
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There are two natural ways to generalize this notion to the setting of
triangulated categories. Suppose that Z is a triangulated category equipped
with an autoequivalence (1) : 2 — 2, a functor ¢ : ¥ — 2’ whose essential
image generates 2’ as a triangulated category, and an isomorphism ¢ : ¢ o
(1) =5 (. Then 2 is called a graded version of &' if the isomorphism (2.3)
holds for all objects M, N € 2.

Suppose, in addition, that 2 and 92’ are equipped with t-structures such
that 2 is a mixed triangulated category, and such that the functors (1)
and ¢ are t-exact. In this case, 2 is said to be a mixed version of 9.

2.4. Koszul categories

Let .# be a mixed abelian category. . is said to be Koszul if the fol-
lowing stronger version of (2.1) and (2.2) holds:

Ext’(S,8) =0  if S,9" are simple objects with wt(S’) # wt(S) — i.
(2.4)
In contrast with the setting of (2.1) and (2.2), the ¢ = 1 case of (2.4) does
not imply the general condition. On the other hand, this equation implies
the following stronger version of Lemma 2.1(1).

LEMMA 2.2. — Let .# be a Koszul category, and let X,Y € D"(.#). If
X has weights < w and Y has weights > w, then

Hom(X,Y) = Hom(Y, X) = 0. O

COROLLARY 2.3. — Let .# be a Koszul category. If X € .# has no
composition factors of weight w, then X 2 W,, 1 X & X/W,,_1X.

Proof. — Since X/W,,_1X has weights > w + 1 and (W,,—1X)[1] has
weights < w, we have

Ext'(X/Wy 1 X, Wy _1X) = Hom(X /Wy 1 X, (W, _1X)[1]) =0

by the previous lemma, so the short exact sequence 0 — W, _1 X — X —
X/Wy-1X — 0 splits. O

A key feature of Koszul categories is that one can often construct a new
abelian category .#%, called the Koszul dual of .#, such that there is a
canonical equivalence of derived categories of .# and .#%. (.# and .#°*
need not be equivalent abelian categories.) A very general form of this
equivalence, in which .# and .#"% are both categories of finitely-generated
modules over Koszul rings, is developed in [9].

TOME 63 (2013), FASCICULE 4



1518 Pramod N. ACHAR & Simon RICHE

Assuming that .# has enough projectives, the category .#" can be de-
scribed as the full subcategory of D®(.#) given by

for any indecomposable projective P € .#,
M* = { X € DP(#) | we have Hom(X, P[k]) = 0 if k& < wt(P/rad P)
and Hom(P[k],X) =0 if k > wt(P/rad P)
(2.5)
The following theorem is one way to formulate Koszul duality in this set-
ting.

THEOREM 2.4 (Koszul Duality). — Let .# be a Koszul category with
enough projectives, and assume that every object has finite projective di-
mension. Then .#°* is the heart of a t-structure on DP(.#), and the real-
ization functor (see Section 2.5)

real : D®(.#*%) — DP()

is an equivalence of categories. Moreover, .#" is itself a Koszul category,
with

Irr(#*) = {P[—wt(P/rad P)] | P € .4 an indecomposable projective}
and with weight function wt® : Trr(.#%) — 7 given by
wt?(P[— wt(P/rad P)]) = wt(P/rad P).

Finally, .#" has enough injectives, and every object has finite injective
dimension. The indecomposable injectives are of the form {L[—wt L] | L €

Irv( )}

There is, of course, an analogous construction of a Koszul dual category
M — " for Koszul categories with enough injectives in which every
object has finite injective dimension. Starting from a category .# satisfying
the hypotheses of Theorem 2.4, one finds that the composition

DP(5(a%)) =5 DP(a*) = D ()

induces an equivalence of abelian categories ?(.#Z%) — .#. In this way,
passage to the Koszul dual is an involution.

The idea of Koszul duality is quite well-known. However, the specific
version stated above cannot readily be extracted from the statements in [9],
because that paper imposes additional assumptions on . : specifically, .#
is assumed to be endowed with a Tate twist, and to have only finitely many
isomorphism classes of simple objects up to Tate twist. We will therefore
give a self-contained proof in Section 5, which also contains a more general
statement with weaker assumptions on ..

ANNALES DE L’INSTITUT FOURIER
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2.5. Realization functors for homotopy categories

Let 2 be a triangulated category equipped with a t-structure (2<% 229),
and let € = 259N 220 be its heart. One can ask for a t-exact functor of
triangulated categories

D*(€) — 2
that restricts to the identity functor on . Such a functor is called a real-
ization functor. One well-known construction of such a functor, adequate
for Theorem 2.4 above, is given in [7, §3.1]. That construction assumes that
2 is a full triangulated subcategory of the derived category of an abelian
category. Unfortunately, many of the triangulated categories we encounter
in this paper are not of that form.

In [6], Beilinson has explained how to axiomatize the notion of a “filtered
derived category” and thereby generalize the construction of [7, §3.1] to
other triangulated categories. In particular, he treats the case where & is
the category DWell(X) of mixed Weil complexes of Q-sheaves on a variety
over a finite field, cf. Section 6.

Another case that is important in this paper is that in which & is the
bounded homotopy category KP(«7) of an additive category . In this
section, we explain how to apply the formalism of [6] to this setting.

LEMMA 2.5. — Suppose we have three objects X = (X°®,dx), Y =
(Y*,dy), and Z = (Z°,dz) in K(</), and two chain maps f = (f°*) :
X =Y and g = (¢°*) : Y — Z. Assume that for each i € Z, we have an
identification Y* = X* @ Z' such that the maps

X' 5 X9z and ¢ :X'9Z' 27
are the inclusion and projection maps, respectively for X* and Z* as direct
summands of Y. Then there is a chain map ¢ : Z — X[1] such that

x Ly % z-% x)
is a distinguished triangle in K" (7).

Proof. — Using the identification Y* = X* @ Z%, we can write the differ-
ential d} : Y* — Y'! as a matrix

i Si tl
F i A I
Note that d% o f? = [:Z ]. On the other hand, fi*lodi = [d(%( ]. We conclude

that s° = d% and u' = 0. Similar reasoning shows that v® = di . Define
§ 1 Z — X[1] by setting §* = t' : Z — X! = (X[1])%. It follows from

TOME 63 (2013), FASCICULE 4



1520 Pramod N. ACHAR & Simon RICHE

the fact that dif' o di, = 0 that &* is, in fact, a chain map. Moreover,
it is now evident from the formula for dy above that Y is the cocone of
6:7Z— X[1]. |
Let F.oZ denote the additive category whose objects are sequences
XS X S Xy &
of objects in &7, satisfying the following conditions:

(1) Each e; : X; — X;_1 is an inclusion of a direct summand of X;_;.
(2) There are integers a < b such that:
(a) X; =X, and ¢; =id for all i < a.
(b) X; =0 for all i > b.
If X = (X,,ef) and Y = (Y,,e)) are two objects of F., a morphism
f: X = Y is simply a collection of maps (f; : X; — Y;);ez such that
fic1oeX = ef o f; for all i. Intuitively, we may think of F.&/ as the
category of “objects in &/ equipped with finite decreasing filtrations.”
Let s : F.o/ — F.o/ be the functor which sends an object X = (X,,e)

to
s(X) = (S(X).,ei(x)) where s(X); = X,—1 and ef(X) =eX |,
and likewise for morphisms. Note that we have a canonical morphism
a: X — s(X) given by a; =¢;: X; — s(X);.

For any n € Z, we can form the following full additive subcategories of

Fo
Fo(<n)={X =(Xe,ps) | X; =0 for i > n},
Fof(Zn)={X = (Xe,pe) | X; = X, and e; = id for i < n}.

Lastly, consider the functor j : &/ — F.o/ that sends an object X to the
sequence given by

J(X)i =

X ifi <0, () id ifi <0,
e =
0 ifi>0, ! 0 ifi>0,

and which sends a morphism f : X — Y in & to the sequence (f;) with
fi=ffori<0and f; =0 for i > 0.

LEMMA 2.6. — (1) Given objects X e Fo/(> 1) and Y € Fe/(<0),
we have Hom(X,Y) = 0. Moreover, « induces isomorphisms

Hom(Y, X) = Hom(Y, s~ X) = Hom(sY, X). (2.6)

(2) Every object X € Fof/ admits a direct-sum decomposition X
A® B with Ae Fo/(> 1) and B € Fo/(<0).

ANNALES DE L’INSTITUT FOURIER
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(3) The functor j induces an equivalence of additive categories j :
o =5 Fad(<0)NFl (> 0).

Proof. — (1) If X = (Xe,el) € F/(>1)and Y = (Y,,el) € F/(£0),
then for any map f = (fs) : X — Y, we clearly have f; =0 for ¢ > 1. On
the other hand, for ¢ < 0, we have

X X X _ v y y
Jioel10€e,0-r0€] =€ 10€,90--0¢€5 of =0.

Since 5, =---=ef =idy,, it follows that f; =0 for all i, so Hom(X,Y) =
0. Next, for any morphism g : Y — s !X or g : Y — X, we have g; = 0
for i > 1. Thus, the natural map ¢ : Hom(Y, s~ ' X) — Hom(Y, X) induced
by ag-1x can be described by

ola)s: {egglogi lfz <0,
0 ifi > 1.
But X € F(&/)(> 1) means that e, is the identity map for ¢ < 0, and it
follows that ¢ is a bijection. The same reasoning shows that Hom(Y, X) =
Hom(sY, X).

(2) Let N < 0 be such that X = (X,,eX) € F.o/(> N). We will construct
the terms of A and B by downward induction as follows. For i > 1, let
A; = X; and let B; = 0. Next, for N <4 <0, if A;;1 and B;;1 are already
defined, then the map e;11 : X;+1 — X; lets us regard A;+1 and By as
direct summands of X;. Let Y; be a complementary direct summand in Xj;
to X;41, and then set A; = A; 11 and B; = B;y1 @ Y;. With respect to the
identifications X;11 = A;41 @ B;11 and X; = A; @ By, €;51 has the form

x id 0 ]
€1 = _ 2.7
I P (2.7
for some map €;11 : B;+1 — B;. Finally, for i < N, we set A; = Ay and
B; = By. Let us put

e 0 ifi>1,
4 )€ if ¢ > 1, B_)_ . ]
e; = ) e;, =4e ifN<i<l1,
idg, ifi<1, o
id ifi<N.

Then the object A = (A,,ed) belongs to F.e/ (> 1), B = (B,,eL) lies in
Fa7(<0). It follows from (2.7) that X = A& B.

(3) It is clear that j is faithful and essentially surjective. Moreover, it
is easy to see that any morphism f = (fe) : X — Y between two objects
X, Y € Fo/(< 0)NF/ (> 0) is determined by fo. Thus, j is full, and hence
an equivalence of categories. O

TOME 63 (2013), FASCICULE 4



1522 Pramod N. ACHAR & Simon RICHE

We now consider the bounded homotopy category KP(F.e7) of F.o/. The
functors s and j extend in an obvious way to functors of triangulated
categories

s: KP(Fa/) - K°(Fof), j:K°()— K°(F),

and « extends to a morphism of functors a : idgv(py) — s. We also
define KP(F.7)(< n) (resp. KP(F.2/)(> n)) to be the full subcategory of
KP(F4/) consisting of objects isomorphic to a complex X = (X*, dx) with
Xt e Fa/ (< n) (resp. X' € Fo/ (> n)) for all i.

LEMMA 2.7. — With the above notation, we have the following proper-
ties.
(1) s"(K"(Fa/)(<0)) = K*(Fa/)(< n);.
SEP(F)(> 0) = K*(Fad )(> )
b

(2) KP(Fe/)(> 1) C KP(Fa/)(>0), KP(F)(< 1) D KP(Fa/)(<0),
and U, ez KP(F)(< n) = U, K*(F#) (2 n) = KX (F).

(3) For any object X € K*(F/), we have ax = s(a,-1(x))-

(4) For X € K°(F&)(>1) and Y € KP(F&)(<0), we have
Hom(X,Y) = 0. Moreover, a induces isomorphisms

Hom(Y, X) = Hom(Y, s ' X) = Hom(sY, X).

(5) For any object X € KP(F/), there is a distinguished triangle
A— X B — withAc KP(Fa/)(>1) and B € K°(F&/)(<0).

(6) Every object of KP(F.o7)(< 0) N KP(Fo/)(> 0) is isomorphic to a
chain complex X = (X°®,dx) with X* € Fo/(<0) N Fa/ (> 0) for
all 1.

(7) The functor j gives rise to an equivalence of triangulated categories
j:KP() = KP(Fa)(<0)N KP(Fa?)(>0).

Proof. — Parts (1)—(3) are straightforward from the definitions. For (4),
the vanishing of Hom(X,Y") follows from the corresponding statement in
Lemma 2.6(1). Because the isomorphisms in (2.6) are natural, they induce
corresponding isomorphisms in the additive category of chain complexes
over F.o/. Furthermore, the latter isomorphisms respect homotopy, and so
descend to KP(F.</).

For part (5), given an object X = (X*,dx) € KP(F</), let us endow
each term of the chain complex with a decomposition X* = A* @ B with
At € Fo/(> 1) and B' € Fo/(<0), as in Lemma 2.6(2). Each differential
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di : X' — X' can then be written as a matrix

i _[da o

[0 )
where the lower left-hand entry is 0 because Hom(A%, Bt!) = 0 by
Lemma 2.6(1). Then A = (A®,d%) is a chain complex in K?(F.¢/)(> 1), and
B = (B*,d%) € K"(F/)(< 0). We have obvious chain maps A — X — B,
and this diagram extends to a distinguished triangle by Lemma 2.5.

If we apply this construction to a chain complex X with X* € F.o/ (> 0)
for all i, then we find that B* € F.o/(<0) N Fe/(>0). If X also lies
in KP(Fe/)(<0), then we must have A = 0 (because Hom(4,X) =
Hom(A, B[—1]) = 0), so X = B. This establishes part (6). It follows from
that statement that the inclusion functor

KP(Fef (0)NFof (> 0)) = KP(Far/)(<0)NKP(Fer) (> 0)

is an equivalence of categories. Part (7) then follows from Lemma 2.6(3).
O

In the terminology of [6, Appendix], the preceding lemma states that
KP(F.gf), together with the data consisting of s, j, and «, is an f-category
over K" (7). The machinery of loc. cit. then gives us the following result.

THEOREM 2.8 ([6, §A.7]). — Let &/ be an additive category, and let
% be the heart of a t-structure on KP(/). There is a t-exact functor of
triangulated categories real : D°(¢) — KP®(/) with the property that
real | = ide. O

Together, this result and those in [7, §3.1] and [6] cover all the cases
we need. We will henceforth make use of realization functors whenever
necessary without further explanation.

3. Infinitesimal extensions of triangulated categories

In this section, we will study a kind of “thickened” version of a triangu-
lated category, with extra morphisms (called infinitesimal morphisms) that
do not have cones. Such a category looks bizarre from the usual perspec-
tive of homological algebra, but they arise naturally in the setting of étale
f-adic sheaves on certain varieties, cf. Section 7.
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3.1. Basic properties of infinitesimal extensions

Let 2 be a triangulated category. Let 32 be the category whose objects
are the same as those of 2, but whose Hom-spaces are given by

Homgy(X,Y) = Homg(X,Y) ® Homg (X, Y[-1]), (3.1)
and where composition of morphisms is given by the rule

(90,9") o (fo, [') = (g0 © fo, go[=1] o f' + 4" © fo)- (3.2)

There are obvious functors ¢t : 7 — S22 and w : I — Z that send objects
to themselves, and for which the induced maps

¢ : Homg(X,Y) — Homgg(X,Y)
and
w : Homg g (X,Y) — Homg(X,Y)
are the inclusion and projection maps, respectively, for Homg(X,Y) as a
direct summand of Homgg (X, Y'). We also have the inclusion map
v : Homg(X,Y[-1]) — Homgq (1 X, Y). (3.3)
It follows from (3.2) that v is a natural transformation.

DEFINITION 3.1. — The category 3% defined above is called the infini-
tesimal extension of 2. A morphism f = (fo, f'): X = Y in S92 is said to
be infinitesimal if w(f) = 0, or, equivalently, if fo = 0. On the other hand,
f is genuine if f = (fy), ie., if f'=0.

A diagram X —Y — Z — X[1] is called a distinguished triangle if there
is a commutative diagram

X Y Z X[1]
elz 2 lz 9[1]lz
o(x7) e vy 2z e

where X' —L5 v %5 7/ 1y X'[1] is some distinguished triangle in 9, and
where the vertical maps are isomorphisms. A morphism is said to have a
cone if it occurs in some distinguished triangle.

Remark 3.2. — For morphisms in 3%, the property of being genuine
is not natural. In particular, a genuine morphism may be conjugate to a
morphism that is not genuine. In contrast, being infinitesimal is a natural
notion.
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It is clear from the definitions of wo and ¢ that
wotXidg. (3.4)

Note that a morphism that has a cone must be conjugate to a genuine
morphism, and so cannot be infinitesimal. In other words, infinitesimal
morphisms do not have cones, so % cannot be a triangulated category
unless 2 = 0.

LEMMA 3.3. — (1) If f: X =Y and g : Y — Z are both infinitesi-
mal morphisms in 2, then go f = 0.
(2) A morphism f = (fo, f') in 2 is an isomorphism if and only if
w(f) = fo is an isomorphism in 9.

Proof. — The first assertion is immediate from (3.2). If f is an isomor-
phism, then it is clear that fy = w(f) must be as well. If fy is an isomor-
phism, then one may check that g = (fo_l, —fo_1 [—1] of’ofo_l) is an inverse
for f. O

Let 0 : 32 — 2 be the functor defined as follows: for an object X, we
put

o(X) =X & X[-1],

and for a morphism f = (fo, /') : X = Y, we put

fo }
= Xe X[-1]|-YeaeY[-1].
="y ) -1

LEMMA 3.4. — The functor ¢ : 9 — S is left adjoint to ¢ and right
adjoint to o[1].

Proof. — We will prove the first assertion by explicitly constructing the
unit 7 : idg — ot and the counit € : 1o — idggy. For an object X € 2,
define

id
nx X > XeX[-1] by nx= [IOX]

It is straighforward to check that for a morphism f : X — Y in &, we have
o(e(f))onx =mnyof, so this is indeed a morphism of functors. Next, define

ex : X®X[-1] X by ex=[(idx,0) (0,idx[_1))].

Here, the notation “id” denotes identity morphisms in 2, of course. Con-
sider a morphism f = (fo,f") : X — Y in 2. The following equation
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shows that € is a morphism of functors:
(fo, f') o [(idx,0) (0,idx—1))]
(f07 0)

= [(idy,0) (0,idy[_1))] (f,0)  (fol-1},0)] "

Next, we must show that ge o no = id : ¢ — p. This follows from the
following calculations:

idx 0
nex = 8 1dXo[_1] X @ X[-1] = (X e X[-1]) @ (X & X[-1])[-1],
0 0
Cfidx 0 0 0] B o
eex = { 0 idyly idxy O (X e X[-1)) e (X e X[-1])[-1))

- X o X[-1].
The proof that €2 ot =id : ¢ — ¢ is similar. Thus, ¢ is left adjoint to o.
For the other adjunction, we record below the formulas for the unit
7 :idgy — to[1] and the counit € : g[1]¢ — idy but otherwise omit further
details.
(0,idx)

"o [(idx,o)} X = X[JeX, e =[0 idx]: X[JeX = X. O

3.2. Distinguished triangles in an infinitesimal extension

A number of familiar facts from homological algebra remain valid in IZ2,
even though that category is not triangulated. We prove a few of these in
the next two lemmas.

LEMMA 3.5. — Let X — Y — Z — be a distinguished triangle in 9.
For any object A € 2, the following two sequences are exact:

-+ —= Hom(A, X) — Hom(A,Y) — Hom(A4, Z) — Hom(A, X[1]) — ---
-+« — Hom(XT[1], A) — Hom(Z, A) — Hom(Y, A) — Hom(X,A) — ---

Proof. — By replacing the given triangle X — Y — Z — by an iso-
morphic one if necessary, we may assume that it arises by applying ¢ to a
distinguished triangle X’ — Y’ — 7/ — in 9. By Lemma 3.4, applying
the functor Homgg(A,-) to the given triangle is equivalent to applying
Homg(o(A[1]),-) to a triangle in 2, so the resulting sequence is exact.
Similar reasoning applies to Homgg (-, A). |
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LEMMA 3.6. — Consider a commutative diagram
x 1oy
pl qi (3.5)
X' —Y

in 2. If f and i both have cones, then this diagram can be completed to
a morphism of distinguished triangles

X Y Z X[1]
pi qi ’r‘l ip[l] (36)
X/ - Y’ ; VA p X’[l]

Moreover, if p and q are isomorphisms, then r is an isomorphism as well.

Proof. — By replacing f and i by isomorphic maps, we may assume
that they are both genuine. (We cannot assume that p and ¢ are genuine,
however.) Let us write these maps as pairs:

f = (f()vo)a 1= (7;070)7 p= (pOap/)a q= (QO7q,)'
The commutativity of (3.5) implies that the following squares in 2 each

commute:
fo fo
X ——>Y X—Y
Po \L J{ 0 and 4 q (3.7)
X —Y' X'[-1] ——=Y'[-1]
20 7/0[_1]
We can complete each of these to a morphism of distinguished triangles as
follows:
X fo v go ho X[1] be fo v 9o 7 ho X[1]
lpo qo0 l Tul po[l]l ip/ q l r’ l p/[l]l
12 / 7 ! M_ M_ _ !
X ==Y = 2! == X)X e V] o 2] e X

Note that we have chosen the same objects Z and Z’ and the same mor-
phisms gg, ho, Jjo, ko in both diagrams. Let us put

g=1ugo), h=uho), Jj=1(jo), k=1lko),
and let r = (r9,r') € Hom(Z, Z’). Then (3.6) commutes.
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For any object A € 2, applying Hom(A,-) to the diagram (3.6) gives
us a morphism of long exact sequences, by Lemma 3.5. If p and ¢ are
isomorphisms, then, by the 5-lemma, the map Hom(A4, Z) — Hom(A, Z’)
induced by r is always an isomorphism. By Yoneda’s lemma, r itself is an
isomorphism. O

3.3. Pseudotriangulated functors

We will now study functors that respect the structure of an infinitesimal
extension of a triangulated category.

DEFINITION 3.7. — An additive functor F : 2 — 39’ is said to be
pseudotriangulated if the following two conditions hold:
(1) It commutes with [1] and takes distinguished triangles to distin-
guished triangles.
(2) It commutes with v o .
We also use the term pseudotriangulated for functors 9 — ISP’ satistying
just condition (1).

The last condition means that the following diagram commutes:

Homgg(X,Y[~1]) —=— Homg (X, Y[-1]) ——— Homgy(X,Y)

Fl lF
Homg g (FX, FY[~1]) —> Homg (FX, FY|[~1]) — > Homgg (FX, FY)

The following basic facts about pseudotriangulated functors are immediate
consequences of the definition.

LEMMA 3.8. — Let F : SY — S22’ be a pseudotriangulated functor.
Then:
(1) F takes infinitesimal morphisms to infinitesimal morphisms.

(2) We havewo Forow X woF. O

LEMMA 3.9. — For any pseudotriangulated functor F : S92 — I9',
there is a functor of triangulated categories F' : 9 — %', unique up to
isomorphism, such that wo F' = F o w.

DEFINITION 3.10. — The functor F : 9 — @' is said to be induced by
F.
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Proof. — Let F = woFou. By Lemma 3.8(2), we have that woF = Fow.
For uniqueness, suppose we have an isomorphism ¢ : F o w — G o w for
some G : 2 — 2'. Since the objects of 2 are the same as those of 3%, we
can define a morphism ¢’ : F' — G simply by setting ¢y = ¢x : F(X) —
G(X), and this is clearly an isomorphism. a

The lemma above may be thought of as saying that pseudotriangulated
functors are “automatically” compatible with ww. The analogous property
for ¢, however, is not automatic, and turns out to be rather more difficult
to study.

DEFINITION 3.11. — Let 9 and 9’ be two triangulated categories. A
pseudotriangulated functor F : 9 — 32’ is said to be genuine if the
induced functor F satisfies 1o FF' = F o .

There is still a uniqueness property like that in Lemma 3.9.

LEMMA 3.12. — Let F : S2 — S92’ be a pseudotriangulated functor.
IfG: 2 — 2’ is a functor of triangulated categories such that 1o G = Fou,
then G = F.

Proof. — Composing on both sides with @ and using Lemma 3.8(2), we
find that wotoGow ZXwo Fotrow = F ow. From (3.4), we see that
Gow = Fow,so G= F by Lemma 3.9. g

Genuineness for functors is quite a subtle condition, and we will only be
able to establish it when 2 and F' obey rather strong constraints. The next
lemma tells us how this notion is related to genuineness for morphisms, but
since the latter is not a natural property, it seems difficult to prove that
a functor F is genuine by reasoning directly with morphisms. Instead, our
strategy will be to seek indirect ways of showing that ¢ o F and F o ¢ are
isomorphic.

LEMMA 3.13. — A pseudotriangulated functor F : 9 — 39’ is gen-
uine if and only if it is isomorphic to a pseudotriangulated functor F’ :
S9 — 3P’ that sends genuine morphisms to genuine morphisms.

Proof. — If F sends genuine morphisms to genuine morphisms, then it
is easy to see that tow o F' ot = F oy. In other words, toF~FoyusoF
is genuine. For the converse, suppose F' is genuine, and fix an isomorphism
0 :10F — Fou. For amorphism fy : X — Y in 2, we have a commutative
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diagram

- F(f0),0 .
F(X) (F'(f0),0) (V)

exi 9Y

e ——
P e — FO)

Form the analogous diagram for another morphism f’ : X — Y[-1] in
9. Applying the natural transformation v : Homg(F(X), F(Y[-1])) —
Homgg (F(X), F(Y)) to that diagram, we obtain

- 0,E(f -
F(X) (0,F(£)) V)

exi ley

F(X)—— = F(Y)

v(@wF(f',0))

Since F' commutes with vow, we have v(wF(f’,0)) = F(0, f’). Combining
the two diagrams, we find that

- F(fo),E(f -
P(X) (F(fo).F(f')) By

F(X)

F(fo,f") F)

commutes. Let F' : S — I2’ be the functor given by F/(X) = F(X)
for objects X, and by F'(f) = (F(fo), F(f")) for morphisms f = (fo, f').
The commutative diagram above shows that the collection {#x} can be
regarded as an isomorphism of functors 6 : F/ — F. Moreover, F” clearly
sends genuine morphisms to genuine morphisms. O

LEMMA 3.14. — If F : 2 — S92’ is genuine, then po F = F o p.

Proof. — Tt is clear that for an object X in S, we have o(F (X)) &
F(o(X)) 2 F(X) @ F(X)[~1]. By Lemma 3.13, we may assume that F
sends genuine morphisms to genuine morphisms. Indeed, we may assume
that for a morphism f = (fo, f') in 32, we have F(f) = (F(fo), F(f")).
The result follows from the observation that

o) =[50 piry| = Fled): 0
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LEMMA 3.15. — Let F : S2 — S92’ and G : S2' — 32 be a pair
of pseudotriangulated functors. If F' is left adjoint to G, then the induced
functor F is left adjoint to G.

Proof. — We begin by showing that the adjunction morphism
P Homg@/ (F(‘X)7 Y) L> HOIng@(AX7 G(Y))

has the property that ®(f) is infinitesimal if and only if f is infinitesimal.
Let 1 : idgg — G o F be the unit of the adjunction, and recall that ® is
given by ®(f) = G(f) onx. If f is infinitesimal, then G(f) is infinitesimal,
and then any composition with G(f) is also infinitesimal. The opposite
implication is similar, using the fact that ®~1(g) = ey o F(g), where ¢ :
F oG — idggy is the counit.

Now Homg (F(X),Y) = Homg (wF(:X),Y) is canonically isomorphic
to the quotient of Homgg (F'(X),Y') by the subspace of infinitesimal mor-
phisms. The same holds for Homg (X, G(Y)), so we see that @ induces a

canonical isomorphism Homg: (F(X),Y) - Homg (X, G(Y)). O

THEOREM 3.16. — Let F : S2 — 3%’ be a genuine pseudotriangulated
functor. If F' has a right adjoint (resp. left adjoint) pseudotriangulated
functor G : @' — 39, then G is also genuine.

Proof. — We will treat the case where G is right adjoint to F'; the other
case is similar. By Lemmas 3.4 and 3.15, ¢ o G is right adjoint to F o o[1],
and G o is right adjoint to g[1]o F. But F o [1] = g[1]o F by Lemma 3.14.
Since adjoint functors are unique up to isomorphism, it follows that oG =
Gou. (|

4. Homotopy categories of Orlov categories

Let o7 and £ be two additive categories, and consider their bounded
homotopy categories KP (/) and KP(%). In the sequel, we will encounter
the problem of showing that two functors F, F' : K" (&) — KP"(%) are iso-
morphic without having any explicit way to construct a morphism between
them.

The main results of this section (Theorems 4.7 and 4.9) give us a way to
solve this problem, provided that the additive categories &/ and A satisfy
the conditions of the following definition. The idea of using properties of
the categories to prove an isomorphism of functors is due to Orlov [23].
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DEFINITION 4.1. — Let &/ be an additive category equipped with a
function deg : Ind(&/) — Z. & is said to be an Orlov category if the
following conditions hold:

(1) All Hom-spaces in o/ are finite-dimensional.

(2) For any S € Ind(«), we have End(S) = k.

(3) If 5,5 € Ind(«/) with deg(S) < deg(S’) and S ¥ S’, then

Hom(S, S") = 0.

An object X € & is said to be homogeneous of degree n if it is isomorphic
to a direct sum of indecomposable objects of degree n. An additive functor
F . o — % between two Orlov categories is said to be homogeneous if
it takes homogeneous objects of degree n in &/ to homogeneous objects of
degree n in A.

It follows from conditions (1) and (2) above that any Orlov category
is Karoubian (every idempotent endomorphism splits) and Krull-Schmidt
(every object is a direct sum of finitely many indecomposable objects, whose
isomorphism classes and multiplicities are uniquely determined).

4.1. Preliminaries on Orlov categories

We first require some additional notation and lemmas. For an object
X = (X°*,dx) € KP(&), let us define the support of X to be the subset
supp X C Z x Z such that

(i,7) € supp X if and only if X contains a nonzero homogeneous
direct summand of degree j.

Note that this notion is not homotopy-invariant: isomorphic objects of
K" (o) may have different supports. For any subset ¥ C ZxZ, let K®(o/)x
denote the following full subcategory of KP(</):
K" ()5
= {X € K"(«/) | X is isomorphic to an object X’ with supp X’ C ¥}.
Clearly, every object of KP(7) belongs to some K (2/)y with X finite. Let
us endow Z x Z with the lexicographic order:
(i,5) < (,§') ifi<d, orifi=4¢ andj<j. (4.1)
With respect to this order, any finite set ¥ C Z X Z has a largest element.
LEMMA 4.2. — Let X = (X*,dx) € KP(&/), and suppose X = A[n] ®

Y, where A is an object of «/. Then Y is isomorphic to a chain complex
Y’ = (Y'*,dy) with supp Y’ C supp X.
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Proof. — Let i : A[n] - X and p : X — A[n] be the inclusion and
projection maps coming from the given direct sum decomposition. Let us
represent these by chain maps: i = (i*)rcz and p = (p*)rez. The statement
that poi = id, in KP®(4) is equivalent to the statement that the chain
map (p* 0i*),ez is homotopic to id 4,,). But A[n] clearly admits no nonzero
homotopies, so the composition (p* o i*)rcz is equal to id A[n] @8 a chain
map. In particular, p~" 0i~"™ = id4. It follows that i " op™™ € End(X ")
is an idempotent.

Recall that & is a Karoubian category. Therefore, there is some object
B € o such that we can identify X" = A @ B, and such that under this

identification, p~™ and i~"

are the projection and inclusion maps for the
direct summand A. With respect to this direct-sum decomposition, we may
write the differentials dy"~' : X! — X" and dy" : X" — X+l

as matrices

d;{“l = [a] and dy" = [s t] .

Since (p*®) is a chain map, we see that a = p™™ o d)_("_1 = 0. Similarly,
s=dy"0i™" = 0. It follows that tob = dy" 0o dy" " = 0. Define the chain
complex Y’ = (Y’®,dy~) by

dy ifk#-n—1,-n,
v, =<b  ifk=-n—1,

vk _ {Xk if k # —n,
t if k= —n.

B ifk=n,

Y” has support contained in that of X, and we clearly have X = A[n]@Y”,

so Y’ becomes isomorphic to Y after passing to the homotopy category
K (o). O

LEMMA 4.3. — Let f : A — B be a morphism in an Orlov category <,
and assume that B is homogeneous of degree n. Then f has a “homoge-
neous cokernel.” That is, there is a morphism q : B — @, where Q is also
homogeneous of degree n, such that

(1) We have go f =0.

(2) If g : B — C is any morphism such that go f = 0 and C is
homogeneous of degree n, then there is a unique morphism r : QQ —
C such that g =roq.

In fact, there is an isomorphism u : Q+ ® Q — B (for some homoge-
neous object Q) such that q o u is simply the canonical projection map

QteQ Q.
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Proof. — Let I, = {S € Ind(«) | deg S = n}. For any S € I,,, we have
a natural pairing

Hom(S, B) ® Hom(B, S) — Hom(S, S) = k.

This pairing is nondegenerate: to see this, it suffices to consider the spe-
cial case where B is itself indecomposable, and in that case, the non-
degeneracy is obvious from condition (3) of Definition 4.1. Let us write
Hg = Hom(B, S) for brevity. The pairing above gives us a canonical iso-
morphism H§ = Hom(S, B). (Here H§ = Hom(Hg,k).)

Recall that in any k-linear additive category, it makes sense to form
tensor products of objects with finite-dimensional k-vector spaces. Note
that Hg is always finite-dimensional, and it vanishes for all but finitely
many S, so the direct sum @Seln HE ® S is a well-defined object of <.
We claim that there is a canonical isomorphism

P H;25 = B (4.2)
Sel,
Indeed, there is a natural map Pg.; Hom(S, B)®S — Bj; this map is ev-
idently an isomorphism when B is indecomposable, so it is an isomorphism
in general.

For each S € I, let Eg denote the kernel of the map Hom(B,S) —
Hom(A, S) induced by f. Let ig : Es — Hg denote the inclusion map, and
let g5 : Hi — EY denote its dual. Next, let

Q=P E: @5,
Ser,
and let ¢ : B — @ be the map given by ¢ = @ ¢s ® idg (using the iden-
tification (4.2)). To describe ¢ another way, consider the chain of natural
isomorphisms

Hom(B, Q) = @) E © Hom(B, S) = @) Hom(Es, Hom(B, 5)).
Sel, Sel,

We have ig € Hom(FEg,Hom(B,S)), and under these identifications, we
have ¢ = @ is. Observe that the map f gives rise to a commutative diagram

Hom(B, Q) == @g¢;, Hom(Es, Hom(B, 9))

g |

Hom(4, Q) == @g¢;, Hom(Es, Hom(4, 5))

By the definition of Eg, we see that each ig is in the kernel of the map
Hom(Eg,Hom(B, S)) — Hom(Egs, Hom(A, S)).
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It follows that ¢ is in the kernel of Hom(B, Q) — Hom(A, Q). In other
words, g o f = 0, as desired.

It is easy to see from the above construction that for any T' € I,,, there
are natural isomorphisms Hom(Q,T) = Er and Hom(B,T) = Hrp, and
that the map Hom(Q,T) — Hom(B,T) induced by ¢ is none other than
ir : Ep — Hrp. In other words, if ¢ € Hom(B,T') is any morphism in Er,
i.e., such that g o f = 0, then there is a unique morphism r € Hom(Q, T)
such that g = r o q. Thus, we have just proved a special case of the desired
universal property of q. Since the universal property holds for indecompos-
able objects, it holds in general.

Finally, each qs : H — E% is a surjective map of vector spaces, so
there certainly exists some isomorphism ug : (kergs) & E§ = HY such
that gg o ug is the projection map onto the second direct summand. Let
Q+ = @P(ker gs)®S. Then there is an obvious isomorphism v : Q+&Q — B
such that q o u is also a projection map. g

COROLLARY 4.4. — Let f : A — B be a morphism in an Orlov category
o7 , and assume that B is homogeneous of degree n. There is an idempotent
endomorphism 6 : B — B such that for any morphism g : B — C with C'
also homogeneous of degree n, the following two conditions are equivalent:

(1) gof=g.
(2) gof=0.

Proof. — Let ¢: B — Q and v : Q- @®Q — B be as in Lemma 4.3, and
let i : Q - QF @ Q be the inclusion map of the second summand. Then
0 = u o i o q has the required properties. O

LEMMA 4.5. — Let ¥ C Z X Z be a finite set with largest element (i, j),
and let ¥ =X~ {(i,5)}.
(1) For any object X € K®(</)x, there is a distinguished triangle

P—X—>Y — P[]

with P S Kb(uQ{){(lJ)} andY S Kb(ﬂ)zl.
(2) Suppose we have a commutative diagram in K" (/) as follows, in
which the horizontal rows are distinguished triangles:

P X y P[]
pl l r lp[l] (4.3)
P X' ey —— P'[1]
f gl h/
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IfP,P/ S Kb(ﬂf){(i7j)}, X,X/ S Kb(JZf)g, and Y,Y’ S Kb(JZf)E/,
then there is a unique map q : X — X' that makes the above
diagram commute.

(3) Let P x5y - P[1] be a distinguished triangle, and let
f': P’ = X be any morphism, where P,P' € K"(/ ) ), X €
K"()x, and Y € K"(&/)ss. Form the morphism P & P’ — X,
and complete it to a distinguished triangle

s 7]
Perlix 7~ (PopP

Then we have Z € K"(&/ )y, where ¥ = %' U {(i — 1,7)}.

Proof. — (1) We may assume that X is a chain complex (X*,dx) with
supp X® C X. Choose a direct-sum decomposition X? = A @ B, where A
has degrees < j and B is homogeneous of degree j. With respect to this
direct-sum decomposition, we may write the differential dé;l X5 X
as a matrix dy ' = [§]. Let Y = (Y'*,dy’) be the chain complex given by

dk ifk#di— 1,

Xk if k£
Yk = ' 75’,’ and  d¥ ={a ifk=i—1,
A ifk=1
0 ifk=1.

Clearly, Y € KP(&/)s/. Let P = (P*,dp) be the complex given by

0 ifk£i,
sz{B %f,:él- and  dp = 0.
1 =1

We clearly have P € K"(4)((; j);- Consider the morphism & : Y[-1] — P
where 6 : Yi=! — P? is the map b. It is easy to see that the cone of § is
isomorphic to X, so we have a distinguished triangle P - X — Y — as
desired.

(2) Assume that P and P’ (resp. Y and Y”’) are represented by chain
complexes whose support is contained in the set {(¢,7)} (resp. £'). We
may assume that the terms of the chain complex X = (X*®,dx) can be
identified with terms of Y and P as follows:

X Yk if k£,
YigP ifk=i.
Let us denote the inclusion and projection maps for the direct sum X? =
Yi @ P’ as follows:

L1 L2

YZ<TX1 _Pz<7r—)(z
1 2
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The maps f: P — X, g: X — Y are then given by
fk:{o if k # i, gk:{id if ko £ 4,

L2 ifk/’:i, ™1 if k=1.

We fix analogous identifications for the objects and morphisms in the tri-
angle P = X' - Y’ —.

The existence of ¢ follows from general properties of triangulated cat-
egories. For uniqueness, it is sufficient to consider the special case where
p =0 and r = 0. Suppose ¢ : X — X’ is a map making (4.3) commute;
we must show that ¢ = 0. Since ¢’ o ¢ = 0, ¢ must factor through f’. Let
G : X — P’ be a map such that ¢ = f'og. We may assume that this equality
holds at the level of chain maps (not just up to homotopy). In particular,

s {0 ik,
thoq' ifk=ri.
Now, the map ¢* : Y* & P* — P'* can be written as a matrix ¢' = [0 a,
where the left-hand entry is 0 because Hom (Y, P'") = 0 by part (3) of
Definition 4.1. We therefore have

¢ =thog = [0 O] with a : P — P'%.
0 a

Using these identifications X = Y@ P? and X"* = Y’ @ P!, we can write
the differentials le_1 and dé(_,l as matrices

dict = m and  dig! = m .

Now, ¢ is a chain map, and since ¢*~! = 0, we must have ¢° o d;l =0, or

vow = L2

We will now make use of the “homogeneous cokernel” of v : X*~1 — P?.
Corollary 4.4 lets us associate to this map an idempotent endomorphism
0 : P* — P' Since aov =0, we have a0 6 = a, and so

g ool = m 6] = m =q o (44)

Next, we have g o f = 0. This is a statement about the existence of a
certain homotopy; specifically, there is a map h’ : P* — X'~! such that

gl ol = d;l o ht. (4.5)
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Of course, the homotopy is not unique in general. Indeed, in view of (4.4),
we could replace h® by h® o 6, and (4.5) would still hold. By carrying out
this replacement if necessary, we henceforth assume that h’ o @ = h?, or
equivalently,

hiowv=0. (4.6)

Let us define a collection of maps h* : X¥ — X’k=1 by

o Jo if b # i,
[0 hi]:YiePi— X't ifk=i.

We claim that
¢ =t odh 4+ d5t o bE (4.7)

for all k. If kK < ¢ —1 or k > 4, both sides are obviously 0. If k& = i, we have
h**t1 =0, so this is essentially a restatement of (4.5). Finally, if k =i — 1,
we know that ¢°~! = 0 and h*~! = 0; we must check that h’ o d’X_1 =0.
But this follows from (4.6). We see from (4.7) that ¢ is null-homotopic, as
desired.

(3) Consider the following octahedral diagram, which is associated with
the composition P — P @ P’ — X:

Po P

/ \P/ +1
P</+1 // Xz
\X/
N\

We see that there is a distinguished triangle Y — Z — P’[1] —. The
category KP(«/)sn is stable under extensions, and since Y and P’[1] both
belong to it, it follows that Z € KP(«/)x as well. O

Part (2) of Lemma 4.5 has an analogue in the infinitesimal extension
SKP (7). Recall that the objects of this category are the same as those
of KP(o7), so the notion of support makes sense here as well. The full
subcategories SKP(o/)x (for ¥ C Z x Z) are defined in the same way as
Kb (JZ{)Z
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LEMMA 4.6. — Suppose we have a commutative diagram in SKP (/)
as follows, in which the horizontal rows are distinguished triangles:

p—lox Loy _"opp
pl lr lp[l] (4.8)
P’ X' Y’ P'[1]
f/ g/ h/

If PP € %Kb(,szx/){(m-)}, X, X" € SKP()x, and Y,Y' € SKP( )5y,
then there is a unique map q : X — X’ that makes the above diagram
commute.

Proof. — The existence of ¢ follows from Lemma 3.6; we must prove
uniqueness. As in Lemma 4.5(2), it suffices to consider the case where
p = 0 and r = 0. Furthermore, every distinguished triangle is, by definition,
isomorphic to a diagram obtained by applying ¢ : K”(</) — SKP (<) to
a distinguished triangle in KP(.27), so we may assume that the morphisms
fyg.h, f',g',h are all genuine.

Suppose ¢ : X — X’ makes the diagram commute. Since ¢’ o ¢ = 0, it
follows from Lemma 3.5 that ¢ factors through f’. Let ¢ : X — P’ be a
map such that ¢ = f’ o g. It is clear from the support assumptions that
Hom gb (o) (X, P'[~1]) = 0, so in fact, § must be genuine; it can have no
nonzero infinitesimal component. The same must then hold for ¢. Since
every morphism in our diagram is in the image of ¢, we have actually
reduced the problem to the setting of Lemma 4.5(2), where the desired
uniqueness is already known. ]

4.2. Morphisms of functors

We are now ready to prove the main results of this section. Their proofs
are adaptations of an argument due to Orlov [23, Proposition 2.16].

THEOREM 4.7. — Let &/ and % be two Orlov categories. Let F, F’ :
K®(o/) — K®(%) be two functors of triangulated categories. Assume that
F(&/) C # and F'(/) C P, and that the induced functors F|u, F'|o :
o — A are homogeneous. Any morphism of additive functors

0° : F|g{ — F/|§1

can be extended to a morphism 6 : F — F' of functors of triangulated
categories in such a way that if 0° is an isomorphism, then 0 is as well.
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Remark 4.8. — The statement of the theorem is equivalent to the fol-
lowing fact. Let F : KP(&/) — KP(%) be a functor that satisfies the
hypotheses of the theorem, and consider the functor F’ := KP(F|y) :
K®(«/) — K"(#) induced by F| : & — 2. Then there is an isomor-
phism of functors F — F".

There is an analogous statement in which the codomain category is
replaced by an infinitesimal extension. Note that for objects X,Y € 4,
we have that Hom(X,Y[-1]) = 0 in KP(%). Therefore, the composition
B — K°(PB) - IKP(P) is full and faithful. In other words, we can
identify % with a full subcategory of IKP (%) just as we do with K" (%).

THEOREM 4.9. — Let &/ and % be two Orlov categories. Let F,F’ :
KP(o/) — SKP(#) be two pseudotriangulated functors. Assume that
F(of) C # and F'(/) C A, and that the induced functors F|e, F'|z :
o — P are homogeneous. Any morphism of additive functors

902F|g(—>F/|gj

can be extended to a morphism 6 : ' — F' of pseudotriangulated functors
in such a way that if 0° is an isomorphism, then 0 is as well.

Remark 4.10. — Equivalently, this theorem says that any functor F' :
Kb (&) — SKP(%) satisfying the hypotheses of the theorem is isomorphic
to the composition

KP(F|u)
—_—

KP(a7) K"(#) 5 SK®(A).

Proof of Theorems 4.7 and 4.9. — Constructing a morphism of functors
6 : F — F’ consists of the following three steps:

(1) For each object X € KP(&/), construct a morphism fx : F(X) —
F'(X) in K(%) or IKP(%), and show that it is an isomorphism
if 6° is.

(2) Show that fx is independent of choices in the construction.

(3) Show that for any morphism s : X — X’ in K"(«/), we have
F'(s)of0x =0x: 0 F(s).

We will carry out these steps by an induction argument involving the sup-
port of an object. We say that a subset > C Z x Z is a paragraph if it is of
the form

Y= ({a,a+1,...,b—1}>< {c,c—i—l,...,d})U{(b,c),(b,c—i—1),...,(b,e)}

for some e with ¢ < e < d. We also say that such a paragraph ¥ has b—a+1
lines. For X as above, we see that the largest element is (b, e). Note that if

ANNALES DE L’INSTITUT FOURIER



KOSZUL DUALITY AND SEMISIMPLICITY OF FROBENIUS 1541

Y has at least 2 lines, then (b—1,¢) € 3 as well. Obviously, the support of
any object is contained in some paragraph.

To begin the induction, let ¥ be a paragraph with a single line, so that
¥ C {n} x Z for some n € Z. For any object X € K"(&/)x, we have
X[n] € &, so we have available a morphism Oy - F(X[n]) —» F'(X]n]).
Define 0x : F(X) — F'(X) by 0x = Hg(w[fn]. Trivially, statements (1)—
(3) hold for objects X, X’ whose support is contained in {n} x Z. Moreover,
fx is an isomorphism of objects if #° is an isomorphism of functors.

For the inductive step, let us assume that ¥ is a paragraph with at
least two lines. Let (b,e) denote its largest element, and let ¥/ = ¥ ~
{(b,e)}. Then ¥’/ is also a paragraph, and it contains (b — 1,e). Assume
that steps (1)-(3) above have already been carried out for objects and
morphisms of KP(#7)s,. We will now carry them out for objects and mor-
phisms of K°(#)sx.

Step 1. For an object X € K"(/)s, we can find, by Lemma 4.5(1), a
triangle

P— XY -5 P (4.9)

with supp P C {(b,e)} and suppY C ¥’. Note that § : Y — P[1] is a
morphism in KP(/)s/, so we already have morphisms 6y and 6 p1) such
that the diagram

F(v) 2L p(Pp))

0y \L \Lep[l]

/ /
F/(Y) = F(PI1)
commutes. We define 0x : F(X) — F'(X) by completing this square to
a morphism of distinguished triangles (invoking Lemma 3.6 in the case of
SKP(A)):

F(P) P(X) F(v) —2L p(P[1))
0p_t9pm[1]l Ox GY\L \LGP[U (4.10)
Y
F/(P) — F(X) —> F'(Y) <= F(P[1)

Note that if 6° is an isomorphism, then we know inductively that p and
0y are isomorphisms, so it follows (perhaps by Lemma 3.6 again) that 0
is as well.

Step 2. We must now show that fx is independent of the choices made
above. Either Lemma 4.5(2) or Lemma 4.6 tells us that 6x is uniquely
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determined once the triangle (4.9) is fixed, but we must also prove inde-
pendence of the choice of that triangle. Let

P X =Y — Pl (4.11)

be another such triangle, and let 0% : F(X) — F'(X) be the morphism
obtained from it by the construction above. We must show that 0% = 0x.

To do this, we will construct a third triangle as an intermediary. Let
P” = P @ P'. Consider the obvious map P” — X, and let Y” denote its
cone. By Lemma 4.5(3), we have Y” € KP"(&/)s/, and the construction
above gives us a third morphism 0% : F(X) — F'(X). Note that P — X
factors through P” — X, so we can form a morphism of triangles as follows:

P X Y P[]
fl gl lfm (4.12)
P X Yy p//[l]

Applying F' and F” to this diagram, we obtain the following diagram:

F(P) F(X) F(Y) F(P[1])
x(f) ‘ \ ‘ \F(i) ‘ x(f[;])
F(P") F(X) F(Y") F(P"1])
op opr ox X Oy fr 9p[1] PP
F'(P) FI(X) F'(Y) F/(P[1])
\F'm \ \F’(g) wjb
FI(P") FI(X) F(y'") F/(P"[1])
(4.13)

Some care is required in assessing the commutativity of this diagram. There
are four morphisms of distinguished triangles in this diagram: the “top” and
“bottom,” each obtained by applying a functor to (4.12), and the “front”
and “back,” each of which is an instance of (4.10). We also know by induc-
tion that F’(g) Ooy = QY// OF(g) and F’(f[l]) Oep/[l] = Opm OF(f[l]) We
thus obtain two morphisms of triangles from the “top back” to the “bottom
front,” which we write down together as follows:
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We can now invoke Lemma 4.5(2) or Lemma 4.6 again to deduce that
Ox = 0%. But since P — X also factors through P’ — X, the same
argument shows that 6 = 0% as well, so 0x = 0y, as desired.

Step 3. Let s : X — X' be a morphism in K”(&/)x. Choose distinguished
triangles

P—X—=Y — P[], P = X' =Y — P[]

as in Lemma 4.5(1). We may assume without loss of generality that the
composition P — X — X' factors through P’ — X': if not, simply re-
place P’ by P @ P'. (The cone of P ® P’ — X' is still in K"(&)s by
Lemma 4.5(3), so the new triangle is still of the required form.) We then
have a morphism of distinguished triangles

R
P’ X’ Yy’ P'[1]

Applying F and F’, we obtain a large diagram analogous to (4.13):

F(P) F(X) F(Y) F(P[1])
. N > >
F(P") F(X') F(Y') F(P'[1])
0p 0pr ‘/QX 01 J/QY Oy-1 ‘/QP[I] 9P”[1]
F'(P) FI(X) — F'(Y) F'(P[1])
\ \F(S) \ \
F/<P//) F/(X/) F/(y//) F/<PI/[1])

As with (4.13), by studying the parts of this diagram known to be commu-
tative, we obtain two morphisms of distinguished triangles

F(P) — F(X) F(Y) F(P[])

[
l P/ ()00 | | 0x70F (s) l J/
\y

FI(P") — F'(X') — F'(Y') — F'(P'[1])

By Lemma 4.5(2) or 4.6, we must have F’(s) ofx = 0x/ o F(s), as desired.
If 6° is an isomorphism, we noted at the end of Step 1 that 6x is an
isomorphism for all X, so 6 is an isomorphism of functors. O

THEOREM 4.11. — Let &/ and A be two Orlov categories, and let F :
SKP () — SKP(PB) be a pseudotriangulated functor. If F(/) C %, and
if the induced functor F |y : o — % is homogeneous, then F is genuine.
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Proof. — Let F : KP(&7) — KP(%) be the functor induced by F as
in Definition 3.10. According to Remark 4.8, we have F' 2 K"(F|,). On
the other hand, by Remark 4.10, we have F ot 2= 10 K"(F|,). Therefore,
Lo F >~ Fou, as desired. g

4.3. Bifunctors

The results of Section 4.2 can be generalized to bifunctors. We briefly
indicate how to carry out this generalization. Let ., &/, and % be Orlov
categories. An additive bifunctor F : & x &' — % is said to be bi-
homogeneous if for any two homogeneous objects X € &, X' € &,
we have that F(X, X’) is homogeneous of degree deg X + deg X'. In the
setting of infinitesimal extensions, an additive bifunctor F : SKP" (/) x
SKP (') — SKP(#) is said to be pseudotriangulated if the functors
F(X,-) and F(-,X') are pseudotriangulated for any fixed objects X and
X'. Finally, F is said to be genuine if there is a triangulated bifunctor
F:K() x K°(&/") — K"(%) such that 1o F' = Fo (1 x ).

THEOREM 4.12. — Let &, &', and & be Orlov categories, and suppose
we have two triangulated bifunctors F, F" : K (/) x K (/') — K" (%), or
two pseudotriangulated bifunctors F, F' : K(o/) x KP(a') — SKP(%).
Assume that F(of x /') C # and F'(of x ') C A, and that the in-
duced functors F|es ety F' |erserr + 9 X &' — 9B are bihomogeneous. Any
morphism of additive bifunctors

0°: Floxo — F'laxa

can be extended to a morphism 0 : F' — F’ of pseudotriangulated bifunc-
tors in such a way that if ° is an isomorphism, then 6 is as well.

Sketch of proof. — We must construct a morphism 0x x : F(X, X') —
F'(X, X") for each object (X, X’) € KP(a/) x K"(&/'). This construction
proceeds by induction on the size of the supports of X and X’. Both sup-
ports may be replaced by “paragraphs.” If both supports are contained in a
single line, then fx x/ is easily defined in terms of §°. Otherwise, suppose
supp X has at least two lines. Form a distinguished triangle like (4.9) using
Lemma 4.5(1), and apply the functors F (-, X’) and F’(-, X') to it. The con-
struction of fx x+ and the proof that it is independent of choices involving
X are as above. A similar construction can be carried out if supp X’ instead
has at least two lines.
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However, when neither supp X nor supp X’ is contained in a single line,
there is a further well-definedness issue: we must check that x x/ does not
depend on whether we carried out the above construction using X or using
X'. If we apply F to distinguished triangles

P—oX—Y —, PP-aX =Y =

coming from Lemma 4.5(1) in both variables simultaneously, we get a large
diagram in K®(%) or SKP" (%) involving nine objects arranged into three
horizontal distinguished triangles and three vertical distinguished triangles,
as in [7, Proposition 1.1.11]. Let us call such a diagram a distinguished 9-
tuple. Applying F’ gives us another distinguished 9-tuple. To proceed, we

)

must use a “27-lemma,” stating that a commutative cube (involving the
known morphisms y,y+, 0 pp11,y+, Oy, pra], and ppy, pr1)) can be extended to
a morphism of distinguished 9-tuples. That morphism contains a morphism
F(X,X') - F'(X,X’), which must coincide with both versions of 0x, x

by Lemma 4.5(2) or 4.6. O
The proof of Theorem 4.11 applies in this setting as well.

THEOREM 4.13. — Let &/, &/', and 9B be Orlov categories, and let
F : SKP() x SKP(o") — SKP(#) be a pseudotriangulated bifunctor.
If F(of x ') C P, and if the induced functor F|oywe : & X ' — P is
bihomogeneous, then F' is genuine. (|

5. Koszul duality from Orlov categories

In this section, we will show that there is a very close relationship between
Koszul categories and a certain class of Orlov categories, called Koszules-
cent Orlov categories. Specifically, we will prove in Section 5.2 that there
is a one-to-one correspondence

equivalence classes equivalence classes
of split Koszul -~ of Koszulescent
abelian categories Orlov categories

(5.1)
In one direction, the map is easy to describe: given a split Koszul category
M , it turns out that the category of all pure objects of weight 0 in DP(.#)
is a Koszulescent Orlov category. (The description of the map in the other
direction is given in Section 5.1.) This correspondence may be seen as
a generalization of Koszul duality (Theorem 2.4); indeed, as promised in
Section 2.4, we give in Section 5.3 a new proof of Theorem 2.4 based on
the correspondence (5.1).
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5.1. A t-structure on K’(&)

Let & be an Orlov category. Consider the following two subsets of Z x Z:
<={GJ)li<-j}, >={0G4)]i=-j}
As in the previous section, we associate to these subsets certain full subcat-

egories K" ()4, KP(o/)s of KP(&/). We begin with some lemmas about
these categories.

LEMMA 5.1. — If X € KP@)4 and Y[1] € KP"(&)s, then
Hom(X,Y) =0.

Proof. — We may assume that the underlying chain complexes of X
and Y are such that suppX C < and suppY[l] C . Then, for each
i € Z, the homogeneous summands of X have degree < —i, while those of
Y = (Y[1])*~! have degree > —i + 1, so there are no nonzero morphisms
Xt — Y Tt follows that Hom(X,Y) = 0 in KP(&). O

LEMMA 5.2. — Let S € Ind(%).

(1) If X € K?(«/), the cone of any nonzero morphism S[deg S| — X
lies in KP (o).

(2) If X € KP(4/)4, the cocone of any nonzero morphism X — S|[deg S|
lies in KP (o) 4.

Proof. — We will prove only the first assertion; the second one is similar.
Let p = degS. Assume that the chain complex X = (X°® dx) is such
that supp X C >. Write X P as a direct sum X P = A @ B, where A is
homogeneous of degree p, and B is a direct sum of homogeneous summands

whose degrees are > p. Since Hom(S, B) = 0, any nonzero chain map
f: S[p] = X must have the form
= 0 if k#£ —p,
[§]:S—> Ae B if k= —p,

where a : S — A is some nonzero map. Let ¢ : A — A’ be the homogeneous
cokernel of a, as in Lemma 4.3. That lemma also tells us that ¢ may be
regarded as a projection onto a direct summand of A. Here, we claim that a
is in fact the inclusion map of a complementary summand. We can certainly
write A = C' & A’ for some homogeneous object C. Since goa = 0, we have
a = [§] for some ¢ : S — C. But if ¢ is not an isomorphism, then it has
its own nonzero cokernel, contradicting the universal property of ¢q. Thus,
a identifies S with the summand C.
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Let Y P denote the object A’ ® B. We henceforth identify X P with the
direct sum S@ Y P, and f7P : S — S &Y P with the inclusion map of
the first summand. Let r : S®Y P — Y P be the projection to the second
summand. We may write the differential d’ : S®&Y P — X PT! as a
matrix

d' =0 s].
Here, the first entry must be 0 because dy” o f~P = 0. Similarly, we may
write d’ " as a matrix

d~t= "],

|

Since dy? o dy?~" = 0, we see that s 0 v = 0. We also have d** o5 =0
and vod P> = 0.

We now regard the object Y P as a term of the chain complex Y =
(Y*,dy) given by

b =<5 if k= —p,

v {Xk if k # —p,
v ifk=-p—1.

A®B ifk=—p,

The observations in the preceding paragraph show that d’f/ o d’ffl = 0 for
all k, so this is a well-defined chain complex. Next, we define a morphism
g9:Y[=1] = S[p] by

oo fo if k£ —p,
u: Y Pl 58 ifk=—p

Again, this is a chain map since u o d” > = 0.
It is now easy to see that the cone of u : Y[—1] — S[p] is none other
than X, and that the second map in the triangle Y[—-1] — S[p] = X —

is f. Thus, the cone of f is isomorphic to Y, which lies in KP(&). by
construction. 0O

LEMMA 5.3. — For any X € KP(«), there is a distinguished triangle
A— X = B — with A € K*(«/)4 and B[1] € K®()5.

Proof. — We will make use of the “x” operation for objects in a trian-
gulated category from [7, §1.3.9]. In this language, we must show that

X € KP(o)q * (KP(o)p[—1]). (5.2)

We proceed by induction on the size of the support of X. If supp X is a
singleton, then X = A[n] for some homogeneous object A € &/ and some
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n € Z. If n > deg A, then X € KP(«/)4; otherwise, X[1] € K”(&/). In
either case, (5.2) holds trivially.

Next, consider the general case. Let ¥ = supp X, and let (4,5) be the
largest element of 3. Lemma 4.5(1) says that there are objects P and Y
such that

X e{P}«{Y},
with supp P = {(¢,5)} and suppY C ¥’ = ¥ ~\ {(4,4)}. By induction, we
may assume that there exist objects A’ € KP(«/)4 and B’ € K" (/) [~1]
such that Y € {A'} « {B’}, so that

X e {P}x{A'}x{B'}.

If i < —j, then P € KP(o/) g, so {P} * {A'} C KP(#/)4, and then (5.2)
follows. On the other hand, if i > —j, we proceed by induction on the
number of indecomposable summands in the homogeneous object P. Write
P = S[—i] ® P’, where S € Ind(«) is an indecomposable object of degree
4, and where P’ contains fewer indecomposable summands (possibly zero).
We then have

X € {S[—i]} *{P'} x {A"} x {B'}.
By induction, we have {P’'} x {A'} * {B'} C KP(&)4 * (KP(«)s[-1]).
Thus, there exist objects A” € KP(&/)4 and B” € K®(«/)[—1] so that
X € {S[—i]} x{A"} =« {B"}.
Consider a distinguished triangle
S[—i] = Z — A" — S[—i+1]. (5.3)

If i — 1 > —j, then S[—i+ 1] € KP(«/)[~1], so we know by Lemma 5.1
that Hom(A”, S[—i + 1]) = 0. Therefore, every such triangle splits, and we
have {S[—i]} * {A"} C {A"} % {S][—i]}. Tt follows that

X € {A"}« ({S[=i]} + {B"}) € KP(o) < * (K"(o)5[-1]),

as desired. On the other hand, if i—1 ¥ —j, we must have i—1 = —j (recall
that i > —j). If the triangle (5.3) splits, then the preceeding argument still
applies. But if (5.3) does not split, i.e., if the map A” — S[—i+1] is nonzero,
then we are in the setting of Lemma 5.2, which tells us that Z € K" (&) .
Since X € {Z} = {B"}, we see that (5.2) holds in this case as well. O

PROPOSITION 5.4. — For any Orlov category ./, the pair (K" (</)4,
K®(&/)) is a bounded t-structure on K®(/). The heart

Kos(o/) = KP(@) o N K" (o)
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is a split finite-length abelian category, and the simple objects in Kos(</)
are those isomorphic to objects in the set

Irr(Kos(7)) = {S[deg S] | S € Ind(«7)}.

Moreover, Kos(/) has the structure of a mixed category, with weight func-
tion wt : Irr(Kos(/)) — Z given by wt(S[deg S]) = deg S.

Proof. — Tt is clear that KP(</)4[1] € K®(#/)4 and K®(&).[1] D
KP(o/). The other axioms for a t-structure have been checked in Lem-
mas 5.1 and 5.3, so the pair (KP(#/)4, K”(4/)s) does indeed constitute a
t-structure.

Since the support of any object X is finite, it is clear that there exist
integers n and m such that X[n] € K"(&)4 and X[m] € K®(«/).. In
other words, the t-structure is bounded.

For brevity, let us write ¢ = Kos(«). Let S € Ind(«), and consider the
object E = S[deg S] € €. Let X be any other object of €. If f : E — X is
a nonzero morphism, Lemma 5.2 tells us that the cone of f lies in K (&),
which means that the kernel of f must be 0. This means that E contains
no nontrivial subobject in C. In other words, F is simple.

Let us call a simple object of € good if it is isomorphic to S[degS)]
for some S € Ind(«). More generally, an object of € is said to be good
if it has a composition series whose composition factors are good simple
objects. We will now show that every object of € is good. Given an object
X = (X°*,dx) € €, let ¥ = supp X. Assume that ¥ C <1. We proceed by
induction on the size of 3.

The base case is that in which ¥ is a singleton. Since X € %, we must
have X = A[n], where A € &/ is homogeneous of degree n. Such an object
is evidently a direct sum of good simple objects.

Otherwise, let (i,;j) be the largest element of ¥, and form the distin-
guished triangle

Plixyvyo

as in Lemma 4.5(1). Since (i,7) € <, we have ¢ < —j. If ¢ < —j, then
P € KP(«7)4[1], so Hom(P, X) = 0 by Lemma 5.1. It follows that ¥ =
X @ P[1]. Recall that Y has strictly smaller support than X. By Lemma 4.2,
X is isomorphic to a chain complex whose support is contained in that of
Y, so X is already known to be good by induction.

Suppose, on the other hand, that i = —j. Then P € %. Indeed, P is
clearly a semisimple object whose direct summands are good simple objects.
Moreover, f : P — X is a morphism in %, so we may write P = ker f@®im f.
The map f is then the direct sum of an injective map im f — X and the
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zero map ker f — 0, so its cone is
Y = cok f @ (ker f)[1].

Using Lemma 4.2 again, we see that cok f is an object of ¥ with strictly
smaller support than X, so it is good. From the short exact sequence

0—imf— X — cok f — 0,

we see that X is good, as desired. In other words, we have just shown that
every object of € has finite length, and that every simple object is isomor-
phic to some S[deg S| with S € Ind(«). It follows from Definition 4.1(2)
that € is split.

Finally, to show that € is a mixed category with the weight function given
above, we must check that Ext'(S[deg S], T[degT]) = 0 for S, T € Ind(%)
if degT > deg S. By [7, Remarque 3.1.17(2)], we have

Exti, (S[deg S], T[deg T]) = Hom oo (S[deg S], T[deg T + 1),

It is clear that Hom(S[deg S|, T[deg T+1]) = 0if deg T > deg S, as desired.
O

COROLLARY 5.5. — We have K®(&/)4ns = Kos(&/). Moreover, for a
chain complex X = (X*®,dx) with supp X C <N >, the associated graded
of the weight filtration on X is given by grlV X = X F[k].

Proof. — Tt is clear that KP(«/)4ns C Kos(7), and that the simple ob-
jects S[deg S] (with S € Ind(<7)) of Kos(«/) lie in KP(/) 4. Recall that
for any subset ¥ C Z x Z, the category K(&/)y is stable under extensions.
The smallest strictly full subcategory of KP(.27) containing all the S[deg S|
and stable under extensions is none other than Kos(), because every ob-
ject of Kos(.7) has finite length. It follows that Kos(«7) C K" (&) 4. The
second claim is obvious. ]

The calculation at the end of the proof of Proposition 5.4 actually shows
the stronger statement that Exti (S[degS], T[degT]) = 0 unless degT =
deg S — 1. Indeed, the same reasoning gives us the following more gen-
eral statement: for S,T € Ind(&), the simple objects S[deg S], T'[degT] €
Irr(Kos(.«7)) have the property that

Homlkb(d)(S[deg S],TldegT]) =0 if degT # deg S —i. (5.4)

This is a stronger version of the condition (2.2). An easy induction argu-
ment yields a strengthened version of Lemma 2.1(1), as follows.

COROLLARY 5.6. — For an Orlov category <7, the mixed structure on
Kos(«/) makes K"(</) into a mixed triangulated category. Moreover, if
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X,Y € KP(&/) are objects such that X has weights < w and Y has
weights > w, then Hom(X,Y) = Hom(Y, X) = 0. O

5.2. Koszulescent Orlov categories

The vanishing property (5.4) and Corollary 5.6 closely resemble proper-
ties of Koszul categories. To make this resemblance into a precise statement,
we must impose the following additional condition on an Orlov category.

DEFINITION 5.7. — An Orlov category < is said to be Koszulescent if
the realization functor
real : D" (Kos(#)) — K" ()
is an equivalence of categories.
If o is Koszulescent, then (5.4) is equivalent to the defining condi-

tion (2.4) for a Koszul category, and Corollary 5.6 is equivalent to
Lemma 2.2. In particular, we have the following observation.

ProrosiTiON 5.8. — If & is a Koszulescent Orlov category, then
Kos(«) is a split Koszul abelian category. a

The following result is a sort of converse to the preceding one.

PROPOSITION 5.9. — Let ¥ be a split Koszul abelian category, and
consider the additive category

Orl(%) = {pure objects of weight 0 in D(%)}.
The isomorphism classes of indecomposable objects in Orl(€) are given by
Ind(Orl(%)) = {L[—wt L] | L € Irr(¥) }.

If we define deg : Ind(Orl(%)) — Z by deg(L[—wt L]) = wt L, then Orl(%)
becomes a Koszulescent Orlov category. Moreover, there is a natural equiv-
alence of abelian categories € —— Kos(Orl(%)).

Proof. — For brevity, let us write o/ = Orl(€). The description of inde-
composable objects in 7 follows from Lemma 2.1(3). For L, L’ € Irr(%), it
is obvious that Hom(L[—wt L], L'[— wt L']) = 0 in D"(%) if wt L < wt L/,
orif wtL =wtL but L 2 L. Thus, < is an Orlov category.

We will now construct a functor Q : € — KP(.<7). For an object X € €,
we use the weight filtration W¢ X to construct a short exact sequence

0= grl | X = Wi X/Wi_oX = grlV X — 0.
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This sequence determines an element 9y, = dx , € Ext'(gr} X, grlV | X).
Because all morphisms in ¢ are strictly compatible with WM, any mor-
phism f: X — Y gives rise to a morphism of short exact sequences of the
above form, and so, in D”(%), a commutative diagram

Ox K
gry X —— (gr;V; X)[1]
et (f)l lgrzvl (Hl (5.5)

gl ¥ —— (e}, Y)[1]
v,k

Next, consider the Yoneda product 9,_1-9), € Ext? (grl¥ X, gr}” , X), which
corresponds to the exact sequence

0= gl o X = Wi 1 X/Wi_3X = Wi X/Wy_2X — gryf X — 0.

This sequence arises from a filtration of the object W X/Wji_3X, so it
follows that

Op_1-Op = 0. (5.6)
Note that for any k € Z, the object (gr'V, X)[k] € DP(%) is pure of weight
0, so it is an object in 7. Moreover,

O_k[k] € Hom((gr, X)[k], (gr%—y X)[k + 1])
is a morphism in <. We now define Q : ¢ — KP(«/) by

QX) = (Q(X)*, d )
where
Q(X)k = (gr‘ivk X)[k]’ d%(x) = 6X7—k'
That this is a chain complex follows from (5.6). Moreover, from (5.5), we
see that any morphism f : X — Y in % induces a morphism of chain
complexes Q(X) — Q(Y), so this is indeed a functor.

For brevity, let us write ¢’ = Kos(«/) = K®(&/)4 N K(</)s. Since
the kth term of the chain complex Q(X ) is a homogeneous object of & of
degree —k, we see that Q actually takes values in €”. Let Qo : € — %’ be
the functor obtained from @ by restricting its codomain.

Note that applying the exact functor grkW to a short exact sequence in
% yields a (necessarily) split short exact sequence of pure objects. There-
fore, applying Q to a short exact sequence in % yields a sequence of chain
complexes satisfying the hypotheses of Lemma 2.5. Invoking that lemma,
we find that Q takes short exact sequences in % to distinguished triangles
in KP(«). Tt follows that Qp : € — %’ is an exact functor of abelian
categories, so it gives rise to a derived functor Q) : D(%) — D®(%”"). Let
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us compose this with the realization functor real : D*(¢”) — K®(«/) and
define

Q =real 0 Qf, : D*(¥¢) — K°(«).

It is easy to see that this functor induces isomorphisms

HOme(cg) (L[— wt L]7 L/[— wt L/ + k])
5 Homeo (o (L= wt L], (L[~ wt L)) [K])

for all L,L' € Irr(%) and all k € Z. (Indeed, both Hom-groups vanish
unless k¥ = 0.) Since objects of the form L[—wt L] generate both D®(%)
and KP(«7), it follows that Q : D®(¥) — KP(&/) is an equivalence of
categories.

It follows that real is full and essentially surjective. In particular, for all
objects X, Y € ¥’ and all k > 0, the induced map

real : Ext¥, (X,Y) — Hom (o (X, Y[K]) (5.7)

is surjective. On the other hand, according to [7, Remarque 3.1.17], that
map is always an isomorphism for k = 0,1, and if it is known to be an iso-
morphism when k < n for all X,Y € ¢’ then it is injective for k = n. (A
similar statement appears in [9, Lemma 3.2.3].) By induction, (5.7) is al-
ways an isomorphism. By the end of the proof of [7, Proposition 3.1.16], we
conclude that real is an equivalence of categories, and that <7 is Koszules-
cent.

Finally, we now see that Q) : D(¥) — DP"(%") is an equivalence of
categories as well. Since this is the derived functor of Qg : ¥ — %’, the
latter is an equivalence of abelian categories. In other words, € = Kos(<7).

a

We are now ready to complete the proof of the bijective correspon-
dence (5.1).

THEOREM 5.10. — The assignments </ +— Kos(&/) and € — Orl(¥)
provide bijections, inverse to one another, between equivalence classes of
Koszulescent Orlov categories and equivalence classes of split Koszul abelian
categories.

Proof. — In view of Proposition 5.9, it remains only to show that if
o is a Koszulescent Orlov category, then &/ = Orl(Kos(«)). Identifying
DP(Kos(#)) & KP (&), it is straightforward to see that an object of K (/)
is pure of weight 0 with respect to the mixed structure of Proposition 5.4
if and only if it lies in 7. ]
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Remark 5.11. — The proof that Orl(¥) is an Orlov category does not
use Koszulity in any way; it is valid for any split mixed abelian category.
Thus, using Proposition 5.4, we actually have a pair of maps

equivalence classes of split orl equivalence classes
mixed abelian categories ~ e | of Orlov categories |

However, in the absence of the Koszulity and Koszulescence conditions,
these maps are neither injective nor surjective.

5.3. Koszul duality and Koszulescent Orlov categories

In the previous section, we saw how to construct a Koszulescent Orlov
category starting from an arbitrary split Koszul category. However, when a
Koszul category has enough projectives, there is another, more elementary
way to build a Koszulescent Orlov category from it, as explained below.

THEOREM 5.12. — Let .4 be a split Koszul category with enough pro-
jectives, and in which every object has finite projective dimension, so that
we have a natural equivalence of categories

R:D"(#t) = KP(Proj(.#)),
where Proj(.#) is the additive category of projective objects in 4. Then
Proj(.#) is a Koszulescent Orlov category, with degree function
deg : Ind(Proj(#)) — Z given by deg P = —wt(P/rad P).
Moreover, the split Koszul abelian category
M* = Kos(Proj(.4))

has enough injectives, and every object has finite injective dimension.

From the description of the category Kos(Proj(.#)) in Proposition 5.4,
and in particular the description of its irreducibles and mixed structure,
we see that this definition of .#% coincides with that in (2.5), and that the
theorem is a restatement of Theorem 2.4.

Proof. — For clarity, we will not identify DP(.#) and K" (Proj(.#)); we
will instead explicitly use the functor R to go back and forth between them.
All shifts of objects of .# should be understood to be objects of D" (.#).
We proceed in several steps.

Because every object of .# has finite length, the Fitting lemma and its
consequences hold in .#. For instance, any object X € .# has a unique
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minimal subobject rad X (called its radical) such that X/rad X is semisim-
ple. In the special case where X is an indecomposable projective, X/rad X
is simple. These facts, and others related to the Fitting lemma, will be used
freely throughout the following proof.

Step 1. Proj(#) is an Orlov category. Let P be an indecomposable pro-
jective in ., and let L = P/rad P denote its unique simple quotient.
Consider its weight filtration We P, and let w be the smallest integer such
that W, P = P. Then gr’’V P = P/W,,_1 P is a semisimple quotient of P, so
we must in fact have that gr’¥ P = L and rad P = W,,_; P. In particular,
the simple object L, which has weight w, cannot occur as a composition
factor of rad P, so it follows that dim Hom(P, P) = 1.

More generally, suppose that P’ is another indecomposable projective,
with simple quotient L' = P’/rad P’. Then L cannot occur as a compo-
sition factor of P’ if wt L > wt L', and if wt L = wt L/, then L occurs in
P’ if and only if L = L, or, equivalently, if P = P’. We have just shown
that Hom(P, P') = 0if wt L > wt L' and P 2 P’, so Proj(.#) is indeed an
Orlov category.

Step 2. M* has enough injectives. Let L € Trr(.#), and let P — L be its
projective cover. Then Proposition 5.4 tells us that R(P[— wt L]) is a simple
object in .#", and every simple object arises in this way. Let P’ — L’ be
another projective cover of a simple object in .#Z. We claim that

Hompo( ) (P'[—=wt L'], L[-wt L+ k]) =0  unless P = P" and k = 0.
(5.8)
Indeed, this Hom-group obviously vanishes if & # wt L — wt L'. If we take
k = wt L—wt L', then the Hom-group above is isomorphic to Hom 4 (P’, L),
which vanishes unless P’ = P, in which case we necessarily have k& = 0.
On the other hand, we also have

Hompo( g (L[~ wt L], P'[—=wt L' + B]) =0 ifk<0  (5.9)

by Lemma 2.2, because the object P’'[—wt L’ + k] has weights < k in
DY (), while L|—wt L] is pure of weight 0.

The Hom-vanishing statements above have analogues in K (Proj(.#))
obtained by applying R. From (5.9) and the vanishing of (5.8) for k < 0,
we conclude that R(L[—wt L]) € .#%. Next, taking (5.8) for k = 1, we find
that

Ext',,(R(P'[—wt L']), R(L[—wt L])) =
Home(Proj(%)) (R(Pl[— wt L/D, R(L[— wt L —|— 1])) = 0
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Thus, R(L[—wt L]) is an injective object of .#". It is indecomposable, and
there is a nonzero map to it from the simple object R(P[— wt L]), so in fact
R(L[—wt L]) is an injective envelope of R(P[—wt L]).

Step 3. Koszulescence and finite injective dimension. Let ® : DP(.#%) —
DP(.#) denote the composition

DP(ah) " K (Proj(.a)) B DP ().

It is easy to see that for any two objects L, L’ € Irr(.#) and any k € Z,
induces an isomorphism

Hom po gty (R(L[—wt L]), R(L [~ wt I + K]))
5 Hompy( g (L= wt L], I'[— wt L' + k]),

as both Hom-groups vanish unless k = 0. Now, objects of the form L[— wt L]
generate DP(.#) as a triangulated category. If we let DP(.#%)" C DP(.#")
denote the full triangulated subcategory generated by objects of the form
R(L[—wt L]), then the above calculation shows that ® induces an equiva-
lence

D pogay : DX (AP =5 DP(M).
To describe DP(.#%)" in another way, note that it is the full triangulated
subcategory of DP(.#") generated by injective objects of .#%. Thus, it
contains precisely those objects of DP(.#") that can be represented by a

bounded chain complex of injectives. In particular, for an object X € .#% C
DY (.#%), we have

X € #*ND" (") if and only if X has finite injective dimension.

Let i : DP(.#%) — DP(.#") denote the inclusion functor, and let ¥
denote the composition

DP(#*) L DP(a®) 22 KP(Proj(.a)).
Since ¥ = Ro (P o), it is an equivalence of categories. Consider an object
X € 4% C DP(.#%). We obviously have
(realoi o U™ o real)(X) = real(X).

Because the realization functor commutes with cohomology [7, §3.1.14], it
follows that (ioW~'oreal)(X) € .#". Furthermore, since real is fully faithful
on .#", we must have (i o W' o real)(X) = X. In particular, every object
X € 4" is in the essential image of i.
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In other words, we have just shown that every object of .#" has finite
injective dimension. It follows that DP(.#*)" = D(.#"), so we have equiv-
alences of categories

®: D% — DP(#) and real = Ro®: D®(.#") — KP(Proj(.#)).
The latter shows that Proj(.#) is Koszulescent. O

Part 2. Sheaf Theory

6. Mixed and Weil Categories of Perverse Sheaves

As noted in the introduction, the triangulated category of constructible
Qg-complexes introduced by Deligne in [17] is too large for many purposes
in representation theory. Over the course of Part 2, we will study how to
replace it by a smaller category, and how to define sheaf functors on the new
smaller category. In the present section, we fix notation and assumptions,
and we review some facts about Deligne’s category. We will also define the
“miscible category.”

6.1. Weil complexes and Weil perverse sheaves

Let X be a variety over F,. We write X @ F, for the variety X Xgpecr,
SpecF, obtained by extension of scalars. This variety comes with a geo-
metric Frobenius map Fr: X ® F, - X ® F,. Assume that X is equipped
with a stratification . = {X}scs (for some index set S). All constructible
complexes should be understood to be constructible with respect to this
stratification. For any constructible complex F on X, we denote by »(F)
its pullback to X ® F,.

Let D%el(X ) denote the category of “mixed constructible complexes” in-
troduced by Deligne in [17]. (This category is often denoted DY, (X), cf. [7].)
We reiterate that the term “mixed” will not be used again for this category,
because that conflicts with the conventions of Section 2 and [9]. The term
“mixed” will be reserved for a category to be introduced in Section 7.

In this setting of DD(X), we have available the theory of weights
from [17]. Let us fix, once and for all, a square root of the Tate sheaf
on X. This allows us to form Tate twists F(%5) of a constructible complex
F € DUY(X) for any n € Z. For the aesthetic benefit of avoiding fractions,
we henceforth adopt the notation

Fln) = F(=3).
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We denote by Q, the constant sheaf with value @, on X or on any subva-
riety. Next, let j5 : Xs — X denote the inclusion map of the stratum Xj.
The following assumption (cf. [7, 2.2.10(c)]) will be in force whenever we
discuss constructible complexes:

{ For any s,t, the sheaf Hi(st*@g)\Xt is a local system

— 1
with irreducible subquotients of the form Q,(n). (6.1)

(In fact, most varieties we will encounter satisfy a much stronger condition;
see Section 7.) Next, consider the simple perverse sheaves

ICmx — js!*@e [dim X]{— dim X) and IC, = »(IC™X).

The condition (6.1) implies that each H*(IC™¥)|x, is a local system with
irreducible subquotients of the form @(n}

Let DY (X) denote the full triangulated subcategory of D2S(X) that
is generated by the objects IC™*. Similarly, let D (X) denote the full
triangulated subcategory of bounded complexes on X ® F, generated by
the IC,. Extension of scalars gives us a functor

s : DYINX) = Dy(X).
Let PWeI(X), resp. P (X), denote the abelian category of perverse Q-
sheaves in DW!(X), resp. D (X). By [7, 5.1.2], PW*!(X) may be thought
of as a certain category of perverse sheaves on X ® F, equipped with a
“Weil structure,” but the analogous statement does not hold for DYW°!(X).

By [7, Théoréme 5.3.5], every object F € PWe!(X) is equipped with
a canonical weight filtration, denoted W, F. The subquotients gr!V F are
pure, but not necessarily semisimple, cf. [7, Proposition 5.3.9]. (This fail-
ure of semisimplicity shows that PY%°!(X) is not a mixed category.) All

morphisms in PWe!(X) are strictly compatible with the weight filtration.
For F,G € DY(X), let us put

RHom(F,G) = a,RHom(F,G),
where a : X — SpecF,, is the structure morphism. We further put
Hom'(F,G) = H (Ra,RHom(F,G)).

Thus, Hom" (F,G) is a Q-sheaf over Spec F,. In other words, we regard it
as a Q,-vector space equipped with an automorphism

Fr: Hom'(F,G) — Hom'(F,G) (6.2)

induced by the Frobenius map. Because s is compatible with all the usual
sheaf operations, we have

Homp, (x)(5(F), (G)) = »(Hom'(F, G)). (6.3)
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In other words, Hom' (s¢(F), #(G)) is obtained from Hom®(F, G) by forget-
ting the automorphism (6.2).

The Hom-groups within D% (X) are somewhat different. By [7, (5.1.2.5)],
there is a short exact sequence of Q,-vector spaces

0 — Hom' *(F,G)r — Hom'(F,G) — Hom'(F, ) — 0, (6.4)

where (-)r, and (-)" denote coinvariants and invariants of Fr (that is, the
cokernel and kernel of Fr—id), respectively. Note that the natural morphism

Hompxgen(x)(]:, g) — HOmDy(X)(%(‘F)’ %(g))
factors through the map HomDvyycn(X)(}", G) — Hom(F,G)™ of (6.4).

6.2. Functors on the Weil category

The usual sheaf operations are defined on D2!(X), so when working with
DE,YEH(X ), we must check that that category is preserved by any functors
we wish to use. The following lemma is a useful tool for this.

LEMMA 6.1. — For F € DYY(X), the following conditions are equiva-
lent:
(1) F € DY(X).
(2) For each stratum js : X5 — X, we have j*F € DWWl (Xj).

For a similar statement on X ® Fq, see [9, Lemma 4.4.5]. We will prove
this simultaneously with the following result.

PROPOSITION 6.2. — Let X be a stratified variety. If h : Y — X is the
inclusion of a locally closed union of strata, then the functors h* and h'
(resp. h, and hy) send objects of DWA(X) to DYI(Y) (resp. DY(Y) to
DY(X))

Proof of Lemma 6.1 and Proposition 6.2. — Let DY(X) c DY(X)
be the full triangulated subcategory consisting of objects satisfying condi-
tion (2) of the lemma. This is the category referred to as the category of
constructible complexes in [7, §2.2.10]. The assumption (6.1) corresponds
to the condition in [7, §2.2.10(c)], and according to that statement, the
analogue of the proposition holds for DY!(X)" and DWe(Y)'. As a con-
sequence, the formalism of gluing of ¢-structures applies in Dgeil(X ). In
particular, DWe!(X )" admits a perverse t-structure; cf. [7, §2.2.17]. Since
that t-structure is bounded and has a finite-length heart, DW°!(X)’ is gen-
erated as a triangulated category by the simple perverse sheaves it con-
tains. But a simple perverse sheaf js.L clearly lies in DE,YQ”(X ) if and
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only if the irreducible local system £ is isomorphic to some @é [dim X](n).
Thus, DWe!(X)’ contains and is generated by the IC™™ so DWel(X)" =
DY(X). O

PROPOSITION 6.3. — For any stratified variety X, the functors D, ®*,
and RHom take objects of DW(X) to DWe(X).

Proof. — The statement for D is clear, since DIC™™ = IC™* for all s,
and these objects generate Dvy\fe“(X ). For ®*, we first consider the spe-
cial case where X consists of a single stratum X. In this case, ICT"™* =
Q,[dim X](— dim X), so

. L . — L —
ICT™ @ ICT™ = (Q, ® Q,)[2dim X](—2dim X) =
Q,[2d

[2dim X](~2dim X) = IC™™[dim X](~ dim X),

and the desired statement follows. For general X, suppose F,G € DY (X).
Given a stratum X; C X, we use the formula

L L
I (F®G)=jiF®jG
to see that each jI(F ®* G) lies in DWI(X,), so F ®* G € DYWI(X)

by Lemma 6.1. Finally, the result holds for RHom since RHom(F,G) =
D(F ®" DG). O

DEFINITION 6.4. — Let X and Y be varieties endowed with stratifica-
tions . and 7, respectively. A morphism f: X — Y is said to be weakly
stratified if for each stratum Y; C Y, its preimage f~1(Y;) C X is a union
of strata.

PROPOSITION 6.5. — Let X and Y be varieties endowed with stratifi-
cations . and 7, respectively, and let f : X — Y be a weakly stratified
morphism. Then f* and f' take objects of DY (Y') to objects of DVWI(X).

Proof. — For each stratum Xy C X, there is a unique stratum Y; C Y
such that X, C f=1(Y;). Let fs = flx. : X5 — Y;. For IC]"™ € Puix(Y),
we have j* f*IC)"™ = f*j*ICY"™. We know that j;ICi*™ € DYe!(V;) by
Lemma 6.1. We clearly have fXQ, = Q,, so f; takes DY (Y;) to DY (X).
Therefore, the object fj;ICI™ = j* f*IC]™™ lies in DW!(X,) for all s
and t. Using Lemma 6.1 again, we see that f*IC}"™ € DY (X), so the
proposition holds for f*. It then follows for f' = Do f* o D. O

The preceding results cover most of the functors we will encounter. (We
will prove that certain push-forwards preserve the Weil category in Sec-
tion 9.4.) For the most part, we will suppress further mention of D2¢(X)
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and silently regard sheaf operations as functors on the Weil category. It is
well known that all the usual sheaf operations enjoy the following property.

DEFINITION 6.6. — A functor F : DW*I(X) — DYe(Y) is said to be
geometric if it is a functor of triangulated categories that is equipped with
a natural transformation

RHom(F,G) — RHom(F(F), F(G)) (6.5)

and it “commutes with s,” i.e., there exists a triangulated functor F :
D (X) — Dz (Y) such that

FoxXsxoF.

For a geometric functor, the natural transformation (6.5), combined
with (6.4), gives rise to a commutative diagram

0 ———> Hom'™ ! (F,G)s, ——————> Hom'(F,G) ——————> Hom'(F,G)"" ———=0

| l |

0 —> Hom'~Y(F(F), F(G))fy —> Hom®(F(F), F(G)) —> Hom!(F(F), F(G)) ——= 0

(6.6)

6.3. Weight filtrations in the Weil category

Even though Dvy\fe“(X ) is not a mixed triangulated category in general,
an analogue of Lemma 2.1(2) still holds.

LEMMA 6.7. — Let F be an object of DY (X) with weights > a and <b.
For any integer w, there is a distinguished triangle

Few = F = Fory — (6.7)
where Fg,, has weights > a and < w, and F~,, has weights > w and < b.

Proof. — The statement holds trivially unless a < w < b, so assume
that that is the case. We proceed by induction on the “total length” of F,
i.e., on the sum of the lengths of the perverse sheaves PH*(F). If the total
length is 1, then F is a shift of a simple perverse sheaf, and so is pure. The
result holds trivially in this case as well.

Otherwise, let k be the smallest integer such that PH¥(F) has com-
position factors of weight < w + k. (If there is no such k, then F has
weights > w, and the lemma holds trivially.) Form the distinguished trian-
gle

T<kF = F = o1 F — .
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Now, consider the term G = W, xPH*(F) in the weight filtration of
PH¥(F). The inclusion G C PHY*(F) gives us a natural morphism f :
G[—k] = 7> F. Note that the truncation 7, F must have weights > w. It
follows that

Hom(G[—k], T<x F[1]) =0
by [7, Proposition 5.1.15(ii)]. Therefore, f factors through F, say by f :
G[—k] — F. Complete this to a distinguished triangle

G-k TFroF . (6.8)

Since the induced map PH*(G[—k]) — PH*(F) is injective, we see that
PHY(F') = PHY(F) if i # k, and that PH*(F') = PH*(F)/G. That is, F’
has lower total length than F, so by induction, there exists a distinguished
triangle

Few = F = FLy = (6.9)

with weights as specified in the statement of the lemma. Using the “x
notation of [7, §1.3.9] (cf. Lemma 5.3), we see from (6.8) and (6.9) that

F e {G[=k} = ({(Few} x {720 }) = {GI=R1} # {FCu ) = {7}
In particular, there is some object 7" € {G[—k|} x {FL,,} together with a
distinguished triangle
F'—F—FL, —.
Since G[—k] and F_,, each have weights < w, the same holds for all objects
in {G[—k]} * {FL,,}. Thus, this triangle is of the desired form. O

COROLLARY 6.8. — Let Pure%™ (X) ¢ DW!(X) denote the category
of pure objects of weight 0. If F € DWe(X) has weights > a and < b,
then

F e Pure W (X)[a] * Pure S (X)[a + 1] * - - - % Pure % (X)[0).

6.4. Mixed perverse sheaves and the miscible category

As noted earlier, the most obvious marker of the failure of PWel(X) and
DWeil(X) to be mixed categories is the fact that pure objects need not be
semisimple. As a first step towards remedying this, we must discard some
objects from our categories. Consider first the full subcategory of PWel(X)
given by

PLX(X) = {F € PY¥(X) | for all 4, gr}¥ F is semisimple},
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called the category of mixed perverse sheaves. This is not a Serre sub-
category of PWeI(X), as it is not closed under extensions, but it is closed
under subquotients. In particular, the kernel and cokernel of any morphism
in PZ*(X) is again in PZ™(X), so PZ*(X) is naturally an abelian cate-
gory. It is easy to see that PgX(X ) is, in fact, a mixed category, so the
terminology is justified.

Next, we consider the full additive subcategory

Pure»(X) = {pure semisimple objects of weight 0 in D% (X)}

of DWe(X). When there is no ambiguity about the stratification, we will
usually just denote this category by Pure(X). Inspired by Corollary 6.8, we
introduce the following notion.

DEFINITION 6.9. — An object F € DY!(X) is said to be miscible if
F € Pure(X)[a] * Pure(X)[a + 1] * - - - « Pure(X)[?]

for some integers a < b. A geometric functor F : DY(X) — DY) is
said to be miscible if it takes miscible objects to miscible objects.

The full subcategory of DYW°!(X) consisting of miscible objects is denoted
D§isc (X)

Unfortunately, this is not a triangulated subcategory of DY (X) (except
in the trivial case where X is the empty variety), because the cone of a
morphism between two miscible objects need not be miscible. It is desirable
to replace Dg‘,iSC(X ) by a smaller category that is triangulated and that
contains P’2*(X) as the heart of ¢-structure. The authors do not know how
to do this in general, but in the next section we will describe a solution for
a very special class of stratifications.

7. Affable stratifications

For the remainder of the paper, we will restrict ourselves to varieties
whose stratifications are of one of the following two types:

DEFINITION 7.1. — An affine even stratification of X is a stratification
7 = {X}ses satistying the following two conditions:
(1) Each X, is isomorphic to the affine space A4™ X,
(2) For all s,t € S and i € 7Z, the sheaf H*(IC™>|x,) vanishes if i #
dim X, (mod 2), and is isomorphic to a direct sum of copies of@(i)
otherwise.
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DEFINITION 7.2. — A stratification . of X is said to be affable if it
admits a refinement .’ that is an affine even stratification.

The main examples come from representation theory: according to [9,
Corollary 4.4.3], the stratification of a partial flag variety for a reductive
group by orbits of a Borel subgroup is an affine even stratification. It follows
that the stratification by orbits of a parabolic subgroup is affable. Similar
statements hold for partial affine flag varieties, stratified by orbits of an
Iwahori or parahoric subgroup. Note that these results are stronger than the
older Kazhdan-Lusztig theorem [19] on pointwise purity: the latter states
only that each IC?ix\Xt on a flag variety is a pure object of DYW°l(Xy),
whereas [9, Corollary 4.4.3] tells us in addition that each cohomology sheaf
belongs to PZ*(X,).

7.1. The Weil category for an affable stratification

To make sure that the considerations of Section 6 apply to affine even
and affable stratifications, we must check that (6.1) holds.

LEMMA 7.3. — Condition (6.1) holds for any affable stratification .
of X.

Proof. — We proceed by induction on the number of strata in X. If
X consists of a single stratum, there is nothing to prove. Otherwise, let
js : Xs — X be the inclusion of an open stratum, and let ¢ : Z — X be
the inclusion of the complementary closed subvariety. Consider the distin-
guished triangle

js’@z[dim X5]<— dimXS> — ICISniX — i*i*IC?iX .

We know by induction that the induced stratification on Z satisfies (6.1).
It is clear from the definition that i*ICISniX has the second property in
Lemma 6.1, so i*IC™™ € DY (Z). By Proposition 6.3, i'TC™™ = Di*[C*
lies in DY°(Z) as well. It follows from the distinguished triangle

i'j9Q, [dim X,](— dim X,) — ¢ ICT™ — i*ICT™ —
that i!js!@g lies in DY°!(Z), so using D again, we have i*js*@@ e DW(Z),

and this implies (6.1). O
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7.2. The mixed category

If . is an affable stratification of X, we define the mixed category of X
to be the triangulated category

DUX(X) = K"Pure(X). (7.1)

Our first goal is to describe the relationship between this category and
Ds(X).

THEOREM 7.4. — There is a natural equivalence of additive categories
I:93DEX(X) = DEs(X). (7.2)

Once this result is proved, we will identify SDZ*(X) with D'Z¢(X). We
will explain in Section 7.3 how to transfer various notions and results from
Section 3 to the setting of D'Z(X). For now, note that this identification
gives us a canonical functor

L: DEX(X) — DE(X).

By an abuse of notation, we will also write ¢ for the composition D'L*(X) —
DIsc(X) — DW‘“I(X). Let ¢ = s 0, so that we have a commutative
diagram

Dglﬂlx 5 'DWCII(X)

In the course of the proof of Theorem 7.4, we will simultaneously establish
the following statement, which tells us in part that D'Z™(X) and PZ>(X)
are mixed versions of Do (X) and P (X), respectively.

PROPOSITION 7.5. — (1) D'*(X) admits a natural t-structure whose
heart can be identified with P'%*(X), and the functor . : D'Z*(X) —
DWel(X) is t-exact and restricts to the inclusion functor PS5 (X)) —
PWeil(X).

(2) The functor ¢ : D'E*(X) — D (X) is t-exact and induces an iso-
morphism

@HomDEm(X)(]:,QQL)) ;> Hompy(X)(C}', Cg)

nez
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The proofs of Theorem 7.4 and Proposition 7.5 will occupy most of this
section. We begin by recalling some key results about affine even stratifica-
tions from [9]. Those results are mostly stated not for P'Z™(X) but rather
for the Serre subcategory

PZX(X) C PLX(X) generated by {IC™*(n) | n =dim X, (mod 2)}.
Note that P'Z*(X)’ is stable under integral Tate twists F — F(2n).
LEMMA 7.6. — We have PZ*(X) = PZX(X) & PZX(X)/(1).

Proof. — Let F,G € PZX(X)' be two simple objects. It is sufficient to
show that Ethlpr;ix(X)(.F,g<].>) = 0. That, in turn, would follow from the

vanishing of the Ext'-group in the larger category P%*!'(X). We now pro-
ceed by induction on the number of strata in X. Choose a closed stratum
js : X = X, and let h : U — X be the complementary open subvari-
ety. From the distinguished triangle j..j.G(1) — G(1) — h,h*G(1) — in
DWeil(X), we obtain the long exact sequence

-+ — Hom(j: F, 556(1)[1]) — Hom(F, G(1)[1])
— Hom(h*F,h*G(1)[1]) — - -

The last term vanishes by induction. For the first term, j*F (resp. j.G(1))
lies in the triangulated subcategory of DY (X,) generated by Q,(n) with
n = dim Xy (mod 2) (resp. n # dim X, (mod 2)). It is well known that
on X = AM™Xs we have HomD;ycu(Xs)(@é,@e[mm)) = 0 if m is odd
(cf. Lemma 8.1(1)), so the first term vanishes as well. It follows that
EXté\;\;oil(X) (.7:7 g(l)) =0. O

In the following theorem, parts (2)—(4) are proved in [9] only for PZ*(X )’

(which is denoted P in loc. cit.), but it is clear from the preceding lemma
that the same statements hold for P'Z*(X) as well.

THEOREM 7.7. — Suppose X has an affine even stratification.
(1) [9, Theorem 3.3.1 and Corollary 3.3.2] The category P (X) has
enough projectives and enough injectives, and finite cohomological
dimension. In addition, the realization functor

real : DP o (X) — Do (X)

is an equivalence of categories.

(2) [9, Lemma 4.4.8] The category PS*(X) has enough projectives and
enough injectives, and finite cohomological dimension. An object
F € PBX(X) is projective (resp. injective) if and only if »(F) €
P.»(X) is projective (resp. injective).
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(3) [9, Theorem 4.4.4] The category P> (X) is Koszul.
(4) [9, Theorem 4.4.4] The functor ¢ = s|pmix(x) : PZ*(X) = P»(X)
makes P'S™(X) into a mixed version of P (X). The composition

DPP*(X) — D"P 4 (X) :7 Dy (X)

makes DP PZ*(X) into a mixed version of D (X). O

The proof of the next lemma depends on Proposition 7.5. Due to the
structure of the argument for Theorem 7.4, it is convenient to give a con-
tingent proof of this lemma now, even though Proposition 7.5 has not yet
been proved.

LEMMA 7.8. — For any F,G € D'%*(X), the action of Fr on Hom(.F, .G)
is semisimple. In other words, Hom(1F,.G) € P'%*(pt). Moreover, the func-
tor ¢ induces an isomorphism

Hompesx () (F, G(n)) — (Hom(:F,1G)(n))"" . (7.3)
In addition, there is a natural isomorphism
Hompwei(x) (tF, 1G) = Hompmix () (F, G) @Hompmix x) (F, G[—1]). (7.4)

Remark 7.9. — The proof given below uses only the formal properties
stated in Proposition 7.5 and general properties of DVy‘{e”(X ); it does not
make explicit use of the definition of DB (X).

Proof. — For brevity, let us put A = Hom(¢F,:G). This is an object
of va‘fe“(pt). The weight filtration for a perverse sheaf on a point splits
(cf. Lemma 8.1(2) below), so we may write A ~ ), A™, where each A" is
pure of weight n. Note that (A(—n)) is a subspace of A™: indeed, is the
Fr-eigenspace of eigenvalue ¢™/2. Thus, to show that Fr acts semisimply on
A, it suffices to show that (A(—n))™ = A" for all n.

To prove the latter assertion, consider the map

HOI’HD;ix(X)(.F, g) — HomDy(X)(C}', Cg) (75)

induced by ¢. Because ¢ = o, we have that Homp_, (x)(¢F, (G) is canon-
ically isomorphic to the vector space A with the grading forgotten, cf. (6.3).
Furthermore, the map (7.5) factors as

Hompumx(x)(F,G) = HomD\;{en(X)(L]:, 1G) — A" - A" 5 A (7.6)

where the first map is induced by ¢, and the second by s, cf. (6.4). Taking
Tate twists and summing up over n, we can build the diagram

D Hompuix x) (F.G{—n)) = (A=) + P A"~ 4. (1.7)
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The second map is injective, but the composition is an isomorphism by
Proposition 7.5. Therefore, the second map must be an isomorphism as
well, so (A(—n))fr = A" as desired.

We now see that the first map in (7.7) is also an isomorphism. This
establishes (7.3). Since the composition

Hompmix(x)(F,G) = Hompy/you(x)(Lf, 1G) — Hom (¢ F, 1G)™

is an isomorphism, the first map provides a canonical splitting of the short
exact sequence (6.4), and we have

HomDvyycn(X)(Lf, 1G) = Hom (. F,1G)™ @ Hom (e F, 1G[—1))kr.

But since the action of Fr is already known to be semisimple, there is a
canonical identification Hom (¢ F, 1G[—1])r, = Hom (e F, :G[—1])", and (7.4)
follows. O

Proof of Theorem 7.4 and Proposition 7.5 for affine even stratifications.
We begin by temporarily changing the definition of D™ (X) to D' (X) =
DPPB(X). We will first show that the desired results hold with this mod-
ified definition, and then we will see that it is equivalent to (7.1). We know
from Theorem 7.7(3) that PZ*(X) is a Koszul category, so by Proposi-
tion 5.9, there is a natural equivalence of categories

DUX(X) 2 KP(Orl(PZX(X))). (7.8)

The inclusion functor PLX(X) — PWel(X) is exact, so it gives rise
to a derived functor DPPZ¥*(X) — DPPWel(X). Define 5 : DLX(X) —
DWeil(X) to be the composition

DX (X) = DPPUX(X) — DPPY(X) 2 DYeil(X).

By construction, j is a functor of triangulated categories that commutes
with Tate twists and restricts to the inclusion functor PL*(X) — PYel(X).
In particular, for any simple object IC;"™ € P'Z*(X), we have
JACT[n)(—n)) = ICT[n)(—n).
The full additive subcategories
Orl(PZX(X)) c DPPLX(X)  and  Pure(X) c DY(X)

both consist of objects that are direct sums of various IC™™*[n](—n), so J

restricts to an additive functor jlonpm<(x)) : Orl(PZ™(X)) — Pure(X).
The functor j has the properties attributed to ¢ in Proposition 7.5:

part (7.5) is obvious, and part (7.5) holds by Theorem 7.7(4). Therefore,
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according to Remark 7.9, we may use Lemma 7.8 in our setting if we re-
place ¢ by 7 in that statement. In particular, the formula (7.4) shows that

mix

7 DYX(X) — DY (X) extends in a canonical way to an additive functor

j: SDPX(X) — DY(X).

Moreover, this functor is fully faithful and makes the following diagram
commute:
SDZ(X)
7
DY)
T

DY)

<

(7.9)

We claim that the essential image of j is the full subcategory D'5*¢(X) C
DWeil(X). Note that an object lies in this essential image if and only if it is
in the essential image of j, so we prove the claim by working with j instead.
First, given F € D'*¢(X), say

F € Pure(X)[a] * Pure(X)[a + 1] % - - - % Pure(X)[d],
we will prove by induction on b — a that there exists an object

F € Orl(PX(X))[a] + Orl(P'S™ (X)) [a+1] - - -+ Orl(P'E>(X))[b] € DE™(X)

(7.10)
such that (F) = F. In the case where b—a = 0, F is a direct sum of objects
of the form IC™*[n](a —n), and every such object is clearly in the essential
image of j|or|(p,;ax( X))[a)- In the general case, there is a distinguished triangle

F 5 F-F -5 P
with F' € Pure(X)[a] and
F'" € Pure(X)[a + 1] * Pure(X)[a + 2] - - - * Pure(X)[b].

By induction, we may assume that ' = j(F') and F" = j(F") for some
objects F', F"" € DZ*(X), where F' € Orl(PZ*(X))[a] and

F" e Or(PZ*(X))[a 4 1] * Orl(PZX(X))[a + 2] * - - - Orl(PZX(X))[b].
In view of the equivalence (7.8) and Theorem 5.10, we have
Hompuix (x) (F", F') = 0,
so using Lemma 7.8 again, we see that 7 induces an isomorphism

HOmD;VciI(X) (./_'.”,‘F/[l]) = HOm'D.x;ix(X) (ﬁ”,f’[l]).
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In particular, 6 : F” — F'[1] is equal to j(3) for some morphism 4 :
F'" — F'[1] in DLX(X). If we let F denote the cocone of 4, then we have
F = j(F). Thus, every object of D'Z(X) lies in the essential image of j
and j.

Conversely, by (7.8), every object of D'Z™*(X) has the property (7.10)
for some integers a < b. Since j(Orl(PZ*(X))[n]) C Pure(X)[n], it follows
that  takes values in D'Z¢(X ). Thus, the essential image of j is D'Z¢(X),
and j induces the desired equivalence (7.2). We have now established both
Theorem 7.4 and Proposition 7.5 for our modified definition of DZX(X)
together with the functor 7 : D'LX(X) — DWel(X). The same argument
also shows that j restricts to an equivalence

Orl(P'Z¥(X)) — Pure(X).
Combining this with (7.8), we see that our modified definition of D2 (X)
is equivalent to (7.1), as desired. O
The following facts emerged in the course of the preceding proof.
COROLLARY 7.10. — Suppose X has an affine even stratification ..
There are natural equivalences Pure(X) = Orl(PZ™*(X)) and D'Z*(X) =
DPPIX(X).

The following fact brings notions from Sections 4 and 5 into our setting.

PROPOSITION 7.11. — Suppose X is endowed with an affine even strat-
ification, and let Proj(X) and Inj(X) denote the categories of projective and
injective objects, respectively, in PS5 (X). Then the three categories

Pure(X), Proj(X), Inj(X)

are all Koszulescent Orlov categories. If o/ denotes any of these three cat-
egories, the inclusion functor & — D'S*(X) extends to an equivalence of
triangulated categories K" (/) = DLX*(X).

Proof. — These assertions follow from Theorem 7.7(2) and Corollary 7.10
together with Proposition 5.9 and Theorem 5.12. O

We now consider the case of a general affable stratification .. Note
that if .#7 is an affine even refinement of .%, then a number of categories
associated to . can naturally be regarded as full subcategories of the
corresponding categories associated to .. Specifically, we have full sub-
categories

éay(X) C éayl(X)

where & is one of:

Pure7 F;.mlx7 Dm1x7 %Dm1x7 Dr}msc7 Dwell.

ANNALES DE L’INSTITUT FOURIER



KOSZUL DUALITY AND SEMISIMPLICITY OF FROBENIUS 1571

To deduce the results for . from what we have already proved for .%;, we
need to give some of these full subcategories alternate descriptions.

Let F be an object of D'E*(X), IDLX(X), D3¢(X), or DY(X). We
say that F is .%-constructible if we have PH'(F) € PWl(X) for all 7. (In
SDEX(X), the notation PH*(F) is an abuse that should be understood to
mean PH' (@ F).) Of course, in all but DY (X), an .&-constructible object
automatically satisfies the stronger condition that PH*(F) € PZ*(X).

LEMMA 7.12. — Suppose . is an affable stratification of X, and let .}
be an affine even refinement. Then we have

Ex(X) ={F € &, (X) | F is S-constructible}, (7.11)
where & denotes one of Pure, P™ix pmix Qgpmix pmisc . pWeil |

Proof. — For each of the categories Pure (X ) C Pure s, (X), PZ*(X) C
PEX(X), and DY!(X) C DYI(X), this assertion is obvious.

Next, let 2 C DZ*(X) denote the full subcategory consisting of .#-
constructible objects. This is a triangulated subcategory; it is generated
as a triangulated category by .-constructible objects in PZ*(X), and
therefore by simple objects in PZ*(X). All such objects lie in D'Z*(X),
so 2 C DZ*(X). On the other hand, objects of D'Z™*(X) are obviously
&-constructible, so D'Z*(X) C 2 as well. Thus, D'Z*(X) = 2.

It is an immediate consequence that an object F € SDTX(X) lies in
SDL>(X) if and only if F is .-constructible.

It remains to consider the case of D*°(X) C D'U(X). Recall that the
equivalence I : SDPX(X) — DLS°(X) restricts to the identity functor on
Pures (X), and therefore on Pure s (X) as well.

By Proposition 7.5(7.5), the functor ¢ : DYX(X) — DY (X) has the
property that ((P2*(X)) = PZ*(X). Since every object of D'Z*(X) is
contained in some class of the form Pure s (X)[a] * Pures(X)[a + 1] - - - %
Pure (X)[b], we have «(D'Z™*(X)) C D'Z*¢(X). It follows that the equiva-
lence I of (7.2) satisfies

I(SDEX(X)) C DE°(X).

Consider now the category D'ZI(X) N DY (X), which is precisely the
full subcategory of D*°(X) consisting of .-constructible objects. Be-
cause (7.11) has already been shown for SD'ZX(X), the fact that the equiv-
alence I : SDUX(X) — DU(X) preserves perverse cohomology means

that it restricts to an equivalence

1:SDYX(X) = DP(X) N DY (X).
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Therefore, DL¢(X) N DY(X) C DE(X). But we obviously have
DEse(X) C Dg“)lsc(X) NDY(X), so DLsC(X) = Dg;ilsc(X) NDYW(X), as
desired. O
In the second paragraph of the preceding proof, we established the fol-
lowing statement, which we now record separately for future reference.

LEMMA 7.13. — Suppose . is an affable stratification of X, and let
1 be an affine even refinement. Then D'S*(X) is the full triangulated
subcategory of D'y*(X) generated by objects of P'5™(X). O

We are now almost finished with the general case.

Proof of Theorem 7.4 and Proposition 7.5 in general. — Given a va-
riety X with an affable stratification ., choose an affine even refinement
1. The known equivalence I : SDBX(X) — D3*¢(X) and the functor ¢ :
D"}ilx(X ) — Dvy‘{f“(X ) both preserve the property of being .-constructible.
Therefore, by Lemma 7.12, we obtain functors I : SDEX(X) — DEs¢(X)
and ¢ : D'EX(X) — DWe(X) with the desired properties simply by restrict-
ing the known functors defined using .%; to suitable full subcategories. [

PROPOSITION 7.14. — If . is an affable stratification, then Pure(X) is
an Orlov category, and v : DS (X) — DWel(X) induces an equivalence

Kos(Pure s (X)) = PZX(X).

Proof. — By Corollary 7.10, Pure», (X) is an Orlov category, so its full
subcategory Pure s (X) is an Orlov category as well. It follows from Corol-
lary 5.5 that

Kos(Pure s (X)) = Kos(Pure.», (X)) N DE*(X).

By Lemma 7.12, this means that Kos(Pure s (X)) is the full subcategory of
.-constructible objects in Kos(Pure o, (X)). Since ¢ preserves .-construc-
tibility and induces an equivalence Kos(Pure, (X)) = P'5¥(X), the result
follows. g

COROLLARY 7.15. — If . is an affable stratification, the equivalence
I: SDEX(X) — DUs¢(X) and the functor v : DUX(X) — DYE(X) are
independent, up to isomorphism, of the choice of affine even refinement of
¥ used to define them.

Proof. — The two functors are related by a diagram like (7.9), so it
suffices to prove the statement for ¢. The restriction of ¢ to the Orlov
category Pure(X) is clearly independent of the choice of refinement. The
uniqueness of ¢ then follows from Theorem 4.9. O
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7.3. D'Z¥°(X) as an infinitesimal extension

Theorem 7.4 makes it possible to study Dg“ﬂisc(X ) using the machinery of
Section 3. Note first that the isomorphism (7.4) can be identified with (3.1).
On the other hand, the natural transformation v of (3.3) can be identified
with the first map in (6.4). Thus, the following definition is consistent with
Definition 3.1.

DEFINITION 7.16. — A morphism f : F — G in DWe(X) is said to be
infinitesimal if »(f) = 0.

There is no good notion of a genuine morphism in D?}SC(X ), however.
Recall that this is not a natural notion even in IDE*(X), in that it is not
stable under conjugacy. Such a notion can be transferred through an iso-
morphism of categories, but not through an equivalence as in Theorem 7.4.
As a substitute, we use the following notion.

DEFINITION 7.17. — A morphism f : F — G in D'5¢(X) is said to be
miscible if there is a commutative diagram

_ouhH
L F —>1G

zl J/z

.7:4f>g

where f : F — G is some morphism in D?)X(X ), and the vertical maps are
isomorphisms.

For other terms from Section 3, we encounter a problem: there are two a
priori different notions of “distinguished triangle” in D;iSC(X ), which we
distinguish with the following terms.

DEFINITION 7.18. — A diagram F' — F — F" — F'[1] in D'$*(X) is
called:
(1) a Weil distinguished triangle if it is a distinguished triangle in the
triangulated category D}Yeil(X );
(2) a miscible distinguished triangle if it is isomorphic to a diagram
obtained by applying ¢ to a distinguished triangle in D'Z*(X).

Since ¢ : DEX(X) — DWe(X) is a triangulated functor, every miscible
distinguished triangle is a Weil distinguished triangle. We will eventually
prove the converse as well (see Theorem 9.11), so there is actually only a
single notion of “distinguished triangle” in D;iSC(X ). In the meantime, the
following criterion will be useful.
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LEMMA 7.19. — Let F : DW*!(X) — DW(Y) be a miscible functor.
The following conditions on F' are equivalent:

(1) F takes every miscible morphism in D'Z*°(X) to a miscible mor-
phism in DEs¢(Y).

(2) F takes every miscible distinguished triangle in D'5*°(X) to a mis-
cible distinguished triangle in D'%¢(Y').

(3) F restricts to a pseudotriangulated functor F : DI(X) —
'Dglsc (Y).

After Theorem 9.11 is proved, this lemma will be superfluous, cf. Re-
mark 9.12.

Proof. — Since F' is a functor of triangulated categories that takes mis-
cible objects to miscible objects, it certainly takes Weil distinguished trian-
gles to Weil distinguished triangles. Note that a Weil distinguished triangle
is miscible if and only if at least one of its morphisms is miscible. The
equivalence of conditions (1) and (2) above follows.

Next, in view of Lemma 7.8, the commutative diagram (6.6) shows that
any miscible functor commutes with v o @ in the sense of Definition 3.7.
From that definition, we see that conditions (2) and (3) are equivalent. [

The last notion to translate from Section 3 is that of a “genuine functor,”
whose definition is given below. Table 7.1 summarizes the correspondence
between the terminology of Section 3 and that of the present section.

DEFINITION 7.20. — A miscible functor F : DWel(X) — DYe(Y)
is said to be genuine if there is a functor of triangulated categories F :
DX (X) — DUX(Y) such that 1o F = F o . In that case, I is said to be
induced by F.

Note that a genuine functor in this sense automatically satisfies condi-
tion (2) of Lemma 7.19, and therefore the other conditions as well. In par-
ticular, a genuine functor automatically gives rise to a pseudotriangulated
functor D'E#¢(X) — DB¢(Y). Note also that the definition of “induced”
above is consistent with Definition 3.10, and recall from Lemma 3.12 that
the induced functor F of F, if it exists, is unique up to isomorphism.

The following lemma is useful is reducing genuineness problems to the
case of an affine even stratification. We will frequently make silent use of
it in the sequel, by stating results for general affable stratifications but
considering only affine even ones in the proof.

LEMMA 7.21. — Let .¥ be an affable stratification of X with affine even
refinement .1, and let 7 be an affable stratification of Y with affine even
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refinement . If F : DY (X) — DY) is a genuine geometric functor
that takes objects of DWW (X) to objects of DW(Y), then F\Dgen(x) :
DWel(X) — DW(Y) is genuine as well.

Proof. — Let F : DUX(X) — D%X(Y) be the functor induced by F.
Identifying D'Z>(X) and D%™>(Y') with full subcategories of D%*(X) and
D?iX(Y), respectively, we see from Lemma 7.12 that F must take objects
of DLX(X) to objects of DB*(Y). The functor F|Df;iX(X) s DEX(X) —
DUX(Y) satisfies LOF|fDr;ix(X) = Flpwen(x)ot, 50 F|pwen(y) is genuine.  []

8. Sheaves on an affine space

The easiest example of a variety with an affable stratification is, of course,
an affine space A™ endowed with the trivial stratification. In this section,
we establish a large number of technical results on miscibility of objects
and morphisms on an affine space. These results lay the groundwork for
the more general results to be proved in Section 9. Throughout this section,
- will denote the trivial stratification on A™.

LEMMA 8.1. — (1) In DW(A™), we have

Q, ifie{0,1} andn =0,

0 otherwise.

Hom(Q,, B, (n) = {

Terminology for SDE(X) Terminology for D'U(X)

infinitesimal morphism infinitesimal morphism

genuine morphism —

morphism conjugate to Lo .
miscible morphism

a genuine morphism

distinguished triangle [miscible] distinguished triangle*
pseudotriangulated functor miscible functor*
genuine functor genuine functor

Table 7.1. Dictionary for infinitesimal extensions and miscible sheaves.
For terms marked (*), see Theorem 9.11.
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(2) For any object F € DY (A™), there is a (noncanonical) isomor-
phism F = @, PH'(F)[—i].

(3) The weight filtration of a perverse sheaf F € PY°(A™) splits cano-
nically. That is, there is a canonical isomorphism F = @5 y gr}/v F.

(4) An object F € DY (A™) is miscible if and only if each PH'(F) is
semisimple.

Proof. — Part (1) is an immediate consequence of (6.4) and the well-
known fact that Hom%y(Am)<@e’@2) = 0 for ¢ > 0 (see [20, Corolla-
ry V1.4.20)).

By induction on the length of a perverse sheaf, it follows from part (1)
that for any two perverse sheaves F,G € PV}"’”(A’”), we have Hom® (F,G) =
0 for ¢ > 2. Part (2) then follows by a standard argument.

For part (3), let w be the largest weight of any simple subquotient of
F. From the weight filtration of F, we can form a short exact sequence
0— F — F— F" — 0where F” is pure of weight w and F’ has weights <
w. By induction, it suffices to show that this sequence has a canonical
splitting. To show that, we must check that Hom(F”, F') = Ext'(F", F') =
0. The fact that Hom(F"”, F’) = 0 is obvious from considering the weight
filtration. From (6.4), this implies that Hom(F”, F')F" = 0. In other words,
1 is not an eigenvalue of the action of Fr on Hom(F"”, F'). It follows that
Hom(F”, F')g = 0 as well, so using (6.4) again, we obtain an isomorphism
Hom'(F”, F') =% Hom'(F”, F')*. But Hom'(F", F') = 0.

Finally, part (4) follows from parts (2) and (3) and the fact that a pure
perverse sheaf is miscible if and only if it is semisimple. O

A slight modification of the notion of purity will also be useful to us.
Let us call an object F € DY (X) baric-pure of weight w if each PH*(F)
is pure of weight w. This notion has been studied by S. Morel [22]; the
terminology comes from [2]. There is an analogue of Lemma 6.7 for baric
purity; in fact, in the baric version, the triangle (6.7) is functorial (see [22,
§4.1] or [2, §2.1]). Note that unlike ordinary purity, baric purity is stable
under translation. It follows from Lemma 8.1 that for any F € DWel(A™),
there is an isomorphism

FePF
J

where each F7 is baric-pure of weight j.

LEMMA 8.2. — (1) If F,G € DY (A™) are baric-pure with distinct
weights, then Hom(F,G) = 0.
(2) If F,G € DY (A™) are both baric-pure of weight j, then the cone
of any morphism is also baric-pure of weight j.
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Proof. — The first part follows from Lemma 8.1(1), and the second part
is immediate from consideration of the long exact sequence of perverse
cohomology sheaves associated to a distinguished triangle. g

LEMMA 8.3. — Let F,G € PZX(A™) be pure of weight j. There is a
canonical isomorphism ¢ : HOmDVyYeil(Am)<.F, g) — Hosz’yeu(Am)(}', gnp.
Moreover, we have ¢(f o g) = f[1] o ¢(g) = &(f) o g.

This statement actually holds for any variety X with an affable stratifi-
cation, as can be seen from the proof.

Proof. — For two objects F,G € PZX(X) that are pure and have the
same weight, we clearly have

Hompuix(x)(F,G[-1]) =0  and  Hompuu(x)(F,G[1]) = 0.

The existence of ¢ is an immediate consequence of (7.4). Note that ¢ takes
genuine morphisms F — G to infinitesimal morphisms F — G[1]. The
composition formulas are then simply instances of (3.2). O
For the next two lemmas, we will denote the isomorphism of Lemma 8.3
by
r e HOmDX}'eil(Am)(.F, G) — r¢€ HOmDX/\{eil(Am)(.F,g[l]).

LEMMA 8.4. — Suppose F,G € PZX(A™) are pure objects of weight 0.
For any morphism r : F — G, the cone of ¥[—1] : F[—-1] — G is isomorphic
to the object

. . 1 r
K=G¢F with Fr acting by [ J .

Proof. — This statement clearly holds when r = 0. On the other hand,
in the special case where F = G = @ and r : F — G is any nonzero map,
then 7 € Ext'(Q,, @,) corresponds to a short exact sequence in P%e!(A™)
whose middle term is an indecomposable pure rank-2 perverse sheaf on A™.
Such an object has the form described above by [7, Proposition 5.3.9(i)].
Finally, in the general case, note that F and G are both direct sums of
copies of @[ One can always choose direct-sum decompositions of these
objects so that r : F — G arises as a direct sum of some number of zero
maps and some number of isomorphisms @ ) = @ - Thus, the general case
follows from the special cases considered above. O

LEMMA 8.5. — Suppose F,G € DY (A™) are miscible baric-pure ob-
jects of weight 0. Any morphism f : F — G can be written as a sum

f= Z(pi[*i] + ') (8.1)
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involving morphisms p' : PH'(F) — PH'(G) and 7 : PH'(F) — PH*~1(G)[1].
Let K denote the cone of f. Its cohomology sheaves are described by

4 4 4 i1
PH'(K) = cok p* @ ker p' ™! with Fr acting by [1 Tl ] . (8.2)

, , i+1 , ,
where #+1 denotes the composition ker pit! -—=PH!(G) — cokp .

In particular, K is miscible if and only if 7! (ker pi™t) C im p* for all i.

Proof. — The fact that f can be written as a sum (8.1) follows from
Lemma 8.1. Note that the map PH'(F) — PH*(G) induced by f is none
other than p'. In particular, f is an isomorphism if and only if each p* is
an isomorphism. Thus, in the special case where f is an isomorphism, its
cone K = 0 is indeed described by (8.2).

Suppose henceforth that K # 0, and let k be the smallest integer such
that PH*(K) # 0. Fix an isomorphism F = @ PH*(F)[—i], and define two
new objects as follows:

F =@rH (F)-i] & (kerp" )~k — 1],
i<k

F'= P "H(F)[=il & (imp") [~k - 1].
i>k+1

For each i, there is an obvious short exact sequence
0 — PHY(F') — PH'(F) — PH(F") — 0.

By putting in appropriate shifts and taking the direct sum over all i, we
obtain a split distinguished triangle

F' = F—=F"—. (8.3)
Note that 7’ and F” are both miscible by construction. Next, we define
maps f': F' — 7<;G and " : F" — 751G by
f=3 0 ) L = Y @i ) +
i<k i>k+1

where p**1 : im p*+1 — PH*+1(G) is the inclusion map. These definitions
make the two leftmost squares below commute.

F F F v

N

T<kG G 510 (T<kG)[1]
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The rightmost square commutes as well: the map 751G — (7<£G)[1] van-
ishes by Lemma 8.1(2), and (8.3) splits by construction. Thus, this is a mor-
phism of distinguished triangles. By the 9-lemma [7, Proposition 1.1.11],
we can extend this to a diagram in which all rows and columns are distin-
guished triangles:

v F F!
r f "

T<kG —= G —— 154G ——

From the known cohomology vanishing conditions on the first two rows, it
is obvious that PH(K') = 0 for i > k, and that PH*(K") = 0 for i < k. In
fact, we also have PH*(K") = 0, since the map

PRI o PR (,,46) 2 PHEH(G) (5.5)
is injective. Therefore, we have canonical isomorphisms
’C/ = Tgklc and IC// = 7'>k’C.

If we already knew that the cohomology sheaves PH'(K') and PH*(K") could
be described by (8.2) in terms of f’ and f”, then the result would follow
for K. Note that K’ and K" each have fewer nonzero cohomology sheaves
than K. Therefore, by induction, it suffices to prove (8.2) in the special
case where I has nonzero cohomology in a single degree. We may further
assume, without loss of generality, that K is in fact concentrated in degree
0.

With this assumption in place, we may still construct the diagram (8.4),
taking k£ = 0. In this case, we have 759/ = 0, so f” is an isomorphism. That
diagram tells us that to prove the result for the middle column, it suffices
to prove it for the first column. In other words, by replacing f : F — G by
f'+ F' = 17<0G, we may henceforth assume that

PHY(F) =0 for i > 1, and PH(G) = 0 for i > 0.

Under these conditions, let us form yet another copy of (8.4), this time
with k = —1. Now we have 7<_1K = 0, so to prove the result, it suffices to
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consider the third column. Making another replacement, we have reduced
the problem to following situation:

FEHF) e H F)-Y, G2HG), =i

For brevity, let us put F* = PH*(F) for i = 0,1. In particular, we have
p! =0, so F! = kerp'. We further know that p° = p° : F° — G is injective,
cf. (8.5). Form the octahedral diagram associated with the composition

FO o e r-1-Lg

Foo Fl-1]

cok p°
Applying Lemma 8.4 to the distinguished triangle F'[—1] — cokp® —
K —, we obtain the desired result. O
LEMMA 8.6. — Suppose F,G € DY (A™) are miscible baric-pure ob-

jects of weight 0. If f : F — G is a morphism whose cone is miscible, then
f is miscible.

Proof. — Let p' and r* be as in (8.1), and let f/ = Y. p'[—i]. We will
construct a commutative diagram

f
F—G
¢lz |
f/
F—G
where ¢ and 1 are isomorphisms. Since f’ is obviously miscible, f will be
as well. By Lemma 8.5, we know that r’(kerp’) C imp'~! for all 4. For
each i, choose a complement U C PH*(F) to kerp’. In other words, we
have PH*(F) = ker p’ ® U®. Then, let u’ : PH(F) — PH*~1(F) be the map
such that

ul(Uz) = O> ui(kerpi) C Ui_1> (pi_l © ui)lkerpi = Ti‘kerpi-
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1

)

Since p*~! induces an isomorphism U*~! 2 im p*~! and r?(ker p*) C im p*~
there is a unique map u’ satisfying the conditions above. Next, let v? :
PHY(G) — PH*=1(G) be a map such that
(v' o p)|ys = 7|y
Such a map certainly exists since p® induces an isomorphism U* & im p?,
although it is not uniquely determined. Note that we have an equality
ri=plou +viop’: sz‘(]_—) — pHifl(g)
and therefore, using the formulas in Lemma 8.3, we have
7t =p T 1) ou 4+ vt o p' : PHY(F) — PH'=Y(G)[1].
Define ¢ : F - Fand ¢ : G — G by

&= idugicr il + 0 [—i], Y= idugi(gl—i] — '[-i].
It is now easy to see that
flog=>> (' +p tod)[—i] =) (' +# =i op')[-i] = o f.
Finally, 7* and 9 are infinitesimal, so by Lemma 3.3, ¢ and v are themselves
isomorphisms, as desired. O

9. Miscibility and genuineness results

We have now defined a number of properties that a functor between
categories of constructible complexes on varieties over F, may have. In
order from strongest to weakest, they are:

genuine = miscible = geometric

= preserves the Weil category.

This section contains the main results of the paper, which state that vari-
ous functors (including smooth pull-backs, open and closed inclusions, and
smooth proper push-forwards) are genuine. For a few more functors (in-
cluding tensor products and arbitrary proper push-forwards), we prove
miscibility. Under an additional hypothesis, we will show that arbitrary
proper push-forwards are genuine in Section 10.

We will generally not comment on the property of preserving the Weil
category in the proofs below, as this has already been checked for most
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functors in Section 6 (two exceptions occur in Proposition 9.4 and Corol-
lary 9.17). We will likewise remain silent about the property of being geo-
metric, since this is essentially automatic for the usual sheaf operations.

Along the way, we also prove that Weil and miscible distinguished tri-
angles coincide, as promised in Section 7.3, and we establish a pointwise
criterion for semisimplicity (Proposition 9.15) that may be useful in other
contexts as well.

9.1. Basic results on genuineness

The following proposition is the main tool we will use to apply results
from Section 4 in the sheaf-theoretic setting.

PrOPOSITION 9.1. — Let . be an affable stratification of X, and 7
an affable stratification of Y. Let F : DY (X) — DY(Y) be a geometric
functor, and let o/ C D'S°(X) and B C D'%°(Y) each be one of the Orlov
categories of Propositions 7.11 or 7.14.

(1) If F(&/) C B, then F is a miscible functor. Furthermore, F takes
miscible morphisms to miscible morphisms.

(2) If, in addition, the restriction F| : &/ — 98 is homogeneous, then
F' is genuine.

Proof. — By Lemma 7.19, the first assertion implies that F|Dg;isc( X) -
DUsC(X) — DBC(Y) is a pseudotriangulated functor, so the second as-
sertion follows from it by Theorem 4.11, using Theorem 7.4 and Propo-
sition 7.11. Thus, it suffices to prove the first assertion. We will prove
simultaneously that F' takes miscible objects to miscible objects and mis-
cible morphisms to miscible morphisms. Let f : 7 — G be a morphism in
DuUx(X) = KP(&/). Write these objects as chain complexes: F = (F*,d)
and G = (G*,d). Let I = {j,j+1,...,k} C Z be the smallest interval in
Z such that F* = G = 0 for i ¢ I. We proceed by induction on the size
of I. With k denoting the largest element of I, then there is an obvious
distinguished triangle

Fo-k > F > F -

in K" (<), where F' is the complex obtained from JF by replacing its kth
term by 0. We can form the analogous triangle G¥[—k] — G — G’ — for G. It

is clear that Hom(F*[—k],G’) = 0, so the composition F*[—k] — F g
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factors through G*[—k|, and we obtain a morphism of triangles

FF[—k] F F! Fr—k+1]
f’“[k]i fl f’l if’“[kﬂ]
G"* [~k g g GF—k +1]

for some morphisms f*, /. All the objects in the rightmost commutative
square are chain complexes whose nonzero terms appear only in degrees
i € I ~ {k}. Therefore, by induction, all objects and morphisms in the
square

F(uF') — F(uF*[-k +1])

| |

F(g") F(G*[k +1])
are miscible. Since the morphism F(vf) : F(1.F) — F(.G) arises by com-
pleting this square to a morphism of distinguished triangles, it follows that
F(uF), F(1G), and F(.f) are all miscible. O
The next three results are straightfoward applications of the preceding
proposition.

PROPOSITION 9.2. — Suppose X and Y are endowed with affable strat-
ifications . and 7, and let f : X — Y be a weakly stratified morphism. If
f is smooth, then the functors f*, f': DY (V) — DY (X) are genuine.

Proof. — In place of f* and f', we will instead consider the functor
It = f*[d)(—d) = f'[~d](d), where d denotes the relative dimension of f.
This functor is t-exact and takes simple perverse sheaves to pure semisimple
perverse sheaves of the same weight. More specifically, if b : f~1(V;) — X is
the inclusion map, then fHICI™ = h.Q,[n](=n), where n = dim f~*(Y}).
The constant sheaf @e[n]<fn> on the smooth variety f=1(Y;) is the di-
rect sum of simple perverse sheaves of weight 0 on the various connected
components of f~(Y;), so h!*@e [n]{(—n) is also a direct sum of simple per-
verse sheaves of weight 0. Thus, f* gives rise to a homogeneous functor
Pure(Y) — Pure(X), so it is genuine by Proposition 9.1. O

PRrROPOSITION 9.3. — Let X be a variety with an affable stratification.
The Verdier duality functor D : DYe(X)°P — DWel(X) is genuine.

Proof. — The category Pure(X)°P C DY (X)P is clearly an Orlov cat-
egory with degree function given by

degPure(X)Op (Icgmx [n]<_n>) =n=- degPure(X) (Icg’llx [n](—n))
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We clearly have D(Pure(X)°P) C Pure(X), and D : Pure(X)°P — Pure(X)
is a homogeneous functor. The result follows by an analogue of Proposi-
tion 9.1. |

PROPOSITION 9.4. — Let X and Y be two varieties equipped with af-
fable stratifications. Then, for F € DY (X) and G € DY!(Y), we have
FXG e DY (X xY). Moreover, the induced stratification . x 7 on
X xY is affable, and the functor ® : DWW (X)x DWeil(Y) — DYl (X xY)
is genuine.

See Section 4.3 for remarks on homogeneity and genuineness for bifunc-
tors.

Proof. — It suffices to treat the case where . and .7 are both affine even
stratifications, so we henceforth restrict to that case. Let j;; : X5 x Y3 —
X x Y denote the inclusion of a stratum. Recall that

P(FRG)=GIFRG  and  j,(FRG) = FRGG. (91)
Using these facts, it follows by elementary dimension calculations (cf. [7,

Proposition 4.2.8]) that X takes perverse sheaves to perverse sheaves. In
fact, the same calculations also show that

ICT™ KIC™ = 1CE (9.2)
Now, on the variety A™ x A™, we clearly have @Mn X @eAm = @MnxA"}'
Using this observation together with (9.1) and (9.2) to compute j; ,ICY}
and jiwIC?i", we see that the second condition of Definition 7.1 holds.
Thus, . x .7 is an affine even stratification. Now, (9.2) shows that X takes
pure semisimple objects in either variable to pure semisimple objects, so

it clearly takes values in the Weil category when applied to objects in the
WEeil category. Lastly, it is genuine by Proposition 9.1. g

9.2. Open and closed inclusions

The following theorem tells us in part that mixed categories satisfy the
axioms in [7, §1.4.3] for the formalism of “gluing,” so all subsequent results
of [7, §1.4] apply in this setting.

THEOREM 9.5. — Let i : Z — X be the inclusion of a closed subvariety
that is a union of strata, and let j : U — X be the inclusion of the
complementary open subvariety. The functors i*, i', i., j*, j«, and ji are
all genuine. Moreover, the induced functors on the mixed categories enjoy
the following properties:
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(1) The usual adjointness properties hold.
(2) For F € D'Y™(X), there are functorial distinguished triangles

Wi F = F = " F — and  §ij*F = F = i, i*F — (9.3)

in DBX(X).
(3) The functors i, : DEX(Z) — DEX(X) and j.,j : DE*U) —
DUX(X) are fully faithful.

Remark 9.6. — As an example of a statement that follows purely from
the formalism of gluing, we have by [7, §1.4.6(b)] that j* induces an equiv-
alence

DZX(X)/D5*(Z) — DZ*(U).
Here, we have identified D'Z*(Z) with a full triangulated subcategory of
D2*(X) using the fully faithful functor i,. This observation will be used
in the proof of Theorem 11.5.

Before proving this theorem, we recall a result about the structure of
projectives in P o (X) from [9]. Let us put

AT = j,Q,[dim X,)(~ dim X,)
and

VI = jwQ,[dim X,](— dim X).
These objects are perverse sheaves by [7, Corollaire 4.1.3], a priori only
in Pge“(X ), although it clearly follows from Theorem 9.5 that they lie a

posterioriin P (X). AT is called a standard perverse sheaf, and V™ is
called a costandard perverse sheaf. The same terms are used for the objects

Ay =((AT™)  and V= (V)

in P (X). According to [9, Theorem 3.3.1], every projective in P o (X) has
a filtration with standard subquotients, and every injective has a filtration
with costandard subquotients. To be more specific, it follows from “BGG
reciprocity” (see [9, Remark (1) following Theorem 3.2.1]) that the standard
objects A; occurring as subquotients of the projective cover of IC; all have
the property that X, C X;.

Proof of Theorem 9.5. — By Lemma 7.21, it suffices to treat the case
where . is an affine even stratification, and we henceforth assume this to
be the case. The proof is somewhat lengthy and proceeds in several steps.

Step 1. i, and j*. These two functors send semisimple pure objects to
semisimple pure objects. That is, they induce functors Pure(Z) — Pure(X)
and Pure(X) — Pure(U). Moreover, the latter functors are homogeneous
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functors of Orlov categories because i, and j* are t-exact. By Proposi-
tion 9.1, these functors are genuine.

Step 2. j1. Our strategy is to show that this functor induces a homoge-
neous functor Proj(U) — Proj(X). Specifically, consider a stratum X C U.
Let Ps denote the projective cover of ICT™ in PX(X), and let P, denote
the projective cover of the simple object IC™|;; in P2 (U7). Tt suffices to
show that

PP, (9.4)
We begin by showing that j*P; = P.. Note first that we at least have
7*P; € P“}?x(U), since j* is already known to be genuine. To prove that
j*Ps is projective, it suffices, by Theorem 7.7(2), to show that {(j*Ps) &
7*(¢(Ps)) is a projective object in P& (U). Making use of the equivalence
in Theorem 7.7(1) and the fact that ((Ps) is projective, we have

Eth(j*C(Ps)a G) = Hom(((Ps), j+G[1]) = Hom(g(PS),le(j*g))

for any G € P& (U). Since PH'(j.G) is supported on Z, it cannot contain
IC; as a composition factor, so the last Hom-group above vanishes. We
conclude that j*¢(Ps) and j* Ps are projective. For similar reasons, we have

Hom(((Py), i4i'¢(Ps)) = Ext! (¢(Py), i4i'¢(Ps)) = 0,

so we deduce from the distinguished triangle i.i'C(P;) — ((P;) —
J«j*C(Ps) — that there are isomorphisms

Hom(¢(Ps), ((Ps)) = Hom(C(Ps), j+j"C(Ps))
= Hom(5¢(Fs), 57¢(Ps)) = k.

In particular, we have that j*((Ps) is indecomposable, so j*P; is as well.
Since j* P, is an indecomposable projective with a nonzero map j*P, —
IC™™|;;, we must have j*P, = P!, as desired.

Counsider now the distinguished triangle (51 P)) — ((Ps) — ((i4i*Ps) —
in D (X). Recall that {(Ps) has a standard filtration consisting of A,
with X, C X;. All such X, are contained in U, so i*A; = 0, and therefore
¢(i*Ps) = 0. Since (¢ kills no nonzero object, we conclude that i*P; = 0 as
well. Thus, the natural map ji P, — Ps is an isomorphism.

Step 3. i*. The strategy is similar to that in Step 2. For any s € .,
let P, denote the projective cover of IC™™ in P2 (X). For any standard
object A; € P& (X), we have that i*A; is either 0 or a standard object in
P.o(Z). In either case, it is a perverse sheaf. Since ((P;) has a standard
filtration, ((i*Ps) is a perverse sheaf as well, and hence so is * P;. From
the distinguished triangle

G1j* Py = Py — i, Ps — (9.5)
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and the right t-exactness of ji, we see that i,i*P; is a quotient of Ps.
Therefore, like any quotient of an indecomposable projective, it is either
indecomposable or 0. Indeed, we saw in Step 2 that it is 0 if X, C U. On
the other hand, if X, C Z, there is a nonzero morphism i*P; — IC;“iX.
Since

Hom(i* (¢(P.)), G[1]) = Hom(¢(P,), i.G[1]) = 0

for all G € P (Z), we see that ((i*Ps) is projective, and therefore so is
*P;. We have shown that

. 0 if Xy CU,
1Py =
P! if X, CZ,

where P!’ is the projective cover of IC™™ in P%X(Z). In particular, i* in-
duces a homogeneous functor Proj(X) — Proj(Z), and is therefore genuine.

Step 4. j and i'. These follow from Steps 2 and 3 and Proposition 9.3
by the formulas j, Z Do jioD and i' £ Doi* = D.

Step 5. Adjointness properties. The fact that the induced functors on
the mixed categories have the usual adjointness properties follows from
Lemma 3.15.

Step 6. Functorial distinguished triangles. By Step 5, for any F € D'SX(X),
we have an adjunction morphism e : 4,i'F — F. Let us complete this to a

distinguished triangle
it F = F -5 K 2 dat Fl1. (9.6)

After applying ¢, we obtain a distinguished triangle in Dge“(X ) that is
canonically isomorphic to the functorial distinguished triangle

00 (0F) =5 o F -5 5,570 F) -2 i (P[] (9.7)

In particular, we see that (9.7), which is a priori only a Weil distinguished
triangle, is actually miscible. Recall from Lemma 3.9 that the functor F
induced by a pseudotriangulated functor F' is given by F & w o F o ..
Therefore, applying @ to (9.7) gives us a functorial distinguished triangle in
D2™(X) that is isomorphic to (9.6). The argument for the second triangle
in (9.3) is similar.

Step 7. Fullness and faithfulness. We first note that i, : D'Z*(Z) —
DX(X) is faithful, because the original functor i, : DWW (Z) — DWI(X)
is. In addition, for F € DE(Z), the adjunction map i*i,F — F is an
isomorphism because the same statement holds in Dyy‘feil(Z ), so for any
G € D'Y*(Z), we have

Hompgxx(x)(z*f7l*g) = HOmer;ix(Z) (Z*'L*]:,g) = HOmD?}ix(z) (f, g)
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Thus, i, : HOmD;ix(Z) (F,G) — HOmD;ix(X)(i*F, i+G) is an injective map
between vector spaces of the same dimension, so it is an isomorphism. The
arguments for j, and j, are similar. O

COROLLARY 9.7. — If h : Y — X is the inclusion map of a locally
closed subvariety that is a union of strata, then h*, h,, h', and h, are all
genuine.

Proof. — The map h can be factored as an open embedding followed by
a closed embedding, and the pull-back and push-forward functors for each
of those maps are genuine by Theorem 9.5. 0

We are now able to prove the following mixed analogue of [9, Theo-
rem 3.3.1].

PROPOSITION 9.8. — Assume X has an affine even stratification. Every
projective object in P'S*(X) has a filtration with standard subquotients,
and every injective object has a filtration with costandard subquotients.

Proof. — We will prove the statement for projectives; the injective case
is similar. We proceed by induction on the number of strata in X. Let
j : X3 = X be the inclusion of an open stratum, and let ¢ : Z — X
be the inclusion of the complementary closed subvariety. For a projective
P € PZX(X), recall from the proof of Theorem 9.5 that i*P is also a
perverse sheaf. Since j* is t-exact and j, is right t-exact, we have a short
exact sequence

0—jij*P —- P —i,i*P — 0.
Since X; is an affine space, j* P is semisimple, and j,5* P is a direct sum of
standard objects. On the other hand, the projective object i*P € P'L*(Z)
has a standard filtration by induction. Thus, P has a standard filtration.
a

Remark 9.9. — Tt can also be deduced using the methods of [9, Lem-
ma 4.4.8] that if P € PZ*(X) is projective, then the standard filtration of
¢(P) lifts to some filtration of P with subquotients F; satisfying ((Fs) =
C(A™X). But the stronger statement in Proposition 9.8 requires knowing
that js and j,. are miscible functors; it does not directly follow from the
results of [9], as far as we understand.

Remark 9.10. — Now that we know that the objects A™* belong to
PLX(X), it is easy to check, by a further use of Theorem 9.5, that
Ext®(A™X IC™*(n)) = 0 unless n = —k. In other words, the A™* are
“Koszul objects” of P'Z*(X) in the sense of [9, Definition 2.14.1], cf. the
remark following [9, Theorem 3.11.4].
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9.3. Weil and miscible distinguished triangles

We can now supply a foundational fact about D'Z¢(X) that was pro-
mised in Section 7.3. The proof relies on Theorem 9.5.

THEOREM 9.11. — Assume that X has an affable stratification. A dia-
gram

F' = F—=F"—=F[1

in D'YS°(X) is a miscible distinguished triangle if and only if it is a Weil
distinguished triangle.

Remark 9.12. — We now see that all three conditions of Lemma 7.19
hold for all miscible functors. In particular, every miscible functor F' :
DWeil(X) — DY(Y) gives rise to a pseudotriangulated functor F | pmise (x)
DLsC(X) — DB(Y), as indicated in Table 7.1.

Proof. — Recall that every miscible distinguished triangle is a Weil dis-
tinguished triangle; we need only prove the opposite implication. It suffices
to treat the case where . is an affine even stratification, and we henceforth
restrict to this case.

We begin by proving the statement in the special case where X = A™.
It follows from Lemmas 8.1 and 8.2 that any Weil distinguished triangle
F = F — F" — in DZ(A™) can be written as the direct sum over
j € Z of triangles

(F'Y = F = (F'y —

in which all three terms are baric-pure of weight j. In particular, to prove
the proposition, it suffices to consider the case where F', F, and F" are
all baric-pure of weight j. Since all three objects are miscible, all three
morphisms in the triangle are miscible by Lemma 8.6, so the distinguished
triangle is miscible, as desired.

For the case of a general variety X with an affine even stratification, we
proceed by induction on the number of strata in X. Choose a closed stratum
ji : Xy = X,and let h : U — X be the inclusion of the open complement to
X;. From the given distinguished triangle, form the following commutative
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diagram:
hh*F' —— hh*F —— hhW*F" ——

jt*jt*]:/ H]t*]:}—ﬁjt*]t F'——

The columns of this diagram are miscible triangles by Theorem 9.5. Fur-
thermore, the triangles h*F" — h*F — h*F" — and j;F — j;F —
j¥F" — are miscible by induction, as U and X; each consist of fewer strata
than X. Since hy and j;, are miscible functors, the top and bottom rows of
this diagram are miscible triangles. Thus, the given distinguished triangle
is obtained by taking the “cone” of the miscible commutative diagram

JusJi FII=1] —— G FI-1] —— Gy F'[-1] ——

| | |

hh*F ——— h*F ——— hh* F" ———

and is therefore miscible itself, as desired. O

9.4. Proper stratified morphisms

Let X and Y be two varieties equipped with affable stratifications, de-
noted . and 7, respectively. In this section, we will study functors arising
from morphisms f : X — Y that respect the stratifications, in the following
sense.

DEFINITION 9.13. — Assume X and Y have affine even stratifications.
A morphism f: X — Y is called a stratified morphism if the following two
conditions hold:

(1) For each stratum Y; C Y, its preimage f~(Y;) C X is a union of
strata.
(2) For each point y € Y;, the collection of spaces

Sy =AXsn ) | Xs C FTH (YD)}
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constitutes an affine even stratification of f~'(y). Moreover, there
is an isomorphism

iy x Y, = f71(12)

that restricts to an isomorphism (XN f~1(y)) x Y; — X for each
X, and such that the composition

FHw) < Y 1) S v
is just projection onto the second factor.
If X and Y have only affable stratifications, then f : X — Y is called a

stratified morphism if both stratifications admit simultaneous affine even
refinements that make f stratified in the above sense.

This definition is very close to the one originally introduced by Goresky
and MacPherson [18, Definition 1.2]. Note that part (1) is simply the defi-
nition of a weakly stratified morphism.

The remainder of the section is devoted to studying proper stratified
morphisms. We begin by giving a useful alternate characterization of pure
miscible objects.

DEFINITION 9.14. — An object F € DW!(X) is said to be sterile of
weight w if for all s € ., the objects j*F and j\F are pure and semisimple
of weight w.

It is immediate from the definition that a sterile object of weight w is
pure of weight w.

PRrROPOSITION 9.15. — Every sterile object is miscible, and therefore
semisimple.

Proof. — Let F € DY (X) be sterile of weight w. We proceed by induc-
tion on the number of strata in X. If X consists of a single stratum, then
F is miscible because it is pure and semisimple by definition. Otherwise,
choose a closed stratum j; : X; — X, and let h : U — X be the inclusion
of the complementary open subset. Then h*F € DWI(U) is sterile, and
therefore miscible by induction. It also follows that hyh*F is miscible. On
the other hand, j;F is pure and semisimple, and so miscible, by definition.
Consider the distinguished triangle

Mh*F — F = juji F = . (9.8)

To show that F is miscible, it suffices to show that 6[—1] : juj; F[—1] —
hyh*F is a miscible morphism. Consider the distinguished triangle

Jesihih* F — hih*F — h h*F —,
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which is miscible by Theorem 9.5. There is no nonzero morphism
Gt F[—1] = hoh*F, so 6[—1] factors through j.jihh*F — hh*F. We
are therefore reduced to showing that the map j; F[—1] — jihh*F is mis-
cible. If we complete this map to a distinguished triangle, we simply obtain
the diagram

JEFI-1] = jih* F — §iF —
given by applying j; to (9.8). Here, the first and last terms are miscible

by the definition of a sterile object, and the middle term is miscible by
Theorem 9.5. Therefore, the whole triangle is miscible by Theorem 9.11. O

The following lemma is a special case of Theorem 9.18 below.

LEMMA 9.16. — Let f : X — A™ be a proper stratified morphism,
where A™ is endowed with the trivial stratification, denoted 7. Then,
for F € DYY(X), we have f.F € DY (A™). Moreover, the functor f, :
DY(X) — DW(A™) is miscible, and for a simple perverse sheaf ICT™ €
Puix(X), we have that PH*(f,IC™™) = 0 if |k| > dim X — m.

Proof. — Assume that . is an affine even stratification, and consider
a simple object IC™™ € P%X(X). In addition to the vanishing condition
stated at the end of the lemma, we will prove that all nonzero PH*( f,IC™X)
are in fact direct sums of copies of @e [m]{k—m). That assertion implies that
fIC™> Jies in DYel(A™) and is miscible (by Lemma 8.1(4)). In particular,
it follows that f, preserves the Weil category and, by Proposition 9.1, that
[ : DYE(X) — DWCIl(A™) is miscible.

We proceed by induction on the number of strata in X. Let j; : Xy =& X
be the inclusion of an open stratum, and let i : Z — X be the inclusion of
the complementary closed subvariety. If X, C Z, then, by a slight abuse of
notation, we may write f,IC™™ 2 (f 04),IC™*. Note that foi:Z — A™
is also proper and stratified, so the lemma holds for (f o), by assumption.
Thus, f,IC™> has the required properties.

If s = ¢, on the other hand, we may form the distinguished triangle

Gagi IO 5 IO — 4, " ICP™ —

>~

Let n = dim X;. Applying f. = fi, we obtain
(f 0 3@, [n)(—n) = LICT™ = (f 04).i*ICP™ — . (9.9)

By Theorem 9.5, i*IC]"™ is a miscible object of DW!(Z), so by induction,
(f 01),i*IC™™ is miscible. We also know that PH* (i*IC}*) = 0 for k > 0.
Moreover, for k < —1, any composition factor of PH*(i*IC}*™) is a simple
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perverse sheaf IC™> with dim X,, < n. The cohomology vanishing for (f o
1)+ implies that

PHE((f 0 i) " IC™™) =0 ifk>n—m— 1.

Recall from Definition 9.13 that there is an isomorphism X; =2 A"™™ x A™
such that (f o j;) : A — A™ can be identified with projection onto the
second factor. It follows that

(f 0@, [n]{(—n) = Q,[2m — n](n — 2m) = (Q,[m](n — 2m))[m — n].
Thus, PH*((f o jt);@z[n](—m) vanishes except when k& = n — m. Now,

forming the long exact sequence in perverse cohomology associated to (9.9),
we see that

PHF((f 04),*IC™™) ifk<n—m—1,
PHF(fICP™) 2= $Q,[m](n — 2m) if k=n—m,

otherwise.

o

By induction, each PH*((foi),i*IC™™) is miscible and therefore semisimple.
But we already know that f,IC™™ is pure of weight 0, so in fact, each
PH*(£,1C) must be a direct sum of copies of @é [m]{k —m), as desired.
We have just seen that PH*(f,IC™) = 0 for k > dim X; — m, and the
vanishing for £ < m — dim X; follows by Verdier duality. O

COROLLARY 9.17. — Let f : X — Y be a proper stratified morphism.
If F € DWI(X), then f.F € DY(Y).

Proof. — For each stratum j; : Y; — Y, we know that .F|f—1(yt) €
DYWeil(f=1(Y;)), so by the previous lemma, the object

JE ST = ()« (Flp-10v))
lies in DY°!(Y;). By Lemma 6.1, f.F € DY(Y). O

THEOREM 9.18. — If f : X — Y is a proper stratified morphism, then
the functor f. : DWeN(X) — DYN(Y) is miscible. If f is also smooth, then
f+ is genuine.

Proof. — We will show that f, takes any simple perverse sheaf on X
to a pure miscible object of the same weight on Y. It will then follow by
Proposition 9.1 that f. is miscible. In general, the induced functor f, :
Pure(X) — Pure(Y') will not be homogeneous, so we cannot use that same
proposition to prove genuineness. However, in the case where f is also
smooth, it has a right adjoint f' that is genuine by Proposition 9.2, so f.
is genuine by Theorem 3.16.
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Let j: : Y3 — Y denote the inclusion of a stratum in Y, and let h :
f~Y(Y;) — X denote the inclusion of its preimage in X. In addition, let
fo=flf1vy) f~1(Y;) — Y;. Then h* and h' are miscible by Corollary 9.7,
and fo. is as well, by Lemma 9.16. It follows that the objects

GELICTX = fo pIC™X and i fIC™X 2 fo AITCMX

are miscible. We know that f,IC™ is pure of weight 0. Since Y is endowed
with an affine even stratification, it follows that all objects j; f*ICLniX and
it f*ICI;1iX are pure. Since they are pure and miscible, they are semisim-
ple, and so f,IC™ is sterile. By Proposition 9.15, f,IC™ is miscible, as
desired. g

9.5. Other miscible functors

It is reasonable to expect that f, is genuine for any proper stratified
morphism f, regardless of whether it is smooth, but unfortunately, the
authors do not know how to prove this statement. Similar remarks apply
to the following statement.

PRrROPOSITION 9.19. — Suppose X has an affable stratification. Then
the functors

é . Dgeil(X) x Dyeﬂ(X) N 7)\75’\5611()()7
RHom : DY (X)P x DY(X) — DY (X)
are miscible.

Proof. — For ®*, let us assume that . is an affine even stratification.
If F7,G € Pure(X), then for any stratum j, : X, — X, we have

FFOGEF®G  and  A(FOQ) =IFGG.  (9.10)
= we clearly have @@L@ s @ ,- It follows
that the tensor product of semisimple pure objects on A™ is semisimple.
Since jiF, jiG, and j;g are pure and semisimple, (9.10) shows that j(F®*
G) and j'(F ®" G) are pure and semisimple. Thus, F ®* G is sterile, so it
is miscible by Proposition 9.15. Since the bifunctor @ takes Pure(X) x
Pure(X) to Pure(X), it is miscible by Proposition 9.1(1).

Finally, since we have a natural isomorphism RHom(F,G) = D(F®*DG),
the miscibility of RHom follows from Proposition 9.3 and the statement
for ®*. O

On a single stratum X, = Adim X
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9.6. Ind-varieties

We conclude Section 9 of the paper by explaining how to extend the
above results to certain ind-varieties. Let X be an ind-variety over F,.
Let . = {X}secs be a collection of disjoint locally closed ordinary (finite-
dimensional) subvarieties of X whose union is X. Assume that the closure of
each X is the union of X, and finitely many other X;’s. In particular, each
X, is an ordinary, finite-dimensional variety, so it makes sense to form the
perverse sheaf ICT™"™ € PEX(X,). We call . an affine even stratification or
an affable stratification if it restricts to such a stratification on each variety

The index set S is partially ordered by containment of closures: we say
that s < ¢t if Xy C X;. Whenever s < ¢, we have an inclusion map is,t
X, — X;, and if s < t < u, we clearly have

ts,u = Ut,u ©ls,t-

These closed inclusion maps give rise to fully faithful push-forward functors
Z.s,t* : g(fs) — g(ft)

where & stands for one of the following eight categories:

X, Pure, PYN Py, DYX, DY, DY Dy (9.11)
We define the corresponding categories on X by taking inductive limits
over S:

&(X) = 2-lim ind &(X) where & comes from the list (9.11).

—

s
Every object and every morphism in one of these inductive limit categories
is “supported” on some finite-dimensional variety X, and as a result, many
results about the categories attached to X, generalize to X without any
difficulty. The following basic facts are straightforward to verify; we omit
the proofs.

PROPOSITION 9.20. — Let X be an ind-variety with an affable stratifi-
cation.

(1) DEx(X), DYY(X), and Dy (X) are triangulated categories. We
a]sg have D@ifC(X) ~ IDLX(X).

(2) PZx(X), PY¥il(X), and P»(X) are the hearts of t-structures on
Duix(X), DW(X), and D (X), respectively. They are all finite-
length categories.

(3) Pure(X) is an Orlov category, and D> (X) = KPPure(X).
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(4) P'Z*(X) is a mixed abelian category, and its mixed structure makes
D2™*(X) into a mixed version of Dy (X).

(5) If .7 is an affine even stratification, then Pure(X) is Koszulescent.
As a consequence, D'S*(X) = DPPZX(X), and P (X) is a Koszul
abelian category. O

As an immediate consequence, all the miscibility and genuineness results
proved in Section 9 apply in the ind-variety setting.

Remark 9.21. — Note that in the ind-variety setting, when . is an
affine even stratification, P’Z*(X) need not have enough projectives. (The
proof of Theorem 7.7(2) does not go through, as it involves induction on
the number of strata.)

10. Mixed tilting sheaves

In this section, we consider only varieties with an affine even stratifica-
tion. Tilting perverse sheaves (whose definition is recalled below) on such a
variety are certain objects that enjoy both the “local” nature of IC objects
and the good Ext-vanishing properties of projectives and injectives. For
basic properties and applications to flag varieties in the setting of P o (X),
see [8]. Similar statements in the setting of P¥Wel(X) can be found in [26].

Here, we classify the indecomposable tilting perverse sheaves in P?X(X ).
Under an additional assumption on the variety X, we prove that tilting
perverse sheaves form a Koszulescent Orlov category. As an application of
the latter, we show how to strengthen Theorem 9.18.

10.1. Classification of tilting perverse sheaves

We begin with the definition. For the equivalence of the two conditions
below, see [8, Proposition 1.3].

DEFINITION 10.1. — Let X be a variety with an afline even stratifica-
tion .. A perverse sheal F (in any of Py (X), PW(X), or PE*(X)) is
said to be tilting if either of the following equivalent conditions holds:

(1) For each stratum j, : X, — X, both j*F and j.F are perverse
sheaves.
(2) F admits both a standard filtration and a costandard filtration.
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The next two statements are adapted from results in [8, 26]; we include
proofs because PZ*(X) differs in some details from P (X) and P%e!(X).

LEMMA 10.2. — Let j; : Xy — X be the inclusion of a closed stratum,
and let h : U — X be the inclusion of the complementary open subset. Let
M € PZX(X) be a tilting perverse sheaf, and assume that the canonical
morphism jiM — j; M vanishes. Then M is indecomposable if and only if
h*M is indecomposable.

Proof. — Let My = h*M € PZ*(U). We can form two short exact
sequences

0 — jufiM -5 M — h,My — 0
and
0— My — M L j,,5°M — 0.

By assumption, we have gop = 0. Applying Hom (M, -) to the first of these,
we obtain an exact sequence

0 — Hom(M, jsuji M) — End(M) — Hom(M, h, My) — Ext* (M, j,.ji M).

Note that Ext! (M, js.ji M) = Ext' (4 M, jiM) = 0, since all Ext'-groups in
the category P?jx(Xt) vanish. So we actually have a short exact sequence;
rewriting it using the usual adjointness properties, we obtain

0 — Hom(j; M, j M) -2 End(M) — End(My) — 0.

For f : jfM — jiM, we have 6(f) = po f o q. Since go p = 0, the image
of 6 is a nil ideal in End(M). It follows that End(M) is a local ring if and
only if End(My) is a local ring. In other words, M is indecomposable if
and only if My is indecomposable. (|

ProprosITION 10.3. — Let X be a variety with an affine even stratifi-
cation .. For each stratum X, there exists a unique (up to isomorphism)
indecomposable tilting perverse sheaf T™* € PX(X) whose support is X,
and whose restriction to X, is given by T™X|y = @e [dim X ](— dim X).
Moreover, every indecomposable tilting perverse sheaf is isomorphic to
some T (n).

Remark 10.4. — In general, the uniqueness statement for T™* does not
hold in Pyeil(X ), essentially because there may be a nonvanishing Ext!-
group between perverse sheaves supported on a closed stratum. See [26,
Remark 2.2].
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Proof. — We proceed by induction on the number of strata. Let j; :
X; — X be a closed stratum, and let h : U — X be the complementary
open subvariety. In the case where s = t, it is clear that T{* = IC?“X is
the unique indecomposable tilting perverse sheaf supported on X; up to
Tate twist.

Suppose now that X, C U. By induction, there is a unique indecompos-
able tilting perverse sheaf T' € PZ*(U) supported on X,NU and satisfying
T|x, = @g [dim X](—dim X;). Since T admits both a standard filtration
and a costandard filtration, both mT and h,T are perverse sheaves. Let
A and B denote the kernel and cokernel, respectively, of the natural map
hT — h,T, so that we have an exact sequence

0—+A—mnl—hT—B—0. (10.1)

Both A and B are supported on X;. By Theorem 9.5, the group
Ext,%f;ix(x)(B,A) can be computed instead in PZ*(X;). The latter is a
semisimple category, so Ext?(B, A) = 0. Therefore, there exists an object
T € PB(X) that fits into two short exact sequences

0+A—-T"™ 5hT—0 and 0— T —T" 5 B 0.
(10.2)
These sequences show that j.jiT™* = A and ji.j; T™* = B, so T is
certainly tilting. It is obvious from (10.1) that the canonical map A — B
vanishes, so by Lemma 10.2, T™* is indecomposable.

Now, let M € PZ*(X) be an indecomposable tilting perverse sheaf that
is not supported on X;. Then, by Lemma 10.2, My = h*M is indecom-
posable, and by induction, there is some stratum X, C U and some n € Z
such that My = h*T™(p). Assume for now that n = 0. Let us apply the
functors Hom(M,-) and Hom(-, M), respectively, to the two short exact
sequences (10.2). By the reasoning in the proof of Lemma 10.2, we obtain
two new short exact sequences:

0 — Hom(j; M, B) — Hom(M, T™>) — Hom (M, h*T™>) — 0,
0 — Hom(A, j.M) — Hom(T™* M) — Hom(h*T™X* M) — 0.

Fix an isomorphism fy : My — h*T™* and let gy = fﬁl D T
My;. We can lift these to maps fy : M — ToX and gy : T™* — M. Note
that gy o fu € End(M) is a unit, since h*(§y o fu) = idas, - Similarly, fuo
gu € End(T™>) is a unit. We conclude that fi; and gy are isomorphisms.
We have shown that every indecomposable tilting perverse sheaf in
P2X(X) is isomorphic to some T™*(n). The uniqueness of T™* follows.
O
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Consider the unmixed tilting perverse sheaves Ty = 3(T™X) € P »(X).
It is well known that

Ext*(T,,T;,) =0  forall k > 0.

This is essentially a consequence of the fact that Ext® (Ag, Vi) = 0 for
k > 0. The analogous fact for tilting perverse sheaves in Pf;,BiX(X ) follows
by Proposition 7.5. This observation can be used to establish the following
fact; see [8, Proposition 1.5] for a proof.

PROPOSITION 10.5. — The natural functor K*Tilt(X) — DPPZX(X)
DUX(X) is an equivalence of categories.

0 IR

10.2. Tilting objects as an Orlov category

We now consider varieties on which tilting objects obey the constraint
described below:

DEFINITION 10.6. — A variety X with an affine even stratification is
said to satisfy condition (W) if for any two strata X4, Xy C X with X; C X,
and t # s, we have that j; T™* has weights > 1 and j;T™* has weights <
—1.

The terminology is taken from [26], where it is shown that flag varieties
and affine flag varieties satisfy condition (W) [26, Theorem 5.3.1]. The
following is the main result of this section.

THEOREM 10.7. — Let X be a variety with an affine even stratification
.7 satisfying condition (W), and let Tilt(X) be the additive category of
tilting perverse sheaves in P2 (X). For an indecomposable tilting perverse
sheaf T (n), let us put

deg T™*(n) = —n.
With respect to this degree function, Tilt(X) is a Koszulescent Orlov cat-
egory.
We first require the following lemma, suggested by the remarks in [26,
§1.3].
LEMMA 10.8. — Consider the following two subcategories of D'S*(X):
'DSO = {F € DUX(X) | jF has weights > 0 for all strata X},
tD20 — (F € DUX(X) | j' F has weights < 0 for all strata X,}.
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Then (*DS°,*D>%) is a bounded t-structure on D'E*(X). Its heart is a
finite-length category, and a set of representatives for the isomorphism
classes of simple objects is

{T™>[p)(—n) | s € ¥, n € Z}.

Proof. — If X consists of a single stratum, then it is clear that for F €
¢DSO and G € *D>Y we have Hom(F, G[—1]) = 0. Moreover, it follows from
parts (2) and (3) of Lemma 8.1 that every F € D'Z*(X) fits into a split
distinguished triangle 7/ — F — F” — with 7’ € *D<Y and F"[1] € *D>0.
Thus, (*DS,*D>0) is indeed a t-structure. Its heart consists precisely of
pure objects of weight 0 in D2 (X). This is evidently a semisimple abelian
category whose simple objects are precisely those of the form @e [n](—n).

In the general case, one sees that (*DSY *D>0) is a t-structure by in-
duction on the number of strata and the formalism of gluing, made avail-
able by Theorem 9.5. It is clear from condition (W) that the T™[n](—n)
lie in the heart of this ¢-structure. In fact, they satisfy the stronger con-
dition from [7, Corollaire 1.4.24] characterizing objects arising from the
“intermediate-extension” functor, so by [7, Proposition 1.4.26], these are
precisely the simple objects in the heart. O

Proof of Theorem 10.7. — To prove that Tilt(X) is an Orlov category,
we proceed by induction on the number of strata in X. Choose a closed
stratum j, : X, — X, and let h : U — X be the inclusion of the comple-
mentary open subvariety. Now, consider two indecomposable tilting per-
verse sheaves T™*(n) and T™*(m). Recall that h,h*T{* is a perverse
sheaf, since h* T has a costandard filtration. We therefore have a short
exact sequence

0 = Jusd TEX(m) — TR (m) — hh* TR (m) — 0.
This gives rise to a short exact sequence

0 — Hom(j; T3 (n), j,, T{">(m)) — Hom (T (n), T{*>(m)) —
Hom (R*T™>(n), h* T (m)) — 0.

(The sequence is exact because Ext' (52 T™*(n), j, T (m)) = 0.) Suppose
that n > m. Consider first the case where s = t = u. Then the last term
vanishes, and the first term vanishes if n > m. Now, consider the case where
at least one of s and ¢ is distinct from w. If s # ¢ or if n > m, then the
last term vanishes by induction. For the first term, note that j:T™*(n) has
weights > n, and that j,, T™*(m) has weights < m. Moreover, at least one
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of these inequalities must be strict (since at least one of s and ¢ is distinct
from u). Since n > m, the first term above vanishes as well.

We conclude in all cases that Hom (T™*(n), T®*(m)) = 0 if n > m or if
n=m and s # ¢, so Tilt(X) is an Orlov category.

Using Proposition 10.5, we henceforth identify K Tilt(X) with DZ>(X).
To prove that Tilt(X) is Koszulescent, consider the abelian category
Kos(Tilt(X)) of Proposition 5.4. According to that proposition, the sim-
ple objects in that category are of the form T™X[n](—n). But these objects
also lie in the heart of the t-structure of Lemma 10.8, so we conclude that
the two t-structures coincide:

Kos(Tilt(X)) = "D n D=0,

From the description in Lemma 10.8, it is easy to see that Kos(Tilt(X))
contains the objects

AP¥[n)(-n)  and  VE¥[n(-n),

and that these objects satisfy graded versions of axioms (1)—(6) of [9, §3.2].
Then, the argument of [9, Theorem 3.2.1] shows that Kos(Tilt(X)) has
enough projectives (resp. injectives), and that these objects admit standard
(resp. costandard) filtrations. Finally, the argument of [9, Corollary 3.3.2]
shows that the realization functor real : DPKos(Tilt(X)) — D'Z*(X) is an
equivalence of categories. Thus, Tilt(X) is Koszulescent. a

PROPOSITION 10.9. — Let X and Y be two varieties with affine even
stratifications, denoted . and .7, and assume that both satisfy condi-
tion (W). If f : X — Y is a proper stratified morphism, then the functor
[ : DY(X) — DYCI(Y) is genuine.

Proof. — According to [26, Proposition 3.4.1], f. takes each indecompos-
able tilting perverse sheaf in Pgeﬂ(X ) either to 0 or to an indecomposable
tilting perverse sheaf in P‘ge“(Y) of the same degree. Since f, is already
known to be miscible, the same statement holds with respect to PZ>(X)
and P2*(Y). In particular, f, restricts to a homogeneous functor of Orlov
categories Tilt(X) — Tilt(Y). In view of Proposition 10.5, Proposition 9.1
applies to these categories as well, and we conclude that f, is genuine. O

Part 3. Applications to representation theory

11. Ext-algebras of Andersen—Jantzen sheaves

Let G be a semisimple algebraic group of adjoint type over C. Fix a
Borel subgroup B C G and a maximal torus T' C B. Let X*(T") denote the
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weight lattice of T', and let X} (T') C X*(T) be the set of dominant weights
with respect to B. Any A € X*(T') determines a line bundle £, on the flag
variety G/ B. Let N denote the cotangent bundle of G/B, with projection
map m : N = G/B. We also have the Springer resolution yu : N' = N/,
where N is the nilpotent cone in the Lie algebra of G. The Andersen—
Jantzen sheaf of weight A € X*(T) is the object

A)\ = R/L*Tr*ﬁ)\

in the bounded derived category DPCoh®(N). When A is dominant, the
higher direct images Ryu.m* Ly vanish for i > 0 (see [3, Theorem 3.6] for the
strictly dominant case and [15, Theorem 2.4] for the general case), so Ay is
in fact a coherent sheaf. For their role in the cohomology of quantized tilting
modules, see [24, 13]. The aim of this section is to calculate the Ext-algebra
of Ay, using the mixed derived category of the affine Grassmannian for the
Langlands dual group G. This section has benefitted from conversations
with Victor Ostrik and David Treumann.

11.1. Coherent sheaves on the nilpotent cone

Let the multiplicative group G,y act on A and on fibers of A by (t,z) —
t=2x. This action commutes with the natural action of G on both of
these varieties, so we have an action of G X G,,. Let Coh®*®m(A) and
Coh®*Cm (A} denote the abelian categories of (G x Gy, )-equivariant coher-
ent sheaves on these two varieties. For an object F in one of the bounded
derived categories DPCoh®*€m (A) or DPCoh®*Cm (A1), let F(n) denote
the object obtained from F by twisting the G,,-action by z — 2". We
define graded Hom-spaces by

Hom(F,G) = @Hom (F,G(—n)). (11.1)
nez
Graded Ext-groups are defined analogously. By endowing the line bundle
Ly on G/B with trivial G,,-action, we may naturally regard the Andersen—
Jantzen sheaves Ay as objects of Con®*®m (N).

For \, € X% (T), we write p1 < X if A — 1 is a sum of positive roots, as
usual. For A € X% (T), let D¢y (resp. Dy, Dy) denote the full triangulated
subcategory of DPCoh®*®™ () generated by the objects Ay (n) with g < A
(resp. < A, = A) and n € Z. It follows from [12, Proposition 4(a)] that
for a fixed A, the full additive subcategory consisting of direct sums of
objects of the form Ay(n) (for n € Z) is a semisimple abelian category.
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Then, by [12, Lemma 3], D) admits a unique ¢-structure whose heart Ay
contains the Ay(n). A, is a finite-length category, and the simple objects
(up to isomorphism) are precisely the Ay (n).

For A € X7 (T'), let V) denote the irreducible G-representation of highest
weight A. Regard it as a (G x G;,,)-equivariant coherent sheaf on a point,
with trivial G,,-action. Its pullback to N (resp. N) is denoted O 7O W

(resp. On ® Vi). Let DP_ Coh®*®m(N) denote the full subcategory of

DPCoh®*®m(N) generated by the objects (On @ Vy)(n), known as the
category of perfect complexes.

PropoOSITION 11.1. — (1) We have On ®@ V) € Dg.

(2) The projection functor II : D¢y — D<y/D<y induces an equiva-
lence of categories Dy — D¢y /D<x. Moreover, II(Ox @ V) lies in
II(Ay) and is a projective cover of II(Ay).

(3) The realization functor real : D’ Ay — D, is also an equivalence of
categories. In particular, we have

Ext’y, (Ax, A)) = Homg (A, Ar[K]),
where & is any of: Dy, D¢y, D<a/D<y, DPCoh®*CEm (N).

Proof. — This proposition is mostly a restatement of results of [12]. It
follows from the proof of [12, Proposition 4(a)] that the object Onr @ V), can
be obtained by repeatedly taking extensions among various A, (n) with v
a weight of V). By [12, Proposition 3|, we may assume that all the required
V’s are dominant weights of V), so part (1) of the proposition follows, as
does the fact that II(On @ V) € II(Ay). Next, the fact that IT induces
an equivalence as in part (2) is simply a G,,-equivariant analogue of [12,
Lemma 4(d)]. That lemma also says that the inverse equivalence factors
through a right adjoint II" : D¢y /Dy — D« to II. Therefore,

Hom (II(On ® Vi), II(Ay)) ~ Hom' (Ox @ Vi, II"(I1(Ay))

) (11.2)
~ Homl((’)/\/ ® V,\,A)\).

Since the last term vanishes when i = 1, we see that II(On @ V3) is a
projective object in II(Ay). Moreover, it follows from [12, Fact 1(a)] (see
also [12, Equation (27)]) that dim Hom(II(Ox ® V3),II(Ay)) = 1. Since
II(Ay) is, up to Tate twist, the unique simple object of II(\A)), it follows
that II(Ox ® V) is the projective cover of II(Aj).

Finally, we see from (11.2) that the functor Hom'(II(Ox®Vy ), -) vanishes
on TI(Ay) for all i > 0. It follows that Hom'(-,-) can be computed on Ay
by taking projective resolutions in the first variable. The equivalence in
part (3) follows. O
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COROLLARY 11.2. — For X € D¢y, we have X € D, if and only if
Hom'(Opn @ V,,(n), X) =0 for all 4 < X and all i,n € Z.

Proof. — Suppose X ¢ D,. By [12, Lemma 4(b)], we know that there is
some object Y € D,y such that Hom(Y, X) # 0. Since D, is generated
by the A, (n) with ;1 < A, there is some p < A and some %,n € Z such that
Hom’ (A, (n), X) # 0. Suppose that p is chosen to be minimal with this
property, i.e.,

Hom/(A,(m),X) =0 ifv<p. (11.3)
By a repeated use of [12, Lemma 4(e)], the inclusion functor ¢, : D¢, —
D¢y has a right adjoint ¢, so Homi(AlL(n},LLX) # 0. It then follows
from (11.3) and [12, Lemma 4(b)] that ¢/, X € D, = D" A,,. From the proof
of the preceding proposition, we know that II"II(Ox ®V),) is the projective
cover of the unique (up to Tate twist) simple object in A,,. Since ¢, X # 0,
there certainly exist i,n € Z such that Hom(TI"TI(Ox @ V,,)(n), 1, X) # 0.
Next, there is a distinguished triangle Y — On @V, = II'TI(Ox @ V,,) —
with Y € D.,. Using (11.3) once again, we see that Hom*® (Y}, X) = 0, so
we then have

Hom'(Op @ V,(n), X) = Hom'(Ox ® V,,(n), 1, X) #0.
Finally, the opposite implication is clear: if X € D,, then Homi((’)/\/ ®
V.(n),X) =0 for 1 < A by [12, Lemma 4(b)] and Proposition 11.1(1). O

Let HY denote the graded ring End(II(Ox ® V)\)). The category H}-Mod
of graded H)-modules is endowed with a shift-of-grading functor, also de-
noted X — X(1). A standard argument (see, for example, [5, Proposi-
tion I1.2.5]) yields the following result.

PRrROPOSITION 11.3. — There is an equivalence of categories Ay ~
H{-Mod that commutes with X + X (1) and that sends Ay to the trivial
H{-module. O

11.2. Mixed perverse sheaves on the affine Grassmannian

Fix a prime p, and consider the field 8 = F,((¢)) and its subring © =
F,[[t]. By affine Grassmannian, we mean the ind-variety Gr = G(&)/G(9).
Recall that the choice of B determines the Iwahori subgroup I C é’(D)
The stratification of Gr by orbits of I is an affine even stratification, and

the stratification by G()-orbits is affable. When naming categories of
constructible sheaves, the stratification will be indicated by a group as a
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subscript: for instance, P’fnlx (Gr) or Dwml (Gr) It is well-known that the J-

orbits (resp. G’(D)—orblts) on Gr are parametrlzed by X*(T') (resp. X (T)).
For A € X’ (T), let Gry denote the corresponding G(9)-orbit in Gr. We also
have the corresponding simple perverse sheaf IC’;lix PICIJIEXD) (Gr).

An important result due to Arkhipov—Bezrukavnikov—Ginzburg (see [4,
Theorem 9.4.3]) is the construction of an equivalence of triangulated cate-
gories

P : DP¥(Gr) — DPCoh®* % (A). (11.4)
This equivalence does not commute with Tate twist; instead, we have
P(F(1)) = (PF)(1)[1]. When X € X7 (T), we have P(ICY™) ~ Oy @ W
Define

©: D, (Gr) — DPCoh®*Em(N) by ® = Ry, 0 Plogss (6

We claim that ® induces an equivalence

©: D (Gr) DR .Coh®*Cm (N, (11.5)

Indeed, P induces an equivalence between Dmlx (Gr) and the full trian-

gulated subcategory of DPCoh®*®m (J\~/' ) generated by the objects (O 7 ®
Vi)(n). Using the fact that Ru.Og = O (see [3, Lemma 3.9]), one easily
checks that the functors Ru. and Lu* induce quasi-inverse equivalences
between this category and D}’reeCthXG (N).

Since On ® V,, € D¢, for any p, ® clearly restricts to a fully faithful

functor D‘“E’;D (Gry) — Dgy. This functor takes objects supported on the

closed subvariety Gry \ Gry to D.y. As a consequence of Theorem 9.5 (see
Remark 9.6), there is a natural equivalence

D (Gra) /DS (Gry \ Gra) 2 DR (Gry)

induced by restriction. Thus, ® gives rise to a functor @, : Dg}é’)‘a (Gry) —
D /D that takes ICY™|q,, 2 Q,[dim Gry](—dim Gry) to II(Ox @ VA).

LEMMA 11.4. — The functor ®) : DEEE)(GU\) — D¢<x/Dcy induced by
® is fully faithful.

Proof. — Consider the essential image of the functor j, : Dm”‘ (GrA)

DEEE)(G r), where j : Gry — Gry is the inclusion map. The quotlent functor

Dga‘?)(GrA) — sz’é)(Gr,\) induces an equivalence

Jo(DE (Gry)) = DX (Gra).
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This statement is analogous to Proposition 11.1(2). In view of that, it

suffices to show that ® takes objects in j, (Dgé’é)(Gr,\)) to objects in Dy C

DPCoh®>*Cm (N). Consider an object j.G, where G € DX (Gr,). Clearly,
G(D)

HOIHi(IClTiX (n), j«G) = 0if u < A. Because @ is fully faithful, it follows that
Hom'(On ® V,,(n), ®(j.G)) = 0, so by Corollary 11.2, we have ®(j.G) €
D O

We are now ready for the main result of this section. For A € X7 (7'),
let Py C G be the standard parabolic subgroup whose simple roots are
orthogonal to A, and consider the cohomology ring Hy = H*(G/Py). This
is a graded ring, so we can define graded Hom- and Ext-groups over it as
in (11.1).

THEOREM 11.5. — There is an isomorphism of bigraded algebras
Ext®(Ax, Ay) ~ Exty (C,C).

H), can be described in terms of the coinvariant ring of the Weyl group [10,
Theorem 5.5], so the result above can be used to carry out explicit calcu-
lations.

Proof. — In view of Propositions 11.1(3) and 11.3, the proof of this
statement reduces to showing that H), = H}. The fully faithful functor

@) of Lemma 11.4 has the property that ®,(Q,[dim GryJ(—dim Gry)) =
II(Op ® V), so we have

H;\ = LM(H(ON ® VX)) = @ Hom%g‘é’g)((}rx)(@p@g<in>)
neE”Z
= (P H"(Gr\) = P H"(G/P)) = Ha,
nez nez
where the third isomorphism follows from purity of the cohomology of the
smooth variety Gry, and the fourth one from the fact that Gr) is naturally
a vector bundle over G/Pj. O

12. Wakimoto sheaves

We retain the notation and conventions of the previous section, with
the exception that we now allow G to be an arbitrary connected reductive
group. Line bundles £ on A (where now we allow any A € X*(T), not
just dominant weights) form a particularly important class of objects in
DPCoh®*Cm (A1), and it is natural to ask what objects in D?iX(Gr) they
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correspond to under the equivalence (11.4). In [4, Remark 9.4.4], it was con-
jectured that line bundles should correspond to Wakimoto sheaves, whose
definition we will review below. In fact, this was proved for A dominant
or antidominant, and the analogous statement for the unmixed version
of (11.4) (involving Dj(Gr)) was proved in general. But in the mixed case,
it was not known in [4] whether Wakimoto sheaves for general A are misci-
ble. In this section, we provide a positive answer to this question.

12.1. Twisted external tensor products and convolution
products

Let FI = G(R)/I be the affine flag variety of G. As with Gr, this is an
ind-variety equipped with an affine even stratification given by orbits of
I , but these orbits are now indexed by the extended affine Weyl group
W =Wy x X*(T), where Wy(T') = Ng(T')/T is the ordinary Weyl group.
To explain the construction of the convolution product, we require the
equivariant derived category of Fl in the sense of Bernstein—Lunts [11].
This category, denoted D}’Y:g(FI), is a triangulated category equipped with

a forgetful functor D}’Y{‘il(Fl) — D}Ne“(FI), as well as with a t-structure
whose heart P}’YES(FI) is known as the category of equivariant perverse

sheaves. When restricted to this abelian category, the forgetful functor
P}Ne“(FI) — PWeil(FI) is full and faithful.

-eq I

Now, consider the diagram

FI x FI <%~ G(8) x FI -4 G(&) x; FI ™ FI

where p and ¢ are the obvious projection maps, and m is the map induced
by the action of G(8) on FI. Suppose F € DYV (Fl) and G € D;YC";I(FI). The

twisted external tensor product of F and G, denoted F X g , is the unique

v

object of DYW°I(G(K) x ; Fl) characterized by the property that
¢(FRG) =p (FRG).
Here, .# denotes the stratification whose strata are subvarieties of the form
Fly X Fl, = q(p ' (Fl, x Fl,))  where w,v € W.
This construction actually gives us a bifunctor of triangulated categories
X DY(FI) x DY (FI) — DY(G(R) x; F).
Finally, the convolution product is the bifunctor

*: DYU(FI) x DY) = DYU(FI)  givenby  FxG=m(F X Q).
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The I-equivariance of G is an essential ingredient in this construction; there
is no way to make X or * a bifunctor on DN(FI) x DY (FI) instead. (It is
possible to avoid equivariant derived categories at the expense of replacing
one copy of Fl by the “extended affine flag manifold”; see [4, §8.9].)

LEMMA 12.1. — The stratification .# of G(8) xj Fl is an affine even
stratification.

Proof. — Given two strata Fl,,, Fl,, C Fl, we have a functor X: D}“ix(FIw) X
D;{‘:;(Flv) — D}Ne“(Flw X Fl,) defined as above using the diagram

Fl,, x Fl, <~ p~*(Fl,, x Fl,) =% Fl,, X Fl,.

Observe that

& Qm, = @ZFIU,;FI1,' (12.1)

L,

If Jw,» : Fly x Fl, — é(ﬁ) X ; Fl denotes the inclusion map, it is straight-
forward to check that

72, (IR B ICT™) = j1Cm™ 8 10,

1 iX o i 1 e . (122)
j;E7y(ICI£lX & IC;HIX) g j:,I:ICIJJllx & j:'.JICUmIX.
In particular, it follows by a dimension calculation that
O™ K ICY™ = IChx. (12.3)

In view of (12.1), it follows now from (12.2) that . is an affine even
stratification of G(8) x ; FL O

Since the inclusion map j, : Fl, — Fl is f—equivariant, the object
AR = jQ,[dim Fl, (= dim Fl,,) can naturally be regarded as an object
of D}’YCC(ZI(FI), so convolution products of the form F x AR are defined.

PROPOSITION 12.2. — If's € W is a simple reflection, the functor (—) %
Ay DN(FI) — DY (FI) is miscible.

Proof. — Let J C G (R) denote the standard parahoric subgroup corre-
sponding to the simple reflection s. Let FI° = G(R)/J be the associated
partial affine flag variety, and let 7, : FI — FI® denote the natural projection
map.

IfGe D?_’EE(FI), then, by a construction using the diagram

FI* x Fl +— G(R) x FI — G(8) x ; FI — FI,
one has a convolution product functor

(=) ** G : DNU(FI*) — DN(FI).
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Similarly, if G € D}’Yg;l(FIS), then there is a convolution product functor
(=) *s G : DYU(FI) — DI(FI°).

It is straightforward to check that these new convolution products are as-
sociative in the appropriate sense.

For instance, consider the orbit closure Fl; C FI, which is a single J-orbit.
The object IC{™[~1](1) = @, can be regarded as an object of D;YZE(FI).
We claim that there is an isomorphism of functors

(=) ** ICT™[=1](1) = 77 : DY (FI®) — DY (FI). (12.4)
To see this, we first note that the map m : G(8) x 7 Fl; — Fl is an isomor-
phism, since Fl; can be identified with j/f Letr =msom: é(ﬁ) xjﬁs —
FI*. To establish (12.4), it suffices to show that F K Q, = r*F. But this

follows from the observation that ¢*r*F = p*(F K @e)’ where p and q are
the maps in the diagram

FI* x FIy +2 G(R) x FI, -5 G(8) x ; FI..

Next, consider the object 7, IC™™ ¢ Z)}’Ve“(FIS)7 where e € W is the
identity element. This is a skyscraper sheaf on FI®; it can certainly be
regarded as an object of D}}ng(Fls). An argument similar to (but easier

than) the one above shows that there is an isomorphism of functors
(=) *s T lCP = g, DY (FI) — DIU(FI). (12.5)
Note that (g, ICP™) %5 ICPX[—1](1) = 7t m,, ICT™ = IC™¥[—-1)(1). By
associativity of convolution products, we have
(=) % ICT[—1](1) 22 (=) #g Teu ICT %8 IC™X[—1](1) 2 7 0 7.

The functors 7} and 7, are genuine by Proposition 9.2 and Theorem 9.18,
respectively, so the functor (=) IC™*[—1](1) is as well.

The functor (—) x IC™™ 2 id is obviously genuine as well. Consider now
the distinguished triangle IC™>[—1](1) N ICM* — A™X(1) —. By a
routine calculation involving the convolution products in (12.4) and (12.5),
one can check that the morphism of functors

(=) *0:(-) *ICISniX[—l}ﬂ) = (=) *ICZHX

can be identified with the adjunction morphism 7% o 7, — id.
Suppose now that F € DI‘?‘iSC(FI). We then have a distinguished triangle

F*IC™X[—1)(1) 228 FoIC™™ 5 F o A™X(1) - |
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It follows from Lemma 3.15 that the adjunction morphism F %6 is miscible,
so its cone F x AMX(1) is miscible as well, as desired. O

Remark 12.3. — In the course of the preceding proof, we saw that the
functor F + F  IC™™ is genuine. By an induction argument on lengths
of elements in W, one can deduce that the convolution product of any
two simple perverse sheaves is a pure semisimple object of D}Ne“(FI). For
another proof of this fact, see [14, Proposition 3.2.5].

12.2. Wakimoto sheaves

Given a weight A € X*(T'), choose two dominant weights p,v € X (T)
such that A\ = p — v. All these weights can be regarded as elements of the
affine Weyl group W, so they determine strata in FI. The Wakimoto sheaf
of weight A is defined to be

. mix mix
Wy = VI 4 Amix,

This object is independent of the choice of u and v; see [4, §8.3]. Sometimes,
the term Wakimoto sheaf is instead used for the object

Wy = T W,

where 7 : FI — Gr is the natural projection map. The following result
answers a question posed in [4, Remark 9.4.4].

PROPOSITION 12.4. — The Wakimoto sheaves Wy € D}Ne“(FI) and
W € D}Iveﬂ(Gr) are miscible for all A € X*(T).

Proof. — Choose p,v € X3 (T') such that A =  — v, and then choose a
reduced expression —v = ts185 -+ S in W, where ¢ is an element of length
0, and the s; are simple reflections. The stratum Fl; is closed in FI, so
Amix o ymix Therefore, Vﬂlix * AiX o Vfﬁix x Vmix o Vzltix (for the last
step, see, e.g., [4, Equation (8.2.3)]). The object Vﬂltix is, of course, miscible,
and then it follows from Proposition 12.2 and induction on ¢ that

(Vl‘fix x AP Ag‘iix * A’s‘;ix ke A’gf"
is miscible for each i € {1,2,...,k}. Since APPA AT w. . AR 22 AT e
conclude that W), is miscible. Lastly, since 7 : FI — Gr is a smooth, proper
stratified morphism, we have from Theorem 9.18 that W, is miscible as
well. |
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