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AN EXAMPLE OF AN ASYMPTOTICALLY CHOW
UNSTABLE MANIFOLD
WITH CONSTANT SCALAR CURVATURE

by Hajime ONO, Yuji SANO & Naoto YOTSUTANI (*)

ABSTRACT. — Donaldson proved that if a polarized manifold (V, L) has con-
stant scalar curvature Kahler metrics in ¢1 (L) and its automorphism group Aut(V,L)
is discrete, (V, L) is asymptotically Chow stable. In this paper, we shall show an ex-
ample which implies that the above result does not hold in the case where Aut(V, L)
is not discrete.

RESUME. — Donaldson a prouvé que, si une variété polarisée (V, L) admet une
métrique kdahlérienne & courbure scalaire constante dans c1(L), et si son groupe
d’automorphismes Aut(V, L) est discret, alors (V, L) est asymptotiquement stable
au sens de Chow. Dans cet article, nous allons montrer un exemple qui implique
que le résultat ci-dessus ne s’étend pas au cas ou Aut(V, L) n’est pas discret.

1. Introduction

One of the main issues in Kéhler geometry is the existence problem of
Kahler metrics with constant scalar curvature on a given Kéhler manifold.
Through Yau’s conjecture [20] and the works of Tian [17], Donaldson [4],
this problem is formulated as follows; The existence of Kéhler metrics with
constant scalar curvature in a fixed integral Kéhler class would be equiva-
lent to a suitable notion of stability of manifolds in the sense of Geometric
Invariant Theory. Though remarkable progress is made recently in this
problem, we shall focus only on the related results to our purpose. Let
(V,L) be an m-dimensional polarized manifold, that is to say, L — V is
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Fano manifold, Futaki invariant.
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an ample line bundle over an m-dimensional compact complex manifold V.
Then the first Chern class ¢;(L) of L can be regarded as a Kéahler class
of V. Let Aut(V, L) be the group of holomorphic automorphisms of (V, L)
modulo the trivial automorphism C* := C — {0}. In [3], Donaldson proved
that

THEOREM 1.1 (Donaldson). — Let (V, L) be a polarized manifold. As-
sume that Aut(V, L) is discrete. If (V,L) has constant scalar curvature
Kéhler (cscK) metrics in ¢1(L), (V, L) is asymptotically Chow stable.

The purpose of this paper is to show an example of asymptotically Chow
unstable polarized manifolds with cscK metrics in the case where Aut(V, L)
is not discrete. To state our result more precisely, let us recall the defini-
tion of asymptotic Chow stability and some related results. Since L is am-
ple, V can be embedded into the projective space P(W) := P(H®(V, L¥)*)
for sufficiently large k as an algebraic variety ¥ x(V). For . (V), there
corresponds to a point [Ch(¥,x(V))] in P[Sym? (W)@ +D] which is of-
ten called the Chow point (cf. see [13] for the full detail). Take an ele-
ment Ch(¥rx(V)) representing the Chow point [Ch(¥ .« (V))]. The action
of the special linear group SL(W,C) on W is extended to the action on
Sym? (W)@ We call ¥;x(V) Chow stable if and only if the orbit
SL(W,C) - Ch(¥ 1x(V)) is closed and its stabilizer is finite. We call it Chow
semistable if and only if the closure of the orbit does not contain the ori-
gin. Also we call (V, L) asymptotically Chow (semi-)stable if and only if
U,k (V) is Chow (semi-)stable for all sufficiently large k. In this paper, we
say that (V, L) is asymptotically Chow unstable if (V, L) is not asymptot-
ically Chow semistable. Theorem 1.1 is extended by Mabuchi [11] to the
case where Aut(V, L) is not discrete.

THEOREM 1.2 (Mabuchi). — Let (V,L) be a polarized manifold. As-
sume that the obstruction introduced in [10] vanishes. If (V, L) has cscK
metrics in ¢1(L), (V, L) is asymptotically Chow polystable in the sense of
[11].

The notion of polystability in the above is defined by that the orbit of
U1 (V) with respect to the action of SL(W,C) is closed. So polystability
implies semistability. The obstruction in the above is defined in [10] as
a necessary condition for (V,L) to be asymptotically Chow semistable.
This obstruction is reformulated by Futaki [7] in more general form by
generalizing so-called Futaki invariant. The original Futaki invariant [5] is
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amap f: (V) — C defined by

X) = / Xhow™
1%

where h(V) is the Lie algebra of all holomorphic vector fields on V| w is a
Kéhler form and h,, is a real-valued function defined by

- ([ [ )=

up to addition of a constant. Here s(w) denotes the scalar curvature of
w, (g% )U denotes the inverse of (g,;);, and A, = —g'd; 9; denotes the
complex Laplacian with respect to w. It is well-known that f is independent
of the choice of w and that the vanishing of f is an obstruction for the
existence of cscK metrics in the Kéhler class [w].

Now let us recall the definition of Futaki’s obstruction for asymptotic
Chow semistability. Let ho(V) be the Lie subalgebra of h(V) consisting
of holomorphic vector fields which have non-empty zero set. For any X €

ho(V'), there exists a complex valued smooth function ux such that

i(X)w = —Ouy,

(1.1) /Vux w™ =0.

Let 6 be a type (1,0) connection of the holomorphic tangent bundle 7"V
Let © := 96, which is the curvature form with respect to 6. For X € h(V),
let L(X) := Vx — Lx, where Vx and Lx are the covariant derivative
by X with respect to 6 and the Lie derivative respectively. Remark that
L(X) can be regarded as a smooth section of End(7'V') the endomorphism
bundle of the holomorphic tangent bundle. Let ¢ be a GL(m, C)-invariant
polynomial of degree p on gl(m,C). We define Fy : ho(V) — C by

(1.2) FolX) = (m—p+ 1)/V¢(@) Aty WP

WwmPTL
4 /V H(L(X) +©) A

It is proved that Fy(X) is independent of the choices of w and 6 (see
[7]). Let Td? be the p-th Todd polynomial which is a GL(m,C)-invariant
polynomial of degree p on gl(m, C). Then it is proved [7]

THEOREM 1.3 (Futaki). — If (V, L) is asymptotically Chow semistable,
then, for any p = 1,--- ,m, Frar(X) = 0 for X in a maximal reductive
subalgebra §,.(V') of ho(V).
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In particular Frpg1 is equal to f |4, (v) up to multiplication of a constant.
The vanishing of Frgr for all p is equivalent to the vanishing of Mabuchi’s
obstruction (cf. Proposition 4.1 in [7]).

Remark 1.4. — It might be noticed among experts that the main result
in [7] derives a stronger statement than Theorem 1.3. It says that the van-
ishing of Frrgr for all p follows from Chow semistability of (V, L*¢) for some
sequence {k; }; of integers (not necessarily asymptotic Chow semistability).
In fact, it is proved in [7] that Chow semistability of (V, L*) implies the
equation (4.2) in [7] for a given k. The invariants Frgr correspond to the
coefficients of the polynomial in k of degree m+1 in the right hand of (4.2)
in [7]. Hence, the vanishing of the coefficients is implied by the vanishing
of the polynomial not necessarily for all k£ greater than some positive in-
teger ko but just for finitely many k. Related to this remark, a necessary
condition for Chow semistability of polarized toric manifolds is studied by
the first author [16].

In [9], Futaki and the first and second authors investigated the linear
dependence among {Frqgr }, and proposed the following question.

PROBLEM 1. — Does the existence of cscK metrics induce the vanishing
of Frgre for all p?

For p = 1, the existence of cscK metrics of course implies the vanishing of
Frqr- If the answer were affirmative, the assumption of Theorem 1.2 could
be omitted and Theorem 1.1 could be extended to the case where Aut(V, L)
is not discrete. Note that this extension is also discussed in Conjecture 1
in [1].

Moreover, it was claimed in [9] that if a counterexample to Problem 1
exists among toric Fano manifolds with anticanonical polarization, it should
be a non-symmetric toric Fano manifold with Kéhler-Einstein metrics in
the sense of Batyrev-Selivanova [2]. At the time when [9] was written,
the existence of such toric Fano manifolds was not known. However it is
discovered by Nill-Paffenholz [14] very recently. The main result of this
paper is to show that one of the toric Fano manifolds in [14] is the desired
example in [9]. That is to say,

THEOREM 1.5. — There exists a seven dimensional toric Fano manifold
V with Kéhler-Einstein metrics in ¢1(V) := ¢1(Ky,'), whose Frqr does not
vanish for 2 < p < 7. In particular, (V, K‘jk) is not Chow semistable for all
k greater than some positive integer kg.

ANNALES DE L’INSTITUT FOURIER
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Also Theorem 1.5 implies that the assumption about obstruction in The-
orem 1.2 can not be omitted. Hence, this means that our example in The-
orem 1.5 is also a counterexample to Conjecture 1 in [1].

We shall prove Theorem 1.5 by the following two ways; the direct cal-
culation by the localization formula (Section 3), and the derivation of the
Hilbert series (Section 4). In particular, our method implies the existence of
Kéhler-Einstein metrics on V' independently of [14]. Remark that on Fano
manifolds, all cscK metrics in ¢; (V') are equal to Kéahler-Einstein metrics.

2. The Nill-Paffenholz’s example

See [14] for notations and terminologies of toric geometry in this section.

First of all, let us recall toric Fano manifolds briefly. A toric variety
V is an algebraic normal variety with an effective holomorphic action of
Tc := (C*)™, where dim¢c V' = m. Let Tk := (S*)™ be the real torus in T
and tg be the associated Lie algebra. Let Ng := Jtg >~ R™ where J is the
complex structure of T¢. Let My be the dual space Hom(Ng,R) ~ R™ of
Ng. Denoting the group of algebraic characters of T¢ by M, then My =
M ®z R. It is well-known that m-dimensional compact toric manifolds
correspond to nonsingular complete fans in R™. Moreover when V is an
m-~dimensional toric Fano manifold, the corresponding fan ¥y C Ng ~ R™
satisfies the following properties: Let N C Ny be the dual lattice of M,

Gy ={0 € N|Rsg -0 € Zy and o is primitive}

and Qv be the convex hull of Gy in R™. Then

(a) the set of vertices of Qv is equal to Gy,

(b) the origin of Ny is contained in the interior of Qv

(¢) any face of Qv is a simplex, and

(d) the set of vertices of any facet of Qv constitutes a basis of N ~
Z™ C Ng.

An integral polytope satisfying the conditions (b), (¢) and (d) is often called
a Fano polytope. Conversely, if an m-dimensional Fano polytope @ C R™
is given, then

2(@) = {O} U {C(F)}F: face of Q

is a nonsingular complete fan in R™. Here ¢(F) = Rxq-F C R™ is the cone
over F'. Hence there is the m-dimensional toric Fano manifold V associated
with the fan X(Q). By the construction above, Qv = Q.

TOME 62 (2012), FASCICULE 4
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Let V be the seven dimensional toric Fano manifold whose vertices of
Fano polytope Qv in Ng ~ R7 are given by

(Vi V2 V3 V4 V5 Vg V7 Vg Vg Vig Vi1 Vi2)

100 0 0 -1000 00 0
010 0-1 0000 00 0
001 -1 0 0000 00 O

(2.1) —=fooo o o o100 -10 o0
000 O 0O 0010 -10 0
000 O 0O 0001 10 0
000 -1 -1 -1000 21 -1

Remark that V is isomorphic to a P'-bundle over (P!)? x P3. To see this,
let Q C RS be the Fano polytope whose vertices are

(V1 Vo V3 V4 V5 Vg V7 Vg Vg Vi)

1 0 0 0 0 -1 0 0 O 0
01 0 0 -1 0 0 00 0
1001 -1 0 0 0 00 0
oo o0 0 0 01 0 0 -1
0 0 O 0 0 0010 -1
0 0 O 0 0 00 0 1 -1

It is easy to see that the 6-dimensional toric Fano manifold associated to Q
is (P1)3 x P3. The projection 7 : Z" — Z5, n(z1,...,27) = (21,...,76) is a
map of fans from (Z7, 2(Qv)) to (Z8, %(Q)). Hence we have an equivariant
morphism p : V — (P!)? x P3 associated to 7. We can apply Proposition
1.33 of [15] to the map of fans 7. As a result, p is a P!- fibration on
(P1)3 x P3.

THEOREM 2.1 (Nill-Paffenholz). — The toric Fano manifold V' defined
by (2.1) is not symmetric, but its Futaki invariant vanishes. In particular
V' admits Tr-invariant Kihler-Einstein metrics.

The second statement in Theorem 2.1 follows from the fact proved by
Wang-Zhu [18], which says that a toric Fano manifold admits Kéhler-
Einstein metrics if and only if its Futaki invariant vanishes. Here we shall
explain about the symmetry of toric Fano manifolds in Theorem 2.1. Let
Aut(V) be the group of automorphisms of V. Let W(V') be the Weyl group

ANNALES DE L’INSTITUT FOURIER
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cone

toric affine variety ~ C”

{V1,V2,V3,V7,Vs, Vg, Vi1}

SPGC(C[XM X21 X3,Y1,Y2,Y3,Z])

{ve, V2, V3, V7, Vs, Vg, Vi1}

Spec(C X27X37Y1,Y2 Y3, ZX| ])

{V1,V27V37V77V87V10,V11}

Spec(C XQ,Xd,YlY Y2Y1Y

1271

 2YZ))

{v1,Vv2,Vv3,v7, Vg, Vg, Via} Spec(C X1 X2,X3,Y1 Y27Y37Z ])

(X
(X
[
{V6,V5,V3,V7,V3,V97V11} Spec((C[ X&,Yl,YQ,Yg,inlXil])
{V6,V2,V3,V87V9,V10,V11} SpCC((C[ X27X37Y YzY T Y3Y T ZX 1Y ])
{V6,V2,V3,V7,V8,V9,V12} SpCC((C[Xl XQ,Xg,Yl,YQ,Yg,Z Xl])
{Vl,Vg,Vg,Vg,Vg,Vlo,Vlg} Spec( [Xl X2,X3,Y I,YYI 7Y3Y1 1Z71Y1—2)
{V4,V5,V6,V7,V8,V9,V11} Spec( [ —T X71 X Yl,Yg,)/g,ZXleng;l])
{ve,Vs5,V3,Vs, Vo, Vio, Vi1 } ZIJ;S(EC)[( 1y2ﬁ() Xs,Yl—l’Yzyl—lﬁYsYl—l’
{V6,V5,V3,V7,V8,V9,V12} SpCC((C[ 71 X X3,Y1,Y2,Y3,Z7 X1X2])
{Vg,V27V3,Vg,V9,V10,V12} Spec( [X7 Xz,Xs,Y YQY T Y3Y71 Z71X1Y ])
{VS,V5,V4,V8,V9,V10,V11} Spec((C[ —T X71 X Y YQY Y3Y7
ZX{'X5 1X’1Y2])
{V6,V5,V4,V7,V8,V97V12} SpCC((C[ —T X71 X Yl,YQ,Y37Z71X1X2X3])
{Vs,V5,V3,Vg,V9,V10,V12} SpCC((C[ X )(3,Yv171,Yv2}/171,}/3)/1717
Z’leXzY’ ])
{ve, Vs, Va, Vs, Vg, Vio,viz} | Spec(C[X = X71 X5 Y1 1,Y2Y171,Y3Y171,

zZ~ 1X1X2X3Y })
Table 2.1

of Aut(V) with respect to the maximal torus and angv(v) be the W(V)-
invariant subspace of Ng. Batyrev and Selivanova [2] say that a toric Fano
manifold V' is symmetric if and only if dim Ny W) .

Then, let us consider the symmetry of V' defined by (2.1). W(V') con-
tains two cyclic groups acting on (P1)3 and P3 respectively, i.e., one acts on
(21,22, x3) and the other acts on (x4, x5, xg) where (21, x2, T3, 24, 5, Tg, T7)

€ Nr ~ R7. Hence, we find that the dimension of NH){V(V
WwwV) -1

) is at most one.
However, since V' is not symmetric, dim Ny
Next, we shall consider affine toric varieties in V' and the associated
7-dimensional cones. As explained above, we find that in (2.1), the first
six vertices {vi,...,ve} give affine toric varieties in (P')3, the next four
vertices {v7,...,vio} give them in P3, and the last two vertices {vi1,via}
give them in the P'-fibre. More precisely, the set of vertices of each facet of
the Fano polytope defined by (2.1) consists one of {v1, vg}, one of {va, vs},
one of {vs, vy}, three of {vy,...,vig} and one of {vi1,vi2}. Hence, the
toric Fano manifold V' is covered by 64 affine toric varieties, which are
isomorphic to C7 as listed in Table 2.1. The other affine toric varieties
unlisted in Table 2.1 can be obtained easily by the symmetry of V.

TOME 62 (2012), FASCICULE 4
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3. Direct computation of Fryr

First, we shall make the family {Frqr}, simpler in the case of the anti-
canonical polarization. For a Kéhler form w € ¢;(V), let g be the associated
Kihler metric. We have the Levi-Civita connection § = g~ 'dg and its cur-
vature form © = 9. Then, for the associated covariant derivative V with
0, L(X) can be expressed by

L(X)=VX =V;X"ds @ —

07"
where X € h(V), because V is torsion free. Now assume that (V, K;') is
a Fano manifold with anticanonical polarization. By the Calabi-Yau the-
orem [19], for a Kahler form w € ¢;(V) there exists another Kéhler form
n € c¢1(V) whose Ricci form p, is equal to w. For X € ho(V) let ax be
the Hamiltonian function with respect to w and a different normalization
from (1.1)

/Vﬂxwm = —f(X).

Recall that x = A,tix, where A, is the Laplacian of 7. Let

Grar (X) = (m — p + 1)/ TdP(©,) A dix ol
\%

+/ Td?(Ly(X) + ©,) A pj P
\%4

Here O, is the curvature form of the Levi-Civita connection 6, with respect
to n and L,(X) is also associated with 6,,. The proof of Theorem 3.2 in [9]
implies that the difference between Frg4r and Grqr is equal to a constant
multiple of Fpq: for any p.

LEMMA 3.1. — Let V be a Fano manifold with Kahler-Einstein metrics.
Then,
(3. Frw(X) = [ (1@ L, (x) 4 )
\%

where X € ho(V).

Proof. — Since V' admits Kéhler-Einstein metrics and Fpq1 is propor-
tional to the original Futaki invariant f, Fp41 vanishes. So Frgr is equal

ANNALES DE L’INSTITUT FOURIER
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to Grar. Hence, we find

Frar (X) = (m —p+1) /V T4 (©,) A (A yux )l

+/ TdP (L, (X) + 6,) A p;n*;nnLl
1%
=(m-p+1) / TdP(©,) A c1(Ly(X))e1 (©,)™ 7P
1%

1%

= / TdP (L, (X) + ©,)A
1%

{(m —-p+ 1)61 (LU(X))Cl(en)m_p + (@n)m_p+1}
=AmW@%waH%y

O

Since the right hand of (3.1) is a kind of the integral invariants in [8], we
can apply the localization formula in [8] for Frqr as follows. Assume that
X has only isolated zeroes {p;} and that L(X),, is non-degenerate at each

Pi, i'e'7
ox*
ded2(x),) =det ()]  #0,
0z 1<k, I<m
where (2!,--- | 2™) are local coordinates. Then we have

(Td” - & ") (L(X)y,)
det(L(X)p:)

(3.2) Frar(X) = Z

Ppi

As for the localization formula, see also [6].
We consider the following one-parameter subgroup {o;} in the maximal
torus of Aut(V); it is written by

[ (X17X27X37Y17}/2u}/372)
_ (e“ltXl, 6a2tX2, e“?’th,ebltYl, ebzt}/‘Q’ €b3tY3, ectz)

in the affine variety Spec(C[Xy, X3, X3,Y1,Ya,Ys, Z]), which corresponds
to the 7-dimensional cone generated by {vi,va, Vs, vz, Vs, Vg, vi1}. Here,
(X1, X2, X3) are affine coordinates of (P!)3, (Y1,Y5,Y3) are affine coordi-
nates of P2, and Z is an affine coordinate of the fibre. Hence, we have

Ty

T T
X1 = 70,X2 = 727X3 = 7;Y1 - @7Y2 = &7}{3 = yj?
X1 z3 Ts5 Ys Y3 Ys

TOME 62 (2012), FASCICULE 4
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where

([wo s @), [ = s, [ s @5, [yo 2 w1+ ya 2 ys])
are homogeneous coordinates of (P1)3 xP3. Let us see oy in terms of another
affine coordinates by using the coordinate transformations (see Table 2.1).
For generic {a;,b;,c}1<i,j<3, the set of fixed points of o, consists of the
following isolated 64 points;

{(X17X2aX3aYaZ) ev | Xiy Z=PpPp-O0rp4, y= p] (] = 1727374)}7
where p_ denotes [1 : 0], p; denotes [0 : 1] and p; = [1: 0 : 0 : 0],
p2=[0:1:0:0],p3=[0:0:1:0],pgs=1[0:0:0:1].

Next we shall calculate L(X) at each fixed point of o;. For example, let
us consider L(X) at
(P+,P+,P+,P4,P+) = ([0:1],[0:1],[0:1],[0:0:0:1],[0: 1]).

This point is the origin in the affine variety Spec(C[X1, X», X3, Y1,Y2,Y3, Z])
associated with the 7-dimensional cone generated by {vi¥a¥v3¥v7vs,ve,vi1}.
The holomorphic vector field with respect to o; around the point is ex-
pressed by

D SRR
; 8Z'
=1 Jj=1

Hence L(X) at (p+v P+, P+, P4, p+) is glven by
L(X) = dia’g(ah az,as, b17 b27 b37 C)~
For another example, let us consider L(X) at

(P P+, P+ P1,Py) = ([1:01,[0: 1, [0: 1], [1:0:0: 0], 0= 1]).

This point is the origin in Spec(C[X; %, Xy, X3,Y, LYo Y, Y3Y71 ZX71}/12])
associated with the 7-dimensional cone generated by {vgvavsv 0V11}-
The holomorphic vector field with respect to o; around the pomt is ex-
pressed by

3
0
a1U1 + Zaz Z b1U4 + Z U3+J (9U3+]

Jj=2

0
+ (C —a1 + 2b1)U767U7,

where

Upi= XUy = Xo,Us = X3,Uy := Y] 1, Us := YoV Us i= Y3V,
Ur = ZX{'YE.

ANNALES DE L’INSTITUT FOURIER
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no. fixed pt L(X)

1-1 | (+++,p1, %) | (a1,a2,a3,ba — b1, b3 — b1, —b1, £(c + 2b1))

1-2 | (=++,p1, %) | (—a1,a2,a3,b2 — b1,b3 — b1, —b1,+(c — a1 + 2h))

1-3 (JF +,p1, %) | (a1, —az,as,ba — b1,bs — b1, —b1,£(c — az + 2b1))

1-4 ( — P1, ) (a1:a2,—0«37b2—b1,b3—bl,—b1,i(c—a3—|—2b1))

1-5 | (+ — —,p1, %) | (@1,—az2,—az, bz — b1, b3 — b1,—b1,E(c — a2 — az + 2b1))
1-6 | (—+—,p1, %) | (—a1,a2,—az,ba—b1,b3— b1,—b1, +(c— a1 — azg+ 2b1))

1-7 ( _+7p17 ) (_aly_a27(13,b2—b17b3—b1,—b1,i(c—a1 —a2+2b1))
1-8 | (- ——,p1, %) (—al,—az,—a:a,bz—b1,b3—bl,—b1,:|:(c—2ai+2b1))

2-1 | (+++,p2, 1) | (a1,a2,a3,b1 — bz, bg — ba, —ba, £(c + 2b2))

2-2 ( + +, p2, ) (_al,a27a3,b1—b2,b3—bz,—bz, (c—a1—|—2b2))

2-3 (+ +,p2, %) | (a1, —az,as, by — bz, b — ba, —b2, £(c — a2 + 2b2))

24 | (++ —,p2, 1) | (a1,a2,—as, by — bz, bs — —ba, £(c — as + 2b2))

2-5 (+——,p2, +) (aly_a27—a3,b1—b2,b3—b27 bz, +(c — a2 — az + 2b2))
2-6 | (—+ —,p2,%t) | (—a1,a2,—as,bi— b2, b3 — ba,—b2, £(c — a1 — a3 + 2b2))
27 (= *+7P27 +) | (—ai,—az2,a3,b1 — bz, b3— ba,—b2, £(c — a1 — a2z + 2b2))
2-8 | (———,p2, %) | (—a1,—az,—as, by — bz, b3— ba,—b2, £ (C—Eaz—i—ng )
3-1| (+++,p3, %) | (a1,a2,a3,b1 — bz, ba — bz, —bs, £(c + 2b3))

32| (—++,p3,t) | (—a1,a2,a3,b1 — bz, ba — b, —bs, £(c — a1 + 2b3))

3-3 (+ +,p3, %) | (a1, —az,a3,b1 — bz, by — bs, —b3, £(c — az + 2b3))

3-4 | (++ —,p3,£) | (a1,a2, —as, by — b3, bz — b3, —b3, =(c — a3 + 2b3))

3-5 | (+——,p3, %) | (a1,—az,—a3, bi— bz, bo— b3,—bs, £(c — az — a3z + 2b3))
3-6 | (—+ —,p3, %) | (—a1,a2,—asz, b1 — b3, ba— bz, —b3, =(c — a1 — az + 2b3))
3-7 (_ —+,p3, t) | (—a1,—a2,a3,b1— b3, ba— b3,—b3, +(c — a1 — a2 + 2b3))
38| (———,ps,+) | (—a1,—az,—as, b1 — bz, bo— bs,—b3, + (C_Eal+2b3 )
4-1 (+++,p4,:t) (a1,a2,a3,b1,b2,bg,:|:c)

4-2 | (— ++,p4,:t) (—a1,a2,a3,b1,b2,b3, £(c —a1))

4-3 | (+ — +,pa,t) | (a1, —a2,as,b1,b2, b3, =(c — a2))

4-4 ( 7}f)z;,:‘:) (al,ag,—a3,b1,b2,b3,:|:(c—a3)))

4-5 (+__ p4,:‘:) (a1,—a2,—a3,bl,bg7b3,:|:(c—a2 —a3))

46 | (— 4+ —,pa,t) | (—a1,a2,—as,b1,b2, b3, =(c — a1 — asz))

4-7 ( —+,p4,:t) (—a1,—a2,a3,b1,b2,b3,:|:(c—a1 —az))

48| (= ——,ps, %) (*al,*az,*as,bhbz,b&i(C*Zm))

Table 3.1

Hence L(X) at (p—a P+,P+; p17p+) is given by

L(X) = diag(—al, az, as, 71)1, b2 — bl, b3 — bl, c—al + 2b1)

As for the other fixed points, the computations of L(X) are given by the
Table 3.1; As for the notation of the column of fixed points, for example,

(+++7P17
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1],[1:0:0:0],[1:0]). Remark that L(X) is non-degenerate at any fixed
pOiI’lt for generic {ai,bj, C}¢7j=172,3.

Finally, we shall list below the results of calculations of Frq» (2 < p < 7)
with respect to the holomorphic vector field induced by {o;} for generic
{ai,bj,c}; j=1,2.3. As for p =1, it suffices to consider f instead of Frq1. We
have the localization formula for f independently of Lemma 3.1 (cf. [6]).
The formula for f is same as (3.2), but it holds without assuming the ex-
istence of Kéahler-Einstein metrics. By using it (not Lemma 3.1) we can
prove that f vanishes on ho(V). See Appendix for the calucation. Com-
bining this and [18], we can prove that V admits Kéhler-Einstein metrics
independently of [14]. Then, we apply Lemma 3.1 to Frgr (p > 2). Since
the computations are quite enormous, we use the computer algebra system
“Maxima”.(!) However, in order to see that V is a counterexample to Prob-
lem 1, it is sufficient to check that Frq» does not vanish for some {a;,b;, ¢}
and some 2 < p < 7. It is still tough, but it would be able to check without
computer. For the readers convenience, we put all the data needed to com-
pute in the case where (ai,as,as,by,be,b3,¢) =(1,1,1,1,2,3,4) and p = 2
in Appendix.

p=2:
(cf + c2)cf (L(X)q)
det(L(X)q)

12Fpg2(X) = >

q: fixed pt
CQC? L(X)q
Ly ede

q: fixed pt det(L(X)q)

(3.3) - 13056<Zai -3 b - 2c).

0266 q
21 (X) = Y S
q: fixed pt 4

= 12F g2 (X)

:13056(2%—2@-—2@).

(—ct+4ckea +3c2 + cre3 — c;;)c%(L(X)q)
det(L(X)q)

p=4:

T20Frs(X) = >

a: fixed pt
94080(2@1- -3 bi- 2c).

(1) Maxima is available from http://maxima.sourceforge.net/.

ANNALES DE L’INSTITUT FOURIER



AN EXAMPLE OF ASYMPT CHOW UNSTABLE MFDS WITH CcSC 1277

p=>5:
(—c?cz + 30163 + C%Cs - 0164)0?(L(X)q)
M440F s (X) = >
q: fixed pt det(L(X)q)
—28800( > ai = > bi - 2).
p = 6:

60480 F g6 (X) = E (2¢§ — 12¢ies + 11cich + 10¢5 + 5ejes)el (L(X)q)
e det(L(X)q)
q: fixed pt

n (11leieaes — cg — 50%04 — 9cacy — 2c1c5 + 2c§)cf (L(X)q)
det(L(X)q)

- 82176(Zai - Zbi - 2c).

p="T:
120960.F, (X) = (116%‘:203 — 9cicacq + 2106 — 2CfC5)C1(L(X)q)
ATl Z det(L(X)q)
q: fixed pt
+ (20?04 — clcg — 20‘11(;3 + 100103 — lOc‘;’cg + 20?02)01 (L(X)q)
det(L(X)q)

= 16128(2(17;72&- ~ 2¢).

Remark that all Frgr (2 < p < 7) are proportional to each other. This result
is consistent with the fact that dim NH‘Q} V) = 1. Therefore we can conclude
that even if a Fano manifold admits Kéahler-Einstein metrics (i.e., cscK
metrics), {Frar }p=1,...,m may not vanish. The proof of the main theorem

is completed.

4. The derivatives of the Hilbert series

In [9], Futaki and the first two authors showed a relation between the
obstructions to asymptotic Chow semistability and the derivatives of the
Hilbert series. In the present section, we will see that we can also show
Theorem 1.5 using such relation.

We first review the definition and some properties of the Hilbert series.
See [9] for more details. Let V' be a toric Fano m-fold and @ be the cor-
responding Fano polytope. The polar dual P of @, which is the Delzant
polytope of (V, K;l) in Mg ~ R™, is defined as

P:={weR™| (v;,w) > -1}

where v; € Z™ is a vertex of () for each j.

TOME 62 (2012), FASCICULE 4
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We call the convex rational polyhedral cone
C={y e R™ | (\j,y) = 0}
the toric diagram of V, where \; = (v;,1) € Z™*1. Note here that this
cone is a pointed cone in R™ ¥ that is to say, C* N (—C*) = {0}. We can
also represent C* by
C={ap + - +cpylc; =20, i=1,--- k}
where p; = (w;,1) € Z™t! and wy, - - - , wy, are the vertices of the Delzant
polytope P. Then we can define the (multi-graded) Hilbert series C(x,C*)
of the rational cone C* by
o= X (e —ad el
acC*NzZm+1
As proved in [12], the Hilbert series C'(x,C*) can be written as a rational
generating function of the form
Ke-(x)

(1 —XI"‘l)'“(]. _xﬂk)
where K¢+ (x) is a Laurent polynomial. Using Brion’s formula, we are able
to calculate the right hand side of the above equation as follows, see [9];

O(x,C*) =

SIS R 1
C(X,C ):Zl—xl’l’7 H (1_).,(9_7,’}7)7
Jj=1 b=1
where e;1,--- ,€;., € Z™ denote the generators of the edges emanating
from a vertex w; and X = (21, , Tm)-

Let Cr be the convex polytope defined as
Cr={{eC|{=(b,m+1)},
where C is the interior of the dual cone of C*. For £ = (b,m + 1) € Cr we
write
eftg — (e*blt . efbmt ef(erl)t)
and consider
Ke- (e_t5)

—t& *\ _
C(e € ) - (]_ —e*t“’qvﬁ))...(l 73*75(#19:5)).

For each fixed ¢ € Cg, the Laurent expansion of C(e™*,C*) at t = 0 is
written as

O—m—l(b) C—m(b) C—m+1(b)

m+1 + m + tm—1 oo

Cle™'*,Cc*) =

In [9], it was shown that the following relation between the invariants
Frar and the derivatives of C;(b) at b = 0.
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THEOREM 4.1 ([9]). — The linear span of the derivatives dyC;(b), i =
—m—1,—m,..., coincides with the linear span of Fpq1, ... Fpqm restricted
toteC~Cm.

Let V be the toric Fano manifold defined by (2.1) and P be the Delzant
polytope of (V, K;'). Then we can calculate {wj ejp}<i<os, 1<h<7) €%
plicitly from the argument in Section 2, and so we see whether all Frpge
vanish or not. Note that these 64 verticies of P correspond to the facets
of the Fano polytope defined by (2.1). However it is difficult to check it
directly, because in our case the Hilbert series has too many terms.

To solve this problem, we use the following proposition.

PROPOSITION 4.2. — If Fpqe = 0 for each p=1,...,m then
0
(4.1) EECXxnlw..,x"m,e_0"+nthz:1::O
for any n = (ny,...,ny,) € N™.

Proof. — If Fpqr = 0 for each p=1,...,m then
0

o, Ce~tt, ... e bnt, e’(m“)t)‘bzo =0
holds for each i = 1,...,m by Theorem 4.1. Hence we easily see the propo-
sition by the chain rule. O

The left hand side of (4.1) for the toric Fano 7-fold associated with
(2.1) is computable with computer. The combinatorial data we need is in
Appendix. For example, in consequence of the Maple calculation, we can
see

0
Z @™, e )

ox
_ 184e78%(2e73% + 3lem 24 + 7010 + 31e 7B 4 2) 40
- (—1te o)
for (nh N2, N3, N4, N5, Ng, n7) = (17 27 37 4) 57 67 7)
Thus, by Proposition 4.2, Theorem 1.5 has been proved.

5. Appendix
5.1. Combinatorial data of the Nill-Paffenholz’s example

In this subsection we shall list up the necessary combinatorial data of
Nill-Paffenholz’s example for the calculation in Section 4.
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e The vertices of the Fano polytope @ are given by (2.1).
e The 64 vertices of the polar polytope P are given by

(W1, Wa, W3, -, Wea)

-1 -1 -1 -1 -1 -1 2 -1 -1 -1 2 -1 -1 -1 2 -1
-1 -1 -1 -1 -1 2 -1 -1 -1 2 -1 -1 -1 2 -1 -1
-1 -1 -1 -1 2 -1 -1 -1 2 -1 -1 -1 2 -1 -1 -1
=/-1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 -1 1 1 1 5 -1 -1 -1 -1
-1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 5
-1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1

-1 -1 2 -1 -1 2 -1 2 -1 0 2 2 2 2 2 2 -1 0
-1 2 -1 -1 2 -1 -1 2 0o -1 2 2 2 2 2 -1 2 0
2 -1 -1 -1 2 2 o -1 -1 -1 2 2 2 2 -1 2 2 0
1 1 1 5 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1 1 5
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 -1 -1 -1 -1

1 -1 -1 -1

0 -1 0 0 0 0 0 0 0 -1 —1 -1

-1 0 -1 0 -1 -1 -1 0 0 0O 0 O

-1 0 0 -1 0 0 0 —-1 -1 0 0 ©0

5 -1 -1 -1 5 -1 -1 -1 -1 -1 -1 5

-1 -1 -1 -1 -1 5 -1 -1 5 5 -1 -1

-1 -1 -1 -1 -1 -1 5 5 -1 -1 5 -1

tr 1 1 1 1 1 1 1 1 1 1 1
e The neighbors of each vertex of P are listed in Table 5.1 (Here, vertices
v and u of P are called neighbors if the interval [u,v] is an edge of P).
The other sets of neighbors unlisted in Table 5.1 can be obtained by the

symmetry of V.

5.2. Computation data in Section 3

In this subsection, we list all of the data, which are needed to compute
f and Frq2. First, we compute that f = 0 by using its original localization
formula. Since f is a linear function in the variables a;,b;, ¢ (1 <¢,j <3) and
is symmetric among {a; }1<i<3 and among {b; }1<j<3 due to the symmetry
of V., we can write

3 3
f(X) = AZai +Bij +Ce
i=1 j=1
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vertex associated cone neighbors

W1 {vi,v2,v3,v7, Vg, Vg, Vi1 } W, W3, Wy, W5, Wg, W7, Wg
W3 {Vl,Vz,V37V7,V8,V10,V11} Wi, W2, Wy, W13, Wi4, W15, Wig
w7 | {Ve, V2, V3, V7, Vs, Vo, Vi1} | W1, W11, Wi5, Wig, Wa2, Wy, Wag
W3 {VI;V27V37V7’V87V97V12} Wi, W12, Wi, W20, W23, Wa5, Wag
Wig9 {V6,V2,V3,V87V9,V107V11} Wy, W7, W11, W15, W31, W32, W53
Woo | {V1,V2,V3, Vs, Vo, Vig, Via} | W4, Ws, Wiz, W16, W51, W52, W53
Wy {ve, Vs, V3, V7, Vg, Vo, Vi1 } W, W7, Wog, W31, W36, W40, W56
W26 {VGaV27V37V77V8»V97V12} W7, Wg, Wu7, W50, W53, W55, W56
Wa7 | {V6, V5, V4, Vs, Vo, V1o, Vi1} | Wag, Wag, W30, W31, W32, W33, W3y
Wasg {VG;V57V47V7,V87V97V11} W21, W22, Way, Wor, Wog, W30, W35
W31 | {Ve, Vs, V3, Vs, Vo, Vio, Vi1} | Wig, Wig, Woy, War, W3g, W40, Wiy
W34 | {V6,V5,Va, Vs, Vo, V1o, Via} | War, W35, W3g, W43, Wag, W57, W64
W35 {Ve, V5, V4, V7, Ve, Vo, Via} | Wag, W34, W39, Wa3, W54, W55, W56
Wiy | {Ve, Vs, V3, Vs, Vo, Vi, Via} | W31, W34, W52, W53, Ws6, We0, We1
W53 | {V6,V2,V3,Vs, Vg, Vig, Via} | Wig, Wag, Wag, Waq, W47, W50, W57
W56 {VG,V5,V37V7,V8,V97V12} Wo4, Wo5, Wag, W35, Waq, W60, We1

Table 5.1

for some real numbers A, B and C. To show the vanishing of f, it suffices
to show that f vanishes with respect to at least three cases, for example,

(-1,-1,-1,1,2,3,1)
(1,1,1,1,2,3,4)
(—2,-2,-2,1,2,3,1).

(a17a27a37b17627b3ac) =

The data of the first case is given in Table 5.2. In the columns of ¢; (L(X))
in Table 5.2, the first element corresponds to (+)-case and the other to (—)-
case. Our computation is divided into the four parts of Table 5.2, which
are labeled {(1‘i)}1<i<87 {(Z‘i)}1<i<8a {(3‘i)}1<i<8 and {(4‘i)}1<i<8- The
sum among {(1-7) }1<igs is given by

28 (—4)8 58 (—3)8 88 (—2)8 118 (—1)8
6 6 3( 8 8 > 3 ( 10 10 ) 12 12 985056

The sum among {(2-i) }1<igs is given by

08 (—10)8+3<£1’>Z_(—9)8)+3<_68+(—W)+98_(_7)8 = 4805280.

_7+7

10 10 12
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no. fixed pt L(X) det L(X) | e1(L(X))
-1 | (+++,p1,%) | (=1,—1,—1,1,2, -1, +3) +6 (2, —4)
12 (—++,p1, %) | (1,—-1,-1,1,2, -1, %4) 8 (5, =3)
-3 ( +,p1, +) [ (—1,1,-1,1,2, -1, +4) 8 (5,-3)
4| (++—,p,E) | (-1,-1,1,1,2, -1, +4) T8 (5,-3)
-5 | (+ —,pl,:t) (=1,1,1,1,2, -1, +5) +10 (8,—2)
16 | (—+—,p1, %) (1,—1,1,1,2,—1,i5) +10 (8,-2)
7| (— —+,p1, +) [ (1,1,-1,1,2,—1, +5) +10 (8,-2)
18 (———,p, %) | (1,1,1,1,2,—1, £6) F12 (11,-1)
21| (+++,p2, 1) | (-1,-1,-1,-1,1,-2,%5) | F10 (0, —10)
22 [ (—++,p2, 1) | (1,—1,—1,—1,1, -2, +6) +12 (3,-9)
2-3 (+ +,p2, %) | (=1,1,—1,—1,1, -2, £6) +12 (3,-9)
24 | (++ —,p2, 1) | (-1,-1,1,—1,1, -2, +6) +12 (3,-9)
2-5 (+——,p2, +) [ (=1,1,1,—1,1,-2,%7) T14 (6,—8)
26 | (—+ —,p2,+) | (1,—1,1,—1,1,—2,£7) F14 (6,—8)
2-7 (——+,p2, +) [ (1,1,-1,-1,1,-2,%7) T14 (6,—8)
2.8 | (———,p2, 1) | (1,1,1,—1,1, -2, £8) +16 9,=7)
31| (+++,ps, =) | (—1,—-1,—1, -2, —1 —3,£7) | £42 (—2,—16)
32| (—++,ps,x) | (1,-1,-1,-2,—1,-3,+8) | 748 (1,—15)
3-3 (+ +,p3, %) | (-1,1,—-1,—2,—1,-3,+8) | 748 (1,—15)
34| (++—,ps, &) | (-1,—1,1,-2,—1,-3,4£9) | 748 (1,—15)
3-5 (+——,p3, +) [ (—1,1,1, -2, —1 —3,19) +54 (4, —14)
36 | (—+—,ps, =) | (1,—1,1,—2,—1,—3,%9) +54 (4,—14)
37 (= —+,p3, +) [ (1,1,-1,—2,—1,-3,+9) F54 (4,—14)
38| (———,ps, &) | (1,1,1,—2,—1, -3, £10) F60 (7,—13)
41 [ (+++,ps, ) | (-1,-1,-1,1,2,3,£1) ¥6 (4,2)
42 [ (—++,ps, 1) | (1,—1,—1,1,2,3,%2) +12 (7,3)
4-3 (+ +,pa, %) | (=1,1,-1,1,2,3,£2) +12 (7,3)
44 (++ —,pas, %) | (—1,-1,1,1,2,3,£3) +12 (7,3)
4-5 (+——,p4, +) [ (—=1,1,1,1,2,3, £3) F18 (10, 4)
46 | (—+ —,pa, 1) | (1,-1,1,1,2,3,£3) F18 (10,4)
47 (- 7+,p4, +) [ (1,1,-1,1,2,3, £3) T18 (10, 4)
48 [ (— == pas, %) | (1,1,1,1,2,3,+4) +24 (13,5)
Table 5.2

The sum among {(3-i) }1<i<s is given by

(—2)8  (-16)8 18 (=15)8 48 (—14)8 78 (—13)8
42 42 +3 48 + 48 +3 54 54 60 + 60
= —10565664.

ANNALES DE L’INSTITUT FOURIER




AN EXAMPLE OF ASYMPT CHOW UNSTABLE MFDS WITH CSC 1283

The sum among {(4-7) }1<i<s is given by

48 28 78 38 108 48 138 58
—— 4= — = - = 1874544
6+6+3<12 12>+3( 18+18)+24 24 8745440.

Then, the total sum is equal to zero.

The data of the second case is given in Table 5.4. In this case, Table 5.4
coincides with Table 5.2 up to order. For example, the row (1-1) and (1-2)
in Table 5.4 coincide with the row (1-8) and (1-7) in Table 5.2 respectively.
Hence, f in this case also vanishes.

The data of the third case is given in Table 5.3.

Then, the sum among {(1-i)}1<;<s is given by

(—1)8 (—7)8+3< 58 (—5)8>+3<118 (—3)8) 178+(—1)8

%0 80 112 112 114 ' 114
= —42821280.

The sum among {(2-i) }1<i<s is given by

(=3)% (-13)8 3% (—11)8 9% (-9)8 158 (=7)8
80 + 80 3 112 112 3 144+ 144 +176 176

= 18984096.

The sum among {(3-7) }1<i<s is given by

(=5)8  (—19)® 18 (=178 T (-15)%) 13%  (-13)8
3 —— 3 -

Pl )T\ 5T s 624" 624

— —16631520.

The sum among {(4-i) }1<igs is given by

18 (=1)8 78 18 138 38 198 58
"3 as 3\ qm 1 ) T3\ T 2a0 Ta0) Taze ame 40408704

Then, the total sum is equal to zero.
Next, we compute Frgz(X), where X is the holomorphic vector field
associated with o, for when (a1, a2, as, b1,b2,bs,c) = (1,1,1,1,2,3,4).
The data is given in Table 5.4. Since Fpq: vanishes, it is sufficient to
check that

cac®)(L(X
T (c2¢7)(L(X)q)

(5-1) det(L(X)q)

q: fixed pt
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no. fixed pt L(X) det L(X) | e1(L(X))
1] (+++p1,+) | (—2,-2,-2,1,2,—1,£3) 48 (—1,—7)
12 [ (—++.p,5) | (2 27 2,1,2,—1,£5) 30 (5,-5)
13 +,p1, 1) [(=2,2,-2,1,2, -1, %5) T80 (5,-5)
4| (T —pr.t) | (—2.—2.2.1.2. 1, 15) 80 (5,—5)
15| (+ —,pl,:t) (—2,2,2,1,2, -1, +7) 112 (11, -3)
16 | (—+—pt) | (2,-2,2,1,2,—1,7) 112 (11,-3)
7 (= —+,p1, 1) [(2,2,-2,1,2,—1,+7) 112 (11, -3)
18 (———p,b) | (22 2,1,2 —1,+9) F144 (17,-1)
21| (+++,p2, 1) | (=2, — —1,1,-2,45) | ¥80 (—3,-13)
22 [ (— + +,p2, ) (2,—2,— 11,247 +112 (3,—11)
23 (+ T.p2,5) | (=2,2,-2,—1,1,-2, £7) 112 (3,—11)
24 [ (++ —,p2, £) | (-2, 2,2, 1,1,-2,£7) 112 (3,—11)
25 (+——,p2, (= 2,22 —1,1,-2,%9) F144 (9,-9)
26 | (—+ —,p2, %) | (2,-2,2,—1,1, -2, £9) F144 (9,-9)
27 (——+,p2, 1) (,2,—2 —1,1,-2,£9) F144 (9,-9)
28 | (———,p2, %) | (2,2,2,—1,1,-2,£11) +176 (15,-7)
31| (F+ fps,T) | (=22, -2, 2, —1 —3,£7) | £336 (—5,-19)
32 [ (—++.ps, ) | (2,-2,-2,-2,—1,-3,29) | 7432 (1,-17)
33 (+ +,ps, %) | (-2,2, 2,72,71,73,i9) F432 (1,—-17)
34| (++—,ps, &) | (—2,— 2,2,—, —3,19) | 7432 (1,-17)
35 (+——,p3, 1) | (—2,2,2, 2,—1 —3 [ E11) | £528 (7, —15)
36| (—+—,ps, &) | (2,-2,2,-2,—1,-3,+11) | £528 (7,—15)
37 | (= —+,p3, )22 -2, 2, 1. -3.%111) | 2528 (7,-15)
38 | (—— —,ps, %) | (2,2,2,-2, 1,3, £13) T624 (13, -13)
1| (+++pad) | (—2,-2 2,1,23 £1) 48 (1,-1)
22 (—++,put) | (2 —2,—2,1,2 3,£3) +144 (7,1)
43 (+ T.ps,5) | (—2,2,-2,1,2,3,£3) +144 (7,1)
T4 (T +—,pas, 1) | (—2,-2,2,1,2,3,%3) 144 (7,1)
15 (+——,p4, 1) [(=2,2,2,1,2,3,£5) 240 (13,3)
16| (—+—,pa L) (27—2 2,1,2,3,£5) T240 (13,3)
7| (— 7+,p4, 1) [(2,2,-2,1,2,3,£5) 240 (13,3)
I8 (———pnt) | (2,2,2,1,2,3,£7) 1336 (19,5)
Table 5.3

does not vanish. Then, we calculate (5.1) separately as follows. The sum
among {(1-7) }1<igs is given by

o 38.116 22 15-86+15-26 L83 T2 8
12 12 10 10 8 6 6
= —4431588,
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no. fixed pt L(X) det L(X) [ c1(L(X)) [ ca(L(X))
1| ¢+ +HpLt) | LLLL,2 —1,%6) Fi2 (L, -1) | (38,-22)
2| (—++,pL+) | —LIL,1,1,2 —1,%5) +10 (D) (15, —15)
3] (+—+.pL+) | (L, -1,1,1,2 —1,%5) £10 (8,2 (15, —15)
14| (++—pbH) | (1, 1,—1,1,2,—1,%5) £10 3B,—2) (15, —15)
15 [ (+-—pL®) | (I, —L,-1,1,2, -1, %4 58 (5,-3) (0,=8)
6 [ (—F —pi %) | (-L,1,—1,1,2, -1, £4) 8 (5,3 10,9
7 [(——+.p %) | (=L, —L,1,1,2, -1, £4) 8 (5,-3) | (0,—%)
8 [ (———,pLE) | (=1, —1,-1,1,2,—1,%3) 16 2, —4) (—7,-D
21| (+++,p2, F) | (1,1,1,-1,1,—2,%8) £16 (0,-7) 3 —12)
22 [ (—++.po. ) | CLLL-1,1,-2,%7) ¥ (6,8 [ (-1L3)
23 | (+ —+.p2,F) | (L, L1, —1,1,-2,%7) F14 (6, —8) (—11,3)
74| (++—p2,®) | (LL—1,-1,1,-2,%7) T4 (6,—8) (=1L,3)
25 | (= —,ps,B) | (1, —1,-1,-1,1,-2,%6) T12 (3,-9) (=18,18)
26 | (—F —,pa, F) | (-1,1,—1,—1,1,-2,%6) 12 (3,-9) (=18,18)
27 | (—=—F,pa, F) | (=1, —1,1,—1,1,-2,%6) 12 (3,-9) (=18, 18)
28 | (———,pa,F) | (=1, —1,—1,—1,1,-2,%5) | F10 (0,=10) | (=17,33)
31| (+++.ps, F) | (1,1,1,-2,—1, -3, %10) F60 (7,—13) | (—34,26)
32 | (—+ t.ps, &) | (-L,1,1,-2,—-1,-3,%9) +54 (d,—14) | (—41,49)
33 | (+—+.ps, &) | (,—1,1,-2,-1,-3,%9) T54 (4,—14) | (—41,49)
34| (++—.ps, &) | (,L,—1,-2,-1,-3,%9) I54 (4,—14) | (—41,49)
35 [ (+— —.ps, &) | (1,—1,—1,-2,—1,-3,%8) | 548 (I,—15) | (—40,72)
36 [ (—+ —.ps. &) | (-L,1, 1,2 1,328 | 548 (I,—15) | (—40,72)
37 | (——F,ps, ) | (-1, —1,1,-2,—1,-3,%8) | 548 (1,—15) | (—40,72)
38 | (———,ps, F) | (-1, —1,-1,-2,-1,-3,%7) | 42 (=2,-16) | (=31,95)
1| (++pe,®) | (1,1,1,1,2,3, 4 24 (13,5) (68, —4)
2 | (—+t.pa®) [ (-1,1,1,1,2,3,%3) FI8 (10,4) (37,—5)
i3 (r—+.psB) | (,-1,1,1,2,3 %3) Fi8 (10,9) (37,—5)
4| (+F—psB) | (,1,—1,1,2,3 £3) T8 (10,4 (37, -5)
45 | (- —pud) | (1,-1,-1,1,2,3,%2) 12 (7,3) (14, =6)
36 | (—F —pas,F) | (-1,1,-1,1,2,3,%2) 12 (7,3) (14, —6)
T | (——F.puF) | (-1,—1,1,1,2,3,%2) 12 (7,3) (14, —6)
I8 | (———pud) | (L, —1,-1,1,2,3,%D) F6 4,2 =1L,-7
Table 5.4
the sum among {(2-7) }1<;<s is given by
496 12-76_’_3 11-66+3-86 3 18-36+18-96 +33-106
16 16 14 14 12 10
= 1404828,
the sum among {(3-7)}1<i<s is given by
34~76+26~136 3 41'46_|_49~146 43 4O+72'156
60 60 o4 o4 48 48
31-26  95.16°
- - = —5038812
42 42 ’
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and the sum among {(4-7) }1<igs is given by

68-135 4.5 37-10° 5.46 14-7° 630
+ -3 + +3 +

24 24 18 18 12 12
46 7.26
— — —— = 7921956.

* 6 6

Therefore, we get the total sum

6V (L(X

3 (2)(L(X)a) _ 4131588 + 1404898 — 5038812 + 7921956

det(L(X)q)

q: fixed pt
— —143616

(5.2) = 13056 x (—11) # 0.

The last equality (5.2) confirms the result (3.3) in Section 3.
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