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GALOIS COVERS AND
THE HILBERT-GRUNWALD PROPERTY

by Pierre DÈBES & Nour GHAZI

Abstract. — Our main result combines three topics: it contains a Grunwald-
Wang type conclusion, a version of Hilbert’s irreducibility theorem and a p-adic
form à la Harbater, but with good reduction, of the Regular Inverse Galois Problem.
As a consequence we obtain a statement that questions the RIGP over Q. The
general strategy is to study and exploit the good reduction of certain twisted
models of the covers and of the associated moduli spaces.
Résumé. — Notre résultat principal mêle plusieurs thèmes : il contient une

conclusion de type Grunwald-Wang, une version du théorème d’irréductibilité de
Hilbert et une forme p-adique à la Harbater, mais avec bonne réduction, du pro-
blème inverse de Galois sous sa forme régulière (RIGP). Nous en déduisons un
énoncé qui pose de nouvelles questions sur le RIGP sur Q. La stratégie générale
est d’étudier et d’exploiter la bonne réduction de certains modèles tordus de revê-
tements et des espaces de modules associés.

1. Introduction

1.1. The Grunwald problem

Given a field K, a finite set S of independent non-trivial discrete valua-
tions of K and a finite group G, a natural question, which we call the Grun-
wald problem, is whether there exist Galois extensions E/K with group G
which have prescribed v-completions Ev/Kv (v ∈ S). More precisely, given
some homomorphisms(1) ϕv : GKv

→ G (v ∈ S), with GKv
the absolute

Galois group of Kv, does there exist an epimorphism ϕ : GK → G which,
composed with the restriction maps GKv → GK , yields the local maps ϕv?

Keywords: Inverse Galois theory, Grunwald’s problem, Hilbert’s irreducibility theorem,
algebraic covers, local and global fields, Hurwitz spaces.
Math. classification: 14H30, 11R32, 12F12, 12E25, 14Gxx, 14Dxx, 14H10.
(1)All profinite group homomorphisms are tacitly assumed to be continuous.
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When K is a number field, the answer is known to be positive in the
following cases: when G is cyclic of odd order (Grunwald with a correction
of Wang, see [34, (9.2.8)]), and when G is solvable of order prime to the
number of roots of 1 in K (Neukirch [33], [34, (9.5.5)]). More specifically,
in these cases, the following Grunwald map

GrK,S : Epi(GK , G)→
∏
v∈S

Hom(GKv , G)≡

is surjective for every finite set S of finite places; here Epi(GK , G) de-
notes the set of all epimorphisms from GK to G and the superscript ≡ in
Hom(GKv

, G)≡ means that homomorphisms are considered up to conjuga-
tion by an element of G (depending on v).

Definition 1.1. — Elements ϕ = (ϕv : GKv
→ G)v∈S of

∏
v∈S Hom

(GKv
, G)≡ are called Grunwald problems. Given a finite Galois extension

L/K totally split in Kv for each v ∈ S, we say that ϕ ∈ Epi(GL, G) is
an L-solution to the Grunwald problem ϕ if GrL,S(ϕ) = ϕ. The Grunwald
problem ϕ is said to be unramified if Gal(Kv/K

ur
v ) ⊂ ker(ϕv) (v ∈ S).

K-solutions are of primary interest. Scalar extension to fields L as in def-
inition 1.1 is however a natural operation; it does not change the Grunwald
problem to solve.
The general question we address is whether solutions to some Grunwald

problem can be found among the specializations of some Galois G-cover
f : X → P1. For every point t0 ∈ P1(K) not a branch point, what we call
the specialization of f at t0 is the residue field, denoted by K(X)t0 , of some
point in X above t0; viewed as an homomorphism GK → G, it is the action
of GK on the fiber f−1(t0) (see § 2.1).

1.2. Main theorems

As above, let K be a field, S be a set of independent non-trivial discrete
valuations of K and G be a finite group. For each place v, denote the
valuation ring of Kv by Ov, the valuation ideal by pv, the order of the
residue field of Kv by qv and its characteristic by pv.
The constant c(|G|, r) that appears in Theorem 1.2 below only depends

on the order of G and the branch point number r of the cover involved; it
is explicitly defined in § 3.1.

Theorem 1.2. — Assume that K is a number field, that pv /| |G| and
qv > c(|G|, r) (v ∈ S). Let f : X → P1 be a G-cover of group G and r

ANNALES DE L’INSTITUT FOURIER
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branch points, defined over K and satisfying the following good reduction
condition:
(good-red) for each v ∈ S, the branch divisor t = {t1, . . . , tr} is étale and
there is no vertical ramification in the cover f at v (2) .
Then f has the following Hilbert-Grunwald specialization property:
(HGr-spec) For each unramified Grunwald problem (ϕv : GKv

→ G)v∈S ,
there exist specializations of f at points t0 ∈ A1(K)rt that are K-solution
to it. More precisely the set of all such t0 contains a set A1(K)∩

∏
v∈S∪S0

Uv
where each Uv ⊂ A1(Ov) is a coset of Ov modulo pv and S0 is a finite set
of finite places v /∈ S which can be chosen depending only on f .

The constant c(G) that appears in Theorem 1.3 below depends only on
the group G; it is explicitly defined in § 5.

Theorem 1.3. — Assume that K is a number field, pv /| 6|G| and qv >
c(G) (v ∈ S). Then there exist a Galois extension L/K totally split in
Kv (v ∈ S) and a G-cover f : X → P1 of group G, defined over L that
satisfies the good reduction condition (good-red) and the Hilbert-Grunwald
specialization property (HGr-spec) with K replaced by L.

Addendum 1.4. — (a) We will prove a more general version of Theo-
rem 1.2 with P1 replaced by a higher dimensional variety B and K by the
quotient field of some Dedekind domain (Theorem 3.2). Further applica-
tions, notably to the situations K is PAC or is finite or is a function field
κ(x), are discussed in [11].
(b) The G-cover f : X → P1 of Theorem 1.3 depends on the set S. We

will however be able to fix in our construction the branch point number
r and the ramification type C (3) . That is, the corresponding points on
the moduli spaces will lie on the same Hurwitz space Hr(G,C); they will

(2)Specifically, t = {t1, . . . , tr} étale means that no two K-points ti, tj ∈ K ∪ {∞}
coalesce at v, and coalescing at v that |ti|v 6 1, |tj |v 6 1 and |ti − tj |v < 1, or else
|ti|v > 1, |tj |v > 1 and |t−1

i −t
−1
j |v < 1, where v is any prolongation of v to K. For more

on non vertical ramification, see addendum 1.4 (c) and § 2.3. (good-red) is indeed a good
reduction criterion: if t is étale and pv /| |G|, f acquires good reduction at v after some
finite scalar extension L/K [21]; under the extra non-vertical ramification assumption,
one can take L = K; see § 2.4.3 and § 2.4.4.
(3)Recall that the ramification type, also called inertia canonical invariant, is the col-
lection of conjugacy classes in G of the distinguished generators of the inertia groups
above the branch points, i.e., those which map to exp(2iπ/e) through the canonical
isomorphism between inertia groups and groups of e-th roots of 1; the integer e is the
corresponding ramification index. See e.g., [6] or [7].

TOME 62 (2012), FASCICULE 3



992 Pierre DÈBES & Nour GHAZI

more precisely be on some Harbater-Mumford component HM ⊂ Hr(G,C)
defined over K [19] [10](4) .
(c) Non-vertical ramification (precisely defined in § 2.3) is automatic in

(good-red) if the group G is of trivial center (under assumption “t étale and
pv /| |G|”). This is shown in [2] and will be used in the proof of Theorem 1.3
(§ 5). Another practical test for non-vertical ramification is this: for each
v ∈ S, if an affine equation P (t, y) = 0 of X is given with t corresponding
to f and P monic in y with integral coefficients (relative to v), then v is
unramified in f if the discriminant ∆(t) of P with respect to y is non-zero
modulo the valuation ideal of v.

Theorems 1.2 and 1.3 relate to several classical topics: Hilbert’s irre-
ducibility theorem — Galois covers of P1 over Q (or some number field K)
have specializations that preserve the Galois group — the Grunwald-Wang
theorem — these specializations can also have some local unramified be-
haviour prescribed at any finitely many suitably large primes — and the
Regular Inverse Galois Problem — a cover with these properties does exist,
maybe not defined over Q but over some number field L totally split in Qp
for each of the same primes p. We elaborate below on this triple aspect.

1.3. The Grunwald-Wang theorem and the RIGP

As an immediate consequence of Theorem 1.3, we obtain this Grunwald-
Wang type conclusion: with notation as in § 1.2, if pv /| 6|G| and qv > c(G)
(v ∈ S), then every unramified Grunwald problem ϕ = (ϕv : GKv → G)v∈S
has a solution over some Galois extension L/K totally split in Kv (v ∈ S).

Furthermore one can take L = K for an interesting class of groups.
Assume indeed that G is a regular Galois group over K, that is, can be
realized as the Galois group of some K-G-cover f : X → P1; this is conjec-
turally true for all groups (the RIGP) and known for many. Taking pv � 1
guarantees condition (good-red). Thus, from Theorem 1.2, the one cover
f can be used to solve over K all unramified Grunwald problems ϕ with
pv � 1. We obtain the following, where Homur(GKv

, G) denotes the subset
of Hom(GKv , G) of all unramified homomorphisms.

(4)Deformation or patching techniques used in that paper then show that HM(Kv) 6= ∅
for all places v of K (as in [15]). This yields realizations over all corresponding Kvs of
the group G and the ramification type C. These however have bad reduction and cannot
be guaranteed to satisfy condition (HGr-spec).

ANNALES DE L’INSTITUT FOURIER



GALOIS COVERS AND THE HILBERT-GRUNWALD PROPERTY 993

Corollary 1.5. — Every regular Galois group G over K has the fol-
lowing unramified Grunwald property: for all finite sets S of finite places v
of K with pv �G 1 (v ∈ S),
(Gr-ur) the set

∏
v∈S Homur(GKv

, G)≡ is in the image of the Grunwald
map GrK,S : Epi(GK , G)→

∏
v∈S Hom(GKv , G)≡.

Equivalently, condition (Gr-ur), which only depends on G and K, is a
necessary condition (possibly vacuous) for G to be a regular Galois group
over K. Corollary 1.5 can be compared to Saltmann’s result that existence
of some generic extension for G overK (which is stronger than being a regu-
lar Galois group over K) implies the full surjectivity of the Grunwald map
GrK,S [37, theorem 5.8]. Recall Saltmann used Wang’s counter-example
to Grunwald’s theorem — condition (Gr-ur) does not hold for K = Q,
S = {2}, G = Z/8Z — to show that there can be no generic extension for
Z/8Z over Q and consequently that the Noether program does not work in
general [37, theorem 5.11].
Corollary 1.6 below and the more general corollary 4.1 (both proven in

§ 4) provide even stronger obstructions (though still possibly vacuous) to
the Regular Inverse Galois Problem. Given a Galois extension E/Q, let
πEnts(x) denote the number of primes p 6 x that are not totally split or are
ramified in E/Q. From the Čebotarev density theorem we have

πEnts(x) ∼E
(

1− 1
|G|

) x

log x (when x→∞).

Corollary 1.6. — Let G be a finite group. Assume there exist two
functions `(x) and m(x) tending to∞ with x such that the following holds:
if E/Q is a Galois extension of group G and discriminant dE ,

(∗) πEnts(x) > m(x) if log |dE | 6 x`(x).

Then G is not a regular Galois group over Q.

The Čebotarev theorem has the following effective version, proved by
Lagarias and Odlyzko ([29]; see also [38, § 2.2]): if π(x) denotes the number
of primes 6 x, then

(∗∗) πEnts(x) > π(x)− 2
|G|

x

log x if β|G| log2 |dE | 6 log x

for some absolute constant β. Thus condition (*) holds for all finite groups
G if log |dE | 6 x`(x) is replaced by β|G| log2 |dE | 6 log x (or by β|G| log |dE |
6
√
x/ log x under GRH). Producing a single group satisfying the exact

condition (*) would disprove the RIGP.

TOME 62 (2012), FASCICULE 3



994 Pierre DÈBES & Nour GHAZI

Classical methods for establishing such analytic estimates as (**) de-
pend on the possiblity of finding appropriate zero-free regions for Hecke
L-functions. It would be interesting to investigate to what extent the Ga-
lois structure can be taken advantage of to improve these estimates for
some specific groups. The difference between (*) and (**) is essentially a
“log” in the condition on dE . We note that a “log” can be gained in a
related problem: concerning the least prime ideal in the Čebotarev density
theorem (instead of the number of primes), Linnick’s theorem shows that
difference between the general estimate and that of the specific situation
of Dirichlet’s theorem (see [28]).

Remark 1.7. — We have considered the totally split behaviour for sim-
plicity of exposition. Similar conclusions hold for any possible local be-
haviour. See corollary 4.1 which is a more general and fully effective ver-
sion of the above results. Also note that for groups G that are known to be
regular Galois groups over Q, corollary 4.1 can be used positively to pro-
duce Galois extensions Ex/Q of groups G that are totally split at almost
all primes 6 x and for which an upper bound for dEx

that compares to the
Lagarias-Odlyzko bound can be given.

1.4. The RIGP over p-adic fields

Conclusion of Theorem 1.3 implies that the G-cover f : X → P1 is
defined over the field KtotS of all totally S-adic algebraic numbers (that
is, all numbers x ∈ K such that K-conjugates of x are in Kv for each
v ∈ S). Existence of a realizingKtotS-G-cover, for any groupG, is a classical
application of the so-called patching methods [26], [3], [36]. However these
methods lead by essence to covers with bad reduction. Here, as the cover
f : X → P1 also satisfies (good-red) and pv /| |G|, we obtain:

Corollary 1.8. — Given K, S, G as before, assume as in Theorem 1.3
that pv /| 6|G| and qv > c(G) (v ∈ S). Then there exists a G-cover f : X →
P1 of group G defined over KtotS and with good reduction at every place
v ∈ S (including no vertical ramification).

Consequently, for the same places v, G is a regular Galois group over the
finite fields Fqv . That each finite group is a regular Galois group over all
big enough fields Fq was proved in [20] and [36]; our results and approach
also relate to these works.

ANNALES DE L’INSTITUT FOURIER
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1.5. The Hilbert aspect

Conclusion (HGr-spec) includes the Hilbert property: the specializations
K(X)t0/K have a Galois group equal to the generic Galois group G. Our
method leads to some bound for the least integer t0 > 0 for which the
specialization K(X)t0/K has group G that depends only on |G|, r and the
number br(t) of primes for which the (good-red) condition from § 1.2 does
not hold (see § 4)(5) . Existing bounds usually involve the height H of some
affine equation of f . Recall that conjecturally — notably under Lang’s
conjecture on rational points on higher dimensional varieties — neither
bb(t) nor H(f) are necessary; a bound should exist depending only on |G|
and r [12].

1.6. Earlier works

Similar Hilbert-Grunwald-RIGP questions are addressed in a paper of
Plans and Vila [35], for a few groups and for specific G-covers X → P1,
generally derived from the rigidity method. Here, G can be any group in
Theorem 1.3 and Theorem 1.2 a priori applies to all K-G-covers X → P1.
We have however a big enough condition on qv and pv for v ∈ S. This condi-
tion can in fact not be removed: as Wang’s counter-example to Grunwald’s
theorem or other examples in [35] show, there are situations where some
local unramified behaviours cannot occur. These counter-examples however
all involve the prime p = 2 and it seems unknown whether counter-examples
exist with other primes.
From earlier works on the ramification of specializations of covers, it also

seems difficult to remove the unramified assumption on the ϕv (though it
remains an interesting question in general). The specializations t0 from con-
clusion (HGr-spec) will indeed be constructed so not to reduce to branch
points of the cover modulo the valuation ideal of v. From [2] or more gen-
eral results of Grothendieck [23], the specializations K(X)t0/K are then
necessarily unramified at v unless v is one from a finite list of bad places.
Theorem 1.2 is in the line of a series of works, of Eichler [16], Fried [18],

Ekedahl [17], Colliot-Thélène [39, § 3] on the Hilbert specialization prop-
erty. Our method rests on the same basic idea — go to finite fields — and

(5)Note however that these bounds are for regular Galois extensions. A classical argu-
ment to deduce the full situation of Hilbert’s irreducibility theorem uses Čebotarev’s
theorem, which may lead to constants involving other parameters.

TOME 62 (2012), FASCICULE 3



996 Pierre DÈBES & Nour GHAZI

is in fact rather similar to that of Ekedahl. Our contribution is the Grun-
wald aspect: we realize given local extensions at some given places while it
suffices, for Hilbert’s irreducibility theorem, to realize suitable decomposi-
tion groups, at any possible places. This has led us to closely investigate
the local situation and prevented from using asymptotic arguments. Our
results are totally explicit and effective (see corollary 4.1). With the start-
ing twisting lemma 2.1 we also offer a new approach that unifies earlier
works over various fields like PAC and finite fields. For example Fried’s
Čebotarev theorem for rational function fields κ(x) over a finite field κ and
Colliot-Thélène’s result that varieties over a number field with the “weak
weak approximation property” have the Hilbert property can be obtained
as special cases of our approach; this is detailed in [11].

1.7. Strategy and organization of the paper

We first prove Theorem 1.2. The starting point is the “twisting lemma”
that gives a general answer to the question of whether a field extension
E/K is a specialization of some K-G-cover: K-rational points should exist
on a certain twisted K-variety (lemma 2.1). The next step is to establish
some good reduction properties of this variety (§ 2.4). Thanks to the Lang-
Weil estimates which remain as for our predecessors a basic tool, we can
then deduce a local form of our result (proposition 2.2). Conjoined with
some globalization arguments, this leads to Theorem 1.2 and its higher
dimensional version (Theorem 3.2) in § 3.
In order to obtain theorem 1.3 (in § 5), we first explain how to reduce

to the situation Z(G) = {1} where the vertical ramification can be better
controlled. Then we show in that case how to find a G-cover f : X → P1

defined over some number field L as in Theorem 1.3 and satisfying the
(good-red) condition. For this we use the Hurwitz space theory to construct
a K-component of some Hurwitz space of G-covers of group G that has Kv-
rational points corresponding to covers with good reduction (v ∈ S).

Acknowledgments. We wish to thank Anna Cadoret, Michel Emsalem,
Marc Perret, Olivier Ramaré and Lorenzo Ramero for their help and their
interest in our paper.

2. The local situation

We will work with covers of a more general base B than P1.

ANNALES DE L’INSTITUT FOURIER



GALOIS COVERS AND THE HILBERT-GRUNWALD PROPERTY 997

2.1. Basic notation

For more details, we refer to [8, § 2] and [5, § 2].
Given a field k, we denote by k an algebraic closure, its separable closure

in k by ksep and its absolute Galois group by Gk. If k′ is an overfield of k,
we use the notation ⊗kk′ for the scalar extension from k to k′: for example,
if X is a k-curve, X ⊗k k′ is the k′-curve obtained by scalar extension.
Given a regular projective geometrically integral k-variety B, a k-mere

cover of B is a finite and generically unramified morphism f : X → B

defined over k with X a normal and geometrically irreducible k-variety.
Mere covers f : X → B over k correspond to finite separable field extensions
k(X)/k(B) that are regular over k through the function field functor. The
term “mere” is meant to distinguish mere covers from G-covers. By k-G-
cover of B of group G, we mean a Galois cover f : X → B over k given
together with an isomorphismG→Gal(k(X)/k(B)). G-covers of B of group
G over k correspond to regular Galois extensions k(X)/k(B) given with an
isomorphism of the Galois group Gal(k(X)/k(B)) with G. By group and
branch divisor of a k-cover f , we mean those of the ksep-cover f⊗kksep (6) .

Given a reduced positive divisor D ⊂ B, denote the k-fundamental group
of BrD by π1(BrD, t)k where t ∈ B(k)rD is a base point. Mere covers
of B of degree d (resp. G-covers of B of group G) with branch divisor
contained in D correspond to homomorphisms π1(B r D, t)k → Sd such
that the restriction to π1(BrD, t)ksep is transitive (resp. to epimorphisms
π1(B rD, t)k → G such that the restriction to π1(B rD, t)ksep is onto).
Each k-rational point t0 ∈ B(k) r D provides a section st0 : Gk →

π1(B rD, t)k of the exact sequence

1→ π1(B rD, t)ksep → π1(B rD, t)k → Gk → 1

well-defined up to conjugation by elements in π1(BrD, t)ksep . Given a mere
cover representation φ : π1(BrD, t)k → Sd, the morphism φ st0 : Gk → Sd
is the arithmetic action of Gk on the fiber above t0. If φ : π1(BrD, t)k → G

represents a G-cover f : X → B, the morphism φ st0 : Gk → G is the
specialization representation of f at t0. The fixed field in ksep of ker(φ st0)
is the residue field of k(X)/k(B) at some point above t0. We denote it by
k(X)t0 and call the extension k(X)t0/k the specialization of f at t0.

(6)The group of a ksep-cover X → B is the Galois group of the Galois closure of
the extension ksep(X)/ksep(B). The branch divisor is the formal sum of all prime di-
visers of B such that the associated discrete valuations are ramified in the extension
ksep(X)/ksep(B).

TOME 62 (2012), FASCICULE 3



998 Pierre DÈBES & Nour GHAZI

2.2. Twisting G-covers

We will use a notion of “twisted covers” introduced in [4, § 2] for covers
of P1. As we indicate below, their definition and main properties readily
extend to k-covers f : X → B.

Let k be a field and f : X → B be a k-G-cover. Let φ : π1(BrD, t)k → G

be the epimorphism corresponding to the G-cover f and let ϕ : Gk → G

be an homomorphism (not necessarily onto).
Denote the right-regular (resp. left-regular) representation of G by δ :

G → Sd (resp. by γ : G → Sd) where d = |G|. Define ϕ∗ : Gk → G by
ϕ∗(g) = ϕ(g)−1. Consider the map φ̃ϕ : π1(BrD, t)k → Sd defined by the
following formula, where r is the restriction map π1(B rD, t)k → Gk and
× is the multiplication in the symmetric group Sd:

φ̃ϕ(θ) = γφ(θ)× δϕ∗r(θ) (θ ∈ π1(B rD, t)k).

It is easily checked that φ̃ϕ is a group homomorphism with the same re-
striction on π1(B rD, t)ksep as φ. The associated mere cover is a K-model
of the mere cover f ⊗k ksep. We denote it by f̃ϕ : X̃ϕ → B and call it
the twisted cover of f by ϕ. The following statement contains the main
property of the twisted cover.

Twisting lemma 2.1. — Let t0 ∈ B(k)rD. The specialization repre-
sentation φ st0 : Gk → G of the G-cover f at t0 is conjugate in G to
ϕ : Gk → G if and only if there exists x0 ∈ X̃ϕ(k) such that f̃ϕ(x0) = t0.

Furthermore, it is readily checked that the twisting operation commutes
with extension of scalars: if k′ is an overfield of k, then the twisted cover of
f ⊗k k′ by the restriction of ϕ : Gk → G to Gk′ equals the cover f̃ϕ ⊗k k′.

Proof of twisting lemma. — Consider the section st0 : Gk → π1(B r
D, t)k associated with t0. The arithmetic action of Gk on the fiber (f̃ϕ)−1

(t0) is φ̃ϕ st0 . Hence for each τ ∈ Gk, the action of τ on the fiber (f̃ϕ)−1(t0)
is given by

φ̃ϕ(st0(τ)) = γφ(st0(τ))δϕ∗(τ).
In Sd the element γφ(st0(τ)) ∈ G is the multiplication on the left by
φ(st0(τ)) in G while the element δϕ∗(τ) is the multiplication on the right
by ϕ(τ)−1. If the elements φ̃ϕ(st0(τ)) (τ ∈ Gk) have a common fixed point,
say ω ∈ G, then we obtain φ(st0(τ)) = ωϕ(τ)ω−1. This proves the con-
verse part. For the direct part assume φ st0 = ωϕω−1 for some ω ∈ G.
Then it is straightforwardly checked that ω is fixed under every permuta-
tion φ̃ϕ(st0(τ)) (τ ∈ Gk). The corresponding point x0 ∈ X̃ϕ above t0 is
k-rational. �

ANNALES DE L’INSTITUT FOURIER
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For example, from Faltings’ theorem, it follows from lemma 2.1 that if k
is a number field and X is a curve of genus > 2, then a given extension E/k
can be a specialization of some k-G-cover f : X → P1 at only finitely many
points t0 ∈ P1(k). In the rest of the paper, we are interested in situations
where it is possible to produce k-rational points on the twisted variety X̃ϕ.

2.3. Local specialization result

Assume k is the quotient field of some complete discrete valuation ring A.
Denote the valuation ideal by p, the residue field A/p by κ, assumed to be
perfect, and its characteristic by p.

Let B be a smooth projective and geometrically integral k-variety and
assume it is given with an integral smooth projective model B over A; in
particular B is regular [22, proposition 17.5.8].
Let f : X → B be a k-G-cover of group G. Denote by F : X → B the

normalization of B in k(X); it is a finite morphism [30, proposition 1.1].
Denote its special fiber by F0 : X0 → B0 and the Zariski closure of D in B
by D.
A finite and flat morphism F ′ : X ′ → B with X ′ normal is called an A-

model of (f ⊗k ksep,F0⊗κ κ) if F ′⊗A k is a k-cover that is ksep-isomorphic
to f ⊗k ksep and the special fiber F ′0 : X ′0 → B0 is a κ-cover that is κ-
isomorphic to F0 ⊗κ κ.

The cover f is said to have no vertical ramification at p if F : X → B
is unramified above p viewed as a prime divisor of B, or in other words,
is unramified above the special fiber B0. An homomorphism ϕ : Gk → G

is said to be unramified at p if the inertia subgroup Ip ⊂ Gk above p is
contained in ker(ϕ).

Proposition 2.2. — Given a k-G-cover f : X → B of group G and an
unramified homomorphism ϕ : Gk → G, assume that p/| |G| and that
(good-red) D is a smooth divisor, D ∪ B0 is regular with normal crossings
over A and f has no vertical ramification at p, and
(κ-big-enough) for every A-model F ′ : X ′ → B of (f⊗k ksep,F0⊗κκ), there
exist κ-rational points on X ′0 that do not lie above any point in the closed
subset D0 ⊗κ κ.
Then there exists t0 ∈ B(k)rD such that the specialization representation
of f at t0 is conjugate in G to the morphism ϕ : Gk → G. Furthermore the
set of all such points t0 contains the preimage via the map B(A)→ B0(κ)
of a non-empty subset F ⊂ B0(κ) rD0.
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As we will show in § 2.5, condition (κ-big-enough) holds if κ is a big
enough finite field (lemma 2.4). Also, in the case B = P1, the condition on
D ∪B0 can be omitted in the (good-red) assumption as it follows from the
two other conditions (lemma 2.6).

2.4. Proof of proposition 2.2

Consider the cover f̃ϕ : X̃ϕ → B obtained by twisting f by ϕ. Denote
by F̃ϕ : X̃ϕ → B the morphism obtained by normalizing B in k(X̃ϕ). By
definition we have F̃ϕ ⊗A k = f̃ϕ; hence F̃ϕ ⊗A k is a k-cover that is
ksep-isomorphic to f ⊗k ksep. Below we prove the rest of the condition that
makes F̃ϕ an A-model of (f ⊗k ksep,F0 ⊗κ κ) so we can apply assumption
(κ-big-enough).

2.4.1. F̃ϕ is flat

In order to show this claim, we will use this criterion: a cover is flat if it
is tamely ramified along a regular divisor with normal crossings [25]. From
our assumption that p/| |G|, all covers involved in the argument will be
tamely ramified. As a first step, note that the k-cover f̃ϕ : X̃ϕ → B is flat:
its branch divisor D is regular with normal crossings over k (as it is over
A from (good-red)) and f̃ϕ is étale above B rD [30, theorem 3.21]. Now
as BrD = Br (D∪B0), we have that F̃ϕ is étale above Br (D∪B0) and
can use again the above criterion and the assumption (good-red), applied
this time over the ring A, to conclude our claim. (7)

2.4.2. F̃ϕ is étale above B rD

As f̃ϕ : X̃ϕ → B is unramified over B r D, it suffices, thanks to the
Purity of Branch Locus, to check that p is unramified in F̃ϕ. Let E be
the fixed field of ker(ϕ) in ksep. The homomorphism ϕ being unramified
at p means that p is unramified in the extension E/k (more exactly in the
integral closure A′E of A in E). This conjoined with f having no vertical
ramification at p implies that p is unramified in the normalization of B in
E(X) [2, lemma 2.1]. As k(X̃ϕ) ⊂ E(X) = E(X̃ϕ), this is stronger than
what we need.
(7)As pointed out by the referee, if B is a curve, flatness does not require tame ramifi-
cation: a normal cover of a regular surface is flat over the base.
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2.4.3. Good reduction

We can now resort to a classical good reduction criterion for covers due to
Grothendieck et al. [23] [25]: in the situation above where we have a smooth
divisor D with normal crossings of the smooth proper and geometrically
integral scheme B over the complete discrete valuation ring A, the reduction
process yields an equivalence between the category of covers of B tamely
ramified along D and that of those covers of the special fiber of B0 that
are tamely ramified above D0. From the properties we already know about
F̃ϕ : X̃ϕ → B, we deduce that F̃ϕ0 : X̃ϕ0 → B0 is finite, flat, étale above
(B r D)0 and that X̃ϕ0 is normal and irreducible (X̃ϕ is irreducible as it
contains X̃ϕ which is irreducible as a dense subset). We show in § 2.4.4
below that X̃ϕ0 is geometrically irreducible.

2.4.4. Geometric behaviour

Denote the integral closure of A in ksep by Asep and the normalization of
Bsep = B ⊗A Asep in ksep(X) by F sep : X sep → Bsep. The same argument
as the one used for F̃ϕ shows that F sep is étale above (BrD)⊗AAsep and
the same good reduction criterion leads to the same conclusions about the
special fiber F sep

0 as those deduced above for F̃ϕ0 : X̃ϕ0 → B0. In particular
X sep

0 is normal and irreducible. Lemma 2.3 compares F sep
0 and F̃ϕ0 ⊗κ κ.

Lemma 2.3. — F sep and F̃ϕ⊗AAsep are isomorphic above a non-empty
open subset V ⊂ Bsep. Consequently X̃ϕ0 is geometrically irreducible and
F̃ϕ is an A-model of (f ⊗k ksep,F0 ⊗κ κ).

Proof. — As F̃ϕ is étale above B r D, we can find a non-empty affine
open subset U = Spec(β) ⊂ B r D meeting B0 and such that the integral
closure β′

k(X̃ϕ)
of β in k(X̃ϕ) is a free β-module of rank [k(X̃ϕ) : k(B)].

Up to shrinking U , we may assume that the open subset U ⊗A Asep =
Spec(β ⊗A Asep) of (B r D) ⊗A Asep has the property that the integral
closure (β⊗AAsep)′ksep(X) of β⊗AAsep in ksep(X) is a free β⊗AAsep-module
of rank [ksep(X) : ksep(B)]. Furthermore if f1, . . . , fd is a basis of the β-
module β′

k(X̃ϕ)
, it is also a basis of the β⊗AAsep-module (β⊗AAsep)′ksep(X):

this follows from its discriminant being invertible in β (so in β ⊗A Asep

too) conjoined with ksep(X) = ksep(X̃ϕ) and [k(X̃ϕ) : k(B)] = [ksep(X) :
ksep(B)]. Conclude that (F sep)−1(U ⊗A Asep) and (F̃ϕ)−1(U)⊗A Asep are
isomorphic above U ⊗A Asep, thus proving first claim of lemma 2.3.

TOME 62 (2012), FASCICULE 3



1002 Pierre DÈBES & Nour GHAZI

It follows that X sep
0 and X̃ϕ0 ⊗κ κ are birationally isomorphic. As the

former is irreducible, X̃ϕ0 is geometrically irreducible. As X sep
0 and X̃ϕ0 ⊗κ

κ are also normal, the equivalence between function field extensions and
covers recalled in § 2.1 yields that the κ-covers F sep

0 and F̃ϕ0 ⊗κ κ are
isomorphic (and not just birationally isomorphic). Using this in the special
case ϕ = 1 yields that these two covers are also isomorphic to F0⊗κ κ. �

2.4.5. End of proof of proposition 2.2

It follows from assumption (κ-big-enough) that there are κ-rational
points on X̃ϕ0 not lying above any point in D0. Define F to be the set
F̃ϕ0 (X̃ϕ0 (κ)) r D0. Let t0 ∈ F , x ∈ X̃ϕ0 (κ) above t0 and t0 ∈ B(A) be a lift
of t0; such a lift exists from Hensel’s lemma applied to the smooth variety
B. From Hensel’s lemma applied to the morphism F̃ϕ : X̃ϕ → B which is
étale at the neighborhood of t0, x can be lifted to some point in X̃ϕ(A);
the corresponding point x on the generic fiber X̃ϕ is k-rational and lies
above t0 (viewed in B(k)). The twisting lemma 2.1 finishes the proof of
proposition 2.2.

2.5. On the hypotheses of proposition 2.2

The following two lemmas provide practical conditions that guarantee
the hypotheses (κ-big-enough) and (good-red) of proposition 2.2.

Lemma 2.4. — Condition (κ-big-enough) holds if κ is a finite field of
order bigger than a constant c, which is described in addendum 2.5.

Proof. — The proof rests on the Lang-Weil inequality and more specifi-
cally on this statement:
Lang-Weil inequality. Let V be a proper geometrically irreducible vari-
ety of dimension d > 1 over a finite field κ with q elements. There exists
a constant β depending only on the κ-variety Vκ = V ⊗κ κ such that
|#V (κ) − qd| 6 β

√
q2d−1. For each prime ` 6= p, the constant β can be

taken to be the largest dimension β`(Vκ) of the `-adic cohomology groups
Hi(Vκ,Q`), i = 0, 1, . . . , 2d, viewed as Q`-vector spaces.
(This follows from the works of Grothendieck and Deligne on Weil’s

conjectures, for which we refer to [13] and [14]; references to [1] about
Grothendieck’s contribution are given in [13, § I]. For any prime ` 6=
p, Grothendieck has defined some `-adic cohomology groups Hi(Vκ,Q`),
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which are finite dimensional Q`-vector spaces and relate to #V (κ) via the
formula #V (κ) =

∑2d
i=0(−1)i Tr(F,Hi(Vκ,Q`)), where Tr(F,Hi(Vκ,Q`))

is the trace of the Frobenius automorphism induced on Hi(Vκ,Q`). By
Deligne’s Theorem [14, théorème 3.3.1], the eigenvalues of the Frobenius
automorphisms acting on Hi(Vκ,Q`) are of absolute value 6

√
qi. Further-

more the main term in the sum above is for i = 2d: Tr(F,H2d(Vκ,Q`)) =
qd).

In order to deduce the (κ-big-enough) condition, consider a A-model
F ′ : X ′ → B of (f ⊗k ksep,F0 ⊗κ κ) and apply the Lang-Weil inequality to
get a lower bound of the form qd−β`(Vκ)

√
q2d−1 for the total number of κ-

rational points on V = X ′0. As X ′0⊗κ κ is isomorphic to X0⊗κ κ, we have in
fact β`(Vκ) = β`(X0 ⊗κ κ). Next bound from above the number of these κ-
rational points that may lie above the closed subset D0⊗κ κ. This number,
say N , is bounded by the degree of f multiplied by the number of κ-rational
points lying on some irreducible component of D0⊗κ κ defined over κ. Due
to the (good-red) assumption (conjoined with p/| |G|), the components of
D0⊗κκ correspond via the reduction process to the irreducible components
of D ⊗k ksep. Denote their number by r(D). Using Lang-Weil again, we
obtain that for any prime ` 6= p, we haveN 6 |G|r(D)(1+b`(D))qd−1 where
b`(D) is the maximum of the β`(Vκ) where V ranges over the components
of the divisor D0 ⊗κ κ. As the main term in the lower bound is in qd, we
obtain the desired conclusion if q is suitably large. �

Addendum 2.5. — More precisely, the condition on q is as follows. For
each prime ` 6= p, there is a constant c` depending on r(D), |G|, β`(X0⊗κκ)
and b`(D) and q should be bigger than one of these c`. For covers of B = P1

and with B = P1
A, β`(X0⊗κκ) is the genus of X0⊗κκ which here equals the

genus g of X and can be bounded in terms of r and |G| by the Riemann-
Hurwitz formula; and b`(D) = 0. The constant c` depends only on r and
|G|, and no longer on the prime `. It can be made totally explicit: we have
#X0(κ)−(q+1) > −2g√q; the number q should satisfy q+1−2g√q > |G|r.

Lemma 2.6. — For B = P1, the (good-red) condition holds if the divisor
D is étale over A, p/| |G| and f has no vertical ramification at p.

Proof. — As in § 1.2 where B = P1, denote the branch divisor D by
{t1, . . . , tr}. We may assume that t1, . . . , tr are in the valuation ring A. The
divisor D then corresponds to a polynomial of the form D(T ) = δ

∏r
i=j(T−

ti) with δ ∈ A r p. Assume that D ∪ B0 does not have normal crossings.
The polynomial D′(T ) then vanishes at some ti modulo p, or, equivalently,
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ti is a multiple root of D(T ) modulo p. But then there is some other root
tj 6= ti of D(T ) equal to ti modulo p, contradicting that D is étale. �

3. Globalization

We explain how in the situation of Theorem 1.2, local information can
be obtained for each place v ∈ S from the specialization result of § 2.3 and
then globalized to deduce the desired result.

3.1. Generalization

We will prove a more general statement than Theorem 1.2. As in § 1.2
we have a finite group G, a field K, a finite set S of finite places of K and
a G-cover f .
The field K is assumed to be the quotient field of some Dedekind domain

R and S is a finite set of places of K corresponding to some prime ideals in
R. For every place v, the completion of K is denoted by Kv, the valuation
ring by Rv, the valuation ideal by pv, the residue field Rv/pv by κv, the
order of κv by qv and its characteristic by pv.

The G-cover X → B has here a more general base space than P1; we
assume the following on B:
(*) B is a smooth projective and geometrically integral K-variety and is
given with an integral model B over R such that Bv = B ⊗R Rv is smooth
for each v ∈ S.
Denote the branch divisor of f by D and its Zariski closure in B and Bv
by D and Dv respectively.
The G-cover f is assumed to be defined over K and we retain the good

reduction assumption (good-red) from § 1.2, generalized as follows for a
K-G-cover of B:
(good-red) for each v ∈ S, pv /| |G|, Dv is a smooth divisor, Dv ∪ (Bv)0
is regular with normal crossings (over Rv) and f ⊗K Kv has no vertical
ramification at pv.
Finally we assume that for each v ∈ S, the residue field κv is finite

of order qv > C(f,B) where the constant C(f,B) replaces the constant
c(|G|, r) of Theorem 1.2; it depends on f and B and is described in the
proof of the following lemma 3.1.
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Lemma 3.1. — For each v ∈ S, assumption qv > C(f,B) guarantees
that condition (κv-big-enough) from proposition 2.2 holds for the Kv-G-
cover f ⊗K Kv and A = Rv.

Proof. — It suffices to show that the constant c from lemma 2.4 can be
chosen depending only on f and B. Fix a prime ` 6= pv for all v ∈ S.
From addendum 2.5, for each v ∈ S, there is a constant c` depending on
r(D), |G|, β`(X0 ⊗κv

κv) and b`(D) and qv should be bigger than c`. Here
X0 is the special fiber of the Rv-scheme obtained by scalar extension from
the R-scheme corresponding to the normalization of B in K(X); in other
words, all κv-varieties X0 come from a global K-variety. In this situation
we have this “standard” property of the `-adic cohomology groups:
(**) the Q`-dimensions of Hi(X0⊗κv

κv,Q`) can be bounded by a constant
depending only on X (and independent of v).
(Specifically this follows from exposé VI of [24] by J.-P. Jouanolou, and

in particular from proposition 1.2.6 there which shows that for every `-adic
constructible sheaf F on a locally noetherian prescheme X, there exists
a constructible stratification of X such that the restriction of F to each
stratum is a “twisted constant” `-adic sheaf).
The same remark applies to the parameter b`(D) to provide the desired

conclusion. The constant C(f,B) can be made more precise; in particular,
in the case B = P1, it can be expressed as a constant c(|G|, r) depending
only on |G| and r. �

3.2. Argument

Under the assumptions in § 3.1, the argument below leads to Theorem 3.2
which is the announced generalization of Theorem 1.2.

For each v ∈ S, consider the Kv-G-cover fv : Xv → Bv obtained from
f by scalar extension from K to Kv. Fix an unramified Grunwald problem
ϕ = (ϕv : GKv

→ G)v∈S . From our assumptions, conditions (good-red)
and (κ-big-enough) from the local specialization result (proposition 2.2)
are satisfied for the cover fv, and the homomorphism ϕv is unramified, for
each v ∈ S.

Conclude from proposition 2.2 that, for each v ∈ S, the set of all tv ∈
B(Kv) r D such that the specialization representation of fv at tv is con-
jugate in G to ϕv : GKv → G contains a non-empty open subset Uv ⊂
B(Kv) r D. If points t0 exist in the set B(K) ∩

∏
v∈S Uv, then for each

v ∈ S, the specialization representation of fv at t0 is conjugate in G to
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ϕv : GKv
→ G; hence the Galois group Gal(K(X)t0/K) contains a conju-

gate Hgv
v in G of the subgroup Hv = ϕv(GKv

) ⊂ G.

3.3. Conclusion

The following conditions respectively guarantee that B(K)∩
∏
v∈S Uv 6=

∅ and Gal(K(X)t/K) = G in the argument. Theorem 3.2 is our conclusion
under these additional assumptions.
(WA/S) The variety B has the weak approximation property with respect
to S, i.e., B(K) is dense is

∏
v∈S B(Kv).

(g-complete) If Cv is the conjugacy class of some generator hv of Hv, the
set {Cv|v ∈ S} is g-complete, that is, no proper subgroup of G intersects
each of the conjugacy classes Cv (v ∈ S).
The second condition was introduced by M. Fried [19] (in another con-

text). It does not depend on the generator hv of Hv.

Theorem 3.2. — Let K, S, G, B, f be as in § 3.1. Assume condition
(WA/S) holds. We have this Hilbert-Grunwald specialization property:
(HGr-spec) for each unramified Grunwald problem (ϕv : GKv

→ G)v∈S for
which condition (g-complete) holds, there exist open subsets Uv ⊂ B(Kv)r
D (v ∈ S) such that B(K) ∩

∏
v∈S Uv 6= ∅ and each element t0 in this set

yields a specialization of f that is a K-solution to the Grunwald problem
(ϕv : GKv

→ G)v∈S .

3.4. Final reduction

If the group-theoretical condition (g-complete) does not hold, it is possi-
ble to reduce to it at the cost of throwing in more places in S, and assuming
that the approximation condition (WA/S) holds for this bigger S. This ex-
plains the appearance of the set S0 in conclusion (HGr-spec) of Theorem 1.2
(whereas S0 = ∅ in Theorem 3.2). We recall below the argument, which
has already been used in various versions in earlier works. This reduction
ends the proof of Theorem 1.2.
The main point is to construct, for each g ∈ G, a place vg of K and an

unramified homomorphism ϕvg
: GKvg

→ G with the following properties:
(a) for each g ∈ G, the Galois group Hvg

= ϕvg
(GKvg

) is conjugate to
the subgroup 〈g〉 of G,
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(b) for each g ∈ G, there is an open subset Uvg
⊂ B(Kvg

)rD such that
each t ∈ Uvg

yields a specialization Kvg
(X)t/Kvg

of Galois group
conjugate to Hvg in G,

(c) the set S0 = {vg|g ∈ G} is disjoint from S.
If then T = S ∪ S0 and t0 ∈ B(K) ∩ (

∏
v∈T Uv), the specialization of

f at t0 still satisfies the desired Grunwald property regarding the places
v ∈ S but has this extra property: for each g ∈ G, the conjugacy class
of g meets the group Gal(K(X)t0/K). From a classical lemma of Jordan
[27], the set of all conjugacy classes of a finite group is g-complete. So the
Galois group Gal(K(X)t0/K) is all of G and the specialization K(X)t0/K
is a K-solution to the initial Grunwald problem.
Existence of such additional places vg and associated ϕvg

is guaranteed
under the following conditions, which are satisfied if as in Theorem 1.2, K
is a number field and B = P1:

– D is a smooth divisor with normal crossings over the field K,
– there exist infinitely many places v with κv finite of characteristic
not dividing |G| and of order > C(f,B).

These two conditions make it possible to find additional places vg sat-
isfying the assumptions of Theorem 3.2 (the (good-red) condition and
qv > C(f,B)) and such that 〈g〉 is a Galois group of some unramified
extension of Kvg

(g ∈ G).
The set S0 can further be chosen disjoint from any prescribed finite set

of places.

4. Effectiveness and application to the RIGP

Our approach leads to interesting types of bounds. Assume B = P1 and
K = Q (for simplicity). The following result is a fully effective version of
Theorem 1.2. For short, a prime p is said to be good below (for the regular
extension F/Q(T )) if the branch divisor t = {t1, . . . , tr} is étale and there
is no vertical ramification at p, and bad otherwise.

Corollary 4.1. — Let G be a finite group and F/Q(T ) be a regular
Galois extension of group G. There exist integers m0, β, δ > 0 depending
only on F/Q(T ) such that for every x > m0, the following holds. Let Sx be
the set of good primes p with m0 < p 6 x and ϕ = (ϕp : GQp

→ G)p∈Sx
be

an unramified Grunwald problem. Then there exists an integer t0(x) such
that

(i) 0 6 t0(x) 6 β
∏
p∈Sx

p,
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(ii) for each integer t ≡ t0(x) modulo (β
∏
p∈Sx

p), t is not a branch
point of F/Q(T ) and the specialization Ft/Q at t of the extension
F/Q(T ) is a solution to the Grunwald problem ϕ,

(iii) log |dFt0(x) | 6 δx.

Addendum 4.2 (more on the constants). — Denote the number of non-
trivial conjugacy classes of G by cc(G), the number of branch points of
F/Q(T ) by r and the number of bad primes by br(t). One can take m0
such that the interval [4r2|G|2,m0] contains at least br(t) + cc(G) distinct
primes, and β to be the product of cc(G) good primes in [4r2|G|2,m0]. The
constants m0 and β only depend on |G|, r and br(t). The constant δ can
also be made explicit but is more involved.

In particular, for x = m0 for which Sx = ∅, assertion (ii) concludes that
Gal(Ft0(x)/Q) ' G. So t0(m0) is a specialization for which the conclusion
of Hilbert’s irreducibility theorem holds and it is bounded only in terms of
|G|, r and br(t). Note also that this special situation corresponds to some
result originally proved in [16] and [18]: any Hilbert subset associated with
a K-G-cover f : X → P1 contains an arithmetic progression (am+ b)m∈Z.
Proof. — The proof consists in making effective the arguments used to

prove Theorem 1.2. Condition p > 4r2|G|2 assures that p/| |G| and p >
c(|G|, r); recall that in our specific situation the latter amounts to p+ 1−
2g√p > |G|r (addendum 2.5) and so our claim easily follows from the
Riemann-Hurwitz formula.
Fix a subset S0 ⊂ [4r2|G|2,m0] of cc(G) good primes and associate in a

one-one way a non trivial conjugacy class Cp to each prime p ∈ S0. For each
p ∈ S0, pick an element gp ∈ Cp and construct an unramified epimorphism
ϕp : GQp

→ 〈gp〉 (in other words an unramified Galois extension Ep/Qp
with group 〈gp〉). Consider the Grunwald problem ϕ = (ϕp)p∈Sx∪S0 . As
all primes p ∈ Sx ∪ S0 are > 4r2|G|2, proposition 2.2 applies to show
that one can find a coset Up of some integer tp(x) modulo pZp such that
for all t ∈ Up, t is not a branch point of F/Q(T ) and the specialization
(FQp)t/Qp corresponds to the epimorphism ϕp : GQp

→ 〈gp〉 (p ∈ Sx∪S0).
Use next the chinese remainder theorem to find an integer t0(x) ∈ Z such
that t0(x) ≡ tp(x) modulo p for all p ∈ Sx ∪ S0; such an integer can be
chosen satisfying condition (i). Condition (ii) follows from already explained
globalization arguments; the primes in the subset S0 ⊂ [4r2|G|2,m0] and
the associated morphisms ϕp are used to guarantee that Gal(Ft/Q) meets
each conjugacy class of G and so equals G (as explained in § 3.4).

To prove (iii) let ∆(T ) ∈ Z[T ] be the discriminant of the irreducible
polynomial of some primitive element of F/Q(T ), integral over Z[T ]. We
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have |dFt0
| 6 |∆(t0)| 6 c1|t0|c2 with c1, c2 depending on f . Using that

log(
∏
p∈Sx∪S0

p) ∼ x as x→∞, we obtain log |dFt0
| 6 δx for some constant

δ > 0 depending on f . �

Finally we explain how corollary 1.6 follows from corollary 4.1.
Proof of corollary 1.6. — Fix two functions `(x) and m(x) tending to

∞ with x and a group G satisfying condition (*) of corollary 1.6. Assume
there exists a G-cover f : X → P1 of group G, defined over Q. Apply corol-
lary 4.1 with for each prime p ∈ Sx, ϕp : GQp

→ G taken to be the trivial
homomorphism. Conclude that for every x > m0, there exist specializations
Ft0(x)/Q of F/Q(T ) at some t0(x) ∈ Q that are unramified and totally split
at every prime p ∈ Sx. Thus, with the notation of corollary 1.6, we have
π
Ft0(x)
nts (x) 6 π(m0) +br(t) (with π(m0) the number of primes 6 m0). This

contradicts assumption (*) from corollary 1.6 for all suitably large x as
from corollary 4.1 (iii) we also have log |dFt0(x) | 6 δx. �

5. Proof of Theorem 1.3

As in Theorem 1.3, fix a finite group G and assume that the base space
of the covers is B = P1, that K is a number field and that for each v ∈ S,
we have pv /| 6|G| and qv > c(G). The constant c(G) is defined in § 5.6.

5.1. 1st step: reduce to the situation of a group with a trivial center.

If Z(G) 6= {1}, use [20, lemma 2] to consider a group extension ε : G̃→ G

such that Z(G̃) = {1}: one can take G̃ = Γd o G with Γ any non abelian
finite simple group, d = |G| and where G acts on Γd by permuting the
factors of Γd via the regular representation of G (in other words, G̃ is the
wreath product of Γ and G). Fix Γ = PSL2(F3). As 2 and 3 are the only
primes dividing |PSL2(F3)| and no prime pv divides 6|G|, no pv divides |G̃|
(v ∈ S). If Z(G) = {1}, just set G̃ = G.

5.2. 2nd step: construct a Hurwitz space of G-covers of group G̃
with a component defined over Q .

This can be done thanks to a construction due to Fried. Let C1, . . . , Cs
be the list of all non-trivial conjugacy classes of G̃ and C̃ be the r-tuple of
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all pairs (Ci, C−1
i ), i = 1, . . . , s, repeated twice. Denote the Hurwitz moduli

space of G-covers of P1 of group G̃ with r branch points and ramification
type C̃ by Hr(G̃, C̃). From [19], Hr(G̃, C̃) has a component HM defined
over Q; more precisely, HM is in this case the unique Harbater-Mumford
component of Hr(G̃, C̃) (see also [10]).

5.3. 3rd step: rational points on the reduction of Hr(G̃, C̃).

From [40], Hr(G̃, C̃) can be constructed as a scheme, smooth and of finite
type over Z[1/|G̃|] and the branch point assignment induces an étale mor-
phism π : Hr(G̃, C̃)→ Ur over Z[1/|G̃|] onto the branch point configuration
space Ur. Furthermore, there is a natural compactification π : Hr(G̃, C̃)→
Ur with Hr(G̃, C̃) normal and proper over Z[1/|G̃|] and π ramified only
above the discriminant locus ∆r = Ur rUr. As pv does not divide |G̃|, the
component HM has good reduction at each place v ∈ S; in particular the
special fiber HMv,0 of HMv = HM⊗Z[1/|G̃|] Rv is geometrically irreducible.

As the residue fields κv are finite then, from the Lang-Weil inequality,
if qv is suitably large (depending on r and |G̃| and so eventually only on
G), there exist κv-rational points on HMv,0 that do not lie over the dis-
criminant locus. These κv-rational points correspond to G-covers of group
G̃, of ramification type C̃ and with field of moduli κv. But these G-covers
are in fact defined over κv: the field of moduli is a field of definition [8,
corollary 3.3].

5.4. 4th step: lift the κv-G-covers.

For each v ∈ S, use Hensel’s lemma and the smoothness of the stack
corresponding to the moduli space Hr(G̃, C̃) to lift the κv-G-covers from
3rd step to Kv-G-covers corresponding to Kv-points on the component HM
(due to Z(G̃) = {1}, the stack and the moduli space coincide, but this is
not needed here). Denote by Uv the v-adic open subset of HM(Kv) corre-
sponding to Kv-G-covers with an étale branch divisor at v; by construction
our lifted G-covers are in Uv (v ∈ S).

5.5. 5th step: approximation part.

Use the local-global property of KtotS [31] [32] to find KtotS-points on
HM that lie in Uv for each v ∈ S. From [9, corollary 1.4], such a point
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corresponds to some G-cover f̃ : X̃ → P1 that is defined over KtotS . By
construction this G-cover f̃ is defined over some Galois extension L/K

totally split in Kv (v ∈ S) and its branch divisor is étale at each place
v ∈ S. Furthermore, as Z(G̃) = {1} and pv /| |G|, from [2, proposition 2.3],
there is no vertical ramification at each v ∈ S. Combined with lemma 2.6,
this shows that the full condition (good-red) from Theorem 1.3 holds.

5.6. 6th step: the Hilbert-Grunwald property.

Fix the constant c(G) in such a way the Lang-Weil inequality can be
applied in § 5.3 and c(G) is bigger than the constant c(|G̃|, r) (defined in
§ 3.1). By construction, the extension ε : G̃ → G splits; let s : G → G̃

be a section. If ϕ = (ϕv : GKv → G)v∈S is a given unramified Grunwald
problem of groupG, consider the unramified Grunwald problem sϕ = (sϕv :
GKv

→ G̃)v∈S of group G̃. Conclude from Theorem 1.2 that f̃ satisfies the
Hilbert-Grunwald conclusion (HGr-spec) for the triple (G̃, S, sϕ). Consider
the G-cover f : X → P1 obtained from f̃ by modding out by ker(ε). It is
readily checked that the cover f is defined over L and satisfies conditions
(good-red) and (HGr-spec) for (G,S, ϕ).
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