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Foreword.

This foreword is addressed to those who have read the
first version of this paper issued as Technical Report 26.
We decided to publish a second version for the following
reason. Our main interest is the space P*(D), the restriction
of the space P*(R") (cf. Part. I) to an open subset D of R™.
Since we do not have any general intrinsic definition of the
space P#D), in Report 26 we introduced the space IS“(D)
which is defined in an intrinsic and direct manner and which
in general satisfies P*D)>P#%D). Our main concern was
to define a class of open sets D, as large as possible, for which
P#(D) = P*(D). After the first version appeared we noticed
that we could define a functional space (denoted here tempo-
rarily by P*D)) by a definition as simple as that of P#D)
and which better approximates the class P*(D), more precisely,

P#(D) > P¥D) > P*D). Furthermore, we noticed that all the
theorems we obtained for P*D) have their analogues for the

class lv)“(D). In most cases these analogues are simpler to state,
admit simpler proofs, and often are more general. We decided,

therefore, to abandon the preceding definition of P*(D) and,
starting with the present paper, we deal only with the class

P%(D) which will be denoted from now on by P¥D) (1).
Another change in the second version is due to the fact
that we were able to apply the idea of Lichtenstein reflection
of order p (in particular the reflection of order oo introduced
by R. T. Seeley [11] in the case of hyperplanes) to the Lipschit-
zian graph domains. By such generalized Lichtenstein exten-

() This change of definition was already applied in some published papers
and in papers which are to appear soon.
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sion we obtain an unrestricted, stmultaneous extension theorem
for SLG-domains. In the previous version we used the Calderon
extension method which gives only simultaneous extensions
between two consecutive integers.

Other improvements and additions are described in the
Introduction.



Introduction.

This second part of the « Theory of Bessel Potentials »
contains only Chapter III, which deals with open subsets of
a euclidean space. Chapter IV, which will appear subsequently
will deal with potentials on manifolds.

The most natural way of defining potentials in a subdomain
D of R" is to define them as restrictions of potentials in the
whole space. This class is denoted by P#D). However, this is
not an intrinsic definition and it would be very inconvenient

in applications. We therefore introduce the class P*(D) for-
med by functions in P{(D) and having a finite standard
norm |u|,p. In the past this standard norm has been used for
integral orders a. We now extend it to non-integral « by
formula (2.1) of § 2. We also introduce the approximate
a-norm, |ulyp, by formula (2.3) of § 2 which is equivalent to
the standard a-norm but is simpler to use.

The main purpose of this paper is to investigate the class
P#(D) and its relations to P*D). Since the functions in P*(D)
are restrictions of those in P?% the properties of P*D) are
already very well determined. It is of importance therefore
to investigate those domains where lv)“(D) = P*(D). For all
« regular » domains D this equality holds. It is one of the main
purposes of the paper to find as general classes of domains
as possible for which this equality still holds. The equality
can be characterized by the fact that for the class P+(D)
there exists a linear continuous extension-mapping into the
class P*(R") assigning to each ueP*D) an extension 4,
i < P*(R"), defined in the whole space.

In addition to the main problem of extension we investigate
many other properties of functions in P¥(D).

We give now a brief summary of the sections of this paper.

§ O takes up an idea proposed in the last remark of
Chap. II, (going back to Lebesgue), i.e. to « correct » any
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given locally integrable function in a well determined way
(e.g. by taking limits of the mean values) so that if the func-
tion is equivalent to a « nice » function, the corrected func-
tion will also be nice. We use this idea in many instances by
assuming, a priori, that we are dealing with « corrected »
functions and this makes for simpler statements and proofs.

§ 1 introduces the class P*D) and gives translations (for
the most part obvious) of the properties of P* into those of
P#(D).

§ 2. The class P%D) is defined. Among other things, we
take up the problem of multipliers and show that if u e P*(D)
and if ¢ and all of its derivatives up to order o (a* is the
greatest integer < a) are Lipschitzian on D, then u — gu
is a bounded mapping of P#D) into P#D).

§ 3 deals with the problem of inessential singularities of
functions in P%D) and shows under what circumstances it

is possible to extend ue P*D) to a function in P*D,) when
D, differs from D by a set of Lebesgue measure 0. This result
1s applied to develop the Lichtenstein extension method for
hyperplanes.

In § 4 the behavior of the standard and approximate
norms for a single function uw when a varies is considered.
In particular the properties of the standard and approximate
norms are studied as a converges to an integer. It is shown
that |u|,p 1s a continuous function of « when D is convex.

§ 5 introduces the idea of boundary properties and their
localization. This is applied to convex domains to define
the L-convex domains which have, essentially, the local
structure of C®»-homeomorphic images of convex domains.
This is the largest class in which we can prove essentially
all the properties of functions in P*(D) for the functions in
P#D) (it is not known if for L-convex D, P¥D) = P#D)
for all a).

In § 6 we define the graph domains and show that P*(D)

is dense in P%D) for this class of domains.
§ 7 introduces the class of domains 8(I) where I 1s an interval
i [0, ). De§(I) if there 1s a linear extension mapping of

the smallest linear class of functions containing l llv)"‘(D)
o€l
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into the measurable functions on R" such that the mapping

carries f’“(D) boundedly (uniformly on every compact subin-
terval of I) into P*(R") for ael. A localization theorem is
proved for the class &(I); in imprecise terms it can be stated
as follows : if D is locally in 8(I) then D e &(I).

§ 8 and § 9 are preparatory sections for the main theorems
of the paper which are proved in § 10 and § 11. In § 8 the
regularized distance and singular multipliers are defined
and a number of their properties are proved.

§ 9 gives the necessary theoretical background for the
constructions in § 10. It is the most involved section of the
present paper, made more complicated by the necessity of
obtaining uniform bounds in different theorems in order to
have uniform bounds in the simultaneous extension theorems
of § 10.

§ 10. We introduce the notions of uniform and regular
systems §Q,} where Q, = D, and the D, are open sets satis-
fying certain properties. The main results of this section
are concerned with the case where all the D;s are in §(I) and

we determine additional conditions under which <UQ>
— the interior of U Q; — also belongs to &§(I).

In § 11 we define the generalized Lichtenstein extension.
We use this extension to prove that if 3D is locally Lipschit-
zian then D € §([0, o)) 1.e. there is a simultaneous linear exten-
sion of P¥D) into P*R" for all «>0.

In § 12 we apply the results of § 10 and § 11 to establish
the extension theorem for some concrete classes of domains.
First we find a necessary and sufficient condition for a convex
domain D (bounded or unbounded) to be in §([0, «)). The
condition is that for some bounded cone C and for every
x € 3D there is a congruent cone with vertex z contained in D.
Secondly we prove that all finite geometric polyhedra which
are not locally disconnected by their boundary belong to
([0, o).

§ 13 gives different examples and counter examples concer-
ning the subjects treated in the paper.

In recent years a great amount of work was done concer-
ning Bessel potentials connected with L? classes in R" [2, 3, 4,
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7, 10, 12, 13]. Of the different classes considered only the
classes P*? (2) lend themselves to a treatment in open subsets
of R" analogous to the one given in the present paper for the

class P* (P%(D) is identified in this connection with P*2(D)).
It turns out that with very few exceptions, for all statements

concerning P*(D) there exist parallel statements concerning

P=?(D). At the end of most of the sections of this paper remarks
are made to show in what manner the results of the section

can be extended to the class P*?(D). Since almost all the
exceptions occur in the cases p = 1 and p = oo, we restrict
these statements essentially to the case 1 << p << o0.

Finally, we have added an Appendix where we treat the
question of complete continuity for the standard norms of
different orders. The problem for non-integral orders differs
in many aspects from the one for integral orders which has
already been investigated by many authors.

The bibliography contains only references which were not
given in Part. L

For the convenience of the reader a list of symbols, notations
and terminology introduced in this paper is given after the
bibliography.

(2) See [2]. These classes are perfect completions which correspond to the classes
W3 [2, 3, 7, 10, 12, 13]; these latter classes appear as completions relative to the
class of sets of Lebesgue measure 0.



CHAPTER III

THE SPACES P* (D) AND P* (D).

0. The corrected functions.

In the last remark of Part I (Chap. II, § 11) we introduced
the corrected function u’ for any function u locally integrable
in an open set DcR" (ue Ll (D)) by defining

, . 1 '

(0.1) w(@) = Um gl Jawn YY) W5
for all ze D for which the limit exists and is fimite. All the
other points of D form the exceptional set of u’: the correc-
ted function is not defined there.

The idea of such a « correction » goes back to Lebesgue;
u'(z) = u(z) a.e. and the exceptional set is of measure 0.
Since in some instances the use of corrected functions allows
a simplification of statements and proofs we will review the
main properties of corrected functions in this section.

If we introduce the function ¢%z) =§X°(x), where y°

1s the characteristic function of the unit sphere S(0, 1) and
w, is the area of 35(0, 1), formula (0.1) can be written

04) (@) =lim [ u(e — y)e™ ¢°yle) dy.

This formula suggests a more general procedure to define
corrected functions. We consider any bounded measurable
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function ¢(x) vanishing outside of a compact such that

(0.2) [ 9(@) dz = 1.
We put then
(0.3) w(o) =lim [ ulz — y)o™" ¢(yl¢) d

for all z € D for which the limit exists and is finite. The other
points of D form the exceptional set of u?.

Obviously u? is the same for all u in the same equivalence
class (relative to Lebesgue measure). The following proposi-
tion 1is also obvious.

1) If u.eLi (D), k=1,2, «, are complex numbers,
U= oy + dyls,

and if A% and A, denote the exceptional sets of u® and uf respec-
tively, then A% c Aju A3 and

u¥(z) = oyui(z) + aui(x) for zeD — (A7 u Aj).

For ue L],(D) the Lebesgue set of u is the set of all ze D
for which there exists a number u"(z) such that

(0.4) 1&2‘53} i f ) — el dy
—lgg fluw — y) — u(@)lp™¢%y/p) dy = 0.

A classical theorem of Lebesgue says that the exceptional
set of u” (1.e. D — the Lebesgue set) is of measure 0 and that
ut(z) = u(z)
a.e. in D.
As a counterpart of Prop. 1) we get immediately

1Y If u,eLL(D), k=1, 2, u= ayu, + oyu, and A" and

% are the exceptional sets of u" and uj; respectively then

Abc Al u AL
and

ut(z) = oqup(z) + ayuy(z) for zeD — (A} u Aj).

2) If uell (D), then for any ¢, u® is an extension of u".
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In fact, if z is in the Lebesgue set of u, M is the bound of ¢
and ¢(y) = 0 for |y| > &, then

| ule — yeelyle) dy — ut(a)]
= [z — y) — u'=)]p~ ¢(y/p) dy|
<f| ulz — y) — ut=)|e™"e(y/e)| dy
<LME [ ule — y) — wa)l(ed) e dy,

and by (0.4) the last integral converges to 0 for p N\ 0.

It follows from Prop. 2) that u, u", and all the u? are in the
same equivalence class. We may call u" the minimal corrected
function. The introduction of the function u? besides u" is
justified by the fact that in many cases it is easier to find the
set where u? is defined rather then the Lebesgue set. A case
in point is the following application to Fourier transforms
of L? functions.

3) Let u e L*(R"). The corrected function u? is given pointwise
by
(0.5) u¥(z) = lim [ e@Di(E) $(pk) dE

PNO
and the exceptional set of u® is the set of x’s where the limit does
not exist (or is infinite).

The proof is immediate since

(2m)"20(E)§(p8) = (u(z) * p"¢(z/p))”
and ¢(£) is an entire function of order 1, L? on R", so that
i(£)%(pk) € Lt and the integral in (0.5) is an ordinary Lebesgue
integral.
For different functions u we may choose different functions
¢ to simplify the integration in (0.5). We give here the trans-
form of the simplest functions ¢.

a) Spherical means, ¢ = ¢, $(5) = = |E|~™2 J,4(]%|) where

J.2(J€]) 1s the Bessel function of first k1nd of order n/2;
b) Cubic means, ¢ = characteristic function of the cube

n —2—Sln
ka|<1/2, k=1’ ""n’ §(2)=]:[ \/—
k=1 ‘ﬂ:
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We add two more general propositions :
4) Let ueLlL(D) and v e L3(D). The function (ue)" is an

extension of u"o" (3).
In fact, let z be in the intersection of the Lebesgue sets of u
and ¢. Then

1

5@, o)l Jee lu(y)ely) — ub(z)o"(x)| dy

L Lz)| o
Sisa gLl ) — e dy
+ ;/;(z,p) Jut(z)||o(y) — o"()| dy]

and the right side — 0 for ¢ |, 0 by virtue of (0.4) since
v e Lz (D).

5) Let T be a homeomorphism of D onto D* such that T and
T are locally Lipschitzian. Then if ue L (D) and

ut(z*) = u(T 2*),

the Lebesgue set of u is mapped onto the Lebesgue set of u* and
u(z*) = ut(T 2%).

Proof. — For xe D there are constant M and p, such that
for |y —al <M™ gy, M7y — 2| <|Ty — Tz| < Mly — 4]
and the Jacobian % is majorated a.e. by M". Hence for
¢ < po and any number u, we have

M——2n
S
IS(T\;[QI Jiye—Tz<p
e u(y) — u,| dy,
|S(.%', MP)I oy 1 <M | (y) Ol y

|u(T= y*) — u,| dy*

ARA

from which the proposition follows by letting ¢ | 0.
The application of the corrected function to Bessel poten-
tials 1s based on the following proposition.

(®) This proposition is not true in general if the hypothesis is changed to
uel{ (D), vel{ (D) with1 < p, ¢ < oo, 1/p +1/g=1.
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6) Let dy. be a signed Borel measure such that

[ Galz — y) duly)

is defined and finite for at least one x € R". Put

u(z) = [ Gz — y) duly)

wherever the integral exists and vs finite. Then uelLl, (R")
and u" is an extension of u.

Proof. — By Prop. 1, § 6, 1, we have ue L}, (R") and for
«>n, u'(z)=u(z).

For a« < nlet z be a point where u(z) is defined. By (4.2), II
it follows that dy. has no point mass at x. Hence

1
5@ 2] luly) — u(=z)| dy

“(x o)
oy — 2) — Golz — 2)] dip(a)

w%|fw
\f;ﬁ%ﬂﬂswf” y—2) — Galw — 2) dy] ldul (2)

For z=£2z the function in square brackets converges
pointwise to 0 as p | 0 by (4.1), II and is majorated by a cons-
tant times G,(z, z) for p sufficiently small by Prop. 1), § 4, II.
The result follows by the dominated convergence theorem.

6’) If ueP* then u*eP?* and u(z) = u™(z) exc. s,

Proof. — If ue P* then exc. %, u(z) = [ Ga(z — y)fly) dy,
fe L3(R") and the result follows by setting du(y) = f(y) dy in
Prop. 6).

The last proposition together with the previous ones leads
immediately to the following theorems.

Tarorem I. — If u is equivalent to a function in P* (or P& (D))
then for any ¢, u?eP* (or ePg(D)).

Tueorem II. — If ueP* and j is any system of indices with
l7] < a, then for any ¢

Dju(a) = lim [ IeDAE) §(c8) dE  eac. Yoy,
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Remark 1. — The corrected function u? of some function
u can be characterized intrinsically by the fact that
(u?)? = u?.

Therefore when we say that ¢ is a corrected function it means
that ¢¥ = ¢ for some ¢. Usually the particular choice of ¢
i1s immaterial and will not be mentioned.

1. The space P*(D).

P#(D) 1s the space (defined in Chap. I, § 5) of all restrictions
to D of functions in P#* with the norm

(1.1) [[4lle,p = min |a]],,

the minimum being taken over all @ eP?* such that & = u
on D except on a subset of D of 2a-capacity 0. By Prop. 1)
of Chap. I, § 5, P*%D) is a complete functional space relative
to the class of subsets of D of 2a-capacity 0. Throughout
the chapter it is assumed that D 1s an open set.

1) P%D) us the perfect functional completion of the class of
restrictions to D of functions in Cg(R").

Proof. — The proposition follows from the general proper-
ties of functional completions.

2) P#D) c P& (D).

3) If B < a, then P§D) > P#(D) and ||u||p_,) < ||u]«.p-
Moreover, if D is bounded then ||u||gp is completely continuous
with respect to ||ulq,p-

Proof. — The first statement is obvious from the fact that
P> P and [lully < [l

The statement about complete continuity is proved as
follows. For each u e P*D), let & e P* be the extension of u
with |G|, = ||u||s,p. Let ¢ be a function of class Cg which is
equal to 1 on D. By Prop. 6), § 2, II, there 1s a constant ¢
such that

lIgdlle < clllle = cffulop-

If {u,} is a bounded sequence in P*(D), then {¢%,} is a bounded
sequence in P* and each term vanishes outside of a fixed
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compact. Therefore, by Prop. 4) § 2, I1, there is a subsequence
{9ii,} which converges in PE. The sequence {u,} must then
converge in PB(D) since

llne — tnllpp <1980 — $8nlp-

¢ will be called a multiplier of order k on D (an open set)
with Lipschitz constant M if ¢ e C*D(D)nL*(D) (if k= —1
we only require that ¢ eL*(D)) with common Lipschitz
constant M for all derivatives of order < k and |¢|,p << M.

4) If ue PYD) and ¢ is a multiplier of order o* on R with
Lipschitz constant M then gue P*D) and |joull,p << cM||u/lsp
where ¢ depends only on o and n.

Proof. — If 4 e P*is such that % = won D and ||é||, = ||u/|p
then by (2.4) of Chap. II, and by the definition (1.1) (¢)

llewlep < llpwle < Mlféfle = eM][ufo,p-

5) If ue P*D) and m is an integer < a, then for [i] < m,
D,u e P*™(D) and

(1.2) )

k=0

Proof. — Take @ € P* such that & = w on D and ||d]), = ||u/|ap
and use formula (7.1) of Chap. II (3).

The next proposition deals with restrictions of functions
in P%(D) to the intersection of D with a k-dimensional hyper-
plane R*. In accordance with the conventions used earlier,
quantities associated with R* are primed.

6) If D n R* is non-empty, and if 20 > n — k, then

n—k

(@) if weP*D), then w' <P * (DnR¥ and

n—k
<F(°“ ),
[l 2.0

llu’l[?_L;Jc, DARkF =— n—k

Pkn ? [(a)

@ 3 (IDalfons < [l

(1.3)

(%) The constant c is not the same as the one in (2.4) Chap. II, since we are using
| |« instead of | |e.

(8) If the boundary of D is irregular, the reverse inequality in (1.2) does not hold,
even when the left side is multiplied by an arbitrarily large constant.
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w Rk
(b) If ¥ eP % (D n RF) then there exists u < P*D) such
that the restriction of u to D n R* s u' and such that equality
holds in (1.3).

Proof. — Theorems la and Ib, § 8, Chap. II.
7) There is a constant ¢ such that if, for

1 ' oc—Q---l
q=0,1,...,r<a—7, u;eP 2 (DnRv)

. . 4
then there is a function ue P*D) such that 2—%) = u, except
Zn

on a subset of Dn R of (2a-2¢-1)-capacity 0 in R* and

(1.4) o < e 3 1012, sy

Proof. — Theorem Ic, § 8, II.

We will use the general notation: If U is an open set in R*
then U? = [z: dist. (z, R" — U) > ¢], 6 > 0. It is easy to
see that U® has the following properties: [3(U?)| = 0 (¢),
(Us)p — Usctd  andif U=R", then Ub= U.

LemMa 1. — Let U be an open set in R* and A a closed subset
of U2, then there exists a function ¢ € C*(R") such that
0<¢(r) <1

everywhere, ¢(x) =1 on A, and ¢(z) = 0 outside of U. Fur-
thermore, |Dy¢(z)| << C;07""! where C, is a constant depending
only on m and n.

Proof. — Consider the characteristic function y(x) of the
/3 neighborhood of A. Then the regularization (7) vy3s(2)
of y by e(x) satisfies all the requirements of the lemma and

C, = "3"'sup |Die(z)].

lil=m
(8) If zed(U3%) there exists a yedU such that ze2S(y, 3). Hence
Bim [S(z, ) n o(U%)|/|S(a, 1) < +
ryo 2

for all ze(U?), i.e. 5(U?) is at each point of upper density < 1. By a classical
theorem of Lebesgue if follows that |3(U?%)| = 0. 2
(") Cf. § 2, IL



THEORY OF BESSEL POTENTIALS 17

We recall that a transformation of D* into D is of class
CD(D*) with Lipschitz constant M if each of its coordinate
functions is of class C™Y(D*) with common Lipschitz cons-
tant M for all derivatives of order <{m. Finally, a homeomor-
phism T of D* onto D is of class C™V with Lipschitz constant
M if T and T~ are transformations of class C™V(D*) and
C™D(D) respectively with common Lipschitz constant M.

8) Let T be a homeomorphism of class C*™V with Lipschitz
constant M of an open U* on an open set U and let D < UP.

Then if ueP*D),
T*u(z*) = u(Tz*) e P¥D*) (D* = T(D))
and ||T*ul|ypr << C8—* M*+3%2||y||, , where C depends only on

o and n.

Proof. — It is clear that D*c (U*)® where &* = M g.
Let @ € P*(R") be the extension of u to R* with ||@]|r» = ||t||a.p
and for z*eU* let @*(2*) = @(Tz*). By Prop. 3, § 9, II,
u* e Pz (U").

Since D* c ((U*)?"2)?"2) by Lemma 1 there exists a function
¢* such that ¢*(z*) = 1 on D*, ¢*(*) = 0 outside of (U*)*"2, and
1ts derivatives satisfy |Die*(2*)| << C;(¢*)™" where C, depends
only on m and n.

Therefore, if we extend ¢*@* by zero outside U*,

¢"a" = PL(R");
and it is clear, that for an integer m:
Au(§'@) = 3 fra DI ()] da*
< oM 3 da),

1<m

¢ depending only on n and m.
For non-integral values of « an evaluation similar to that

in the proof of Prop. 4), § 9,11, yields
do(¢*0") << 87 MPoton(d, (i) + 3 dy(a))

iSa*

where ¢ depends only on «* and n, hence ¢*i* e P2,
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Since T*u(z*) = ¢*u*(2*) for 2* « D*, 1t follows that
T o, << I8
a3
L e M 2 [d])ope
o+ 20
=M 2 ||ul|ap,

where ¢ depends only on n and «*, from which the proposition
follows. Next is a special result for 0 < a << 1.

9) If u s of class C®Y on D and vanishes outside of a bounded
subset of D, then ueP*D) for 0 < a <1

Proof. — Suppose u vanishes outside S(0, r) n D, and let ¢
be a function in C®Y(R"*) which is 1 on S(0, r) and is 0 outside
S50, r +1). It 1s well known that each function u of class
C®D on a subset of R” has an extension @ of class C®Y on R".
By Prop. 6), § 2, 11, ¢@t € P%, and obviously w is the restriction
to D of ¢, so ueP*D).

Cororrary. — If D is bounded, then for 0 < a < 1,
P#(D) > COY(D).

2. The space i"“(D).

The standard a-norm over D, |u|,p, 1s defined by direct
formula in (2.1) below. The space P#(D) is defined to be the
subspace of P& (D) on which the a-norm is finite. The defini-
tion is such that P*D)>P%D) and when the boundary of
D satisfies suitable regularity conditions the two are equal (®).
This will give the intrinsic characterization of functions in
P#(D).

g\lo)w for the definition. For u e P (D)

(2.1a) i = [y |u(@)]? da.
(2.15) For 0 < o < 1,
[ulo = |ulio

+

' G2n 2(1(-7/' - y) .
C(n, @)Gant2q(0), fn . [p _ixl—?yl"T |u(z) — u(y)|® dz dy

(8) A large part of the rest of this paper is directed towards the proof of this fact
which is not simple unless 2D is of class C(**1),
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where C(n, ) is defined by (1.3), II. For arbitrary « > 0,
let m=[a] (°) and § = a — m, then

m

(2.1¢) lulep = 2 (X) 2 D
k=0 lil=k

We also introduce a norm equivalent to |u|,p, the approxi-
mate o-norm, |ul,p (cf. Prop. 3) below). This norm is intro-
duced because it 1s simpler and easier to handle in many of
the proofs. The main distinction between the standard and
approximate norms is their behavior as « | m, m an integer.
For more details see § 4. The motivation for calling |u|,p
the standard a-norm is the fact that if D = R" then

|ulap = [Julla
(cf. Prop. 2) below).

For ue P¥D), 0 < B < 1, we define the Dirichlet integral
of order B (cf. (1.2) and (1.4) of II) by

(2.2)  don(u)] = ulin, dyo(w)=|ulip— |ulto= 3 r
=1 D
and for
0<B<1, dgn(u) = | _—y|L:+2(3 dz dy.

The approximate a-norm for u < P%(D) is
(2.3a) [ulp = dop(u) = |ulgp;

for
0<a<l, |ulgp=|ulgp + don(u).

For arbitrary « >0 we let m = [¢] and § = « — m, then

m

(2.3) WiZp= % () 3 |Dalp.

k=0 lil=k

Remark 1. — If uePE(D) then its distribution derivatives
of order < a are equal to its ordinary derivatives. As a converse
to this we have:

1) If u 1s a distribution on D such that each distribution

(®) [«] is the greatest integer < .
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derivative Diu e L, (D) for |i| < m = [a] and

m

2()2|Du|pn<°0, f=a—m,

k=0 lil=k

then the correction of u is in P“(D).

Proof. — By Prop. 7), § 2, II (localized) u is equal a.e. to
a function ¢ in PE (D). By Theorem 1, § 0, u" e P%(D) and the
proposition is proved.
- For the same reason we have:

1) If u is a corrected function in P™(D), m = [a], and
|ulap < @ then ueP*(D).

2) If ueP® then |u|yrn = ||u|a

Proof. — By the last formula in (1.10), II it is sufficient to
consider 0 <« << 1 and if « = 0, the proof is trivial. Now
suppose 0 < a < 1.

It can be shown by a simple rewriting of the second formula

n (1.10), II (cf. the development in § 4, II) that

1
o o Ju(e) ) sind 5z [u(z) — u(y)l* cost -2

f [ n ,&,. ' n+1+2a dz dy dz,
- ”“1“ [o—yl*+ 28] @

“Cn+1, a) %

(2)[2+ [u(y)®) sin? - 20+ [u(z) — u(y)] cos 2

+o 2
dzdyd
f;w \fl;"\fl;" ﬁ%:—z_g v y zo

yl2 + 23]
4 sin® i Zo
= ]u n+1ocf fm ,H_Hgadydzo dz
- —yP>+ 2]
+ |u(z) —uly [ ) £0% % dzo—] dz dy.
r n 1 — B 1+32%
wn G llo—ylt+2]
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By the integral representation of C(n 4 1, a) preceding
(1.3), II<and by writing 4 sin® _;_ 2o = |6 — 12 ) it is imme-

diately seen that the expression in the square brackets in
the first integral is = 1, and by (2.8), II,

> Cos % 2w
f e n+1+20 dZO = lx _ yln+2a G£13-I+2a(lx - yl)
=l — gt + 4]

where G{.,,,, 1s the kernel for R!. Transforming this kernel

by (4.1), II to the kernel for R* we have finally,

? _ . ['(n 4+ o) ®,
o L

X fnnf 23';“: zl;—rzg) |u(z) — u(y)i? dz dy.

By (1.3), II, and (4.2), II, it is checked immediately that
the constant in front of the second integral is

[G2n+2d(0) C(n, a)]?

which, after comparison with (2.1), completes the proof.
3) If ue P"(D), m = [«], then

n 1
R
2 2

(2.4) 2_1/2|u14,]) < Iula,]) < Iu-la,n
and
0 < [ulep — Juleo < [uffp ().
Remark 2. — The second member in the inequality is to

be interpreted as the integral of the difference of its integrands
if the norms are infinite.

Proof. — By (2.1¢) and (2.3b), it 1s clear that we may assume
0 < a < 1. Our hypothesis is now u e PYD). Put i(z) = u(x)
on D and = 0 on R* — D, and let u, € P* be such that

lbe — wlo < - (P%is dense in PY).

(*°) These inequalities are best possible for « not an integer, see example 1, § 13
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Consider the function F(p) =1 4 p** — (1 + p%)*; it is an
increasing function of p for p >0 and F(0) =0, F(w) = 1.
By (2.1), (2.2), and the fact that G,, ,,(x) 1s a decreasing
function of || (see § 4, II), we have
1 X
Gsri24(0)C(n, a)

J" f Gent2a(0) — Goppaa(z — y) lu(z) — u(y)[? d= dy
1

0 < |ulyp — |ulzp =

|z — y|re

<

Carraal0) T, )
[ [, SaelQ = Camal® =0 ) — sy o ay.
Applying Fatou’s lemma, (1.2) and (1.9) of II, and the
remark concerning F(p) we have from this inequality
0 << |Juldp — Julip < limminf [unlirn — |Upllre]
= lim inf [y, (14 [ — (14 [E[*)*)|2n(E)|* dE
<liminf [, |48 &

= lim inf |[u,| = |@)2r = |ufZp.
m

From this we also have that
lulep < ulip + Julip < 2[ulip
which completes the proof.

Remark 3. — It is easily seen from the above proof that the
difference of the two norms converges to 0 as «4 m + 1 for

any u e P"(D), e.g. by noting that (1 + |§|*8 — (1 4 |&[2)B) | O
as B4 1.

4) P4D) c P4D) and for ueP*D), |u|sp < ||ullsp-

Proof. — 1f @ 1s the extension of u in P* such that

@l = |ullo,0

then clearly |u|sp <C|@|sre. The proposition then follows
from Prop. 2).

5) If « <<y and « — [a] <y — [y] then P*D)>PY(D)
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and |ul,p < clulyp for ue ﬁ’T(D) where ¢ depends only on n

and v = Ty] (%)
Proof. — Suppose at first that 0 < a <{y <<1. We have

2
ol = wuf JJ e ey
|z— yl<1 'm—yl>1 )l i
o — y|"+2°‘ dz dy
Ia:—y[<1 d
Y
C( f l , lx . y|n+2cz dCl?
C ) I:cé—yi>1
,__:Y_ ®, 2
\ C( O() dY D(u) + aC(n,a) |uIO,D’

and the inequality is clear in this case from the properties
of C(n, a). For arbitrary « and y we have from the preceding

(2
that [ul3p <c X () X |Dwld_pyp, < clul}p which completes
the proof. k=e  lil=k

We shall now introduce some special notation for indicial
sets which are used to indicate partial derivatives. An indicial
set, s, is a function defined on a finite well ordered set, the
basis of s, into the integers. The number of elements in the
basis is the length of s, written |s|, and the set of values is
the range of s. (The empty set is considered an indicial set,
e.g. D,u(z) = u(z)). Since there exists one and only one order
preserving mapping of the basis into the integers, 1 <1 < |s],
we can represent the indicial set by a sequence of its values
on the consecutive elements of its basis, e.g. s = (s1, ..., §;)-
An indicial set consisting of one element with value & will
be written (k).

We will write s’ c s if the basis of s’ is a subset of the basis
of s with the induced order and the function s’ is a restriction
of the function s.

If ', s®cs, I =1, ...,k and the basis of s’ is a disjoint

(*Y) Example 2, § 13 shows that this is false in general for « < y and

y— [yl < a—[«]

unless D is suitably restricted.
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k
union of the bases of s then we write s’ = | |s(’)El 's(‘).
l

If s’ cs then there exists a unique s”, written s — s’, such
that s'us”" =s.

If s=(sy, ...,8,) is an indicial set with 1<{s<n
Is|
then we shall write Du(z) E_*b__u(._x)*__ when the right
side is defined. Torwy + o O

An indicial set reprenseted by (k, ..., k) will be denoted

4 -times
by |_J (k). i

Examples of the above notation:

I) Products. Let u,eCF and [i] < p. Then
! !
(2.5) D, (Wl‘—_I1 u,,,(:v)) =X I_[l D mytn(),

where the summation is taken over all (™ such that

1

| Jim =i

m=1

(Note that some of the (™ may be empty.) There are exactly
m'!! terms in the summation. This formula is also valid when
the u, are not necessarily in C? but where all the required
derivatives exist at z.

IT) Composite functions. Let u, y,, ..., y,eCP and |i] <<
Let o(z) = u(y,(2), ..., y.(x)) then

(2.6) Diw(z) = I I' H D myen(2) (D) (y1(2), - - -5 yal)) ()
where the summation is taken over all t=(t, ..., &),
<<, 1 <y, << n, and s™ such that Cl_, M = y;

|s(”‘)| > m=1,..,{

Again, the restriction to the class C? is not necessary, the
formula is valid when all the required derivatives exist at the
point = and the corresponding point y.

(12) (D) (yy(@), ..., y,(z)) means D,u(z) evaluated at z = (y(x), ..., ¥,())-
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We also note at this point two easily proved inequalities
(essentially equivalent which will be used extensively:

For 0 < B <1,

(2.7) X < and 2O g )
. n ().
B(1 — B)C(n, B) = B(1—PB)C(n, B) =
The following propositions give some of the properties of
multipliers.

6) If ueP¥D) and ¢ s a multiplier of order «* on D with
Lipschitz constant M then gueP*D) and |pulyp < cM|ulyp

where ¢ = \/2(1 —i—2n)m; if >0 and = (1 4+ 2n)™2 if
B=Owithm—[a] and B = a — m.

Proof. — From Prop. 1, § 9, I1, it follows that ¢u e Pg,(D).
Following (2.5), we write for [i] < m
Di¢u(z) = 3 D¢(z) Deu(z)

JUk=i
where the summation is taken over j and k such that j v k =1,
and we note that there are 2'!! terms in the summation.

The inequality for = 0 follows from this and the properties
of multipliers.

For § > 0,

(2.8) dgn(D »?u)

<2h|+1JU§13 i B fleJ? lle ];) yllf?::é( Y2 dz dy
{‘leu ()2 [ID,? -:‘ n+2(3( y)l? dz dy!.

By the hypotheses on ¢ the first term in the brackets is
majorated by M* dgp(D,u) and the inner integral in the second
term is majorated by

M2 ]D |z — ylr2f d

lz—Yy|<2

21-2B¢y, ‘
B(L—B)

(*2) It can be shown that 2n in the second inequality may be replaced by 2.038
and n for n = 2 and n > 3 respectively.

4 M ﬁ o — y|"28 do < M2

lz—y|>2
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By (2.7) it follows that (2.8) is majorated by
2ty {Mz dgp(D,u) + 2nM2|Dku]§’D}

kCi
(the summation is taken over all kct), hence
IDy(pu)Tgp << 21 + 4n)M? ,‘Ec]l |D,ul p.
The proposition now follows by (2.3b).

7) If ue P¥D) and o ts a multiplier of order o* with Lipschitz
constant M and has support in D? then gu, extended by 0 outside
D, belongs to P* and

Iq}u-la,]‘n < CM{]u-la,D + (1 -_ p)l/2 S_ﬁlu-bn’]);
where m = [a], B = « — m and c is the constant of Prop. 6).

Remark 4. — We note that if 3 = 0 (i.e. a is an integer),
Prop. 7) is valid when ¢ vanishes in some neighborhood of a D.
In this case the second term in the brackets in the inequality
1s not needed.

Proof. — Clearly ¢ue P%(R") so we need only prove the
inequality. If B = 0 then |gul,r» = |pul,p and the inequality
follows from Prop. 6). So we assume § > 0. Then for || < m,

|D,q;u1@ Rn_lD,q:u'IpD + .
[, IDguty) [C { P L2

By (2.7) it is clear that the square bracketed term is bounded
by ¢-26w,/BC(n, B) << 2n(1 — B)52E. Hence by (2.3b),

leu2 re < |gulp + 2n(1 — B)32F|oul% b

and the proof is completed by using Prop. 6).

8) If T is a homeomorphism of class C&™V, o > 0, with
Lipschitz constant M > 1 of D* onto D and we P*D), then
u*(z*) = u(Ta*) e P4D*) and |u g p << M*"2|ul, 5 where c
depends only on n and o.

Proof. — By Prop. 3), § 9, II, u* e Pg(D").

Let y(z*), L =1, ..., n, be the coordinate functions of T.

%
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Then for |i| < m and almost all z*e D*,

Du*(a*) = D,(u(Tz*))

1 , .
_—! l—_[ ‘(m)yt,,, Dtu)(yl(x )’ ey yn(fc ))’

where the summation is taken over all t= (¢, ..., ,),
1<) <, 1<t,<n, and s™ such that U s™ = g,
[s™] >1 (cf. (2.6)). We define m

1
__l

H (m) ytm

* m=1

#(a") = gla"; s, ..., 0, ) =

and it is easy to see that ¢ is a multiplier on D* with Lipschitz
constant M'//(J{] — 1)! and of at least order — 1 when «
1s an integer and at least order 0 when « is not an integer.
Hence by Prop. 6), the fact that T is Lipschitzian and the
classical theorems on the transformation of integrals, we obtain

IDugp < Zlg(2*)De(T2*)1g oo < M Z|Dyte(T2*) 15 pe
< M 2+E 3D, ulgp,

and the proposition follows by (2.3b) (if B = 0 the exponent
of M may be reduced to « + %)

Traeorem 1. — P¥D) is a complete functional space relative
to the exceptional class Ay,(D) of subsets of D of 2a-capacity 0.
It is the perfect functional completion of its subspace of infini-
tely differentiable functions.

Proof. — Let {U,{ be a locally finite covering of D by open
relatively compact subsets of D, and let {¢,} be a correspon-
ding partition of unity of class C*-that 1s: ¢, is of class C*
and vanishes outside a compact subset of U,:

0 < gulz) <1 for all z, and 3 ¢ (z) =1 for all xeD.
k=1
If {u,} is a Cauchy sequence in P%D), then by Prop. 7)
{o.u,{ is a Cauchy sequence in P% Therefore {¢,u,} contains
a subsequence {¢,u;,} which converges pointwise except
on a subset of 2az-capacity 0. Similarly, {mzul,,f contains
a subsequence {q,u,,} which converges pointwise except
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on a set of 2a-capacity 0. If we continue to extract subse-
quences and then take the diagonal sequence, we get a subse-
quence {v,} of fu,} such that for each k, {0} converges
pointwise except on a subset of D of 2a-capacity 0. This proves
the functional space property. If ¢ 1s the pointwise limit of
{va{, then, since {g,v,} is Cauchy in P* and converges point-
wise to ¢,» except on a set of 2a-capacity 0, it follows that
o € P*; hence that ¢ e P% (D). By picking a further subse-
quence if necessary, it can be assumed that for [i] < «, D,
converges pointwise except on a set of (2a — 2|i|)-capacity O.
Then Fatou’s lemma shows that

[#]a,p << lim inf |o,|, p, |9 — Vmlap <<lminf |0, — ¢,lep
n>o n>o

from which it follows that ¢ « P*(D) and that ¢, — ¢ in P#(D).
This gives the completeness.

The argument to show that there cannot be a functional
completion of the subspace of infinitely differentiable func-
tions relative to a smaller exceptional class than the class
Ay4(D) 1s familiar by now and will be omitted. What remains
1s to show that the infinitely differentiable functions are
dense.

If ueP%D), then since ¢u e P* and vanishes outside a
compact subset of U,, there exists w,eCs(U,) such that

€

(2.9) [Pate — wilonn < ok’

Since the covering {U,{ is locally finite, the sum

#la) = 3 w(a)

is finite on a neighborhood of each point of D. Therefore w
is of class C* on D. From (2.9) and the completeness of P*(D)
it follows that u — w = %(¢,u — w,) € P¥D) — hence that
wePYD) — and that |u — w|,p < c.

9) Let Bp be the set of functions with bounded support in
D (i.e. feBp if f vanishes outside [|z] < R]n D for some R).
Then P*D) n Bp n C*(D) is dense in P*D).
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Proof. — Let ¢ e Gy (R") and = 1 on a neighborhood of 0
and u e P#(D) n C*(D). Tl}en the functions ug,(r) = ¢(px)u(x)
are bounded in norm in P*D). So, by a well known theorem
from Hilbert space theory, there is a sequence p, | 0 such
that the arithmetic means of the sequence {uq,} converge

strongly in lv)“(D). These arithmetic means must converge to
u since they converge pointwise to u(z). But the arithmetic
means have bounded support since each ug, has bounded
support and are in C®(D). Hence the proposition follows
by Theorem I.

10) Let ¢ be a multiplier of order a* on R" and =1 in a
neighborhood of 0 and for ueIB“(D) put Tou(z) = ¢(pz)u(z).
Then Tou—u in P*D) as p 0.

Proof. — ‘By Prop. 6) {T.} is a uniformly bounded family
of linear transformations of P*D) into P*D). If ue P*D)
and has bounded support the proposition is trivial, but since

such functions are dense in P%(D) by Prop. 9), the proof is
complete.

Remarks about the spaces f’“’P(D), 1 < p < w. The spaces
P*? were introduced in [2]. These spaces reduce to P*(R")
when p = 2. The definition of the norms in these spaces lends
itself to a suitable definition of norm in an open set D < R

This allows us to define the spaces P*?(D). We introduce
two norms, the standard and approximate norm which will be
denoted by |u|,,p and |ul,,p respectively. However, for p = 2,
|#|g20 = |Ulg2p = |u|qp for all @ and D. Therefore to have
a norm analogous to the approximate norm which was intro-
duced in this section for P*D) we will introduce the second
approzimate norm |uly,p.

We shall define these norms formally after we introduce
the following notation. Let A®(¢;, ...,0) be an [-linear
complex valued functional on R* X ... X R* with ¢;e R"

l-times
(l.e. A® = AD 4+ 7A{) where AL and A{) are [-covariant
tensors). We note that in terms of any orthonormal basis of R”

3 [ —_ [P i
we may write A®O(p, ..., ¢) = 112 AP pi ... oi where
=
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v = (v} ..., k). Note that the A{® depend on the choice
of the basis. Let

2O =235(0,1) X --- X 85(0,1), by = (s, ..., 0) e 2O

l-times

and df; be the element of volume in X®. Then we define

A0 = (2 [[ A0 b and 1A% = 3 ACP.
E!

® lil=1

|A®)], is independent of the basis chosen in R* whereas [A®1,
depends on the basis except for p = 2 when |[A®], = |AO1,.
For p == 2, one shows that

n—l/min(z,p’)l A(t)-|p < | Amlp < nz/min(2,p)| A(l)‘lp
1

where ,+i=1.
p P
m = [a], B =a — m and for § > 0 let

_ Goppeple — )|z — y|™
Wl Y) = =, B Gamag0) W

With the above we define formally for § > 0,
m n 2 ]
uln = 3 )(—)

TN

where V'u(z) is the I-th gradient of u(z), i.e. the tensor D;u(z)
with ;| =1 If $ =0, i.e. m = a, then

lull o — g ()fwt 2 da.

Similarly,
m l
W= 3 (3 <—2—> *

[

L |x: y? “’)]:dm (=, y)]
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and if 3 =0 we omit the double integral as in |u|,,p. To
define the second approximate norm we merely replace

dx d .
dpg(z, y) by Cn, B)l“’y_ o in |ul},p.

It is clear from what has been mentioned above that
n—m/mm(z'p’)lu-ld,p,l) < |ufapp < nmlmin(z'p)lu-la,p,f"

The spaces P*P(R") are well determined as the perfect
functional completion of Cg(R") with respect to the norm
|t)gpre. This was proved in [2]. The more familiar spaces
W; (introduced in [7] and [12]) were also considered in [2]
and were defined as imperfect functional completions of Cg* (R")
with the norm |ul, , - relative to the class of sets with Lebesgue
measure 0.

Having P*?(R") defined, by the usual localization we obtain
the definition of Isﬁ;c"(D) (and also W%,.(D)). By the results
of [2], therefore, for ue Pzr(D) (or e W%,,.(D)) all derivatives
(or distribution derivatives) Dyu, |i| << «, will be functions
in L, (D). Hence for these functions it is meaningful to consider
|u|apps |Ulapp and |uly,p. The space P=r(D) (or W¢(D)) is
defined as the subspace of Pz?(D) (or W%,.(D)) on which
[U]app < .

Essentially all the results of the present paper concerning
f’“(D) have exact analogues for P#?(D). In particular, Theorem
I, § 0, is valid for P=?(R") (or P%?(D)) so that if ue W¥(D)
then the correction of u is in P#»(D) (cf. [2]).

To obtain the analogues to the results of § 1, we remark
that p“"’(R") corresponds to P* = P%R") and hence the
analogue to P*(D) 1s the class of restrictions to D of functions
in P*r(R") with the norm |ju||,,p = inf |@#|4,ppn for all
i e P#?(R" with &(z) = u(z) in D. .

All the propositions in § 1 are either valid verbatim or have
obvious analogues for p == 2 except for those pertaining to

restrictions to hyperplanes (Props. 6) and 7)). These are still

essentially valid if « — > k i1s replaced by « — n—k

2

and this number is not an integer.
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The propositions and theorem of the present section are all
valid, with a suitable change in constant, when |u|,p is repla-
ced by |ul,,p» and |ul,p is replaced by |u],,» (and P*D)
by P2»(D)). However, some of the proofs have to be changed
especially when we use Fourier transforms (these cannot be
used for p 5= 2).

The spaces P*?(R") for p = 1 or o were introduced in [2];
however this theory is complicated even on R" in particular,
when p = 1 and « is an integer > 1. It has not been proved
as yet that there exists a perfect functional completion of
Cy (R in the last mentioned cases. They have many other
exceptional features — for instance, they are not reflexive.
We can introduce for p =1 or p = o the corresponding
classes P*?(D). If we consider the results of the present paper
and attempt to extend them to similar results for these
classes 1t turns out that there are many which can be extended,
but also several which cannot be extended.

To avoid undue length in the present paper we shall restrict
our remarks in the following sections to 1 << p << oo (unless
otherwise stated).

3. Inessential singularities of functions in 13“(D)
and Lichtenstein extensions. ’

In this section we give some results on the possibility of
extending a function in P%D) to a larger open set D;. These
results will be used later in this section when we introduce the
Lichtenstein extension.

Tueorem 1. — Let D and D, be open sets such that D c D,
and |D; — D| =0 and let m = [a]. The function u < P*D)
has an extension in P¥(D,) if and only if for every bk =1, ..., n,
and for almost every line 1 parallel to the x,-axis, each derivative
du
3,
InD,. If this condition is satisfied, the extension is unique.

] <m — 1, has an absolutely continuous extension to

Remark 1. — It is assumed that the condition is satisfied
for each k. However, it is not assumed that there is any rela-
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tion between the extensions in different directions. That
there i1s such a relation results from the proof.

Proof. — The necessity of the condition is obvious from the
results of Chapter II, specifically Theorem 1, § 7, localized.

The proof of the sufficiency relies on Prop. 2'), § 9, chap. II.
This proposition shows that on D;, u is equal a.e. to a function
in P2(D,). Obviously we may assume that w is a corrected
function in D (relative, say, to spherical means). Since
ue L*D;) we can introduce the corrected function u; of u
in D; which is an extension of u and which 1s in P%(D,) (see
Theorem I, § 0). Clearly |u;|op, = |u|sp << o0, hence

u; € PYD,).

The uniqueness of u, (up to sets of 2a-capacity 0) comes
immediately from the Frostman mean value theorem (Prop.
1, § 4), Chap. II).

If it happens that D, — D has (n — 1)-dimensional measure
0, then for almost all lines /in any given direction, D, n =D n [.
Hence we have the following corollary.

Tueorem I'. — If D; — D has (n — 1)-dimensional measure
0, then every function ueP*D) has a unique extension
u,  P4(D,).

Let h,, 0. =0,1,..., ¢ be a strictly increasing sequence

of positive numbers and consider the ¢ 4 1 linear equations

for a,,
q

(3.1) X ay(— hy)? =1, p=01,...,q

It 1s easy to see that
(3.2) =

[ h — h '
o
Let D be an open set in R” such that

q9

Dele, <0], Dy={)I[@,a): (@, — hua,)eD]

p=0
and D = (DuD,u[z, = 0])°. Let M(D) be the class of
functions which are measurable and finite a.e. on D. Then
2
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for ue M(D) we define the Lichtenstein extension of order
q (rvelative to {h,}) of u by

(3.3a) i(z) = u(x) for zeD,
(3.3b) a(z) = é ayu(x’, — hyz,) for zeD,,

whenever all terms in the sum are defined and finite.

(3.3¢) uw(x) = the correction of @ as defined above for
zeDn [z, = 0] if it exists, otherwise not defined ().

The restriction of @ to D, as defined by (3.3b), is the reflected
function and the operation leading from w in D to the reflected
function 1s called Lichtenstein reflection of order ¢ (rel. to

the)-
Remark 2. — 1If ue C?(D), p < ¢, then it is easy to see that
i e C/(D) (cf. (3.4) below) and u may be determined on

Dn [z, = 0]

by continuity instead of (3.3¢). The first idea of such an exten-
sion was due to L. Lichtenstein [9] who introduced it for
g = 1 and who did it not only for hyperplanes but also for
hypersurfaces of class C*. The idea of Lichtenstein was applied
by M. R. Hestenes [8] to define the extension of order ¢ across
hypersurfaces of class C?. Quite recently this idea was further
extended by R. T. Seeley [11] to define an extension of order
oo across hyperplanes. We will use Seeley’s idea in § 11 to
define an extension of order oo across any hypersurface which
1s the graph of a Lipschitzian function.

1) If ue lv)“(D), o* < q, then G — the Licthenstein extension
of order q of u — belongs to P*D) and 81,5 < c|lulyp where
¢ depends only on n and q (and the choice of hy).

Proof. — Clearly @ e Pg, (D u D,). We shall show in part a),
below, that the inequality is valid when D is replaced by
D uD,. In part b), we shall show that @& as defined in (3.3a)
and (3.3b) (i.e @ is restricted to D u D, ) satisfies the hypotheses
of Theorem I with respect to DuD, and D which implies

(*4) If & is not integrable in a neighborhood of x the correction does not exist
at z.
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that this restriction of % has an extension & e P*D). By
Theorem I, § 0, we have & = 4, exc. Uy, on D which will
complete the proof of the proposition.

a) Suppose i, |t] << o* + 1, contains k indices n. Then for
X e D+
q

(3.4) Diui(z) = 3 an(— k)" (Du)(a’, — hyx,) ().

p=0

Therefore for |i| < o + 1,
IDadlop, < E |au| R (Da) (', — hy,)lo,p

< ( 3, lau" ) IDaclon
p=0
which completes the proof of part a) if « is an integer.
Suppose B =a — m >0, m = [a], then for |i| < " =m
(3.5) dppun.(D; u) = d@ (Diu) + dpD (D, u)

|Dia) — Dauly)l®
f J ICU . y|n+2p dx dy.

By using (3.4) in the last two terms of (3.5) and then applying
the Cauchy-Schwarz inequality we have for a bound of the
last two terms,

(3 i)

L7 ¢ D@, — ) — (Dadly', — hal?
X20< G- oo, Iw—yl"“‘* de dy

(D)@, 3) — (Du)ly/s — hygl
o =y s dy)

< (z |ap|2h2k> (3, hs* + 242 O, )4F) (D).

w=0

+

This completes the proof of part a).

b) If Lis a line parallel to the z,-axis, k = 1, ..., n, then by

Theorem I, § 7, II (localized) %; j=20,...,m — 1, is abso-
L

(**) We remind the reader that (Du)(z', — h,z,) means (Du)(y) evaluated at

y = («', — hyz,).
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lutely continuous on I n (D u D,) for almost all I. From this
it is clear we need only consider lines parallel to the z,-axis
which satisfy (i) InDn[z,=0]5£0. For j<m — 1 let

o(@', x,) = Pil' (', z,) and consider lines

I, =[2,t): — 0o <t<<oo]

which satisfy (¢) and in addition satisfy (i2) ¢(2', z,) 1s absolu-
tely continuous on I, n (D u D) and (ii1) |91 npyp, << ®. It
is clear by (ut) that both the left and right hand limits as
t — 0 of ¢(2', t) exist and also, by (3.1) and (3.4), that these
limits are equal. Hence by taking this himit as the value of
(2, 0) we make ¢ absolutely continuous on I, n D (18). Since
(12) and (i) are valid for almost all [,, the hypotheses of Theo-
rem | are satisfied, which completes the proof of the proposi-
tion.

Remark 3. — When we use the Lichtenstein extension for
a function in P*D) we will assume that the order ¢ >a",

so that % will be in P*D). It should be kept in mind that in
general the Lichtenstein extension of order ¢ of a function

will not belong to a class higher than P+(D) no matter what
class the 1mtial function belongs to (a similar remark is valid

for classes CP(D)).

Remark 4. — Obviously we can consider the Lichtenstein
extension with respect to any hyperplane; 1t 1s enough to
change the coordinate axis suitably. As an example take the
rectangle D = [¢; < a; <d;; v = 1, ..., n] (¢; or d; possibly
infinite). We can consider the Lichtenstein extension of order
g with respect to the hyperplane [2,=¢,] then D= [, < < d,
for i1 £l and ¢, — hjY(d, — ¢;) < @ < d;]. A similar formula
1s valid for the extension across [z, = d,].

We can also consider oblique Lichtenstein extensions which
are extensions across an (n — 1)-dimensional hyperplane =
in the direction of a unit vector § which is not necessarily

(*%) We use here the fact that if a function of one variable is absolutely continuous
on —b<t<0and on 0 <t < b and is continuous on — b < t < b, and if its
derivative is integrable on — b < ¢t < b, then the function is absolutely continuous
on —b<t<b
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orthogonal to = (but not parallel). An application of Prop. 1)
and Prop. 5), § 2 to the affine transformation which carries 6
into the unit vector orthogonal to = and which leaves = inva-
riant would suffice to give a result similar to Prop. 1) except
that the constant ¢ would also depend on the angle between
0 and =.

N IfD=[<az<dj;v=1,...,n] (¢ or d; possibly
infinite) there s a linear mapping, @ = T,u, of M(D) into
M(R") such that iof o < q and uelV)“(D) then @ = T,ue P
and @, pe << CW=2ul,p where W = min (1, d; — ¢;) and C
depends only on q, n and {h,}. ‘

Proof. — Let
D= [0 <a<db;i=1,..,n], 0<I<2n,
where ¢’ =¢ for ¢ >1 and ¢ = ¢ — hj}di — ¢) for

1 <Ul; dP =d;, for 1 > 1 — n and d¥ = d; + h;Md;, + ")
for t <l — n and h, is the last term in the sequence {h,}
which defines the Lichtenstein extension of order gq.

We proceed by induction. Suppose ue M(D), let Dy =D
and &4, = u. Trivially @, e M(D,). Suppose @, € M(D,), consider
the Lichtenstein extension of order g of @, across the hyper-
plane [z, = ¢] for [ < n and across [z, =d._,] for [ >n
(cf. the example of Remark 4). It is easy to see that D, = Dy,
and from (3.3) that @, € M(D,;;). This completes the induc-
tion.

Hence w,,< M(D,,) and u — @, 1s a linear mapping. If
D,, = R" the desired mapping 1s & = @,, = T,u. If D,, == R"
then dist (3D,,, D) > A;'W. Let ¢(x) be the function given
by Lemma 1, § 1, which vanishes outside D§, where

a 1
0 = 7 h,—l_l W,

and = 1 on D. Then the desired mapping is u = ¢u,, = T,u
(extended by 0 outside D,,).
If ue P*D), «* < ¢, then by Prop. 1) at each step of the

induction

l;/H_l € Pa<D[+1> and Ill,_H'la‘DM < colﬂ,ﬂa_nl < cf-,lft_la,p
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where ¢, is the constant of Prop. 1) which depends only on
g, n, and {h,{. If Dy, = R* this completes the proof; if

D2n 5& Rn’

an application of Lemma 1, § 1 and Prop. 6), § 2 completes
the proof.

2') If D is a rectangle then P*(D) = P#(D).
Proof. — Proposition 2).

Remark 5. — We could use the oblique Lichtenstein exten-
sion to show that Props. 2) and 2') are valid for a convex
polyhedron (*). However, a much more general result will
be obtained later from a general theorem concerning Lipschit-
zian graph domains (Section 11).

Remarks about the spaces lv)“’P(D), 1 < p < . All the state-
ments of the present section are true for the classes P*?(D).
In the proof of Theorem I we would refer to results and methods
in [2] instead of Chapter II (1%). All the other statements are
obtained by proofs similar to those given in this section.

4. Behavior of d, (), |41, p and |u|, for varying a.

We will study dyp(u), |ul,p and |u|,p for a varying bet-
ween two consecutive integers m < a<{m -+ 1, m = 0,1, ..
especially when et m 4 1 or a | m.

Throughout this section u(x) will be assumed to be a correc-
ted function in D (cf. § 0). Hence, if uePm(D), m = [a],
and |u|,p << o, then ue P#(D) by Prop. 1), § 2.

For 6 = (0,, ..., 0,) €35 =205(0,1), denote by E; the ortho-
gonal projection on the (n — 1)-dimensional subspace ortho-
gonal to 0. For ze D let 2’ = Ey(z) € Ey(D) and

1(6, ') = [t: & + the D).

*

(**) This was actually done in the first version of this paper.

(%) However, one result which was not given in [2] would have to be used, viz.
that the local finiteness of the LP-norms of the pure derivatives of order k in each
direction implies the local finiteness of the LP-norms of all mixed derivatives of order k.



THEORY OF BESSEL POTENTIALS 39

It 1s then easy to verify that for f(z, y) > 0 (and measurable
on D X D)

Jo [ fla, y) do dy

1 ff f f f(z 410, 2 +sb)|s— ¢~ ds dt dz’ db.
2 Jos Juwy J1w,n J10,0

We now list some useful transformations of d,p(u):

(4.1a) [ullp = [, lu(@) do

_1 f f ulz & $0)2xg.0y da’ d,
Wn Jas JE(D)
applying (4.1) to d, D( ) for 0 << a <1 we have

(4.1b) dyp(u) = dy1pn(u(z’ + sb)) dz’ db

2C n (Z \/DS Ey(D)
and by noting that

- o, oo d
. 0,9, db = — Sij and p) 0, o ds u(z’ + sb)
we have
Tolow 2 n A
bhe) dyo(u) = 3 K[ =T f j 6, 24 46 da
( C) 1,D(u) E&:leon ®, . [21 b:v,

I j dy . (u(z' + $0)) dz’ db.
E¢(D)

W, /o8

For later reference, we note from the formulae for the
Gamma function that

C(1, o) ['(a 4 n/2)
(4.2) 2C(n, a) = 1
T 2w 2 F<a.—|— ———>
2

1s an increasing function of a, 0 < « < 1, which varies from
1 n
— to —
wn wn

Lemma 1. — Let Dec R"* be convex and uelSU(D). Define
( 0 for o= O

11‘ .Y|<1

\d1,n( ) of uEPl(D), otherwise = + oo for o« = 1.
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Then I(a) is an increasing function of a which is continuous
on any subinterval of [0,1] where it is finite. Furthermore,

lim I(a) is finite if and only if ue PY(D).
%Al
Remark 1. — It is clear by considering

duolu) = [y (S|P d
that in general d,p(u) is not an increasing function.

Proof. — 1) We consider first 0 < « << 1. By (4.1) and (4.2)

1t 1s clear that we may restrict ourselves to considering
D = (a, b) c RL.

If [(¢) = o for 0 < a <1, I{(a) 1s obviously increasing. So
we suppose I(a) < oo for some a and write

(4.3) 1(a) = E(TQ,a) ”’ {" |u|<§)_—it lﬁ%ﬁ ds dt

0<s—1<1 2 - 1
- C(1, a) jo r2e—1 7(r) dr
where ¢(r) = [ ur + 1) — uy)f dt < —42‘ |ulg o and
JIL r | r
I, = (a, max(a, b — r)).
By the Minkowski inequality we have
| r 2 %
1 1 nLu(r%—t) — u<7+t>
2 il -
0<e(n® <5 _jx,i 72 | dt
, -
1 - u<—§~—l—t>-—u(t) - %
el A 2 ]S ?<7> =

(This inequality was suggested by E. Gagliardo.) Therefore
for fixed r, (27*r) 1s an increasing function of k. Applying
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Abel’s summation formula (**) we have

A2k

k:o JZ P r2a—1

= A1 Q2k(a—1)

=o/

B 2 1
= C(i, a)(1 _ 22(a—1)) fl rza—l

2

xdolr) + 3 2D (g(274 1) — 27

Ms

(4.4) (o) =

(27 r) dr

1 r2 a—1
2

It 1s not difficult to show that 2/C(1, &)(1 — 2%*D) 1s an
increasing function of a which converges to 1/log 2 as a4 1,
and to 0 as a | 0. Since the integrand in the last formula in
(4.4) is a positive increasing function of « this completes the
proof for 0 < a < 1.

it1) We now show that lim I(«) is finite if and only if u e P1(D)

Al
and that I(«) is continuous at « = 1.

We assume at first, as in ¢), that D = (a, b) and use (4.3).
Suppose, in this case that lim I(a) << 0. Then from (4.4)
we see that 1

Iim I{a) =

~1 1 k
i log2j —lm ¢(27*r) dr <

1 I kb
and
lim ¢(27*r) < o

kA o

for almost every r. But this implies from a well-known Hilbert
space theorem that for every such r there is a subsequence
(w(27%r 4 t) — u(t))/27% r which converges weakly to

v(t) « L*(a, b),

(*®) If b, = 0 is an increasing sequence and a, = 0, then

©

E a,b, = soby + E (b, — b,—y)

v=0

where s, = )| a.
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the distribution derivative of u(t). Hence by Prop. 1), § 2,
u e PY(a, b). By Prop. 2), § 3. there exists @ e P*(R?) Whlch
1s an extension of u. By using Fourier transforms and comi-
nated convergence on proves immediately that

“Ha(z + r) — ()]

~

converges strongly to % in L2(RY) for ™\ 0. Hence

174

—[ for ™0,

0xr ,D
oxr ,D
which completes the proof in the special case D = (a, b).
Now if D i1s a convex set in R* and lim I(«) << oo this implies

aAl
from the preceding and (4.1b) that $dl 10wz + s0)) <
for almost all § and z’ in particular for at least n linearly mde-
pendent 6™, Hence from Prop. 1), § 2, we PY(D) and the
rest of the proof follows.
1) If DcR"® is convex, then a) for a <, P#(D) > PY(D)
and [ulap < \/10n|u|TD for ue P¥D), b) if

wePHD), 0<a<a,
then |u|,p is continuous for 0 < a << ay and him |u|,p always

exists (possibly = + ). The limit is finite i? and only if
ue P*(D) and in this case the limit is equal to |u|, p.

o(r) = |r[u(z + r) — u(@)]|3s, >

lim I(a) = 1 {l-i—llmq;@")dr:
1

af1 log2 Jyp 7 k1=

Proof of a). — By Prop. 3, § 1 (localized), 1t 1s sufficient to
prove the inequality and from (2.1) it is clear that we may
restrict ourselves to the case 0 < a <<y <{1. By Lemma 1
and (2.7) we have that
|wlgp = |wlgp + dun(u)

< 3 : R —
< |ulpp + () 4 |u(z)]| [C ) . D I_x—yl"““ x
[e—Y|>1
< Iy) + [4n(l — “) + lufis < dnjullp
and part a) follows by Prop. 3), § 2.

Proof of b). — Suppose part b) is true for 0 < ey << 1.
Let m + 1 be an integer <{ «,. From (2.1) and our assumption
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we have
hm |ulip= X () X hm]Diqug,D
apm+1 k=0 lil=k BA1
=3 @ 3 (1D + 3 [>0uf )
k=0 1=k J b
= E () + (k—l)) 2 |IDiufsp = |u|pga,p-

The rest of b) follows easily from our assumption so it is
clear that we need only consider 0 < oy, << 1.

For 0 << « << 1, we have by § 4, II that G rioa(® ), z =0,

G2n+2a(0>
1s an analytic function of «, which 1s majorated by 1 and
by (1.3), 11, that C_(i?u-) 1s analytic which completes the proof
n,

in the case 0 < a < 1.

By (4.4), II we have for 0 < a<{1 and 0 <|z| <1 that

1> Genseal®) o and by (2.10), (3.6) and (4.2) of II
GZ l+21(0)

a+ L
(4.5) If |o] > 1 and a>>0 then S2r2al®) 101" 272 el
G2:l+2a(0>

Hence, by Lemma 1 and (2.7) we have for ue P*(D)
oy > 0, that

5y

0 <lulep — Julso

4 A 2n+2a r— y) —n—2
__* n—2¢ gy d
¥ C( ,‘1) ]Dl I \Jlac—-yl>1 G2n+2a O) ]x yl yox

< (o) + 8na(l — a) |uldp el <—§ > }0asalyo.

We now consider a4 1. By Remark 3, § 2,
|[ulsp — |ulip | 0
as at 1 for ue Po(D). By (2.7) it is clear that
[l(e) — dap(u)] < 4n(l — o)]uff.
Hence by Lemma 1, if ue P*D), 0 <« <1, then lim |uf3»

. aA
exists and 1s fimite if and only if ue PYD). Furthermore,
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if uePYD), then lim |ulzp = |ulip. This completes the
A
proof of the proposition.
Remark 2. — Although |u|%w = [,. (1 4 [&]2)*|4(%)[2 d§ is an

increasing function of a, it is not known whether |u|p,
D convex, is increasing or not.

In the remaining part of this section we shall generally
consider 0 <{ a <{1. The propositions and remarks have
obvious analogues for m <a < m+ 1, m= 1,2, ....

Remark 3. — For a function u e PD) the behavior of dyp(u)

(or |ul%p — |ulip) inside the interval 0 << a <1 is easily
analyzed by decomposing

L r¢r " u(e) — uly)l? '
by = [ [ ol = gl
,D(U) C(n, d) ll/D ,,{I) _l_ o ,JD Ix . y|n+2a d?: dy]
le—y|<1 |z—¥I>1
and noting that the second term is bounded by
4n(1 — a)|ul3p.
The following cases are possible and exhaust all possibilities :
1° d,n(u)= oo forall « > 0; 2°d, p(u) is finite and continuous
m 0 <<a<<ay<<1 and infinite elsewhere, or 3° d,p(u) 1is
finite and continuousin 0 << a <{ 2y <{ 1 and infinite elsewhere.
We next give some properties of |u|,p In an arbitrary
domain D c R as « 4 1. We remind the reader that by Remark
3, §2, |ulip — |ulip | 0as atl; hence |u|,p may be replaced
in any of the propositions by |ul,p.
2) If uePYD) and lim inf |u|,p < 0, then ue PY(D) and
ar

lim inf julup > |ulo (2°).
apl

Proof. — For weD let S = S(z, ) c D then |u|,s < |ulsp,
and it follows from Prop. 1) that u € PY(S); a fortiori u € P},,(D).
Now let {S,{, k=12, ... be a disjoint sequence of spheres

such that S,cD and D —|_JS,/=0. Then
k=1

0
E |u|§,3k < luli,D
k=1

(2°) By considering S(0,1) — [z; = 0] in R? and setting u(z;, 2,) = 0 for 2, > 0
and = 1 for x; < 0 we see that the converse of this proposition is false.
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and by Prop. 1),
oo > liminf [uffp > 3 lim [ulis, = 3 [ulls, = |ulip.
apl k=1 %A1 k=1

As an immediate application of Prop. 2) we can give another
criterion for the extension of functions (cf. Theorem I, § 3)
from a given domain to a larger domain.

3) Let Dc D, and |D;, — D| = 0. If ueP%D) and

lim inf |u|, p < o, m = [a],
oa'Am

. . -~ >
then uw has a unique extension @ e P*(Dy).
Proof. — Take as @ the correction of u in D;. Since
|@]a,p, = [©a,n,

we need only prove that @ e Pg (D).

Let ¢; be the correction of Diu in D, for 0 < [i] < m.
Then by Prop. 2), ¢;e PY(D,). The proposition now follows
by Prop. 2’), § 9, 1I and Theorem 1, § 0.

Remark 4. — In connection with Prop. 3), it might be of
interest to introduce the class P*(D) of all functions which

belong to P*D) and such that |ulgp is uniformly bounded for
all B < «. Then, Prop. 3) might be restated «if D < D; and

|D, — D] = 0, each function u « P*D) has a unique extension
to P%(D,) ». Itis clear that P*(D) c P*(D) ¢ P#(D), and examples

might be given to show that P*(D) is not always equal to P*(D)
(cf. example 3, § 13).

4) If uePY(D) and lim |u|op = |u|ip then for every D' c D
a1l
such that |D naD’| =0 we have lim |u|,p = |u|; -
apl
Proof. — Let D"=D — D’ then |D — (D’uD")| =0,
uePYD’) and uePY(D"). By Prop. 2), |uf2p < lim inf |ul%p
Al

and |u|ip < liminf |ul}p. From |ulip + |u|ip << |ulip 1t
follows that

lulip = |ulip + |ulfp < limfup lul%o + limgnf |u| o
aAl a

< bm [ulgp = Julip.
aAl
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Hence, lim sup |ulip = |ulip <<lim inf |u|}p and
il apl
Jullp = Lim JufZp
ap

) If u e PYD) then lim |ulop = |ulyp if and only if for every
at1
e >0 there ts a ¢ >0 such that im sup |u|.p_p® <.
ap

Proof. — Assume that lim |u|,p = |u|; p, then by noting
AL

that |D n3(D — D?)| = 0 it follows immediately by Prop. 4)
that lim |u|,p 5 = |ul;p-* << ¢ for § sufficiently small.
ahl

Conversely, suppose lim sup |u|,p_p? < €. It is easy to see
a1
by Lemma 1, § 1, and Prop. 7) § 2 that there 1s an extension @
of u restrlcted to D2 which belongs to P% Hence by applying
Prop. 4) to D%2 c R* we have that lim |u|,p¥2 = |u|, p¥2. Since
ar1
dist(D — D2 D?) = ¢/2
it is clear from the properties of Gy, .q4(z) (*) and (2.7) that

2
2 32 2 D
Iuld. | laD/ + Iula,D—D + C(n, (Z)G2n+2a<0)

cr ) [u(@) — uly)?
X JDs JD_DE/E Gonroa(® — y) dz dy

Ix o y|n+2a
o o\ 8w,
< |u|%c,D*/2 + lulg,n_l)”‘ + <~2—> m(n, ‘ZS |ul3 o

< Julipe + |uliop’ + 32n e2(1 — a)|ulip.
Hence, llm sup |u|3p << |ulip—+c?. Therefore, since ¢ is arbi-

trary and by Prop. 2), lim inf |u|,p > |u|;p, We have
a1
lim Iulayn = IuIIYD.
apl

) If T is a COV homeomorphism of D* onto D then u e P1(D)
and lim |u|,p = |u|;p tmplies u* e PY(D*) and
a1

lim |u*|ypr = |U"|; pr
apl
where u*(z*) = u(Tz").

(*) In particular Gypip4()/Gapi20(0) < 1
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Proof. — By Prop. 8), § 2, u* < P1(D*). If M is the common

Lipschitz constant of T and T, T(D* — D*™)cD — D?.

3.,

Then by Prop. 8), §2, |u2p_5om << CM 2 |u|,p 5 An
application of the preceding proposition completes the proof.

In Remark 3, § 2, we noted that |ul%p — |ulip| 0 as a4 1.
It can be shown that

(4.6) 0< |ulip — |ulip
<h(ntlog ) (2) (1 — alultn

1 _ao ao

for 0 < ¢y < @ <1 and ueP%D). If we interpret the diffe-
rence 1n the inequality as the integral of the difference of
the integrands the inequality is valid for all ue P%(D).

To characterize the behavior of d, p(u) as « | 0 we introduce
the function

(4.7)  3(a) =8(e, D) = 2 ] .

C(n, @) Jppgy>u y["+2* v
7) If uePYD) for some a, 0 < a <1, then

lim (de:p(u) — &(a")|ulgp) = 0.

To prove this we need the following lemma.

Lemma 2. — For 0 <a <1, a) ¢(a, D) < 2n for all D,
lim ¢(a, R") =1 and if D is bounded, lim &(a, D) = 0.
ayo avo

b) Let D be a fixed domain. Put

2 " 1

oz, R, «) = - JD [z = g dy
lz—Y|>2R
for R>1 and zeDn[|z| < R]. Then dé(z, R, o) < 2n and
lim sup |¢(a) — &(z, R, &)] = 0 uniformly in = for

ayo

zeDn [|z] < R].
Proof. — By (2.7),

2 : )
. —n—20 —_— n
ol D) < C(n, «) »{m>1 l Iy aC(n, a) < 2n.
w’l

It is clear from (1.3), II, that &(a, R*) = Cln )

—1 as
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a| 0. If DcS(0, R) then é(o, D) < 2n(1 — R2%) [0 as a |0
which completes the proof of part a)
For R>1 and zeDn [|J2] < R], |y] > 3R implies

|l — y| > 2R,
hence
. — 2 —n—2a
o) = 3, o) = o [ ey
1<|Y|<3R

2__ * — —n—20
Cn, o) jD ly — | dy

R<]Y|<3R
. lz—y|>2R
o | ==y .
’ IJ"i>3R

The integrand of the third term is majorated by
(n 4 29)|z|(min [ly], |z — y|])7"2*

2 —n—20a—1
<nr2R(F)
Therefore by (2.7)

|8(a) — &(z, R, a)| < 2n(1 — (3R)2%) + 2n((2R)—2*

— (6R)) - (g 2l — ) () BRI,

which establishes the convergence in part b). The bound for
3(z, R, @) is obtained the same way as for ¢(a).

Proof of Prop. 7). — Let ue 13“°(D) and a << ag << 1. Given
e > 0, choose R sufficiently large (R > 1) so that

[uls pagzi>m < €

Then
__1 Co( lul(z) — u(y)]?
da.D(u) - C(n a)% ‘JD b ‘x . yln+2a dw dy
ICB—-.'YI<2R )12

* f ’ |z — yl"*” tedy

lm—y|>2n

|z|>R,[Y|>R L

z)* + Ju(y)® — 2Re u(z)u(y)
2 J f o — gl e dy:
lz| <R, Y|>R

|lx—Y|>2R
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The first and second terms are bounded by
o C(n, «y)(2R)?**2n

o, da,p(u)
and 4ne respectively. Since
2)* + u(y)]* — 2Re u(z)uly)
i C(n, a) JD U‘ |z — y|*ee dx dy
|ZI<R, |Y[>R
lz—Y|>2R

— ﬁ S(z, R, a)|u(x)|? do|< 2ne + 4ns |uo.p

le|<R

it follows by Lemma 2 that
1
lim sup |d,p(w) — c(a)|ul3p| << 8ne + 4ne ? |ulop
ayo

and the proposition follows.
It 1s clear from the above that for bounded domains,

lim &(a) = 0;

ay0

consequently, d.p(u) as a | 0 depends only the the behavior
of D in a nelghborhood of . Furthermore, if

D = R, lim ¢(a) =

ayo
and examples can be constructed (cf. example 5, § 13) so
that lim inf ¢(a) = a, lim sup &(a) = b for arbitrary a, b;
avyo avo
0<a<< b
In contrast with |ul,p, |u|,p is continuous from the right

at o = 0 and the next proposition gives an estimate for the
modulus of continuity.

8) If ueP»(D), 0 <ay <1, then for a<Cag(l — «)e,
< |u]§,D — |ul§o

< __2a <Log oi——;————) <\/Tt + 4 en> |ul%,p

where [y = mgn ['(B) (approximately.88560) and
1<

Y——max<2a n 1>
— vy~ )
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Proof. — By (1.3), 11, it 1s easy to check that for
0<a<ay <1,

Sl < 20 =9 A i by (05, 27, md 24

we have for r > 1,

< lults — b =g mro it

lz—y|<r
Gopron(®T —

[ [, Sl ute) — uty)e e dy

jlx—Y|>r

—2a G(n, a4) _ Ganioa taq (M)r2° rr-

K r2e2 Cln. ) a,p(U) + 4n(l o) S | ulin (®)

t 20 PR S ]
ST R L

(1

The proof is completed by setting r = Log a"——&——g-") > 1.

Remarks on the spaces IV)""P(D). All the results of this section

remain true for the spaces 15“"’(]3), 1 < p < o, with analo-

gous proofs. Some of the proofs were already given in [2]
for D = R~

5. Localization and L-convex domains.

In this section we make some rather general definitions
which will be used in subsequent sections to localize various
properties of domains. We will be especially interested in
boundary properties, 1.e. properties of 3D relative to D. (If
?D 1s the boundary of another domain D;, 3D relative to D,
will not necessarily satisfy the same properties as dD relative
to D.) As an immediate application we define the L-convex
domains and establish some of their more useful properties.

A c¢-loose covering of an arbitrary set A < R" is an open

covering {U,} of A such that A c U U}. In cases where it is

k
not necessary to make ¢ explicit we shall call it a loose covering.

(22) Since Gy,494 () is a function of |z| alone we write r for |z| to make the notation
simpler.
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A covering with rank p (p a positive integer) of an arbitrary
set AcR" is an open covering {U,{ such that for each k,
U, nU,=£0 for at most p indices l. In cases where it is not
necessary to make p explicit, we shall call it a covering with
finite rank.

Consider a boundary property (P); we say the open set D
satisfies the weakly localized boundary property (P), and for
brevity we write D satisfies (P,), if for each xedD there
exists a neighborhood N, of x such that N, n D satisfies (P).

Remark 1. — This definition i1s weaker than the usual
definition of localization in that the usual definition requires
that (P) be satisfied by N, n D with N, as small as we please.

For our needs we must introduce a much more restrictive
definition which we call strong localization.

Consider the boundary property (P). We say that D satisfies
the strongly localized boundary property (P) with constants
¢ and p; for brevity we write D satisfies (P, ,), if there exists
a ¢-loose covering with rank p, {U,} of D such that for each
k, U, n D satisfies (P).

We say D satisfies the strongly localized boundary property

(P); for brevity, D satisfies (P,) if there exists a ¢ and p
such that D satisfies (Py3,).

Remark 2. — For 3D compact, (P,) 1s equivalent to (Py).

If property (P) 1s stronger than property (P’), 1.e.D satisfies
(P) implies D satisfies (P’) for all D, we shall write (P)& (P’)
(or (PYI(P)). If (P)3(P") and (P’)<3(P), then we write
(P)= (P').

With this symbolism we list the following without proof.

(5.1a) (P) & (Papp) & (Pod) & (P)-
(5.1b) (P)&(P’) wmplies (Pyp,) & (Pusy)s (Po) e (Pa)
and (P,)&(P,).
(5.1¢) (Pasp) & (Pasp)sssp) & (Pur)-
(50d) If 58 and p< p’ then (Pup,) > (Pus.p)-
(b.1e) If (P)&(P"), 8 >2¢" and p < p/, then
(Psz,ﬁ,p) & (P;l,ﬁ',p')'

Lemma 1. — If {U,} is a covering with rank p < o then
the sequence §k} = §1,2, ...} can be divided into at most p
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mutually disjoint subsequences {kiV}, {k®{,... such that
each of the corresponding sequences {ngog 1s composed of
mutually disjoint sets.

Proof. — Denote by {Uw}! a maximal subsequence of
mutually disjoint sets. If {ngi—l)g 1s already defined, choose
a maximal subsequence of mutually disjoint sets among the
U,’s not belonging to {Uk?);, e, {ngs—n}. If the first p
such sequences did not exhaust {U,{, the remaining U,’s
would satisfy U, n U, =40 for some index A in each of the
sequences &, 1 =1, ..., p.

Lemma 2. — If U, is a o-loose covering with rank p of an
arbitrary set A < R, then there exists a partition of unity corres-
ponding to U,, (), such that

1) 0 < dul2) <1, 4, e C(RY), % =0 outstde U}® and
Y di(z) =1 for ze S(A, o/8 the ¢/8 neighborhood of A.

k

i) |Di(z)| < 7 Cy,, C, depending only on p, n, and m.
Proof. — By Lemma 1, § 1, there exists
@),  0<a@ <L, .= C(RY),

such that oo(x) =1 on S(A, §/8)c(S(A, 8/4))®® and = 0
outside S(A, ¢/4); for k > 1, k( ) =1 on U and ¢,(z) =0
outside U?; and |Dg,(2)] < ¢ C;, and C/; depends only
on n and |t|.

Since 1 << Y oux) < p on S(A, 8/4) for k >1 we define

k21

[ %o(@)7(2) for xeS(A, 5/4)

for x&S(A, 3/4)

and J,(x) satisfies the requirements of the Lemma.

A domain D c R" is CO®Y-convexr with bound M if there is
a C®Y-homeomorphism T defined on D such that T(D) < R”
1s convex and the Lipschitz constants of T and T-! are <M
(note that M >1).

A domain DcR® is an L-convex domain with constants
8, p and M (we shall usually suppress « with constants ¢, p,
and M » unless the constants are explicity needed) if D satis-
fies (P,5,) where property (P) means « C®P-convex with
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bound M », i.e. there is a -loose covering with rank p of 3D,
say, {U,{, and C®Y-homeomorphisms T, defined on U, n D,
k=1,2,..., such that T,(U,nD)cR" is convex and the
Lipschitz constants of T, and T;* are bounded by M.

L-convex domains will be studied extensively throughout
the rest of this paper because many of the properties of
convex domains with regard to Bessel potentials carry over
to L-convex domains as we shall illustrate in the next proposi-
tion (cf. Prop. 1), § 4).

1) If D is an L-convex domain with constants ¢, p and M
(and we assume for simplicity that ¢ < 1) then

a) for <y, P*D)>PYD) and |ul.p < Clulyp wwhere
C= (31 + p2 M2#") C" and C' depends only on n.

b) If u is a corrected function in P*D), 0 < a < a, then
|ul,p ts a continuous function of o for 0 < o << ay and

lim |ul,p

ahao
always exists (possibly = -+ o). The limit is finite if and only
if ue 13°‘°(D) and in this case the limit vs equal to |u|,, p.

Proof of part a). — By Prop. 3, § 1 (localized) 1t 1s sufficient
to prove the inequality and by the definition of |u|5p we
may restrict ourselves to 0 <Ca <<y <{ 1. We may also as-
sume that ue PY(D).

If {U,{ is the covering of 2D, we set

52) V.= JUup, V.=D—|_Jugen
k=1 k=1

One checks easily that §{V,, V,{ is a ¢/4 loose covering of D.
By Prop. 1) and 8) of § 2, and Prop. 1), § 4, there 1s a cons-
tant C; depending only on n such that

|u,a,DnUk < ClMa+Y+3nlu|T,DnUk, lf = 1, 2, e e e o

From the fact that dist(V,, R* — D) > ¢/8, we see by
Lemma 1, § 1 and Prop. 7, § 2 that there is a ¢ e C*(R")

such that gue PY (extended by 0 outside D) and
[ulzony, < leuline < lguffne < Codulfp

where C;, depends only on n.
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Hence by (2.7) (and the fact that G,,.5,(z) is a decreasing
function of |z|) we have

[ulzo < |ulzpav, 1 lu(a) (
: [ lule) — )
+ 3 fulioan+ g [ dz dy

lz—¥|>8/4

< Cadluflp + CIMEE T4 [ult o, + 4nd+ulf
< (Cad 1+ pOIMEE 1430 - hnbe)uft,

which completes the proof of this part.
The proof of part b) is based on the following lemma :

Lemma 3. — Let §{U,{ be a loose covering of finite rank
of D and let ue P, (D) satisfy
) ]1,{1]'.1 Iula’DnUk = IuII‘DnUk < o, k == 1,2, PR

i) if {U,d is infinite there is a constant C such that for each
k and a < 1, |u|aDnUk < C|u|1 DU,

Then lim |u|,p exists and is finite if and only if u< PYD).
adl

If uwePYD), the limit is equal to |u|s p-

Proof. — 1f the covering is finite clearly ue PY(D) and we
need only prove that lim |u|,p = |u|, p Which we now prove by
oAl

induction. The statement is obvious if the covering consists

of one set. Suppose next that the covering consists of two

sets, U; and U,. Given ¢ > 0, choose &', 0 << ¢’ < ¢, sufficiently

small so that |u|;w,_Fnp < e and D, = D — U{ < U,. Then

by Prop. 4, § 4 (with D, D n U,), liin |u|ep, = |ut|1,p,, Now
aAl

dist(D — U,, Dn U) >¢’
Therefore by (2.7) we see easily that

lim sup |ul%» hm sup (lu|%pau, + ]u]aD2

aAl
s [t o =y~ do dy)

(n, o) |m—yl>6

Iul1,DnU1 + |u|1,1), < |u|1,n + €%

Since ¢ 1s arbitrary the proof in this case follows by Prop. 2),
§ 4.
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Suppose now the proposition is true for coverings with m
sets, m > 2, and the covering of D contains m + 1 sets.

Then D" =Dn l | U22 has a finite loose covering of m sets,
k=1

z., Uy, ..., U,. By Prop. 4), § 4,

lim ]u]a,D.nUk = |u|1,D-nUk, k= 1, ceey m,
a1l

Thus by the inductive hypotheses, hm |tt|q,p = ||y, p. Since
U U2 and U,y is a loose covering of D, it follows that the

pr0p051t10n 1s true for all finite coverings.
Now suppose the covering is infinite. By Prop. 2), § 4,

if |ul;p = oo, 1. ue¢ PY(D), then lim |u|op = o0 ; hence to
Al
prove the lemma we may assume that |u|, p << . By Lemma 1
q9

we can decompose the covering of D, {U,} =U gUkS.-)f,
q < p, where for each i {Uyw{ is disjoint. Let  i=

Uy = U Ua(o;
then {U,‘(x)g is a (¢/2)-loose disjoint covering of D(,) = D n Uy.
By PI'OP 4) § 4 ll:lll lula'D(i)nkat) - lull’])(l.)nukfl) fOI' 1 — 1, ey q
and all . Then since
dist(Uih n Dy, Dy — Uith) >8/2, 1=12, ...,
we have that

lim sup |u|} p,, << lim sup ( 2 |ul%ppnu
ail 054\1“ 1

Py —20
hn(t =) (5) i) = 3 ultngnogo = lultm
since the infinite sum ¥ |ul}ppnu,o is dominated by
]
2 clulpnun < clulip < oo.

l

Hence by Prop. 2), § 4,

lim |ula,pnu = lim |u|qn, = |ulin, = [ul1,pnug)
aAl aAl
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Since {Uy}, i=1,...,q¢ is a finite loose covering of D
which satisfies the hypotheses of the lemma the conclusion
for infinite coverings follows from the previously considered
finite case.

Proof of part b) of Prop. 1). — By the definition of the norm
|u|% pitis clearly sufficient to assume that ¢, = 1. By Remark 3,
§ 4, Prop. 1), § 2 and Prop. 8), § 41t is easy to see that we need
only consider l:{lll |u|op. By Prop. 2), § 4, we may also assume
that u e PY(D).

Since U, 1s a loose covering of V¥ n D and
U, n D n (0V¥n D)) =0,

we have by Props. 1), 4), and 6) of § 4 and Prop. 8) of § 2
that the hypotheses of Lemma 3 are satisfied with respect
to Vi®n D. Hence

lim |u|4pavie = |u|pavie << .
ah1

Since dist(V,, R* — D) > /8 and [3(V§® n D)| = 0, we have,
by Lemma 1, § 1, Prop. 7), § 2, the continuity of | |,r~ at
« =1, and by Prop. 4, § 4 that

lim Iula’Dnv’S/S = Iull’])nvgls < 0.
aAl

Since { V8, Vi®! is a loose covering of D the proof of the
proposition 1s completed by another application of Lemma 3.

Remarks about the spaces IV’“’P(D). — All the results of this
section extend to the spaces P*?(D) (since all the statements

of the preceding sections on which these results are based
extend to P*?(D)).

6. Density of P*D) in Iv’“(D) and graph type domains.

For an arbitrary domain D, P%(D) c P#D) and it is not
always true that P*D) = P#*(D) (®). In the subsequent sec-

(%) As a simple example consider the unit circle in R? less the ,-axis. Define
u(z) = 0 for z, < 0 and =1 for 2, > 0. Then ue P}(D), but since ds;, (u) =
for % <B <1, uePD).
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tions we shall prove P*(D) = 13“(D) for a rather general class
of domains which appears to give a very nearly complete
description of domains where equality holds.

Although the question of equality is certainly the most
important, a pertinent question is whether, in general, P*(D)
is dense in P%(D). This may be answered in the negative. The
most general class known for which P#(D) = P*(D), the
a-density property, are the graph domains defined below.
But first we show that density is a weakly localized boundary
property.

Remark 1. — Since Cgy°(R") 1s dense in P% it follows by
Theorem 1, § 2, that the a-density property is equivalent
to the fact that the restrictions to D of functions in Cg(R")
are dense in P%D) n C*(D) n %(D) in the norm of P*D) (#(D)
1s the class of functions in D with bounded support).

1) If (P) us the « a-density property » then (P)=(P,).

Proof. — Since (P)&(P,) we need only show (P,)&(P).
It 1s enough by Prop. 9), § 2, to prove that if D satisfies (P,,)
then P#(D) 1s dense in %(D) n 15“(])).

Let ue P*D) n%(D) and have support in Sy = [|z] < R].
Since 2D n Sy, is compact and D satisfies (P,) there is a
covering of aD n STE, say {ﬁkg,k =1, ..., N —1, such that
P*D n U,) = P*D n U,). Let

N—1
U, = U, n Sy, 28 = dist (aD N Spi1, R* — U U >

and define Uy = (R" — (D n SR+1))°' Then U}, k=1,...,N
is a 2-loose covering of D, for some ¢ with 0 < ¢ < ¢,.

Let §o,! be the partition of unity given in Lemma 2, § 5,
corresponding to the covering {U,}. Then g,u has support
m UAnD, k=1, ..., N, and by Prop. 6), § 2, g,u e P*D)
a fortioni g.ue P#(D n U)).

Now, given ¢ > 0, let u,eP* k=1, ..., N — 1, be such
that

)

|uk - ?kuiz,nnUk < Iuk - ?kula,nnfzk

< ¢/(N = 1) (1 +2n <%>‘2(’>%
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where m = [a] and f =a — m. We may assume u, has
support in U}® (#). Therefore it is easy to see by (2.7) that

(6-1) |u, — ‘Pkuli,n < |u — ’f'kuli,nnuk

2 @ /m — g.u(x))|?
g M 3 |Di(ui(z) — gu(z))|

1=0 lil=1 </ DU

[ e yetdedy
|x—y|>8/6

_2p
<<1 4 2n <%> > e, — 2oy, < €2/(N — 1)2

(the second term in each inequality is omitted if § = 0).
Since dist(R* — D, Sg n U¥?) > ¢,, ¢xu has support in D?.
Hence ¢yu, when extended by 0 outside D, is in P* (cf.
Prop. 7), § 2). N—1
Thus v’ = ¢xu + ) wu, is in P* and
k=1

N N—1 N—1
|lu — ul[a,D = (¢u) — oxu — Sy <X |osu — Uplap <€
k=1 k=1 ja,D k=1

which completes the proof.

2) If D satisfies the a-density property and T is a C*D-
homeomorphism, k > o, defined on the open set U, U> D,
then D* = T—YD) satisfies the a-density property.

Proof. — By Prop. 9), § 2, we need only prove that P*(D¥)
is dense in P#(D*) n $(D*.

Let u* e P*D*) n ®(D*) and ¢ > 0 be given. By Prop. 8),
§ 2, uz) =u"(T2) e P#(D) and clearly u has bounded sup-
port. By hypothesis there is a ¢ € P* such that

lu — ¢]op << g/CMH3m2

where C 1s the constant given in Prop. 8), § 2, and M 1s the
common Lipschitz constant of T and T~'. Since u has bounded
support it 1s clear that we may suppose that the support S
(S=[x: ¢(z)=~=0]) of ¢ 1s bounded. Since D*n T-(S) is
compact, dist(R* — T-1(U), D*n T(S)) = 26 > 0. Let ¢ be

(24) Let peC=(R*) =1 on U}3 and = 0 outside U}/6 (cf. Lemma 1, § 1); then
ou, has support in U/ and we may replace u, by ou, by applying Prop. 6), § 2,
and noting that ou, — @u = ¢(u, — Q.u).
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the function given in Lemma 1, § 1, which vanishes outside

(T1(U))*2 and = 1 on D n T(S). Then
o' (x) = g(a¥)p(Ta*) = o(Ta") for zeD*

and by Prop. 7), § 2, ¢* when extended by 0 outside (T-1(U))%2
1s in P* Furthermore, by Prop. 6), § 2,

|u* — oM << cju — 9|gp < e

D 1s a simple graph domain, for brevity an SG-domain,
if D = J(D) where J is an isometry of R* and D is of the
following type. Let B c R™ be a rectangle and f a continuous

function on B with a positive lower bound, then
D= [, a,): 2B, 0 <z, <fla)]

B = J(B) is the basis of D and f(z) = f(J! (z)) for 2B
1s the graph function of D.

D is a graph domain, for brevity a G-domain, if D satisfies the
property (D i1s an SG-domain),,.

3) If D s an SG-domain then D satisfies the a-density pro-
perty for all o.

Proof. — By Prop. 9), § 2 and Theorem I, § 2, it is sufficient
to show that P*(D) is dense in P*(D) n (D) n C*(D) and clearly
we may assume that D = [(2/, z,): 0 <z, < f(2'), 2" € B].

Let u<P*D)n ®(D)n C*(D) and 28 = min f(2’)(> 0). For

z'eB
(>0 let D, = [(¢, 2): 0<a,<f@)+1t, @<B], {h},

p=~0,1,...,a" a strictly increasing sequence of positive

numbers and @& the Lichtenstein extension of order o* of u
given in (3.3). By Prop. 3), § 3, i« P*D) and |@1,,5 < c|ulyp
where ¢ depends only on n and o*. For 0 <{t<C¢hy! define

w(z) = a(z',z, — t), zeD,

Hence u, e 13“(D,) and |ul,p < |ulyp, < |Ulep << clulyp.

For ¢t | 0 the functions u, are uniformly bounded in norm
in P*D). Therefore by a well known theorem from Hilbert
space theory there is a sequence {u,} converging weakly
in P4D) and a subsequence of {u,} whose arithmetic means
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converge strongly in P*D). These aritmetic means must
converge to u since they converge pointwise to u(ue C*(D)).

Therefore given ¢ > 0 there exists v e 13“([)7), t > 0, such
that |u — ¢l,p <& Let C=[(a',2,): 2B, 2,>0], a
rectangle,and V = [z e D,: ¢(x) 5£0]. Since uw hasa bounded
support the same is true for ¢ (by the above construction).
Hence V is compact and 2¢, = dist(Vn D, C— D) > 0.
Let ¢ be the function in C*(R") given in Lemma 1, § 1,
such that ¢ = 1 on D n V and = 0 outside a ¢,-neighborhood
of DnV. It is easy to see that <v e Pg(C) (extended by 0

im C— D) and by a calculation similar to (6.1) and
Prop. 6), § 2, that

leolse << (1 +4no‘2r‘)|ucﬂapt\ c(1 + 4ns2f)|e 92D,

where § = « — [¢] and ¢ depends only on ¢, &, and n.
Hence z¢ e P*(C). By Prop. 2), § 3, 9 e P*(C) and it is clear
that |¢¢v — uwlyp = |¢ — ul,pn << ¢ which completes the proof.

4) If D is a G-domain then D satisfies the a-density property
for any o.

Proof. — Propositions 1) and 3).

5) If D is L-convex then D satisfies the a-density property
for 0 < o<1,

The proof follows from Propositions 1), 2) and 4) and the
fact that a convex set 1s a G-domain.

Remarks on spaces P*(D). — For 1 < p << o all the theo-
rems of this section can be extended with some slight changes
in proofs (where we used the Hilbert space structure of P%(D)).
The problem of density of P#D) in P#D) is replaced here
by the one of density of P*?(R"|,) (35) in P?(D). As concerns
the spaces P*1(D) and P**(D) the following remarks can be
made. .

The spaces P*1(D) are defined for all o >> 0 except for the
integers o > 2. In the exceptional cases we can replace
P=1(D) by W2 (D) the imperfect completions rel. 9, (or by
the « almost » perfect completions as in [2]). The theorems of

(%) l}"“vP(R"|D) is the class of restrictions of functions in ﬁ“rP(R") to D.
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the present section can still be extended with more drastic
changes in proofs due to the fact that P*'(D) are not reflexive.
The spaces P**(D) are proper functional spaces for

«> 0 (P*=(D) = L*(D)).

Their norms are obtained by the usual limit procedure from
the norms in P*?(D) for p4 . We have (putting as usual
m=[a], B =a— m)

IDas) = Datl]

|z — ylf
(When « 1s an integer we omit the second sup in the square
bracket).

For f"”’(D) all the propositions of the present section are
in general false. Some of them become true under suitable
restrictions on D. For instance Propositions 1) and 2) are
true for D bounded. Proposition 2) is true even for D unboun-
ded as long as D c U? for some ¢ > 0.

(6.2) |uly.p = max [sup |D.u()|, sup
r,YED

litgm LzeD

7. Localization of extension theorems.

The statement P*(D) = lv)“(D) i1s equivalent to the assertion
that for every weP#D) there exists a @eP* such that
u(x) = @(x) in D. Since P%, as well as P*(D) are Hilbert spaces
the preceding statement is equivalent to the fact that there
exists a linear bounded extension mapping of P*D) into P=
In Prop. 2), § 3, we have given such a mapping when D 1s a
rectangle.

This linear mapping is clearly not unique but there does
exist a distinguished mapping, viz. the mapping with mini-
mum bound. This mapping is not in general easy to construct
explcitly.

We now introduce the following notation. Let Ic [0, o)
be an interval and I'=['(I') >> 1 be a finite valued increa-
sing function defined on the compact subintervals 1" of I.
Then we write D e §(1, [') if there is a linear mapping E with
domain 9 c M(D) and range M(R") such that

(7.1a) Eu is an extension of u for u e Dy
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and
(7.45)  if o I then P¥D)c Dy, E(P¥D))c P=
and for any compact subinterval I’ of I and ae I,
(7.1¢) |E e gy < T(T)-

We shall write D e §(I) (%) if D e §(I, ') for some I'.
We note that if De&(I) then P*D) = P%D) for ael.

In Prop. 2), § 3 we have proved that if D is a rectangle then
D e &([0, gq]) for any positive integer g.

Tucorem I. — Let T be a homeomorphism of class COV
with Lipschitz constant M of the open set U onto U* and let
DcU If Deé(1,I),1<[0, g+ 1] then D* = T(D)e§&(1, ')
where [™(I') = cM21+80+0g1 ['(I') and ¢ depends only on n
and q.

Proof. — Let E be the extension mapping which satisfies
(7.1). If u*eP*D*, ael, then u(z)= u*(Tz)e P¥D) by
Prop. 8), § 2 and @(z) = Eu(z) e P*. Let ¢ e C*(R") be the
function which =1 on D and = 0 outside U% given in
Lemma 1, § 1. Then by Prop. 7), § 2, ¢(x)u(z) € P*(= P*R")
and by Prop. 8), § 2, a@*(a*) = (T 2")a(T 2*) e P4U").
Since @*(2*) = u*(x*) for z* €« D* and @#* vanishes outside (U*)%2M
it 1s easily seen (cf. Prop. 7, § 2) that &* e P* (extended by 0
outside U*) and from the quoted propositions that

E*v* = a*

satisfies (7.1) with [' replaced by I'™.

Tueorem IlI. — Let property (P) be « Deé(l, I')». If D
satisfies (P ;,) (with ¢ < 1) then D e §(1, ['*) where

(1) = [™([en, a]) = coe==[(I)
and ¢y depends only on p, n, and oj.

Proof. — Let {U,} be the &-loose covering with rank p
of 3D such that DnU,e§(I, I') and E, the corresponding
extension mapping which satisfies (7.1).

(26) 8(«) is the extension class corresponding to the degenerate interval formed
by a single point «.
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Let {{y,{ be the partition of unity corresponding to {U,}
and oD given in Lemma 2, § 5. Then <1 3 alz,,(x)) eC* =0
in S(oD, 8/8) and — 1 outside of S(D, &/4) and

D (1= & v <o
where C;; depends only on p, || and n. We construct now an
extension mapping E for D. We define
Dy = fu: ueM(D) and u|yap e Drf (*);

1t is obviously a linear class of functions. We put then for
uEgDE

(7.2) = Eu= kE YiEgu(x) + Eou(z)

=1

8

where Equ(z) = <1 - Z qu> ) forze D and =0 for z ¢ D.

Obviously condition (7.1a) is satisfied. Suppose now, u  P*(D)
ael'cl, I'= [, a;]. Then by Prop. 6), § 2,

l"!’kEkukla,R" < Cg_ml[‘(l,)‘ula,DﬂUk

and by Prop. 7), § 2, |Ejulsne << c67|u|,p where ¢ depends
only on p, n, and o, and clearly can be chosen to depend
increasingly on [a]. Therefore

)

2

E \lfh kuh +2lEou|§n"

< 4P 2 H’k kukluli" + zlEoulau‘
462p3—2[a]r(1r> 2 lu|aDnUk _|_ 9c2 —Z[allulz

< 20 2[""](4102F(I') 2)|ulz,p,

which completes the proof (we put ¢y = 3pc).

o me <

Remarks about the spaces P#?(D). — For p =~ 2 the extension

mappings should transform lv)“’P(D) into P*?(R"). Since now
we deal with Banach spaces which are not Hilbert spaces,

the fact that each ue P*?(D) can be extended to i < P=r(R")

(") The symbol u|; means the restriction of u to F.
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does not automatically imply that there exists a bounded
linear extension mapping.

We introduce the classes §P(I, ') in a similar way as
(1, ') by replacing P*D) and P* by P*P(D) and P»?(R")
in the definition. The theorems of this section are then imme-
diately extended to p 5= 2 since all the results on which they

are based have corresponding extensions. The preceding
statement holds even for p =1 and p = «.

8. Regularized distance,
simple Lipschitzian graph domains
and singular multipliers.

In this section we shall develop some notions for later use.
We start by a well-known theorem of H. Whitney. Our
proof is much shorter than other published proofs. Let F < R®
be an arbitrary non-empty set and

re(z) = dist(z, F).

Tueorem 1. — For arbitrary ¢, 0 < e < 1, there exists a func-
tion p(x) = pr¢(x) defined on R" such that:

1) (1 — ere(z) < p(2) < ref@), xR,
i) peC*(R" — F) and
IDip(2)] < re(x)~"e™ By, z<R" —F,
where B,;, depends only on |i| and n.

Proof. — Let e(x) e C*(R") be a fixed decreasing function
of |x| which vanishes for |z] >>1 and such that

f e(z) de = 1.

Then we define

(8.1)
c‘"u rely)l=" e r—y cR"_TF
e(z) —_—% (1 + ot f r(y) <ch(y)> dy, z i{ F,
0, zeF,
where ¢ = ¢/(4n — 2).
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For zeF, part i) is trivial. With r(y) = re(y) we have for
z and y satisfying |z — y| < er(y) :

(8.1a) r(z) <ry) + |z — yl < (1 + o)r(y),
r@) >ry) — |z —yl > (1 — ¢) r(y),

(8.1b) forze$S (:c,,, % r(wo)> (20 ¢ F),

r(y) > (1 + ¢)7r(z) > 5 r(@) > 0.

2(1 + ¢

From the monotonicity of e(z) in |2| and (7.1a) we obtain
forzeR* — F

ola) < i) (£221) [ < T > Iy = r(z),

. r(z)

— ¢
and

o (FR) (27 o)

14+ ¢

1 —¢c 2n—1
= r(z) < = c)
and 1) 1s clear from the choice of c.
That p e C*(R* — F) is clear from (8.1b) and from (8.1a),

IDip(x)] << il L—_i f r(y)t=1—"(Dse) <xc;(‘y)y>' dy

(1 + e
< r(apit( ) gy IDie(z)|
o 1+c¢ e

and 11) follows.

A domain D is a simple Lipschitzian graph domain with
constant M, for brevity, an SLG-domain, if D is an SG-domain
and the graph function fis Lipschitzian with Lipschitz cons-
tant M.

Taeorem II. — Let D = [(2/, z,): 0 < 2, < f(2'), ' € R*1]
be an SLG-domain with constant M and basis B = R*1. Put
D, = [(2, =,): f(2') <=z, 2’ eR"™]. Then for arbitrary e,
0<e<<1, there is a function p(x) = ppc(x) defined on D,
which satisfies :

1) (= ¢)z, — fla)) <pla) < (2 — (@),
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ii) p=Co(D,) and |Dip(a)] < (5, — f(&'))~“My'e=B,, where
M, = max (M, 1) and B,;, depends only on |i| and n,

iii) z’3;_(3:) > (1 — ).

n

Remark 1. — Since for ze D,

ro(z) — flz') < (1 + M2)2 rp(2)

we can replace z, — f(a:) in the lower bound of 1) by rp(z)
and in the upper bound by 2M¢rp(z). In 11) we may replace

(z, — f(@)7" by p(x)t7" or rp(a)t'

Proof of Theorem II. — Without loss of generality we will
assume that M > 1, hence M, = M.

Let e« G5’ [0, o) be a decreasing function which is constant
in a neighborhood of 0, vanishes for r >>1 and such that

S ellZ]) 45 = 0, [} elr)r2 dr = 1.
For z' € R™ we let &(z') = ¢(|z]) e Cg(R*). Then we define

(8.20) pl@) =k [ (2 — [y (—y“—x—g) dy'

h Rot (@, — f(y’
wnere
820) = max [:: G — myw >1—¢and
(1 — (2n — 3)tM)%:%;—}2>1 — ]
and
(8.2¢) k= (1 4 oM) <%‘f—)>m

We note that with this choice of ¢, ¢M < 1 and ¢ < %I- <1

Furthermore, it follows easily from (8.2b) that there exists
a positive constant a (depending only on n) such that

(8.2d) cM > ae.
For ze D, (1.e. z, > f(2')) and y satisfying
2" — y'| < elzn — (¥l
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we have
z, — f(y') >z, — (&) — |f(a") — f(y')]

>z, — f(&') — Mg’ — y'| > &, — (') — M|z, — f(y')].
Since ¢cM <1 we have z, > f(y'). Similarly,

z, — fy) < @ — f(2') + Mz, — f(y').

From these inequalities we conclude

(8.3) e >f@) and o' —y| < lev,.i— fly)l  imply
0 < 7oy (@ — F@) < 2 — 1Y) < gy (50 — &)

From (8.3) we get peC*(D,) and in analogy with the
proof of Theorem I,

(T5a1) (@ — ) <o) <z — )

which by the choice of ¢ proves 1).
It can be checked that

— Jec il — £y’ )2l z —y !

Dip(e) = hett [ (= Fly/ )P (o &) dy
where h(c, z') 1s a polynomial in ¢ with coefficients which are
Cg functions in z’ vanishing for |z'| > 1. Furthermore, A(c, z')
1s completely determined by é(z’), n, and the indicial system 1.

Since ¢ << 1 we have |h(c, z')] << Ay Where A, depends
only on [i| and n.

To complete the proof of part 1) we use the inequalities
(8.3) and the formulas (8.2¢) and (8.2d). The constant By,
. . o, [ 2\
1s then given by — <7> Ajipne

For a fixed xe D, consider the transformation

Y=
84 o — 1)

of points y' in the domain [y": |y’ — 2'| < c(w, — f(¥'))]
into points z'. It is obviously a Lipschitzian transformation.
What is more, the inverse exists and is also Lipschitzian.
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In fact (8.3) gives

yl — w yl . xl
oz, — 7)) cl@ — [y)
NG =)@ = fy) + (¢ — &
L — oMy e(z, — ()@ — [ )
— C o _ ’ ’ =1
> D= 7 — i@ — fl) — Iy — <My’ — ¥
(1 — MPly" — 3|
(1 + eM)(z, — f(=))
It follows that the transformation (8.4) can be applied in
the usual way to change variables in an integral. Its gradient

and Jacobian may only exist almost everywhere. The Jacobian,
wherever 1t exists, can be evaluated as follows :

0%, __ S Yo — 2 Of
o= (ot e ) .
= (2, — fly) (++zk of )

oY

A

\%

It 1s easy to verify that

?det(giy';)=[<w ~ fy 1~"[1+cz A

Furthermore since |Vf(y')]<<M and ¢cM<<1 we have for
2] <1 |

o o= ) e
(88 0<i s det(ﬂ) ST M~
Y
We pass now to the proof of 1i). From (8.2) we have (with

am=%m)

=k [ @ —
[ —me (=) — = e =7 >] a4
= I [ @ — )P 12 = me(l2)) — [21€/(2])] dt@;} s’
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From the properties of ¢ we note that ¢'(|z’|) << 0 for all 2’
and that ¢'(|z'|) and e(|z']) = 0 for |z'| > 1. Thus from (8.5)
we have

E& > kwn—l

oz,
. c"—l . 11 g . n—l n.._]_
[ 1—cM(n 2) fo e(f)r dr 1_}_ch d"]

g n—2 n—1
= ke [ T—M T TroM

= ke (1 — (2n — 3)eM)/(1 — M) + M) >1 — ¢

by (8.2b) and (8.2¢). This completes the proof of Theorem II.
Let F and F; be non-empty closed sets in R* F =£F,,
and H=FnF,. For ¢ > 0 we define

U =U(F, F) = [z: re(z) < erp,(2)],

an open set. Clearly, F — Hc U, cR* — F,.

For 0 <e<<1 we define the singular multiplier for the
triple {F, Fy, ¢} by

(8.6) 9(56):3("9(“3))‘" [ e <z97))dy, zeR"—F,

o R—F,
O’ X e Fl

where p(x) = pr () 1is the regularized distance given in
Theorem I, % (y) is the characteristic function of U, (F, F),
0 =¢/(2 4 ¢) and e(z) i1s a fixed regularizing function with
support in |z] < 1.

Taeorem III. — The singular multiplier ¢(x) for the triple
{F, Fy, e} satisfies:
1) 0<e(r) <L, 9(2) =1on F — Hand =0 on R* — U,
ii) g C*(R* — [(F — Fy) n F,]) and
IDg(2)] < By (Max[err,(@), re_r,(2)])™"
where B, depends only on |i| and n.

Proof. — The first part of i) follows from the properties
of a regularizing function. If ze F — H and |z — y| << 6p(2),
then by Theorem I, re(y) < |z — y| < Orp(z) and

re(y) =>1e(2) — |2 — y| > (1 — O)re ()
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which implies y € U, and by (8.7), that ¢(z) = 1. Ifz e R* — U,
and |z — y| < bp(x) then

re(y) < re (@) + 12— yl < (1 + O)re(2)

and re(y) > re(x) — |z — y| > (¢ — O)rp(z) which implies
y ¢ U, and by (8.6) that ¢(x) = 0, which completes the proof
of part 1).

To prove the first part of 11) it is clear by part 1) that we may
restrict our considerations to U,. If xe U, — F;, then we
know that ¢(z) has infinitely many derivatives. If ze U, n F,
then 0 = rg(z) = rg,(x), but since U,nF, = 0, this implies
that ze (F—F;)n F, (*®). Hence

¢ C(R* — [(F — Fy) n Fy]).

To prove the inequality in 11) it is enough to consider
.’I:EUS-— [(F_ Fl) n Fg] =ﬁg—F1.

By (2.6) and Theorem I we have for p a positive integer (the
indices in the summation below satisfy : 1 I |j), |s™| =1,
Y™ =1)

1
(8.7)  IDy(bp(=))~"|
v =D P EE=D oy
_[ 30 S BT @) T Damela)
< MBep-lpg ()P,

where M}) depends only on p, |j|, and n.
For |z, — y| < Op(x) we have by (2.5) and (8.7),

D@ <xl )
Bo()

(*)

—)(wl y) D07 (2)™) + X Dy(6~%p(x))

Ju)=s
< Bp() Mg o) 4
1

+ 2 M|(j| 1—U|rF‘<x)—1—|j|

Ju=s

< MiBelre, () 7!

where M%) depends only on n and |s|.

() In fact x=1lim a®, rgE®) = |a® — y®| < ere,(@®), y®eF —F,,
Y > .

(29) D{®)f(x, y) means differentiate f(z, y) with respect to the x variables.
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Since e(z) vanishes for |z] >> 1 we have by the above and (2.6)

(8.8)

1¢] m=1
U s(m) = g
|=s m[>1
<2 |00 (5 V) 3 Mt )4
m=1

< M *lpp, ()~

where M) depends only on k and n. Hence by (8.7), (8.8),
and (2.5), :

D [(Op(f)f" e<xf)p—(—x§/>]‘

= | 3 Dutmrp(a) D (o Gl ) )| < Mt
JUk=i Op(2)

where M{{) depends only on |i| and n. Therefore we have by
(8.6), |Dig(x)] < Bly(ere,(2))7". To replace erp(z) here by
max [erg (2), re—r,(2)] it is enough to notice that for ze U, —F,
there is a y e F such that |z — y| = re(x) << erp,(2) < re,(2),
1e. yeF,. This implies re=g(z) = rF(x) < erg(x) which
completes the proof of part i1).

Remark 2. — The singular multiplier will be used for sets F
and F, which are the closures of open sets, i.e. F = D, F; = D;,
D and D, open sets. In these cases we shall write that « ¢ is
the singular multiplier corresponding to the triple {D, Dy, ¢} »
instead of « {F, F;, ¢} ».

9. Vanishing of potentials.

In this section we prove three theorems in connection with
the vanishing of potentials. These theorems will be applied
in § 11.

We begin with a few definitions. Let a(t), 0 <t <1 be a
simple arc in R”. For any %, 0 <<x <1, we call the open set

U S(x(t), *|z(t) — 2(0)]) a conoid with vertex x(0), opening x,
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azial arc z(t) and radius |z(1) — z(0)]. We shall consider
the following property of an open set D:

(C) There exists r and %, r >0, 0 <x <1 such that for
every x € dD there is a conoid lying in D with vertex x, opening »
and radius r.

For brevity we will call a domain with the above property
a (C)-domain with constants » and r.

Remark 1. — Two immediate properties of condition (C)
are :

a) If D is a (C)-domain then [dD| = 0 (similar proof to the
one given in footnote (%), p. 16).

b) The (C) condition is invariant under a C®V-homeomor-
phism. In particular if C* is the image of a conoid C with
constants x and r and vertex z under a C®Y-homeomorphism
T, and M is the Lipschitz constant of T and T-! then C*
contains a conoid with constants x/M? and r/M and vertex
T(z).

Let I~ be the half-line from z in the direction — 6 (6 a unit
vector) and D an open set. We define

) = r—ao(z) 1 I=nD=£0

roa(®) =7 if I-nD=0.

It is easy to prove that rpy(z) is an upper semi-continuous
function of 6 and z.

Lemma 1. — For « > 0, a) If F is a measurable subset of R"
and ze R* — F then

d n o
(91) fl;l—;v—:—%]"—'*‘é; < 22“- TF(;];) 20,

b) If D is an open set and x « R* — D, and at a point z, € 3D
where rp(x) = |x — z,| there exists a conoid lying in D with
vertex x,, radius r and opening x, then

) d n—1
9.2) jnlx_zlmw’; [ro(@)~2* — cyr2]

where ¢, and c, are positive constants depending only on n and o*.
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d © " ®
Pr .—f—l——<f f 12 40 g < 20 py ()20,
oof r |z — y|"t** o re()/ 38(0,1) e P 2a x(2)

To prove (9.2) we restrict the integration to the conoid and
take polar coordinates with pole at z,. Since the angular
opening with respect to z, of the conoid at any distance less

Wy

than r from z, is greater than 1 *"1 we have

e n—1 d
n—l n—1 .
f |37 _ yln+24z / n—1 x Jo (rD(x) + p)n+2d

By repeated integration by parts it is not difficult to
show

fr oL dp R Pg2a+ "il (G —}—20(]
o (ro(@

)+P"+2°‘ n+ 202 2 TG+ 1)
—2a ()22 + 1)
el o 9024

and (9.2) follows.
Lemma 2. — For >0, a) if ze R* — D then
(9.3) Srson To.0(@)2% ) < w,ro(@) 2.

b) If zeR* — D and at z,e0D where rp(z) = |v — x|
there exists a conoid lying in D with vertex z,, radius r and
opening x, then

(9.4)  rp(z)2* < 9%(n — 1)2*1

wn—lxn_l

[ roo()~2 di + 2,
/ 05(0,1)

Proof. — Since rp(z) < rpg(x), (9.3) is clear. If ro(z) >1r
then (9.4) 1s clearly true. Suppose rp(z) << r. Then from the
hypotheses 1t 1s clear that there exists on the axial arc of the
conoid a point z; € D such that |z, — ;| = rp(z) and

S = S(z, xrp(x)) e D.
Therefore rgg(x) > rpp(z) and if rqg(x) 5= o, then

ro(%) ro(%) 1
res(@) = @) + (1 + n)ra(@) = 3

8

V
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Hence

be(O,l) roo(2)72* df > rp(z)72* r < %% >2u B

o "s,o(‘”)<°°
rD( x)—za

> f 0 > ro(z)-2e 2 X097
=¥ e 27t (n —1)

and (9.4) follows.

Lemma 3. — For -;-< « <1 and ueP*a,b) (b possibly
infinite),

)
©5) [ lu(e) = wla)l* (¢ — @)+ de < <*fo duun(t),
T
where u(a) = liin u(z).

Proof (3°). — Suppose b << o. Clearly we may assume that
a =0 and by changing z into bz we may assume b = 1.
Then for 0 <t <<1

[f |u(z) — u(t"z) [%‘”dx]
<3 /“|utk — u(t*+1z) 12x—2«dx]

rof

f |u(z) — u(tz) |2x‘2°‘da;] El tk(a_—z_)'

Since P*(a,b) = P%a,b) by Prop. 4'), § 3, there exists
an extension of u, @ eP*R!). For a > 1 the functions in

2
P#(R') are continuous (cf. Prop. 4), § 5, IT). Hence

lim u(x) = u(0)

zvo

exists. Letting n — oo in the above we have

(1 — t“"") 13 u(@) — u(0)]222= da

< /“ lu(z) — u(tz)|2z2* dz
and since
— 2 [ u(e) — u(z)?
dooy(U) = c{, a)‘J o (1 — gyt dx dt,

(3%) The proof of the lemma is based on an idea from [1].
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we have
1

[C(i %) / i (%1:t:):ja? 2 dt] fo ' [u(z) — w(0)|2x=2% dx < dg 0.1)(uU).

0

It 1s easy to show that the square bracketed term is bounded
2
from below by (oc — %) / n which yields the inequality.

If b= o then ueP*0,N) for every positive integer N;
letting N — oo yields the inequality in this case.
Lemma 3 will often be applied in the following situation.

The function u belongs to P*(I), L < a <1, I being an inter-

valof thelinel =1y, = [z:2 =2 4 80, — 0 <s << o]c R
Furthermore, u(z’ + s6) =0 for z' 4 sbe D, D a relatively
open subset of I. Then it is immediately checked that with
our definition of rpg(z), Lemma 3 gives
(9.6)  f_y |u(z + s0)[2rog(s’ + )72 ds
< T
x

1)

We define for functions we P*D,) the quadratic form
9.7)  Jepn(uw) = 3 [, [Da(@)Pro (@)l da

lil<a

do1-v(u(z’ + s0)).

where D, c R* is an open set. If D; n D, 5~ 0 we adopt the
convention that |Du(x)|? rp(z)~2*+% = 0 wherever

Diu(z) =0
regardless of whether rp(2)2*+%!' = oo or not. Also, if « =0
we adopt the customary convention that Jy p p,(u) = 0.
Taeorem 1. — If D = [D;uD,u (D, ndD,)]°, m = [a],
and 3 = a — m, then:
a) If ue P¥D,) and J,p,p(u) < o, then u has an exten-
ston @ in P*(D) such that % = 0 on D, and

(9-8) lafep < |ulap, + 2n(1 — B)[Jop,p,() + |ulnn] (%)

(3t) The second term on the right side of the inequality may be omitted if § = 0
and the inequality becomes an equality.
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b) If D is L-convex with constants ¢, p, and M, D, is a (C)

domain with constants r and x (and we shall assume r < 9)
and u is a function in P*D) such that w = 0 on D,, then

(9.9) Jo,p, (1) < clulzp
where ¢ depends only on n, m, x, r, M and p.

Proof of a). — The proof is trivial if « = 0 so we assume
@ > 0. Define ¢ = u on D; and = 0 on D — D;. We will show
by an application of Prop. 2'), § 9, II that ¢ is equivalent to
a function in P%(D). Consider the lines [ parallel to the z,-axis
such that

i m f dup dz, <
1 3 xk e o}
j§0 1D, | 0%y, ’
. at ouf _ate)
i) —| Tn,() Jdz), <
j=o0/ IND, (){pkl
and
R 1 7 . .
1i1) b__{;’ ]=0, ..., m—1, isabsolutely continuous onl n D,.
x

These conditions hold for almost all lines I
Let InD, = U I, a union of mutually disjoint open inter-
A

J
vals. By virtue of (i) and (ii1) g;bj, j=0,...,m —1, is abso-
k

lutely and uniformly continuous on each I, and in view of
(ii) it must converge to 0 at the endpoints of the I,’s which

lie in D, n D. Hence if we extend %, ;j=0, ..., m to the

whole of [n D by 0 and denote this extension by ¢;, then ¢,
j=0,...,m — 1, is absolutely continuous on InD and 1s
the indefinite integral of ¢,.; on each interval of InD.
If =0 then ¢,eP?,(D) and if 3 > 0 then by Lemma 1,
a) and (2.7), and since D — D, c D,

(9.10) dgole0)
_ yuy 2 (| dy
= dm () + G oo ] S
—r ro (@)~ dz < oo,

"u Mu
< . <ﬁ‘> Fon
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and ¢, is equivalent to a function in P£(D). Hence ¢ is
equivalent to a function in P%,(D) by the cited proposition.

If & is the correction of ¢ then # =0 on D, since ¢y =0
on D — D, by definition, and = 0 on D, n D, by the finiteness
of Jy o, p,(u). Furthermore, % ePg(D), and to complete the
proof we need only to prove (9.8).

By a calculation similar to (9.10) (for g > 0),

2 = dy
|12 p = Ilull + CnB p)k%,“.,.zk , D)l ]D.D,*—m—yw@d
uaD,
+w(t—f) 2@ 3 f | Dita(@) *(ro, () 2451 4 1) dz
k
Iuia D4 + 2n(1 - B a.D D: ) + |u|"‘ Da)'

Proof of b). — 1) Suppose we have two open coverings
{V,} and {W,} of (D; — Dg) n S(Dy, &/8), with V,c W, and
such that

(9.11) any point in R" is in at most p’ =b5" + p sets W,.
In addition suppose that for |i| < m,
(9.42a) [y, oy, | Ditlro,(2) 254201 dy

</ <f |Dyu|®dz 4+ ﬁ
WknDl WD, ;=1

and for |¢| =m
(9.425) [ oy, IDiulPro, (@)~ do < | Diul}, wyno,

where ¢’ and ¢” depend only on n, m, %, r and M.
Then for |i| < m, since [oD,| = 0 and u = 0 on D,, we have
by (9.12a)

f IDaaftro, (@) 2ilde < (3f8) —2a+2ll|/ |Diu|® do
+ j(D —DyNS(Dy, 3/8) |Diu|?rp,(2) =2+ da
< (3/8) —2a+2lt|./;)‘|Diu|2 dz
+ ’Z'I J;knD‘ lDiulzrD’(x)—on-m“ da
< (c’p' + (3/8)2a+21i|) fD‘ IDiul2 I
+ c’p’ i i Diur TD!(x)—Za-}-g[iH_z da.
= x,

2
2 Du
0T,

rD’(x)-za+2l i |+2 dw>’

D,
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Hence I = j; |D;u|?rp,(x) 22 da is majorated by |Dul3p,
and ) f |Djul|?rp,(x)2*+2/ dz and by an easy inductive

lil=lil+1
argument we have finally, that I is majorated by |Du|%_;»,

and ) j; |D,u|?ro,(z)2¢ dz.
ljl=m ¥ 1
For |i| = m we have, by (9.12 b),

o |Dauftrn (@) do < ((3/8)* + 2¢"p') Dl
and thus we obtain finally (9.9).

ii) Before we construct the coverings {V,| and {W,}
and establish the properties (9.12a) and (9.12b) we prove the
following.

Lemma 4. — Suppose D* s a convexr domain, D} and Dj
are disjoint open subsets of D*. Furthermore, suppose

(*) There s a x* and r* such that for any x D} there is an
xy €d3D; with rpg(x) = | — x| and a conoid with vertex x,,
opening x* and radius r* lying in Dj.

If v« PY(D*) and ¢ = 0 on D} then for any vy>1

(9.13a) . |o(2)[*rog(2) 27 da
< CQTK*(I_")[ r21o3 pe + E

ol e d]

vaelv)B(D* 0<ﬁ<1 and v = 0 on D} then
(9.13) [, |o(a)[? roy() 2 do
< e =m0 ofd 5o + dgpe(9)]

where ¢ in both cases depends only on n.
To prove (9.13) we need an inequality due to Hardy (Part.
I, § 12) which will be used in other proofs of this section.

D* bx‘

Hardy’s Inequality. — If f(s) is absolutely continuous for
a<<s<<b, then for any Y>“§‘
914 [ 1f(s) — f(@)i(s — )= ds

<( —%) L1 — ayee as
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Letly, = [z: 2 =12+ s6, — o0 << s << ]. Then if ¢ satis-
fies the hypothesis of (9.13a), ¢(z" + s0) € P1(ly, n D*) by
Prop. 2'), § 3 for almost all § and z’. Since v = 0 on Dj, and
in view of the definition of rp;¢(z) we have from (9.14) follo-
wing the notation of (4.1)

,ﬁs ﬁ: |¢(2)|?rpy 6(2) 27 dz d

jos /1%,(1)*) 16.) l"( + $0)|2rpg9(z" + $6)727 ds dz’ db

—2 bv o /
<<Y ‘—> S o3 >r’n;,e<z + sb)Ere
/ DS Ey(D*) J 1(9,2")

ds dz' df
1\~ >
<%(—~>2f
2 S Joe

The last inequality was obtained by Lemma 2, a) (note
that y > 1). An application of Lemma 2, b) completes the
proof of (9.13a). :

To prove (9.13b) we consider two cases

0<p<s S<p<t

dv B

ros(2) 2712 dz.
oz Dz( )

In the first case we have by Lemma 1, b),

lo(z)[?
Il0) > gy [ S g 42
2x*m 1)01 )2 28 g0 _ o 2 2
> s [L] 2)[? rog()~ dz — c5r ﬁ:]v(x)l dx].
Since ——— 1is uniformly bounded from below in

ﬁC(n, B)
0<BK < (9.13b) is proved in this case.
3

If—4—<B<1 we write by (4.1)

dg pe ff s 1.5 8)) dz’ do.
8,o+(¥ 2C n, I . 8,16, 0(9(2 + $9)) dz

Applying Lemma 3 in the form (9.6) to dgy .(v(z" + s0))
and then restricting the integration to Di (9.13b) follows
by an application of Lemma 2,b) and (4.2).

1) We pass now to the construction of the coverings

{V,} and {W,} used in part i).
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Consider a maximal set A ¢ R* with the property that for
any a'eA, a"<€A, a' 5~ a", we have |a’ — a"| > ¢/4. Such
sets obviously exist and are enumerable. Furthermore we
note the following four elementary facts (a will denote an
arbitrary point in A): 1° the spheres S(a, ¢/8) are mutually
disjoint; 2° the spheres S(a, ¢/2) form a &/4-loose covering
of R*; 3° any point in R” lies in at most 5" distinct spheres
S(a, ¢/2); 4° for a « D¥2 the spheres S(a, 8/2) form a ¢&/4-loose
covering of D?* and each of these lies in D.

By hypothesis of part b) of our theorem there exists a
covering {U,} of aD, ¢-loose and of rank p, such that each
U,n D is the image of a convex domain by a C®V-homeo-
morphism with constant M(>1). It follows that {U} is a
¢/4-loose covering of S(®D, 3¢/4); hence, combined with
S(a, 8/2) for ae D2, it forms a ¢[/4-loose covering of D. The
sets of this combined covering will be denoted by W,. Obviously
each point of R" lies in at most p’ = 5" 4 p of the sets W,.
Furthermore each W, n D is transformed by a C®V-homeo-
morphism T, with constant M on a convex domain (if

W, = S(a, ¢/2), T, is the identity). We put
V, = W4 n S(D,, 8/8) n (D; — D).
Obviously {V,} and {W,{ satisfy the conditions of part i)

of our proof and it remains to prove (9.12a) and (9.12b).

If V, = 0 there 1s nothing to prove. Therefore we assume
V. =~0. Set

D* = Ty(W,n D), Di = T,(Vy), D5 = T(W,n D,).

We will consider T, as extended by continuity to a homeo-
morphism of W, nD onto D*.

If zeV, then rp(z) < 8/8 and there exists z,< D, with
|z — | = rp,(z) < 8/8. Hence z,e Wit =z, e W, n D,, (this
proves that W, n D, and Dj are = 0), T,(z,) « D and

roy(Ti(@)) < |Tu(2) — Til(@o)| < M|z — | = Mrp,().

On the other hand if 2e W, n D, rp(Ty(z)) = |Ti(z) — ap]
with zj D}, hence

ro,(2) < |o — T7H(aq)] < M|T(2) — a7] = Mroy(Ti(x)).
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Since D* Dj, and Dj obviously satisfy the conditions of
Lemma 4 with x* = x/M? and r* = min [¢/16M, r/M], the
formulas (9.13a) and (9.13b) with ¢(z*) = Du(T(2*) are
transformed immediately into (9.12a) and (9.125b) respectively
by virtue of the above relations between rp (z) and rpy(T,z) and
known properties of C®V-homeomorphisms (f.i. Prop. 8), § 2).

Remark 2. — The L-convexity of D in part b) of Theorem I
was needed in order to allow us to apply Lemma 4. For a << 1
only the (C)-condition for D, is needed to obtain (9.9) by
direct application of Lemma 1, b). However, the constant ¢
i (9.9), so obtained, blows up when a4 1.

In the next two theorems we will consider open sets D,
and D, and the open sets U, = U,(D,, D,) introduced in § 8.
We vemind the reader that U, = [z: rp(z) < nrp(z)] and
that for >0, D; — D, c U, c R* — D,. We shall use the

notation

(+) Ut = D, u U, = D, u Uy(D,, D).

Tuporem II. — If D, is a (C)-domain with opening x and
radius r, and if u e P*(U}) then for ¢ = n/(9m + 4) ()

(9.15) Ja,u p(u) < ¢[|ultvt + Jap,p, (W)]
where ¢ depends only on v, o*, n, » and r.

Proof. — We will write r;(x) and ry(x) instead of rp(x) and
rp,(T).

Let m = [«] and } = a — m. The proof will be divided
into three parts. Parts 1° and 2° will be concerned with showing
that for |¢| = m and &' = 4/(3n + 2)

(9.16) /i |Diu(a)[2rs(2)2F da

< ¢ [ fo, IDus(@)]Pro(2)7%F do + |Doulp,u1].

Part 3° deals with lower derivatives: we shall show that
with ¢ = €'/(3¢" + 2) = /(9 + 4)

(947) 3 [yr IDau(@)[2ry(x) 2=+ da

lil<m ¥ 7

< [Junn (@) + 3 fox | Datf?ra(a) = da].

lil=m

(%) By a more elaborate proof we could prove (9.15) with € = 7/(3n + 2).
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The constants ¢’ and ¢” in (9.16) and (9.17) depend only

on n, v, «*, r, and k. Inequality (9.15) then follows from
(9.16) and (9.17) since U, c U,..

In parts 1° and 2° we shall let v = D, [t| = m. Then
ve PB(UL). If 8 =0, (9.16) is obviously true with ¢’ =1
so we assume [ > 0.

10 Suppose 0 << B < 3/4. For ze D, and ye Uf — D, we
write the inequality

2
048 L= ([ x—'i%l‘ﬂ?pdydx

D,U}—D,

lo=¥1>2 L@

<2ff l—‘yl‘j,mfdydx

I:c—J'|> rg(:c)

+2ff ﬂ‘”——dydleﬁls.

|n+2p
D‘U"—-D‘
l2—71>Lry@)
Clearly,
I, < C(n, B) dgui(0),
I, < 20, [ ()2 f o128 dp d
D P>%r¢(w)

< f I@)lra(a) 7 do.

We notice now that if y, € 0D, satisfies |y, — y|=ri(y) <<e'ro(y)
and if |z — yo| > (1 4+ €' )ry(y), then |z — y| > —%— ry(z) (since
Iz — yl > |2 — yol — lyo — yl > ray) > raf@) — |z — y).

Hence, by restricting the integration in I; to y with ry(y) <r/2
and to z lying in the conoid with vertex y, at distance

|z — yol > (1 + ¢')ra(y)

and noticing that the conoid cuts out on 2S(y,, p) for p <r
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an angular area > (—(D%T-T **1 we get
* r n—1 1
I > __________wn—-l n—1 [ zf n P d 33
“(n— 1)2n—1 J?{;E«rml (y)| aremin (€ Taly) F o) 28 y (%)

i 0,1 yn—1 —n—4f3
=9z e

><[ﬂ¢_alvwn%4w~wdy——f*w14—afﬂﬁ¢_ﬁ o)l dy)

re(Y)<r/2 ro(Y)<r/2

Since BC(n, B) 1s uniformly bounded for 0 < < i and since
JuslolPr(y) 8 dy < [os_5 lo@)lEra(y) = dy

re(Y)<r/2

()7 [ et dn+ [ ettt dy,

J b,

the inequality (9.16) 1s proved in the present case.

20 Suppose —2— < B < 1. Let I be a line in the direction of
the umt vector § and z’ = mynl where my 1s the subspace
orthogonal to 0. As before we write | =1 ,, = [z: 7" + 10].
Suppose I n D;=£0 and dg ;qui(9(2' 4 t0)) << 0. We shall restrict
our attention temporarily to this line and so shall write for

p(z' +t0) and ry(z" + te) simply ¢(t) and ry(t) respectively.

Define s, = s + + ry(s) for seln D;. Since

|ra(s) — "2(3')| <ls — s'l,

8, 1s an increasing function of s. For

s<t<s, |s— + ra(s),
ri(s) — g () <melt) <mals) + g3 mlo),
n(®) <ls — 1

(23) Note that the inner integrand is

> p‘l"’F(—*Me'r + 1>_"—2ﬁ > pi(1 + &)
P
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(s being in D,), hence
14+ 27}

9.19 <t <<sy, th
(9.19) if s 8y, then —— T+

ra(s) < mo(t) < ra(s)

1 -l-
and z' + tb e U,
Applying the above and (9.5) we get

s)>_2ﬁ f " o(t)]2 dt < 2 < e r2(3)>_2§ f “lo(s)]? dt
+ 2 <1‘?‘YI s> - [ lo(t) — ¢(s)| dt

in )4 %—@W@P+2£lwn~W@mhwrww

<2
_2p
<2 < i s > [o(s)I2 + 32 dpeun(s).

Dividing by 0281 + )"'ry(s) and noticing that by (9.19)
n(s) < (L + min(t), we get

(9.20) [ o(t) 2ra(e) 27t de < 2m(L + n)Flo(s)]2 ro(s) 2P
+ 32.,5712@ ( + Yl)" 2( ) dB,(:,s.)(V)'

In view of (9.19) the set of points seln D, such that
s << t<<s for a fixed t on I has a measure

alt) = pal + 1)
satisfying py(t) << nrq(t) and for all such points s,

1+
14 29

ra(t) < ros) < (1 + m)ro(t).

Let Iy = |y =232+ t0: there is an ze D,, x =173" 4 s, with
0 y=
| ra(s) = 31]'

By (9.19), Iy « U,. We perform now three integrations on both
sides of (9.20) (compare notations with (4.1)),

JasSooo Jovw, - - - ds e b,
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and obtain, following the above remarks,

(9:21)  fis [a 19(w)Praly)2Fuo(y) dy db
< 20, (L + 0P [, |o(2)[ry(2) 2 da
o B #(1 4 20) P8 dp o). ()
We aim now towards a lower bound for the left side of
(9.21). Consider a point ye U, — D; with ry(y) < r/2. By a
simple geometric argument we notice that if y,edD; with

ly — yo] = ri(y) < e'ry(y) and if on the axial arc of the conoid
with vertex y,, lying in D,, we choose a point y(t) with

’

[y(z) — Yol = —2— r(y) <r

then for every z in the corresponding sphere S( y(z), —}% ra(y)

-|- 1" ry(z). It follows that for 6 in the

direction zy, y e ;. Furthermore, if z 1s restricted to

(=) 25 rlw))

the measure py(y) > % ra(y); the corresponding 0’s form an

n—1

———1— * . Hence the lower bound for

— 1\10
the left side of (9 21) is given by

Wy '_x_ "1 oxe 2 —2p
2o (55) S ity

re(¥)<r/2

angular area >

and thus we get formula (9.16) by the same concluding argu-
ment as in part 10.

(%) The last term is obtained by using the following evaluation :

-1
S netda, ol dr =

J_‘l:_"__ﬂf - ) do ddt
C“ B) Jinu, Jinuy I?t—)—t|lztﬁ’92[$,)2‘_m)'z(s) Kelt) %(t') ds dt dt
(4 — n _ )
C“ B) Jmu.“/mu,1 t—rp 1o ra(t) = wa(t) dt dt

_1
=T w0

where yx,(t) is the characteristic function of the interval (s, 8).
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3° We use the same notation as in part 2° except we replace
n by ¢ and & by ¢ = ¢'/(3¢' + 2) =/(9 + 4). We now deal
with the function ¢ = Dyu, |i] = ¢ << m. Hence ¢ e Pm4(U%)
l
and on almost all lines parallel to 0, 6" l=01,...,m — q—1,
are absolutely continuous on In UJ, with IL2-derivatives.
We obtain succesively for seln Dy,

l

s<t<s1=s+1+€ ra(s),

-1 k
PR

o) ="3 b= Tus)

k=0
1 t om—4
+ m—qg—1)1 ﬁ (¢ — g)m—1 bO"“Z (x) dr,

0 < (m = g+ 0) (73 O G o)
N D

m—q—1

[rrora<om =g+ 0Y S ey

¢ 2k+1
X <1—+—? r2(3)>

x(i—jr—; ’2(3)> [

Multiplying now by <ﬂ1——,
we get ¢

S ol sesset du
, m—q—1 1
< epin = g 003 e
X (I—_{—é—,ykﬂ 2 (5)—2e+20k-0) |20i (s) r

e/am2a(] | 2e/RBH(] | ¢f)petee
(2m — 29 — 1)2m — 2g)(m — q — 1)!)?

o f‘s. "y (T)r ra(m) 261 dq:g..

obm—

(2m — 2¢ — 1)((m — q— 1)1!)2

ka 2

ob*

%(w)r«hi-

—2a+429—1
rz(s)) and applying (9.19)
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We integrate over s, z’ and 6 and obtain in an analogous
manner to the proof in part 20:

j;s j;; [9(y)|2re(y) 22120 uy(y) dy db

nga—2g+1 — —-1—_—‘
Sofl+epemiim—g+t) 3 Rk
13

2k+1 .
o) [ IDe@na) o
I g2m—2e(] 2&')23+1(m —q+ 1) ,

(O

(2m — 2¢ — 1)(2m — 2q)((m — ¢ — L) 12 "
X 3 [o, IDp(y)Er(y)-2e dy.

|ji=m—q

’

><<

Here we used again the fact that py(y) << e'ry(y). The lower
bound for the left side is obtained as in part 2°. We sum up
the inequalities for v = D,u over all indicial systems, with
|} < m and arrive at (9.17).

Traeorewm I11. — If(D,)°’=D, (*), U,=U,(D;, Dy), u « P*(U3),
Jaut p,(u) < o and ¢ is the singular multiplier corresponding

to the triple {D,, Dy, n/2} then qu extended by 0 outside U
s in P¥R") and

(9.22) |9ulzne < e(Ja,0f,0,(u) + ulg ot)
where ¢ depends only on o, v, and n.

Proof. — Without further mention we will use the properties
of the singular multiplier ¢ as given in Theorem III, § 8 and
we shall use ¢ as a generic constant which depends only on «¥,
T, and n.

By Theorem I, a) (with D, = R* — D,) it is enough to
prove the following three statements:

(9.23) suePz(R* — D,),
(9.24) Jao,meB,,p, (91) < eJo v, n,(u),
(9.25) |pule, rep, < ¢(Ja,ut,n,(u) + [uli vp)-

(%) This condition is needed to guarantee that if D; = R, — D, then

(DyU Dy (3Dg N dD,))° = R7,
cf. Theorem 1.
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As before, we shall let r,(y) = rp,(y), ra(y) = ro,(y), m = [a]
and f = a — m.

Proof of (9.23). — If ze R* — D, then there is a neigh-

borhood of z, N,, such that the ratio ?E—Z; is either > 7/2
2

or < v for ye N,. From the properties of ¢ it is clear, then,
that guePg (R* — D,).

Proof of (9.24). — Clearly it is sufficient to consider only
points in U,. Let |i| < m then (cf. (2.5) for the summation
notation)

ra(a) ## D (Gl = (3 (Dg)ra(a) (Diagr(a) =) ?

< X IDJ?lz ro(z )2”',,%. |Dyu|® ry(z) 2o kL

JC;

Since X |Djg[*ry(2)?1 < ¢, (9.24) is immediate.

Jjci

Proof of (9.25). — Let |i| << m. By Prop. 6), § 2 and (9.24)

we have

(926) fuu_s, IDiguwPdz= [+ [,

ro(z)<1 re(z)>1
< Jd,UmD:(?u> + clulfﬁyu'ﬂ
< ¢(Ja,ut,p,(0) + |uln, vt)-

If B =0 then (9.25) is immediate so we suppose § > 0. Put
. —
2(1 + )
(9 27) dp re—p,(
2
[2] f ———j————ldy dz
Un B —Uw\

Then (cf. (2.5) for the summation notation),

y|" =
1Dy W — Dyfsu)(y)l*
+ ‘/t;.,ju,, y|n+2 dy dz
[z—¥]|>Tre(z)
Dyau(y)|D,p(2) — D g(y)]?
i f f s 1D ; S 5
- Un o Uy jUk=i |x_y|n+2p Yy ax
|lz—y[<Yre(a)
' D o(2)]?|Dyu(z) — D,u(y)]?
9liH1 f [ 1D g ( ‘ \ el
+ Uy Uy jU%:; Ia;_yln-{-zp Yy |
[x—Y|<Yry(x)
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We denote the integrals by I,, I,, I, and I, respectively.
If ze U, and |y — 2| < yry(x) then

) < nle) + 1nle) < (1/2 + rale) = 330 n(a)

and.1y(y) 3> na) — 172(a) = 5 s rale)shence y(y) < )

~—

~

and :
(9.28) If xeU,, and |z — y| < yry(x) then yeU,.

Since ¢u vanishes outside U, it follows from (9.28), (9.26)
and (9.24) that

L < fo, IDER@E [oyisme o — yI=8 dy da
T [, Pl d

%
+ f U |2dx]

r,(a:)>1
[f |Dy(pu) (@) 2ry(x —2a+2hldx+j |Dy(pu)(z)|? da:]
n/e n/z
(Jou,0,(u) + [ulnv,)-

//\

n/e
ro(2)<1

N //\

For |z — | > Yra( x) we have |z — y| > y(r(y) — |& — yl)

or |z — y| > rT—
above,

L <2 [, IDW@ [y |z — =P dy da
, 2 — y|——28
T2 Jo D[ o ey dedy

£
We note now two geometric properties immediately proved.

(9.29) If |z — y| < yro(z) then |z — y| < Y'r(y) with

r:(y) and in an analogous manner to the

_|._

< 7 (Jau,n,(u) + |ulhu,)-

’

_ .M
L g
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(9.30) If |z — y| < yro(x) and z lies in the segment [z; y]
+ 1
then ry(z) > O ry(z).

Evaluating |D¢(z) — D;9(y)| for |j] < m and |z — y| < yry(z)
in terms of derivatives along the segment [z; y] we obtain
from (9.30), [Dg(z) — Dg(y)|* < clz — yl*ra(y) /2.

Therefore a typical term in I is majorated by (cf. (9.29))

cﬂ]"‘Dku<y)|2r2<y)—2ul—2ﬁw_yl<y,rg(y) |z — y|™t228 dz dy
<25 ) Dant)=ay + [ D dy)
1 - p U'I v Uy
Consider now a typical term in I, with |k] << m. Since

¢(x) = 0 outside of U, we can restrict  to Uy, and majorate
this term as follows :

221 X7l) >1—B|Dku<y> — Dafa)? ,
f,f <I:v—yl |x—y|"+2ﬁ v

|z—Y|< Yre(x)
’ =c f f 2+ )21
1 Jos JEyu,p Jue. o "

sHnEH | Dz + 1) — Doz + 89)1
st k - dt ds dz' db,

where we have used the change of variables given in (4.1).
Now since |k| < m, D,u(z" + t0) is absolutely continuous for
almost all 6 and z’. By applying Hardy’s inequality (9.14)
to the integration with respect to ¢, then returning to the
previous variables and using (9.29) we have the majoration

n 2
o fo [ nnnt( $ 12 Dty o — gl dy) da
Ux/g o/ Uy =1 byl
Je=sI<im
< ] 3|22 Dyuty)] a2 o~y dudy
Uni=1/0 |z—y [<Y'r5)
2
| f ~-Dyuly [‘ e sndy+ [ | 2Dy dy]
ra(3<1 P >1

If in 1,, |k| = m, then the corresponding term is obviously
majorated by C(n, B)dgy,(Dsu) since 0 < ¢(x) << 1. Finally,
we put all the majorations for the different terms on the right
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hand side of (9.27) and obtain from (2.7) and (9.26)
ID(¢u)[E s, < ¢(Jauvn,(w) + |ulfv))

from which (9.25) follows.
Remarks on spaces P*(D). For 1 < p < o, all theorems

of this section are valid with standard changes in proofs

The expression J, p p(u) i1s now replaced by

9.31) J.,pou)= 2 u(z)|Prop,(x) K¢ dg.
s P, D1, Ve lil<ak o D1 1

The inequality of Lemma 3 is now replaced by
— u(a)(z — a) " dz < d,p,@,n(¥)

4 ule) — uly)p
i), ) ey dady

for 1 < @ < 1. The constant C is given by

(9.32) C [ u(x)

N2 1(1 — gam1/p)e 2(a—1/p)
(9.32") C= C(1, a)f (1 — t)r+ex dt >p(1 — a)G(4, «)

Hardy’s inequality (9.14) becomes now, for y > 1/p

©33) [1f(s) = fla)its — a)rrds
< (v — 1p) [If (s)P(s — a)=rr+e ds.

In case p = oo all the theorems hold; their proofs can be
shortened considerably. As usual, the corresponding expres-
sions and formulas are obtained by taking p-th roots in case
p < o« and putting p / . This gives

Ja,2,p,,p,(u) = max sup[|Du(z)|rs, ()= ]

sup [Ju(z) — ula)l(@ — a)™*] < dauqn(¥)
Eafﬂl [lu(z) — u(y)llz — y|™*], 0 <<,
a)l(s —a) )<y sup [If (s)l(s —a)72], yv>0.

sup [|f(s) —
a<s<b

For p = 1 the results are much less satisfactory. It can be
stated as a general rule that each part of our theorems where
the norm of u is evaluated remains valid; however, where the
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expression J is evaluated, the inequality is still valid for «
non-integer but the constants obtained by our proofs converge
to oo when a approaches aninteger. This is due to the fact that
Lemma 3 (inequality (9.32)) is not applicable because of the
condition 1/p < a <1 and that Hardy’s inequality (9.33)
is not valid for y =1 = 1/p. Thus, Theorem I, a) is valid
whereas Theorem I, b) is not valid for « integer (3¢). Theorem II
1s valid for all «; however our proof gives constants conver-
ging to o when a approaches an integer from below (this
may be the fault of the proof). Theorem III is valid without
exceptions.

10. Extension theorems.

In this section we will describe procedures for the construc-
tion of rather general domains with extension theorems.
We build them by putting together a finite or infinite number
of domains for which the extension theorems hold. First we
shall give a few definitions.

A closed (bounded or unbounded) set Q 1s called a g-cell
(quasi-cell) if Q = Q° and its interior Q" satisfies the (C)-condi-
tion. The opening x and radius r of conoids involved in this
condition will be called the (C)-constants of Q. If G is any
(C) domain, then G is a g-cell with interior which in general
is larger than G. ' .

To simplify notation we will often write P#(Q) for P*(Q)
and similarly for other classes defined for open sets.

We will be interested in systems §Q,} of g-cells, finite or
enumerable. The system is 8-loose, & > 0, if for any k, [, either
Q. n Q, 5% 0 or dist(Q,, Q,) > 4¢. The system is of rank p << o
if for every k, Q,n Q, 5 0 for at most p indices [. Obviously
every finite system of bounded g-cells is loose and of ﬁmte
rank.

It is clear that for a loose system {Q,{ of finite rank, UQ,,

k
1s a closed set. We will want it to be a g-cell, and for this we
need a uniformity condition. We say that the system {Q}

(®%) Simple examples show that Theorem 1, b) is not true when p =1, a =1
n=1, D, = (0; 1), D, = (— 1; 0).
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is uniform if it is loose, of finite rank and the (C)-constants
of all Q,’s have uniform positive lower bounds. These lower

bounds are the (C)-constants of UQk which is then a g-cell.

k
For a uniform system {Q,{, the looseness-constant J, the rank
p and the lower bounds for the (C)-constants of the Q, are
called the wuniformity constants of the system. Obviously
again, every finite system of bounded g-cells is uniform.
We also note that if {Q,{ is a uniform system then

p(u Q)| =] udQ = 0.

For a given uniform system §Q,} we define the star o, of Q,

as o, = < U Q,>° and the d-star U, (0 being the looseness-
QNQx#0
constant of the system) as U, = o, u S(Q,, 28) (). Clearly

Q. co, and
1) {Ui§ ts a &-loose open covering of UQ, of rank p?
(p being the rank of {Q.}); Uyn(uQ)° = Ic,‘.

We can now state our first theorem.

Tueorem I. — Let {Q.} be a uniform system of g-cells.

Denote D, = Q5. and let u, e P“(D,‘). In order that there exist a
simultaneous extension @ e P*(R") for all the u,’s it is necessary
and sufficient that there exist for each u, an extension @, e P*(R")
such that

(10.1a) ; |tlspe < 0 and E Jo, 0,0 (Ux — %) << .
QuN Q%0

If @ us gwen then the @,’s can be chosen explicitly as linear
expressions in U so that

(10.15) 2|uk|m+ 2 Ja, v p (e — @) << €¢[i]Z ge
anQﬁéO

If the w,’s are given, then a @ can be constructed explicitly as a
linear expression in the @’s with

(104e) falzn < 'L 2 [@line+ X Jap,n i — @)

Il
QN Q#0
(3% S(E, 8) =[«: dist(z, E) < 3].
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The constants ¢’ and ¢" depend only on n, o* and the uniformity
constants of §Q,}.

Proof. — 1° Suppose that @ exists. Denote by 7,(z) the
function constructed in Lemma 1, § 1 which is in C*(R"),

is=1 on S(Q,,, %) and =0 outside of S(Q,, 8). We put
(10.2) llk == Tkil.

By Prop. 7), § 2, we have |%,|2 r» < ¢|@|2 s, 25, ¢ depending
only on o, n, and ¢. Furthermore, on D,,

w(@) — w(z) = (1 — 7(z))az)

and since 1 — 7, 1s a multiplier of order «* whose Lipschitz
constant depends only on n, ¢* and ¢, and 1 — 1, vanishes

for rp(z) << /2 we have by Prop. 6), § 2

—2a
Famnfte— 8) = Jumnf(1—20) < (5) 1L =),

8 —2a -
<o (7) |u|m,n,,,

¢, depending only on n, «* and 8. Thus

- S\
S Japenn — @) < po () i,

k
QxNQ#0

and by Prop. 1)
2w+ X Japn(we — @)
k

Qkﬂkéllt?éo S \-2a
<P (per(5) "+ <) ot
which proves (10.15).

20 Suppose now that the @,’s exist. Fix an index k and
consider all indices ! such that Q, n Q, =%~ 0. Let these indices
be , <L <...<l, ¢g<p (k 1s among these indices).
We construct successively functions ¢, ¢,, ..., ¢, all in P*(R"),
the function ¢; being a simultaneous extension of all u,;
with j <{i. We put ¢; = @,. Suppose that ¢, is already

constructed for 1 <gq. If D, < UQ’!" we can obviously

=1
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put ¢, = ¢; since dQ, has measure 0 and u,ﬂ = w; on

D, nD, (in view of (10.1a)). If now D, 1¢UQ,1 we
proceed as follows. We notice first that

Jap, Um EJaD, D,(ut —"i)

g
< 2 21[ @Dy rD’f(uli+a - u‘j) + J"'rDliHlej(izlj - Vi)]'
J: +1
By Theorem 1, b), § 9,

Dz;(“z- - Vi) < JG,R",DU(aU - Vi) < cldtj - Vilg,ﬁ"’

JaD, j

i+’

and hence J,p, UD: ) < . Applying now Theo-
rems II and III of § 9 and using the singular multiplier

Qs U Qi 1/26% () we

j=

¢; corresponding to the triple
can put

(10.3) ir = Gl — o) + o

The function ¢, will be denoted ¢®. It is easy to check by
following the inductive definition of the ¢’s and using the
evaluations in Theorems Ib), 11, and III, § 9 that

q
PO <o 3 (@it B Jan,nu— )]
i=1

1<j<i<e

with ¢, depending only on n, «*, and the uniformity constants
of {Q,}. In the second sum there might be terms corresponding
to Q,nQ,=0. Such a term can obviously be majorated by
(1 + (48)72%) 2(|@,|s » + |@,)Z ). Replacing ¢, by

¢, = ¢ [1 + 2p(1 + (48)7%*)]
we can write
(10.4) PR <[ X |@2n + 2o oroe(ur — @),
Qzﬂék?ﬂ

(7)) We choose = 1 in Theorem II § 9, hence e=1/13 and in Theorem III the

Q:+1, U Ql P 1/26§

Jj=1

multiplier corresponds to
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the last sum extended over all indices I', I, with Q, n Q %0,

Qrn Q.40 and QrnQ, 0.

We now take the partition of unity ¢, corresponding to
the 8-loose covering {U,} with rank p® of U Q, (see Lemma 2,
§ 5) and form P

(10.5) =3 Po®.
k
Since for z € D,, §,(z) = 0 except when Q,n Q, = 0 and then

v®(z) = w(z) by construction, & is an extension of wu, for
every l. We obtain by using Prop. 1),

20 < 29 3 [$line < 2 3 (09
<2, [p 2 fifipe +p R T )]
l 3

where ¢ depends only on n, «* and &, hence (10.1¢c). The induc-
tive definition of the ¢™'s (see (10.3)) and formula (10.5)
show, finally, that @ 1s linear in the @,’'s.

Remark 1. — In the subsequent theorems of this section
we shall use Theorem I to construct extension theorems for
domains which are unions of ¢-cells. To formalize this construc-
tionlet {Q,} be a uniform system of g-cells such that Q; e &(I)

and D = <U Qk> Let E, be the linear extension mapping

defined on PDg, c M(Q;) into M(R™) and
Dy = fu: ueM(D), ulgp e Dy, for all kj.

(Cf. the proof of Theorem II, §7). Clearly |_JP*(D)c @

aEI
and 9 is a linear space. We set u, = ulq Qs Wi = E,u, and

Eu = @ as given by (10.3) and (10.5). Eu so defined glves
a linear extension mapping of Dy into N(R"), 1.e. this mapping
satisfies condition (7.1a). However, additional conditions have
to be imposed on the system {Q,} in order to guarantee that

condition (7.1b) be satisfied.

Tueorem II. — Let §Q,} be a uniform system of q-cells such

that Q; and (Q,u Q,)° for Q,n Q, =0 belong to §(1, I'). Then
= (U Qk>°e8(l,c[‘) where c¢=c(I')=c([oq, %]) is a

function only of o}, n, and the uniformity constants of the system.
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Proof. — Let E be the mapping given in Remark 1. Then
if I'=[ay, 5] c I, ae I’ and ueP%D), it follows that (in the
notation of Remark 1)

Zldle,me < T(U)* Zfwlz, o0 < 2pLT(LPlulz, ».

If w,, 1s the restriction of u to (Q,uQ)° for Q,nQ, =0,
let @, , e P*(R") be the extension of u,, with

|d"-'|¢,l‘” < P(Il)luk,lla,(QkUQl)o'
Then by Theorem 1, b), § 9,
Ja,Q,‘:,Q‘}(uh — ) = Ja,Qk o dy,1 — )
< oo (&’ — ) < |, — g we
2

< 2cl(1 ) [, t|a(Qkqu)° + [ulg, Q,]

where ¢ depends only on «f, n and the uniformity constants.

Hence by Prop. 1),
X Joqpap(w — ) < 2e(I') 2 [2plulzq + Plulaql

k1
< 4el(I')?(2p* + p?)lula,»-

QN Q#0
and the proof is completed by (10.1¢).

For our next theorem we must introduce some additional
definitions.

For two closed non-empty sets I, == F, we define the
slope v = o(F,, F,) = o(F,, F;) as follows

(10.6) © = w(Fy, Fy) = inf Tl t (@)

Z@F; N Fe m1n(1 rF,nF,(w))

When v = 0, F; and F, are said to be tangential, otherwise
non-tangential.

If F;nF, =0 then o(F,,F,) = dist(F;, F;). From this
definition we deduce the following useful facts.

2) If F, and F, are tangential then at least one of the two
statements is true: a) There exists a sequence {a®}{ c F, such
that |2®| — oo, rp,(2®) — 0 and re,(2®)[rear,(2®) — 0; b) there
exists a sequence {a®{ cF, such that

2®—>a®WeF nF, and  re(2®)/rear(@®) — 0.
4
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3) If F, and F, are non-tangential then: a) for zeF, and

re(z) < 0, (@) < rear®) < = re(@); b) for z<F, and
renn(®) > 1, e (2) > 0. ©

A system §Q,{ of g-cells is called regular if 1° it is uniform,
20 there is an ®,, 0 < w, << 1, such that for any distinct Q,
and Q, with Q,nQ,=£0, w(Q,, Q) > w, and 3° for every
yed(u Q,) there exist arbitrarily small neighborhoods V, such
that V,n(uQ,)° 1s connected (i.e. the boundary a(u Q,)
does not cut locally (uQ,)°). The uniformity-constants of
{Q.}, together with the bound w, will be called the regularity
constants of the system (3%).

Two g-cells are called adjacent if their intersection 1s at least
(n — 1)-dimensional.

Tueorem III. — Let §Q.} be a regular system such that
Qied(LD), k=1, 2, ..., and (Q,uQ) eéLl) for all
couples of adjacent q-cells. Then D = (uQ,)° (Ll
where ¢ = c¢(l') = ¢([oy, ®,]) depends only on o«f, n, and the
regularity constants of §Q,1{.

Remark 2. — We do not know of any union of two intersec-
ting g¢-cells with an extension theorem for a > 1, where the
g-cells are non-adjacent or tangential; in fact, if n is odd, and
D, and D, are arbitrary open sets such that (D, u D,)° « §(I)
with (n + 1)/2 e I then it can be shown that o(D,, D,) > ¢/I’
where ¢, 0 << ¢ < 2/3, depends only on n and [ is the extension
constant of D for « = (n + 1)/2. Furthermore, if 3D cuts D
locally, 1t can be shown that if De§(I) then 1< [0, n/2]
(and we do not know of any domain which does have an exten-
sion theorem for 1 < a<Cn/2 if 3D cuts D locally). This
indicates that conditions 2° and 3° in the definition of a regu-
lar system are essentially necessary for the validity of Theorem
IIT and that in practice Theorem III is stronger than
Theorem II.

Proof of Theorem I11. — We will need a topological lemma.
We introduce first the notion of a chain: a sequence
Q. Qi ..., Q, is a chain connecting Q, with Q, if any two
consecutive g-cells are adjacent.

(®8) Since w(F,, F;) = dist(F,, F,) for F; nF, = 0, we could combine the looseness
of the uniform system and 2° in the single requirement that »(Q,, Q) > 43 fork £ L.
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Lemma 1. — In a regular system §{Q,} for any y < Q, n Q.
there exists a chain Q,, Q,, ..., Q, lo=FK, ,=F" such

that ye Qy, j=0,1, ..., i

Proof. — Consider the class A, of all Q;s containing y.
Obviously A, contains at most p g-cells. For two Qis to be
connected by a chain in A, is an equivalence relation. We claim
that there is only one equivalence class in A,. In fact,
suppose that there is more than one, and let A’ be one such

class. Put
C1=UQM G2: U an

Qe Qe - A"
G1 - (Cl)o % O, G2 - (Gz)o ?é 0.
Obviously Gy n G, is of dimension << n — 1. Since {Q,{ is

a regular system we can find a small neighborhood V, of y
such that V,n (u Q,)° 1s connected and also that

(V,nGy)u(V,nGy) e Vyn (U Q)
=V,n(GuGy)c(VynG)u(V,nGy)u(V,nGynGy).
(V,nG,;) and (V,nG,;) being non empty and disjoint this
would mean that the open connected set V,n (v Q,)° is dis-
connected by an at most (rn — 2)-dimensional closed set

V,nG; n G, which is impossible. Thus the lemma is proved.

Consider any Q,. and Q, with Q, n Q. == 0. If we restrict
ourselves only to minimal chains [ connecting Q,. with Q,- (i.e.
such that there is no chain [V c [" of smaller length connecting
Q. with Q) it 1s clear that there are at most 27 minimal chains

[' connecting Q,. with Q- and satisfying m Q, 5= 0. Number

them [, ..., 'Y, N<{2F and put Qe
(10.8) Fr=(]1Q, ¢=12 ...,N, Fr=£0.
QEry

Obviously, by Lemma 1
N
(10.9) Qun Qe =|_JFu
q=1

Let ue f’“(D), ael’ = [a, 0] c] and & = Eu as given
in Remark 1. We use the notation of Remark 1 and in addition
denote by @, , the extension of u|w,uqy for Q, and Q, adjacent
as given in the hypotheses of the theorem.
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We shall prove for Q. and Q. for which Q. n Q.0
that (o, being the star of Q,)

(10.10)  Joqp00(v — ) << 0g®*(2 + 16p*2%c) (1')*ulz.,, ()

where ¢ depends only on «f, n, and the uniformity constants

of the system. Thus by (10.1¢) and Prop. 1)
|algne < 'T(UP [ |ulioep + pog®(2 + 16p*2%) 3 [ulgg,]
k

’

<2 T(IP[p + proy(2 + 16p22%)][ul2p.

which will complete the proof.

We pass now to the proof of (10.10). In the following we
shall use the expression J,pr(¢) when F is not necessarily
an open set and also the notation of (10.8) and (10.9).

By virtue of condition 2° of regular systems, Prop. 3a)
and (10.9) we have

(10.11a) Ja qen o (w0 — )
< 0g?*[Ju — dpl7 02 + a0 qurnoe(® — )],
N
(10.11b) Ja,Qlo‘,,Qk.an"(u —_ llk") < 2 J«z,er,F" (u —_ ﬁk~).
g=1
Let Qlo’ Q[‘, ooy Q‘i’ lo - k’, li - k”, i<p - 1 be the Chain
['%. Then

JG,QZ:,F"(U, —_— dk') == Ja,Q;,'Fq(alo - ali)
i—1

< P ]zo JG,QZv,Fq(a[‘i - a[j*‘)

i—1

< 2P g [Ja.er.F"(al} - al}.lj-u) + Ja,Q‘,":,F"(ale - al],ljﬂ)]
i—1
<2p jéo [Ja,ne, 00 () — iy ) + Jamn Q',’jﬂ(f‘t,-ﬂ — Ty, ]

Applying Theorem I b), § 9 to the square bracketed terms
we have by the hypotheses of our theorem

Ja,QZv.F"(u — Uy) < 2pe 12 [Wt,— - lzt;,th.lg,n" + |a'[j+4 - at,-,tjﬁlg.l"]
=0
i—1

< 16pcl(1') ,20 |ulz @ uay,
< 16p2el(I')2|ulZ o

(3°) We assume without loss of generality that w, < 1.
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where ¢ depends only on a3, n and the uniformity constants
of the system.

Combining the above with (10.11a) and (10'1“)) we get
(10.10) and the proof is complete.

The next theorem and its corollary aim at replacing in
Theorem III the condition (Q,u Q) e§(I, I') for adjacent
g-cells by a geometric property of the couple of cells.

Turorem IV. — Let D, and D, be such that D, n D, == 0,
D; = D,, D; = D, and w = (D, D;) > 0 and let

D = (El U ]_:)-2)0.
Suppose that one of the following two conditions holds :

a) D; and D; n D, are g-cells;
b) there is an L-convex domain G such that

D;nD,cGeD,uD,

and Dy, D,, D, n G and D, n G are g-cells.

If ue P*D) and u|p, has an extension i, « PHR"), k = 1,2,
then u has an extension @ in P*R") which depends linearly
on u, and U, and satisfies

(10.12) &) we < caf|ta]2 me + |Ea]Z rn + |ulZ p]-

In case a) c, depends only on w, n, «*, and the (C)-constants of
D, and D, nD,; in case b) c, depends only on », n, a*, the
(C)-constants of Dy, Dy, D; n G and D,y n G and the L-convexity
constants of G.

This theorem has as an immediate consequence.

Cororrary 1. — If Dy and D, satisfy the hypotheses of
Theorem IV either in case a) or case b) and in addition D,
and D, are in §(1,T') then D = (ﬁluﬁz) e &(L, c'T") where
(I'Y=c'([ay, 2]) = (3 max ¢,)** and ¢, is the constant of

Theorem IV. xS

Proof of Theorem 1V. — Let w, = min (1, w). a) Since
i, — U, vanishes in D; n D, we have by Prop. 3 (and noting
that 75,05,(%) = r5,05.0(%) = rp,00,(2)),

Ja,Dh'D,(al - ag) < (‘0;21 Hdl - a2|§,D, + Ja,DhDJ]D,(al - a2>]
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and by Theorem 1b), § 9,
~ ~ ~ ~ ~ ~ 12
Jap,pnn,(th — ) < Jounp,nn,(la — ) < €fthy — oz mne

Thus if ¢ is the singular multiplier corresponding to the
triple {D,, D,, 1/26{ we have by Theorems II and II1Iof §9 (*°)
that @ = ¢(@; — @) + @, 1s an extension of u, is in P*(R")
and by an application of the bounds in the cited theorems
satisfies (10.12) (2) which proves a).

b) Sinces u — @, vanisheson Gn D, (and @t — @, = u — @,
on GnD,) we have by Theorem Ib), § 9,

Jesnp.enn(ts — Ue) < Jucanp(U — ) < clu — @,2 6.

Therefore if ¢, is the singular multiplier corresponding to the
triple {G n Dy, G n D,, 1/26{ we have by Theorems II and III
of § 9 that v, = ¢,(@; — @) + @, 1s in P*(R"), is an extension
of u|e and satisfies |¢;|2rn < ¢[|U]2 e + |T2|Zre + |u|2 o]

Thus with the couple D; and G we are in case a) (%)
and obtain an extension ¢, of u|gyp,y to P*R"). Now with
the couple D, and (G u D,)’ we again are in case a) and obtain
finally the required extension. The bound in (10.12) is obtained
by applying the bounds of the cited theorems and case a).
This completes the proof of Theorem IV.

Another useful result for applications is:

Cororrary II. — If Q, and Q, are intersecting g-cells in
§(I,I") and D = (Q uQ,)° is L-convex then D e8(I,cl)
where c(I') = ¢([ay, 05]) depends only on n, of, the (C)-constants
of Q; and Q,, and the L-convexity constants of D.

Proof. — 1If ue P*D) and in the first paragraph of the
proof of Theorem IV, b) we replace GnD,, GnD, and G
by Q;, Q; and D respectively, then ¢; i1s the desired extension
(4%). It is to be noticed that this part of the proof of Theorem
IV b) does not need the hypothesis w(D;, D,) > 0.

(49) We choose = 1 in Theorem II. Thus in Theorem III, n/2 = 1/26.
(#1) The term |u|2, on the right side of (10.12) may be omitted in this case.
(42) We use here the easily proved fact that if Fy, F,, and F; are closed sets satis-

fying 0 4 F,nF;cF3cF,UF, then o(F;, Fy) > % o (F;, Fy).

(43) This corollary can be considered as a special case of Corollary I by virtue
of the easily proved lemma : if F, and F, are closed sets such that (F; U F,)° is L-con-
vex with L-convexity constants §, p, and M, then o(F,, F,)> 5 min (3, M~%).
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We finish this section by giving a simple extension theorem
for orders « < 1.

Treorem V. — Let 0 o, <, < 1. If {Q,} is a uniform
system and each Q, is in 8[ay, ay] then also (|JQ,)" € 8« «,].

The proof follows immediately from Theorem I since for
a« < 1, Lemma 1 b), § 9 allows the majorations of

Jao.i(w — w) by clu — wl’ o
¢ depending only on n and the (C)-constants of Q,.

Remarks on spaces P**(D). — Since the results of the pre-
sent section are based on those of section 9, all of them are
valid for 1 < p < o when P%D), P*R", and §(I, ) are
replaced by P=r(D), P~(R") and &®(I, [') respectively (see the
corresponding remarks at the end of sections 7 and 9).

For p =1 the situation is more complicated in view of
the exceptions mentioned at the end of § 9. The extension
mapping defined in Remark 1 of the present section gives
still a simultaneous extension for all non-integral «, but for

a 1integer lv)“'l(D) will not in general be transformed into
P*1(R") under the hypotheses of Theorems II or III. Further-

more there will be uniform extension constants only for closed
intervals 1" which do not contain any integer.

11. The generalized Lichtenstein extension.

In § 3 we introduced the Lichtenstein reflection of order
g << o across a hyperplane. We mentioned also that quite
recently R. T. Seeley [11] defined a Lichtenstein reflection
of order oo across a hyperplane. Using Seeley’s basic idea
we will define a Lichtenstein reflection of infinite order across
a Lipschitzian graph. This will allow us to obtain corresponding
simultaneous extensions for the whole infinite interval
0 < a<< oo for SLG-domains and then, by localization, to
LG-domains (see § & for definition).

To define the reflection of infinite order we put in (3.1)
hy, =2¢+ — 1, u =0, ..., ¢, and obtain by (3.2) the corres-
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ponding coeflicients a,(q). One sees immediately that for
q — o, (— 1)*au(q) (— 1)*a,, where

(11.1a) 0 < (— 1)ta, = H = 2_61’[ = 9 —Kp+1) i

=1 v=1
< 949 —K(p+1)[2
We set

(11.15) b =hp—|¥1=2f‘+2, w=0/1,...

The equations (3.1) transform then into 2 ay(q)bh. =1 or 0

depending on whether the integer p—O or 0<p<yq
Going to the limit ¢ — oo (which is obviously permissible)
we get immediately

MAe) Ya,=1, Sabh=0 for p=123...
2 El p

®=1

(114d) 3 |ay|bh < 28 20040212 for p>0.

=0

Consider now a Lipschitzian function f with positive lower
bound and with Lipschitz constant M > 1 defined on a rec-
tangle Be R, B = [a, <z, < b, k=1, ...,n —1]. Tt is
well known that there exist Lipschitzian extensions f of f
to the whole of R** with the same lower bound and the
same Lipschitz constant. We fix a standard procedure assigning
to every f a well-determined f (). We set then

(11.2a) (=) is the regularized distance of Theorem II, § 8
corresponding to the domain [z: =z, < f(z')] with
the choice of ¢ = 1/2.

[D =[z: 2" eB, z, < f(z")],

D = [z: 2" eB],
(11.2) D, = [z: 2’ eB, z,> f(2)],
G =|[z:2 B, z, = f(2')],
A =min(l, (b, — a,) fork=1, ..., n—1).

(*4) Such a standard procedure would be the one applied in the proof of Prop. 2,
3, by using successively simple reflections (of order ¢ = 0 with hy = 1) across
M g Y P q 0

all the faces of B. We obtain thus an extension f® of f to a rectangle B> B.
Repeating this process we get successively f, f®, ..., defined on BOcB®c ...
with Re-1 = y B,
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The quantity A introduced above is called the minimal width
of the rectangle B.

Consider now functions u e NM(D) such that

(11.2¢) For some d <0, u(z) =0 if z, << d (d depending
on u).

For such functions we define

i(zx) = u(z) for zeD,

u(x) = 3 auu(@’, x, — byp(x)) for xeD, where-
®»=0

(11.2d) ver it is defined,

i(x) = correction of @ (as defined above in D u D,)
for xe G wherever the correction exists.

The function @ restricted to D, is the Lichtenstein reflec-
tion of order o of u across the Lispchitzian graph G.

By Theorem 11, § 8, 2 (2, — byo(2)) <1 — ;b<——1;

hence, if z = (2, z,) e D+ then the points (2, z, — b,p(x))
are in D for all . Furthermore, in view of (11.2¢),

u(a', @ — bypla)) - 0
for at most a finite number of w’s. Therefore (11.2 d) is defined
a.e. and #eM(D).
Let {(z) e C*(R"), 0 < d(z) <1, $(2) =0 for z,<<— 2
and {(z) =1 for x, > — 1. Then we define the generalized
Lichtenstein extension by

(11.3) E: m@D)—-mD), Eu=(1— {)u-+ Ju
where (1 — ¢)u is extended by 0 in D — D.

Our basic result in this section is

Taeorem I. — If ueP¥D) then Eue P*D) and
|Eu,5 << AA—EMa++872 [y, 1

where § = a — [a] and ¢ depend only on o«* and n.

Since D 1s obviously a G-domain, Prop. 3), § 6 implies that
Co (R restricted to D is dense in P#(D); hence by the functional
space property of P#(D) and P*(D) it is sufficient to consider
only such restrictions for the proof of our theorem. It follows
that 1t 1s enough to prove
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Tueorem I'. — If u ts the restriction of a function in Cg (R
to D then a) ieC*(D); b) |d]ap << A EM*+32|y|, , where ¢
depends only on o and n.

In fact, if Theorem I’ is true and u is a restriction of a func-
tion in Cg°(R") then du is also such a function and by Prop. 6,
§ 2 and the present theorem

[Dt] 5 << CA—EMo+4322 ],

with C depending only on «* and n. On the other hand, since
(1 — {)u vanishes in D for z, > — 1 we get, by applying
again Prop. 6, § 2, and putting m = [a], f = o — m,

(1 — Plulap < (1 — dJulzn + E(’ﬁ’f"iﬁ |(1 —=)ulfp<Cilulzo

and finally |Eu|,p << cA=FM*+4322|y|, , giving the statement
of Theorem I for such functions w.

From now on till the end of the proof of Theorem I, u
will be a restriction to D of a functionin C;°(R"). An inspection
of the series (11.2d) giving @(x) for x € D, shows that for z
in a compact K c D, the series contains only a finite number
of non-vanishing terms, this number depending on the dis-
tance from K to G (and not on z in K). It follows that @ is
in C*(DuD,).

We establish next a formula for derivatives D;i(x), z e D,.

Let y(z) = for 1 <l<n and yM(z) =z, — byp(x)
in the formula (2.6). For z € D, and any indicial set ¢, we have,

following (11.2d) and (2.6),

(11.4) Da(z) i a, |2 |tl'3ﬁ DM)ytg

1

(D)), - .., yP@) |

where the summation in square brackets is taken over all
indicial sets ¢t with 1 <[] ¢, 1 <t < n and all indicial

sets s™, m =1, ..., |t|, satisfying U ™ =1 and [s™| > 1.

For any choice of s™ and ¢ satlsfymg the above conditions
we will denote by 7, 7, and 7, the three disjoint subsequences
of the sequence (1, 2, ..., |t|) defined as follows
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F=(Fy, ..., 7)) is formed by all integers m, 1 < m <
satwfymg t, = n and s™ == (n),

F=(F1, ..., 73) is formed by all integers m, 1 < m <|¢,
satisfying t, = n and s™ = (n),

F=(Fi, ..., Fj5) is formed by all integers m, 1 < m <
satisfying t, == n and s™ = (t,).

We note that if there exists an integer
le(1,2,...,t]) — (FururF)
then D ™ = 0. Hence the only non-vanishing terms in the
s 3

round brackets in (11.4) can be written

It

IIDA'")!/«) =11 II = (— b.)" I Dump(2) H (1 — b,Dymp(2))

mer me? meF

— 3 (— 5" [ Duwp(a)

r mer

where the summation is over all increasing sequences of inte-
gers satisfying 7 crcr7uf. (Note that r may be empty 1if 7
1s empty.)

It follows that the whole sum in the square brackets of
(11.4) can be written now in the form

(11.5) % ,3, — b)) 1] D p(2) (D) (y¥(2), - - -, y$(2))

mer

where the summation is extended over all decompositions

k
(115a) = Js™ A<k, | >1

and all sequences r satisfying
(11.56) rec(1,2, ..., k), |s™ =1 for mer,
the indicial set ¢ being determined by
(11.5¢) |t =k, (t,) =s™ for mer, t, =n for mer.

We shall separate in (11.5) the terms with |r] = 0. For
such terms |s™] =1 for m = 1,2, ..., k; hence, by (11.5a)
and (11.5¢), k = |¢| and the indicial set ¢ is a permutation of
the indicial set i. Since distinct permutations of the |i| ele-
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ments of i give rise ll)?r our conventions (see § 2) to distinct
i

decompositions ¢ = U s™, we have exactly |i|! terms with

|[r] =0 each equal Tol (el DYDw)(y®, ..., y®). Therefore

the formula (11.4) can now be written

-3

(11.6) Dji(z) = X au(Du)(y® (=), ..., y#(z))
1 = (— by

©=0 " ts(mi,|r|>1 k

X {11 Duwp(a)} (Dan) (o), ., (@),

mer

where the last summation is over all decompositions (11.5a)
and all sequences r satisfying (11.54) with |r] > 1, t being
determined by (11.5¢). From these conditions follows the
relation

(11.6a) [i] =X [s™ + [t — |rl.
By Taylor’s theorem we may write for & = 0,1, ... and
any non-negative integer ¢
(11.7) (Dw)(«', 2, pr(b)) l
0 /
=5 o otay (5 D) @' 32 — bogla)

o o,
+ (b — by)"p(2)'R(z, ¢, ¢, 1)

where

(11.7a) Rz t, q, 1)

=, (Do) 5 = — (e (1 = )b ¢l
- X (1 — )9t dr, for ¢g>1

(Du)(a', @, — byp(x)) for ¢=0.

In the double sum of (11.6) we change the order of summa-
tions and for each choice of {s™} and r replace

(Dae)(yi®, ..., yi)
by the right-hand side of (11.7) with

g =2 [ — |r| = |i] — ]|,

mer
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Summing then with respect to i and using the second formula
in (11.1¢) we get our final formula for Di(z), z < Dy,

(11.8)
D;i(z) = Y, ap(Diu)(a’, z, — bup(2)) + 3 ltivp(x)m-m

=0 (s, (e

XTI Dem 6(2) 3, ap(— B! (o — b= R(z, 1, |i] — I, ).

mer =0

From the properties of p(x) (see Theorem II, § 8) we deduce,
in view of (11.6a)

(11.9) p(@) U] [Damp(a)] < CM,

mer

where C depends only on [i] and n.
Before we pass to the proof of Theorem I’ we prove three
lemmas.

Lemma 1. — The mapping T, ,: Dy — D defined by

T, w2, x,) = (2, @, — (thy + (1 — 7)bo)e(x)),
0t =041, ...,

1s a homeomorphism of D, onto D and has the following pro-
perties :

1) the Jacobian of T7 . is bounded by 1,

1) foi z, yeD,, |Tr,p(x) - Tt,p.(y)l < Cblex — yl|, and
forzxeD,yeD,, |z — T u(y)| < cbyM|z — y|, where c depends

only on n.

Proof. — It is clear that T, , is a continuous mapping of
D, into D. For fixed 2’: 1° T, transforms the half-line
[z, z, > f(2)] into the half-line [z, z, < f(z")], 20 if z,\_ f(2')
then x, — (tb, + (1 — 7)b,)p(x) — f(«), and

30

0

2 fay — (zby + (1 — Dbo)pla)] < — 1.

It follows that the first half-line 1s transformed homeomorphi-
cally onto the second and that T;, is a homeomorphism
of D, onto D.
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. d 1
Since b—xnp(x) >—2——

J(T,,) =

which proves 1).
By (11.2a) and Theorem II, §8 — p( z), l=1,.
—1
are majorated by B, <—%—> M (M is the Llpschltz constant of
the graph function) where B; depends only on n. From this it

follows that p(z) is Lipschitzian on D, with Lipschitz constant
2B;M. Hence for x, ye D,

|T‘t,p($) — Tr,p(y)lz
= 2" —y'I* + (& — 9) — (vb + (1 — 7)bo)(p(2) — p(y))?
<2 — Y1+ 20w, — yl® + 2(2BMpPbElz — y|*
from which the first part of 1) follows.

From Theorem II and Remark I of § 8 we have for ye D,
that p(y) < (1 + M2)2rp(y); hence for ze D, yeD,,

lz — Tou®)* = |&" — ¢'* + (@ — yu) + (vby 4 (1 — 7)bo)p(x)|®
<2 =y + 202 — gal® + 2641 + M2)ro(y)?

which completes the proof of i1).

the Jacobian of T;,, J(T:,), satisfies

L — (3hy + (1 — D)bo) > pla)| >

oz, gh-t=1

n,

Lemma 2. — For any indicial set v = (1, ..., 1;), 1< v, <n,
any © with 0 <7 << 1 and any y. = 0,1, ... define in D the
function ¢;.,(x) as follows: ( )——— u(z) for zeDj
20 ¢z p(2) = Diu(a’, 2, — (b, +( 7)bo)p (@ )) -Diu(TT,p(x))
for xeDy; 3° ¢ u(x ) s0 deﬁned in Du D+ is extended by
contmutty to the graph G. Then v, belongs to COY(D) and
to every PB(D) for 0 < B <1 and we have

(11.10a) |eicp(@) — eiop(y)l < cbM* sup |Du(z)lz — yl
for z,yeD, e

(11.10)  |oirplpp < c(bM)"2 Dty for 0 << B <4,
with constant ¢ depending only on n.

Proof. — The following facts are immediate consequences
of the properties of p(z) and of our assumption that u is a
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restriction to D of a function in C5(R") : 19¢; . , is in C*(D u D)
and vanishes outside of a bounded set, and 20) ¢, ., restricted
to D or D, has a continuous extension to D or D, respectively
and these two extensions agree on the graph G. The last fact
justifies our definition of ¢; ; , on G. To prove (11.10a), which
also gives that ¢, ; , e COV(D), we notice that any two points
z,y e D can be connected by a polygonal line P, , ¢ D composed
of two segments (one of them parallel to z,-axis), such that
P, , intersects G in at most one point and is of total length
< 3M|z — y|. Representing then ¢, ; ,(y) — ¢; - u(2) as integral
of derivative along P, , and using the properties of T, (see
Lemma 1, 1)) we arrive at (11.10a).

Since ¢; ¢ , € C* (D), ¢ 9 -, belongs to PE(D) for 0 < <P <K
To finish the proof 1t 1s enough now to show that (11.100)
holds. To this effect, we write for 0 <P <1

lvi,f,lng,ﬁz[f |D-u< )[*dz + [, |(Dau)(T <>>12dx]

IDu Dyu(y)|?
f |z — yl"*“‘ do dy

N f J (DaTrle) — DTerls g, g,

o — y|m+8

+ 2fn+]D|Diu = _ED;TBLBT (y)|? d dy]

We then transform the integrals over D, into integrals
over D by using the transformation T, ,. Lemma 1 gives then
immediately

‘Viﬁ'“—l%,‘f) < Zf |Diu(x)|? d:v
28] |Diu(z) — Dyu(y)|*
+ [+ 3(eb M) g f A S e dy,

and this gives formula (11.100).

Lemma 3. — Let {s™} and r be indicial sets, and q an
integer, 0 < ¢ < |t] — 1, satisfying re (1,2, ..., |i|) and

S~ =q  with | > 1.

mer
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Then for any ¢; - u(x), as given in Lemma 2, we define

iy W5, 16, r, (%) = (@)
for xeD by

B @) ] Dmp(2)(¢i,<,u(x) — 9i,z,0(x)) for ze D,

w(z) = mer

O for xEB '-"D_i_.

Then w belongs to COV(D) and to every PHD), 0 < B <1,
and

(11.11a) |w(a) — wly)l < bM™ sup |Dpu(a)] |o — yl,
' ;ElD+1
(11.11b)  |wlg 5 < ¢'bp/2+E MAHIH32 3= Dulg
for 0 B <1, where ¢’ depends only on [i| and n.

Proof. — For notational convenience in this proof we let
5(:(7) = Vi,t,p-(x) - Vi,t,o(x)’ xe ]3’ and
®(z) = p(x)? [[ Dimp(z), ze Dy, and =0 for zeD — D,.

mer

Thus w(z) = O(z)5(x) for zeD.

By Theorem II and Remark 1 of § 8,

10 |(z)| << oMl and |VO(z)| < ceM'iH rp(z)™t for xe D,
where ¢, depends only on |i| and n.

From (11.10a) it follows that
15(2)] < 2¢H8M2 sup D u(z)lro(a)

1Jl1=li|+1
Z€D

and |Vé(z)| << 2¢byM? sup |D;u(z)| almost everywhere, ¢
1=l +1
z€eD
being the constant of Lemma 2.
Clearly w(x) is absolutely continuous on D u D, and from
the above, continuous on D since
| Vw(z)] < beceb,MH sup |Dju(z)|

IJl=li]+1
2€D

a.e. on p Thus (11.11a) is satisfied and w e CO1(D). 3
we PP (D), 0 < B < 1, by virtue of the fact that w e COV(D).
Thus to complete the proof of the lemma we need only prove
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(11.11b). If B =0 (11.11b) is clear from 1° and (11.103).
So we suppose 0 < f8 < 1.
Let C be the cone defined by

C = [Z = (z', Zn): Zn = O, IZ’I < Izl(i + Mz)—1/2].

Then it 1s easy to see that forz = (2, 2,),zre D, and zeC+ =
we have rp(z) >rp(z). From this it follows that if z and
are points in D, there i1s a polygonal line P, < (C+2) v (C+y)

composed of two segments of total lenth < \/M2 + 1 |z — y|
and such that

dist(P,,, D) > min(rp(z), ro(y)).

Hence by 1° we have: .
20 If z,ye Dy, ro(z) << ro(y) then

[(z) — D(y)| < 2e,M ™ Herp(z) |z — yl.

If z,edD 1t is easy to see by considering D n (z,—C)
that there is a zeD, |z — 2] = 2\/n — 1AM (A is given
by (11.2b)) such that S(z, A/2) e D. Hence:

30 For any xe D, and z, 0D such that ro(z) = |z — z,|

there is a conoid in D with vertex x,, opening (4\/n — 1 M)™
and radius AM.

By 1° and 2° we have for ze D,

i |0(z) — Py)?
(11.12) /D+ |$ - yln+gp dy
ro(2) <rp(¥) @( )|2
Ox) — Py
0 eh, e,
- [ D, |z—7|<ry() D, jo—yi>re) 1T — yl wp W
(@) <p(¥) o(E) <Fp(P)
< 4C%M2'“[M4rp(x)"2 flz_ﬂqu |z — y[>—"28 dy

F oy [T — Yl 2P dy]|

2\ [2)i+4
< 2w,c3M ()25,

ro(z
B —p)
By 3°, we have that D, D,, and D satisfy the hypotheses
of Lemma 4, § 9 (replacing D* Dj, and Dj respectively)

with »* = (4V/n — 1 M)™* and r* = AM. Hence by 1°, (11.2),
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(9.13b), and (2.7),
(11.120)  dgp(w) = j f Iw~—yl"+2f‘ " dy dz
D(z
+2] f = 96—?/]"“52@)()l dxdy]

r‘D(w) < r,,(:V)

< 2M21lf j |x——y|”+25dydw
_}_4J l(I) lz/ |o(z (>|dxdy

lx yl"‘*zﬁ

+ 4]1),, o(z) ﬁ+ [Px) — Ly I)I.(fc) yl“”ngzl dy dx]

rp(¥) > rp(x)
< M dg 5(5) - AAMPdg 5(5)
o 160aMH [[ 15@)rale) da
< M 2651 5

where ¢; depends only on [i| and n. The proof of (11.1150) is
completed by (11.1056). This completes the proof of Lemma 3.

We shall use the following special convention for indicial
sets :

(11.13) Ift=(t, ..., ) ts an indicial set then
t+<k>:(t1, ...,t“l,n, ...,n).

k-times

Proof of Theorem I'. — Using the functions
Yi,T, and Wi 1,1, 1™, g

introduced in Lemmas 2 and 3 we obtain from (11.7a), (11.8),
(11.6a), and (11.1c) for ze D

(11.14) D,ii(z) = Hﬁ @u91,1,(®)

=0

= 1
+ au(— b)) (b — by )i
T A T T 1)
X Jy Pt <lil=lt1>, 5, s}, lil—(@)(1 — )" de

Here, when |i| — |¢{] = 0, the expression

1 1
=),
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should be replaced by w,;, 1omy.o(®). By (11.1c), it is
clear for x € D, that

lgo ap(— bu)"(be — b)Yy e, i)
g o= By)I" (By— b=t o)

b"l‘i‘l
X I Dumplz) <b — >(:v 2y — (thy + (1 — ©)bo)p(x)
and so (11.14) 1s just a repetition of (11.8). Since for ze D all
the @y ;1>,.. (®)’s vanish and ¢, ,(z) = Diu(z), hence
by (11.1¢) we have Du(z) on the right side of (11.4) as we
should.

Using Minkowski’s inequality in (11.14) (for sums as well
as for integrals) we obtain from (11.1d), (11.10a) and (11.11a)

(11.15a)  |Dii(z) — Dia(y)l < |z —y| sup [Dju(z)]

lJl—li|+1
z€D

X lcM?2 2 la lb + E _ﬂ/[lel lb '+1(b —b )ltH‘l
®=0 ¢ _\.(m)l l,-|>1lt| (l l ltl)' y.
for yeD.
From (11.1d), (11.10b), and (11.12b) we have

(11.45b) | Dyily 5 < cM*2+8 Dy p 3, |a,|bE/2+
=0

) . 1
+ @, |blirHn By pYi L
s S b b = b G
X ¢/ N—BMBHiHn+3 2 IDt+<!il—lti>u-| £
< ¢"A-BMBHiH32 D ulg o,
171=lil
where ¢” depends only on |i| and n. )
Formula (11.15a) shows that Die C®(D). Since this is
true for every indicial set ¢, z e C*(D). (11.15b) gives inequality
b) of Theorem I'.

Remark 1. — For « an integer (i.e. B = 0) it is immediately
seen by following the proofs of Lemmas 2 and 3 and of Theorem I
that in inequality &) of Theorem I’ and the corresponding
inequality of Theorem I, A—FM*+"+3/2 can by replaced by M¢%.
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Remark 2. — It is immediately checked that if the graph G
is a hyperplane, i.e., f(z') = ¢ a constant, then we can replace

e(x) by =x, — b, and (11.14) becomes

(11.14') X
.« (Du(z) for zeD — D,
D) = S0 (Das) ', 7, — bo(an — ) for e Dy,

and it is easy to see that |D;itlg5 <C ¢|D;ulpp where ¢ depends
only on n.
Let D be an SLG-domain with basis B :

D=z, <z, <b,k=12, ...,n—1, a, <z, <a,+ f(2)]
with Lipschitz constant M(M > 1), then we define:
(11.16) Ap= mingi/M, by—ay, ..., bpy — a,_;, Inf f(w’)i
o' €B’
the minimal width of the SLG-domain D.

Taeorem II. — Let D be an SLG-domain with minimal

width Ap. Then D €8([0, o), [') where
[‘(I’) = F([ax, az]) e c)\g(”+1xa:+2)—3/2
and ¢ depends only on «3 and n.

Proof. — We suppose D 1is defined as above.

10 Consider the multiplier ¢,(z,) in one variable =z, {cf.
Lemma 1, §1) such that ¢,(z,) =1 for z, < a,+ Ap/4 and
=0 for

Z, > a, + 37\])/4.

For a function ueIM(D) consider the functions u' and u”
defined as follows: 1) u'(z) = ¢,(z,)u(z) for ze D, u'(z) =0
for ' eB, =z, > a, + 3Ap/4; 1) u'(2) = (1 — ¢,(z,))u(z) for
zeD, u'(x) =0 for 2'eB, =, <{a,+ Ap/4. Clearly, the
function u”(z) is defined in the domain B X [z, < a, + f(z')]
which, if we shift the origin to the point (2’ =0, z, = a,)
becomes a function of the type treated in Theorem I. We
can therefore apply the extension mapping of this theorem
and obtain a function @” defined in B X [— o0 <z, << xo].
The function u’ is defined in the domain B X [z, > a,].
If we shift the origin to [z’ = 0, z, = a, + 1] and invert the
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direction of the z,-axis this domain becomes a domain of the
type treated in Theorem I (with graph function f(z') = 1)
and by applying the extension mapping of this theorem we
obtain a function @ defined in B X [— o <z, << x].
Hence @ = @' 4+ @" gives a linear extension mapping of
ue M(D)into MB X [— o <z, << w]). By applying Lemma
1, §1, Prop. 6, §2, and Theorem I, we obtain immediately
for all « >0,

(11.47) If ueP¥D) then @eP*B X [— 0 <z, < o ])

and

|u’l~’l Bx[—»<Zp< o] XX C)\—(2“+"+5/2)lu|

with ¢ depending only on n and o*.

20 If a function ¢ is defined in an n-dimensional rectangle
[z: a, <z, < by, k <n] and this rectangle 1s not the whole
space R*, then by interchanging the variables and, if necessary,
shifting the origin and inverting the direction of the z,-axis
we can represent the rectangle in a form

[z: a <z, < by, kb < n]

where a, < 0 << b, = min(1, b, — a,). If a;,1s — o we apply
Remark 2 directly (the graph-function is now f(z') = b,);
if a, > — o we apply the procedure glven in the begmnmg
of 1°. In both cases we obtain an extension

beM([z: ap <z, < b, k< n— 1]).

From Prop. 6, §2, Lemma 1, §1, and Remark 2 we get for
any o >0:
(11.18) If v P¥[z: ap < @, < b}, k < n]) then
SePY[z:a, <z, < b k<n—1)
and

- oy
l"'la,[wm;,<mk<b;,.k<n—1] < AT )I"la,[z:a,;<zk<b,;,kén]?

where A = min (1, b, — a,) and ¢ depends only on «* and n.

30 Coming back to the hypotheses of Theorem II, we
apply there the procedure of 1°, then, at most n — 1 times,
the procedure of 2° to obtain successively extension-mappings
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to larger and larger rectangles and arrive thus at an extension
mapping of M(D) into M(R"). Formula (11.17) in part 1°
and formula (11.18) in part 2° guarantee that the extension
constant ['(I") has the form stated in the theorem.

We now consider the property of a domain D to be an
SLG-domain with minimal width > 2Ap > 0. The strong
localization of this property gives the property of being an
LG-domain. The LG-constants of an LG-domain D are the
looseness. ¢ and the rank p of the corresponding covering
{U,{ and also the uniform bound of minimal widths of the
SLG-domains U, n D.

By the general localization theorem of §7 (Theorem II)
we obtain the

CororLrLary 1. — Every LG-domain belongs to the class
8([0, o).
Remarks about spaces P*?(D). — All the results of this

section are valid for 1 << p {0, and all @, « >>0. The proofs for
1 < p <o are essentially the same as those in case p = 2
presented in the text (with obvious changes dependent on the
exponent p). The difference in proofs for p = oo is due to
the fact that the restrictions to D of functions in Cg(R")

are not dense in P*=(D). However, the functions in P*»> (D)
are sufficient lyregular to allow all the developments preceding
the proof of Theorem I’ without having to replace them
by more regular functions.

For p =1 one can follow the same line of argument as
presented in the text for p = 2. A difficulty arises only in
Lemma 3. This lemma 1s based on Lemma 4, § 9 which in turn
relies on Lemma 3, § 9. The last lemma 1s not valid for p = 1.
Without reference to Lemma 4, § 9, Lemma 3 of the present
section is still valid for B << 1 but with constant which blows
up when 7 1. Therefore our extension mapping will not have
uniform extension constants ['([ay, a,]) for intervals containing
an integer. Curiously enough for « an integer, our extension
mapping still transforms P*1(D) into P#(R") since for an inte-
ger a we do not need Lemma 3 to prove Theorem I. We do not
know if this seeming inconsistency is due to our line of proof
or is in the essence of things.
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12. Applications.

Associated with every convex domain D there is a unique
mazximal cone G with vertex at the origin such that if ze D
thenz + Cc D (orif ze D thenz 4 C e D) and # + C contains
all half lines issued from z which lie in D (or in D). Such cones
are closed and convex. If D is bounded then C = (0) and
conversely. The dimension of this maximal cone will enter
in two of the following propositions.

A spherical cone with vertex at the origin is the closed cone
generated by the sphere S(0,x), [0] =1 and x <{ 1. We call x
the opening, y the angular opening where sin y = x and the
half line I = [t6 : ¢ > 0] the central azis of the cone. If

C=C"nS(0,r)
where C’ 1s a spherical cone with opening x and central axis [
then we call C a bounded spherical cone with opening x, central
azxis | and radius r.

Taeorem 1. — If D is a convex domain then D e §([0, o))
if and only if D s a (C)-domain.

The proof of Theorem I follows from Props. 2) and 4) below.
In view of this theorem it will be of interest to give some
sufficient criteria for D to be a (C)-domain (%).

1) Let D be a convex domain. Then D is a (C)-domain if
n < 2 or the dimension of the maximal cone C in D ts 0 or n.

If dim C =0 (i.e. D is bounded) and S(z, r)c D < S(=, r/x)
then r and x are (C)-constants of D. If dim C = n and C contains
a spherical cone with opening » then » and r are the (C)-constants
of D where r is an arbitrary positive number.

Proof. — The proof is obvious if n =1 or dim C =0, or
dim C = n, so we need only to consider the case when n =2 and
dim C = 1.

If C is a straight line then 3D is formed by two straight
lines I, and I, parallel to C. Then clearly r = 1/2 dist(l;, L)
and x = 1 are (C)-constants of D.

(%) In example 9, §13 we construct a convex domain in R® which is not
a (C)-domain.
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The remaining case is when C is a half line, i.e.
C=[th:t>0,|6) =1].

Take any point o D andlet D, = [x: (z — =y, 0) > 0,ze D]
and D_ = [z: (x — @, 0) <0, ze D]. Then D_ is a bounded
convex domain and by the above a (C)-domain. Clearly
dist(C + x5, 8D n D;) = r; > 0 and the half-strip with axis
C 4 z, and width 2r, 1s contained in D,. Hence we see that
for €D n D, there is a bounded spherical cone with angular
opening m/4, radius 2r;, and vertex z contained in D,. From
this 1t follows that D 1s a (C)-domain.

The following elementary lemma, which we give without
proof, will be used in the proof of Prop. 2).

Lemma 1. — If the radius of the maximal sphere contained
in the convex set D is r and D < S5(0, R) then |D| << CrR™
with C dependent only on n (*°).

2) If D is a convex domain but not a (C)-domain then n > 3
and the dimension of the maximal cone contained in D is |
with 1 <1l << n — 1. Furthermore D ¢ &(a) for a« > (n — 1)[2
ifl>1and > (n — 2)[2fl=1.

Proof. — That n >3 and 1 I n — 1 is implied by
Prop. 1). Suppose that D € §(«) for « satisfying our conditions.
Let z, €0D be such that the maximal sphere contained in
S(zy, 1) n D has radius less than 1/k. Obviously the z, must
exist if the (C)-condition is not satisfied with constants r =1/k
and x =1/k for k=2,3, ... Then, since S(z, 1)nD is

convex, we have by Lemma 1 that

IS(2 1) n D] = [S(0, 1) n (D — )]\ 0

as k 7.
Let u e C*(R"), be =1 on 5(0, 1/3) and = 0 outside S(0, 2/3).
(46) For n > 1 we obtain C = TTH @,—;. Probably the best constant C is

oW, 1.
n—1 "
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Then with u,(z) = u(z — z,) for ze D, u, e 1\5“(D) and
[tla,p < Ui, 3z, 0D = c|Ula, s0,0n@—20)

where ¢ depends only on n. From the previous paragraph
we see that |ul.p \\ 0. It follows that if @, eP*R") is the
extension of uy, ||/, = 0.

Let C be the maximal cone associated with D and suppose
dim C =1 with 2l n— 1. Clearly

[(CnS(0,1) + ,]<D

for every k. Put G = interior of Cn S(0,1) in the [-dimen-
sional hyperplane containing it. Then G 4 z,<D. Let u;
be the restriction of u, to G + z, and u'(z) the restriction

of u to G. Since uwis 1 on 5(0,1/3), we have by Prop. 6), §1

F(a —r= l> -
< @l >0,

—L';—I.G-i-zk\ n—1

27 ® [(a)

0< Wl ezt = 1,

a contradiction.

If dim C =1 then we fix some z,e D and note that
for k sufficiently large, say k > k,, the orthogonal projection
of z, on the line containing z, 4+ C lies in z, + C. Furthermore,
if ry = inf{1/3, roic(x)(k > ko)) then ry > 0 and the inter-
section of D, S(z,, r,) and the plane containing z, and
zo + C contains a two-dimensional bounded spherical cone
[, with angular opening w/4, radius r, and vertex z,. Let
F, be the interior of [, in the plane which contains it.

We construct u, u, and @, as in the beginning of the proof,
denote by wu, the restriction of u, to F,, and assume
a > (n — 2)/2. Then since uis 1 on 5(0,1/3) there is a 1 >0
such that for k > k, (we use again Prop. 6), §1)

W o — 2——6 |
0<~K e[ ,_nesg . < 2 (|G|« — O a contradic-

n—2

tion. * 225 ® [(a)
3) If D s a convex domain and S(0,r) c D c S(0, R) then

De§([0, o), I') where I'([oy, «;]) depends only on n, o}, r,
and R.
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Proof. — Consider the n-dimensional rectangle
B® = [z: |2] < r/&Vn for k<n—1, r2 <z < o]

By rotating B™® around the origin we cover the whole closed
shell [r < |z|] << R]. We can therefore find a finite number of
such rotated rectangles — B{®, ..., B® — which cover this
shell. The same rotations performed on the rectangle

B®=[z:|z| <r2Vn for k<n—1, rlt <z < o]

give rectangles B{®, ..., B covering the shell with looseness-
constant > r/4\/n. Since N can be chosen depending only on
n and R/r, the rank p of the covering {B({ depends also
only on n and R/r (*). {B(®{ is clearly a covering of 2D,
r/4\/n — loose and of rank p. The intersection B®n D is

obviously a convex SLG-domain which by rotation becomes
a domain

[: |z <r2Vn for k<<n—1, rft <z, <rls+ f(z)]

with r/2 < f(2') < R. It follows that the Lipschitz constant
of the convex function f(z') is << 2R/r. The minimal width
of the SLG-domain B®nD is = min (r/2/n, r/2R). Our
proposition follows now from Theorem II, § 11 and the loca-
lization theorem of §7 (Theorem II).

4) If D is a convex (C)-domain swith (C)-constants » and r then
D e§([0, ), I'] where ['([oy, ay]) depends only on o}, n, x,
and r.

Proof. — Let {x;{ be a maximal set of points in R" such
that |z; — @] > r for k=~ 1. Then {S(z;, r/2)} are mutually
disjoint and {S(;, r){ is a covering of R". Consider the subset
{2,{ of {z}} such that ryp(x,) < r. Then {S(z,, r)} is a covering
of 3D and {S(z,, 3r){ form a 2r-loose covering of aD.

Next we prove that {S(z,, 3r){ is of rank less than 13"
If S(z,, 3r)nS(z, 3r)==0 then |z, — x| <<6r and S(z,
r/2) e S(z,, 13r[2). Since the §{S(x, r/2)} are mutually disjoint,

(*) By a more careful construction we could make the rank depend only on n.
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S(x,, r/2) < S(a,, 13r/2) for at most % (13r/2)" / % (rf2)" =13" z.’s

which completes this part of the proof.
Let z,eS(z,r)ndD. Since D is a (C)-domain there is a
y, such that |z, — y,| = r and S(y,, xr) ¢ D. Thus

S(yy, xr) € D n S(z,, 3r) < S(yy, br).

The proof of the proposition is completed by applying
Prop. 3) and Theorem II, § 7 to the covering {S(z,, 3r)} of dD.

The next proposition gives some useful sufficient conditions
for determining if the union of two adjacent non-tangential
convex domains belongs to ({0, «0)).

5) Let D, and D, be adjacent, bounded, convex domains with
slope w(Dy, D;) > wy > 0. Suppose that for some r > 0 and
%, 0<<x< 1, there exist points x,eD;nD, and z,eD,
such that S(z,r) e D;c S(a;,r/x) and S(xy,r)c Dy uD,. Then
D = (D, u D,)°e8([0,0), ['), where [([ay,a,]) depends only

on n, a3, w,, r, and x.
Proof. — Let G be the closed convex hull of
S(zg, r)u(DynD,) and G = (G)°.

We shall show that Gn D, and G n D, are g-cells with (C)-
constants bounded from below by xr/2 and x2/4. Since G is
convex and D, and D, are g-cells with (C)-constants r and
% (cf. Prop. 1)) the proof of the proposition will be completed
by Prop. 3) and Theorem IV, b), § 10. Since G n D; and G n D,
are bounded convex domains G n D; and G n D, are g-cells
and we need only determine their (C) -constants.

Consider G n D;. Set y, = z, + i + " I;‘ - ‘ The sphere
- 0

S<yi, -1'—%——> is contained obviously in S(z,,r) and in D,

hence S(y,, c G n D;. On the other hand

S<yi, 2{) > (a0, 1) u D
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and therefore S(yi, 2k> 5GnD. By Prop. 1) it follows that

r+
—and >

1 —l— =2 (14 x%)2r
respectively which finishes the proof.
The next proposition gives conditions for D to be in &([0, o))

when D = (U Q,t>0 and the Q,’s are convex g-cells.

1229 %

the (C)-constants of G n D, are > >

6) Let §Q,} be a system of convex g-cells and D = (U Qk>°.

k

Then D e§([0, o)) if 1° §Q,} is &-loose; 20 there are r > 0,
R, and z, e Q, such that S(z,,r)cQ,cS(z,R); 3° for every
pair of adjacent g-cells, Q, and Q, there is an z,,€ Q,n Q,
such that S(x,, r) « Q. u Q, (r is the same as in 29); 4° §Q,} is
of finite rank (thzs can be deduced from 20 if the S(xk, r) are dzs-
joint), 50 there is an w, > 0 such that v, << ©(Q,, Q) for
Q. n Q, =~ 0 and 6° 3D is an (n — 1)-manifold or, more generally,
0D does not cut locally D.

Proof. — 10, 20, 40, 50 and 6° guarantee that {Q,} is a
regular system. 29, 3° and 5° imply, by Props. 3) and 5)
that Q; and (Q,uQ)° for Q, and Q adjacent are in

§([0, ), '), I' independent of k and I. The proof is completed
by Theorem III, §10.

7) If D is a finite geometric polyhedron and 3D is an
(n — 1)-manifold (or does not cut D locally), then D e &([0, «0)).

Proof. — Since D is a finite geometric polyhedron it can be
N

decomposed into ]—)=| ’Qk where the Q,’s are convex

k=1

polyhedra (not necessarily bounded) having at most (n — 1)-
dimensional intersections. Elementary geometric considera-
tions show that 1° the slope between any two polyhedra
1s positive, 20 for any two convex polyhedra Q, and Q, with
Q. nQ, (n — 1)-dimensional, there exists an n-dimensional
convex polyhedron G such that Q.,nQ,cGcQ,uQ, Our
proposition then follows from Theorem III, Corollary 1b)
of § 10 and Prop. 4) of the present section.
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13. Examples.

In this chapter we are interested primarily in the classes
P#D) and P#(D). The following examples are designed to
illustrate some of the basic differences between them.

We will only indicate the types of construction involved
in each example and will leave the calculations to the reader.

Ezample 1.

We show that the inequalities (2.4) of Proposition 3), §2
are the best possible in the following sense: If there are four
constants M;, M,, M; and M, such that the inequalities

M;|ulyp < |ufe,p < My|ulyp
Molufnp =< [ul2p — [ulz,p < Myluln»

hold for all « = 0, for all open sets D ¢ R* and for all functions
u e P%D) (as usual m = [«]), then

M] é 2_1/27 M2 g 17 M3 é O, M4 % 1.

This statement remains true if we restrict ourselves to
0 <a <1 and D= R" In fact, using Fourier transforms
we have, by Proposition 2, § 2

1= [ (1 + (&= (5" d
e = [ (1 + [E2)H G5 dE,

We notice that.

10 For p >0, 1> (1 4 ¢?)%/(1 + ¢**) = 2*! the value 1
being attained at p = 0 and p = co, and the value 2*! being
attained at p = 1.

20 For p >0, 1 + p2* — (1 4 p*)* is an increasing function
of p taking the value 0 at p = 0 and 1 at p = 0.

It follows therefore that by choosing @(X) with support
arbitrarily near the origin we will show the inequalities for
M, and M;. By choosing the support of i outside of an arbi-
trarily large sphere one proves the inequality for M,. Finally,
by choosing the support of @ in an arbitrarily small neighbor-
hood of 3S(0, 1) and taking « arbitrarily small one proves
the inequality for M,.
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Ezample 2.

We gwe an example of a domain D such that ?“(D) D ISY(D)
with a <y (¢f. Prop. 5, §2) and such that PY(D) == PY(D).

In polar coordinates (z = z, + iz, = pe') let
D=1lpe: 1 <p<<2,0<6<2z], Dy, =Dnz, >0]

and D_ = Dn [z, <0]. Let w(6)eC”(0,2x) and =1 for
0 <6 <=4, =0 for n/2 << 6 << 2=n. Define

u(z) = u(pe’) = w(h).

Obviously u e P*(D), m an integer. Since D, is a C* homeo-

morphic image of a square, ulp, is in P*D,) for all «. Thus
we P¥D) if and only if

|D;u(x)
C(2 ac k o Pl kfmfn_ n+zpdx dy < oo,

where m = [a], B=a— m, and this is the case if and only if
0<B<1/2, ie. uePD) if and only if « — [2] < 1/2.
Suppose that ue PY(D), then there are u,eP!(D) such that
lun — ulhy, D\O Let @,< PY(R?) be extensions of u,, u, the
restriction of %, to I = [pe?: 1 <<p <2, 6 =0]. Then

|@, — ul,p.\O and |@,)1, 0 \0.

Since D, and D_ are LG-domains they are in §([0, o)) (cf.
Corollary II, § 11). Hence if we extend @, — u|p, and @, to
functions in P!(R?) and then restrict the extensions to I,
we have by the continuity properties of functions in P1(R?),
ltt, — 12.0\0 and |&,]12,1\0, a contradiction. .

Another example of a domain D such that P#D) s PY(D)
with o <y, but with a domain limited by a simple Jordan
curve can be constructed as follows. Consider on the z,-axis
a sequence of points b, with b, = 0 and such that

barrs — b = barys — bapa =k__‘:_‘—12_2k§

we notice that b, b < 3.

On the segment [b;; b, ] construct an 1sosceles triangle T,

with altitude k; such that hy, = hy,yy =%—j—_—1~ Now we
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join to U T; the rectangle R = [0 < 2, <3, — 1 < 2, < 0]
and obtain a domain D with D = U T; u R such that aD

1s a Jordan curve. Define u(z) = 2":czlfor xe Ty and =0
otherwise. It is immediately checked that we PY(D) and
ue P%D) for 1/2 < a < 1. To check the last statement it
is enough to estimate the part of d,p(u) corresponding to

1

couples ze Ty, and ye Ty, 13 n [a:2 > 5 h2k+1]-

Ezxample 3.

We give an example of a domain D such that P*(D) == P%D)
(cf. Remark 4, § 4).

In R~ n>2 let = [th: ¢ > 0] for some 6,|6] =1, D,
be the cone with central axis l and opening 1/2 and D_ the
cone with central axis — [ and opening 1/2. Then we define
D= ]lz| >2]uD,uD_. Let ¢eC?(R"), =1 for |z| <1
and = 0 for |z| > 2; define u=1¢ if zeD, and =0 for
zeD — D,. Then ue C*® (D) and |ul,p 1s uniformly bounded
on any compact subinterval of [0, o); thus ueP%D) for

arbitrary a«. Since J,p, p_(u) 1s infinite for a« > n/2, we see
that u ¢ P%(D) for a > n/2.

Example 4.
Our atm here is to obtain an example of

*) lim inf d, n(u) = a, lim sup d, p(u) = b
aAl aAl

for 0 <a<<b<<ow (cf Prop. 5, § 4).

On the real line R? consider for £k = 1, 2, ... the open intervals
(LA AN oo 12 43
D= <2k % T 2Ok3> Di. = <2k toom ok T 201&>'

Put D, = Dju <21;f 2k1_1> and D= JDp On D

we will consider functions w defined as follows Let {q.}
be a sequence of positive numbers bounded by some ¢ < .

We define
u(z) = qk® for zeDy, ulz)=0 for zeDi
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Immediate calculations show that for 1/2 <a <1:

. (20)21—1 (1 . 31—21) qﬁ
damd) == G = 1) (L, @) R

0 < dgp(u) — X dop,(u) < c(l — a)g? ¢ an absolute constant.

k=1

For a =1 — I{I’ N integer > 3,
S dum(®) + 3 duny(u) < c— log N.
k=1 k=NN—-1 N

Forq,=q¢,k=1,2,...,imd, p(u) = lim E da])k(u)—2
a1l a1 k=1
Therefore, if we define N; =3, N\, = NV ¢, = \/20 for k
lying in__the intervals Ny, <k << Ny, j=12, ..., and
G = \/ g—g for all other k’s, we get (*) with lim inf and lim sup

attained by the sequences

fof = {1 —Nglaf and o} = {1 — N3}
respectively.

Obviously d; p(u) =0 and wuePYD) — PYD), another
example where P!(D) == P1(D).

Ezample 5.

We construct a simply connected unbounded domain D in
the plane (z =z + 1z, = pe") such that

lim inf () = a, lim sup é(a) = b, I<ag< b

a0 a0
(see (4.7) and Prop. 7), § 4).

The domain is symmetric relative to a;-axis. Its part in
the upper half-plane is formed by points z satisfying one of
three conditions (not mutually exclusive): 1° z, >0,
0<ay <<1; 200 <arg(z— 1) <ma; 3°0 <arg(z — 1) <mb,
Ng; <|z — 1] <Ngyyy for j=1,2,... . Here N; are the
integers introduced in the preceding example. The lim inf
and lim sup are attained for {a;}{ = {N3'} and {N73},
respectively.
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Ezample 6.

We construct a polyhedron P c R® such that dP is an (n — 1)-
manifold but P is not an LG-domain.

Let 0, be the unit vector in the direction of the positive
z,-axis. We construct two tetrahedrons T, and T, with vertices

T,: 0, B4, 61+62, B, — 0, + 8,
Te: 0, — 6, — 6, — 0, — 6, + 6, + 05,

If Q is the cube |z,| < 2, |2,] < 2, 0 < 23 << 4, then
P=Q— (T,uTy)

is the required polyhedron. At the origin its boundary has
no local representation as a graph.

The next example shows that the condition — ?D does
not cut locally D —is weaker than the condition that 3D is
an (n — 1)-manifold.

Example 7.

We now construct a polyhedron P < R® such that dP does not
cut locally P but oP is not a 2-manifold.

In the notation of Example 6 let T; and T, be two pyramids
with vertices

T13 es, 61, 02, - 01, - e2
Ty: O 1/2 0y, 1/2 0, — 1/2 6, — 1/2 6,

Then P = T, — T is the desired polyhedron; in particular,
dP is not a manifold at 6.

Ezxample 8.

We give an example of a bounded convex set D and a C(*')-
homeomorphism T, such that T(D) ts not an LG-domain.

Consider in polar coordinates in R2(pe = =z, + iz,) the
C@®b-homeomorphism T given by

T<Peie) — pei(e——lagp).

Then D= [0 <p<1,0<<6<<=x/2] 1s convex but T(D)
i1s not an LG-domain; in particular, T(D) is not locally a
graph at the origin.

5
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Ezxzample 9.,

We construct an unbounded convex domain D c R® which
contains a 2-dimensional cone but is not a (C)-domain.

Let m; , and 7, , be the couple of hyperplanes which contain
the line I, = [(zy, @3, %3) : @3 = kxy, — 32, 2, =0], k = 1,2, ...,
and are tangent to the sphere [|z] <{1]. Let further =,
and =7, be the half spaces determined by =, , and =, , such

that [|z] < 1] ecnfinnf,. Then D= m (nhe nwi). It 1s not

difficult to see that z* = (Gk 0, 3k*) e bD n T N Ty, and that
the largest sphere contained in S(z*, 1) n D has a radius less

2
than \—/1—3;{—‘;—"—\ 0. Thus D is not a (C)-domain. Tt is also

clear that the 2-dimensional cone [z; <0, 2z, =0, z; > 0]
i1s contained in D.

Appendiz. Complete continuity of standard norms.

We restrict ourselves to bounded open sets in R".

For potential norms ||u||, o the question of complete conti-
nuity is settled by Prop. 3), § 1: for § < «, the a-norm is
c.c. (completely continuous) rel. (relative to) the a-norm.

For standard norms the situation is much more complica-
ted. The question of complete continuity for integral orders
was investigated quite thoroughly by F. Rellich (see [6]):
1° There are bounded domains for which |u|yp 1s not c.c.
rel. |ul; p. 20 If |u|o pis c.c. rel. ju|; p, then for any two integers
0 < my < m, the norm of order m; is c.c. rel. the norm of
order m. 3° The complete continuity of the 0-norm rel. the
1-norm holds for domains whose boundaries are piecewise
graph-manifolds (*®).

When we turn to norms of non-integral order, the situation
changes considerably. For domains of 3° above, in general
the a-norm 1is not c.c. rel. to the 1-norm for 0 <<« <1 (see

(48) i.e. those which in some coordinate system can be represented as a graph
of a continuous function z, = f(z;, ..., x,-;) (but the function is not necessarily
Lipschitzian). The boundary is supposed to be covered by a finite number of closed
graph-manifolds. Domains with this property form a larger class than the G-domains.
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Example 2, §13). However, several general results can be
obtained which we describe here.

1) For B > a, |u|gp is never c.c. rel. |u|,p.

This is obvious if we consider the norms on the subspace
of functions C* vanishing outside of a relatively compact
subdomain of D.

) If |ulo,p ts c.c. rel. |ulop with 0 << a <1, then for any §
with 0 < <a, |ulgp is c.c. rel. |ulq .
For the proof we decompose, for arbitrarily small e,

|uf} p = Iul%,n+6(n—1,{3—)[ ff i ‘f ]

lz—Y|>e |e—Y|<e
e2fw, e22C(n, a)
<<1+BC B>|u|0D+2BC( B)] lul)
3) If Deé(a) and B < a, then |u|gp is c.c. rel. |ulq p.

Proof — |lullg,p 1s c.c. rel. ||u|l,,p by Prop. 3, § 1 and since
[lfle,p 1s equivalent to |uly,p and |ulgp < ||u|lg,p (Prop. 4, §2)
the proposition is clear.

4) If]ulpD is c.c. rel. |ulqp for all e and B with 0 < f < a <1,
then |ulgp s c.c. rel. |u|,p for any B < a.

This becomes obvious if one compares each term in the
expression of |ulfp with suitable terms in the expression of
|u[3,p-

5) If |ulgp ts c.c. rel. |ulop and if T is a C*"D-homeomor-
phism of D onto D*, then |u|gp. is c.c. rel. |ulqps.

This 1s immediate since the correspondence

u(z) - u*(z*) = u(T 2%)

is a linear and topological isomorphism of P¥D) onto P#(D*)
for all B with B < o* 4 1 (see Prop. 8), § 2).

Tueorem [. — (Localtzatwn theorem.). {U; k=1,
2,...,N, 15 an open covermg of D such that |uIBDnUk is c.c. rel
lulaDnL,‘ then |ulgp is c.c. rel. |u|qp.

Proof. — 1f B is an integer our statement follows immedia-
tely from the following two inequalities :
N

N
(1) [ulp < 2 [ulfonu, (1) X |[wldpau, << Njulip.
k=1

k=1
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If B is not an integer then we have to consider the looseness ¢
of the covering U, and replace the inequality (i) by :

2 On 6§ [yl S T
e < ) & et B hea

Remark 1. — For § an integer the same proof would give
a stronger theorem where {U,{ would not be required to cover
the whole of D but only to cover D up to a set of Lebesgue
measure 0.

Tueorem II. — If D is L-convex then |ulgp is c.c. rel. |u|qp
for all B < a.

The proof follows immediately from Theorem I and Prop. 5),
4), and 3), since the covering of a bounded L-convex set can
be chosen finite, and bounded convex domains belong to

([0, w)).

Remark 2. — The bounded L-convex domains together
with those of class &(a) form the most general class of domains
we know in which the complete continuity theorem holds for
all B> a.

Remark 3. — The problem of complete continuity for
unbounded domains seems unsolved. We were not able to
find any examples of an unbounded domain where the complete
continuity holds for any B << a. For very large classes of
unbounded domains we can prove that there cannot be
complete continuity and it appears that the only doubtful
cases are domains of fimte measure with very rapidly and regu-
larly decreasing measure when one approaches infinity.
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