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ON THE MINIMUM DILATATION
OF PSEUDO-ANOSOV HOMEROMORPHISMS

ON SURFACES OF SMALL GENUS

by Erwan LANNEAU & Jean-Luc THIFFEAULT

Abstract. — We find the minimum dilatation of pseudo-Anosov homeo-
morphisms that stabilize an orientable foliation on surfaces of genus three, four,
or five, and provide a lower bound for genus six to eight. Our technique also
simplifies Cho and Ham’s proof of the least dilatation of pseudo-Anosov homeo-
morphisms on a genus two surface. For genus g = 2 to 5, the minimum dilatation
is the smallest Salem number for polynomials of degree 2g.

Résumé. — Nous calculons la plus petite dilatation d’un homéomorphisme
de type pseudo-Anosov laissant invariant un feuilletage mesuré orientable sur
une surface de genre g pour g = 3, 4, 5. Nous donnons aussi une borne inférieure
pour les genres 6, 7 et 8. Nos techniques simplifient la preuve de Cho et Ham
sur le calcul de la plus petite dilatation d’un homéomorphisme de type pseudo-
Anosov sur une surface de genre 2. Pour g = 2 à 5, la plus petite dilatation est
le plus petit nombre de Salem pour les polynomes à degré fixé 2g.

1. Introduction

This paper concerns homeomorphisms of a compact oriented surface M
to itself. There are natural equivalence classes of such homeomorphisms
under isotopy, called isotopy classes or mapping classes. An irreducible
mapping class is such that no power of its members preserves a nontriv-
ial subsurface. By the Thurston–Nielsen classification [28], irreducible

Keywords: Pseudo-Anosov homeomorphism, small dilatation, flat surface.
Math. classification: 37D40, 37E30.



106 Erwan LANNEAU & Jean-Luc THIFFEAULT

mapping classes are either finite-order or are of a type called pseudo-
Anosov. The class of pseudo-Anosov homeomorphisms is by far the rich-
est. One can think of such a homeomorphism φ as an Anosov (or hyper-
bolic) homeomorphism on M\ {singularities}. In particular, as for stan-
dard Anosov on the two dimensional torus, there exists a local Euclidean
structure (with singularities) and two linear foliations (Fs and Fu, called
stable and unstable) such that φ expands the leaves of one foliation with
a coefficient λ, and shrinks those of the other foliation with the same
coefficient. The number λ is a topological invariant called the dilatation
of φ; the number log(λ) is the topological entropy of φ.

Thurston proved that λ + λ−1 is an algebraic integer (in fact, it is a
Perron number) over Q of degree bounded by 4g− 3. In particular New-
ton’s formulas imply that for each g > 2 the set of dilatations bounded
from above by a constant is finite. Hence the minimum value δg of the di-
latation of pseudo-Anosov homeomorphisms on M is well defined [2, 13].
It can be shown that the logarithm of δg is the length of the shortest
geodesics on the moduli space of complex curves of genus g,Mg (for the
Teichmüller metric).

Two natural questions arise. The first is how to compute δg explicitly
for small g > 2. The second question asks if there is a unique (up to con-
jugacy) pseudo-Anosov homeomorphism with minimum dilatation in the
modular group Mod(g). It is well known that δ1 = 1

2 (3+
√

5) and this di-
latation is uniquely realized by the conjugacy class in Mod(1) = PSL2(Z)
of the matrix ( 2 1

1 1 ). In principle these dilatations can be computed for
any given g using train tracks. Of course actually carrying out this pro-
cedure, even for small values of g, seems impractical.

We know very little about the value of the constants δg. Using a
computer and train tracks techniques for the punctured disc, Cho and
Ham [7] proved that δ2 is equal to the largest root of the polynomial
X4−X3−X2−X+1, δ2 ' 1.72208 [7]. One of the results of the present
paper is an independent and elementary proof of this fact.

One can also ask about the uniqueness (up to conjugacy) of pseudo-
Anosov homeomorphisms that realize δg. In genus 2, δ2 is not unique due
to the existence of the hyperelliptic involution and covering transforma-
tions (see Section 4 and Remark 4.1 for a precise definition). But, up
to hyperelliptic involution and covering transformations, we prove the
uniqueness of the conjugacy class of pseudo-Anosov homeomorphisms
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SYSTOLE IN SMALL GENUS 107

that realize δ2, in the mapping class group of genus 2 surfaces, Mod(2)
(see Theorem 1.1).

For g > 1 the estimate 21/(12g−12) 6 δg 6 (2 +
√

3)1/g holds [25, 12].
We will denote by δ+

g the minimum value of the dilatation of pseudo-
Anosov homeomorphisms on a genus g surface with orientable invariant
foliations. We shall prove:

Theorem 1.1. — The minimum dilatation of a pseudo-Anosov ho-
meomorphism on a genus two surface is equal to the largest root of the
polynomial X4 −X3 −X2 −X + 1,

δ2 = δ+
2 = 1

4 +
√

13
4 + 1

2

√√
13
2 −

1
2 ' 1.72208.

Moreover there exists a unique (up to conjugacy, hyperelliptic involu-
tion, and covering transformations) pseudo-Anosov homeomorphism on
a genus two surface with dilatation δ2.

Remark. — This answers Problem 7.3 and Question 7.4 of Farb [8]
in genus two.

Theorem 1.2. — The minimum value of the dilatation of pseudo-
Anosov homeomorphisms on a genus g surface, 3 6 g 6 5, with orientable
invariant foliations is equal to the largest root of the polynomials in
Table 1.1.

g polynomial δ+
g '

3 X6 −X4 −X3 −X2 + 1 1.40127
4 X8 −X5 −X4 −X3 + 1 1.28064
5 X10 +X9 −X7 −X6 −X5 −X4 −X3 +X + 1 1.17628

Table 1.1

All of the minimum dilatations for 2 6 g 6 5 are Salem numbers [26].
In fact, their polynomials have the smallest Mahler measure over poly-
nomials of their degree [4]. For g = 5, the dilatation is realized by the
pseudo-Anosov homeomorphism described by Leininger [19] as a compo-
sition of Dehn twists about two multicurves. Its characteristic polynomial
is the irreducible one having Lehmer’s number as a root: this is the small-
est known Salem number. The polynomial has the smallest known Mahler
measure over all integral polynomials.

TOME 61 (2011), FASCICULE 1



108 Erwan LANNEAU & Jean-Luc THIFFEAULT

For g = 3 and 4, we have constructed explicit examples. We present two
independent constructions in this paper: The first is given in term of Dehn
twists on a surface; The second involves the Rauzy–Veech construction
(see Appendix B).

Theorem 1.3. — The minimum value of the dilatation of pseudo-
Anosov homeomorphisms on a genus g surface, 6 6 g 6 8, with orientable
invariant foliations is not less than the largest root of the polynomials in
Table 1.2.

In particular δ+
6 > δ+

5 .

g polynomial δ+
g &

6 X12 −X7 −X6 −X5 + 1 1.17628
7 X14 +X13 −X9 −X8 −X7 −X6 −X5 +X + 1 1.11548
8 X16 −X9 −X8 −X7 + 1 1.12876

Table 1.2

Remark 1.4. — Genus 6 is the first instance of a nondecreasing dilata-
tion compared to the previous genus. This partially answers Question 7.2
of Farb [8] in the orientable case.

We have also found an example of a pseudo-Anosov homeomorphism
on a genus 3 surface that stabilizes a non-orientable measured foliation,
with dilatation δ+

3 . There is also evidence that δ5 < δ+
5 [1] (Section 6.1).

In addition, Aaber & Dunfield [1] and Kin & Takasawa [15] have found
a pseudo-Anosov homeomorphism realizing δ+

7 , and Hironaka [11] has
done the same for δ+

8 . Hence, all the lower bounds in Table 1.2 except for
genus 6 are known to be realized by a pseudo-Anosov homeomorphism.

Remark 1.5. — Our techniques also provide a way to investigate least
dilatations of punctured discs. This will appear in the forthcoming pa-
per [17]. Note that, for genus 3 to 8, none of the minimum dilatations
realizing the bound can come from the lift of a pseudo-Anosov on a
punctured disk (or any other lower-genus surface). Indeed, if the pseudo-
Anosov comes from a lift, then composing this pseudo-Anosov with the
hyperelliptic involution, one gets two pseudo-Anosov homeomorphisms,
one with positive root when acting on homology, and one with negative
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root. Since the polynomials we find have only one sign of the dominant
root when acting on homology, a lift is always ruled out. This is in con-
trast to the Hironaka & Kin [12] examples, which come from punctured
disks.

Acknowledgments. The authors thank Christopher Leininger, Frédéric
Le Roux, Jérôme Los, Sarah Matz, and Rupert Venzke for helpful conver-
sations, and are grateful to Matthew D. Finn for help in finding pseudo-
Anosov homeomorphisms in terms of Dehn twists. J-LT thanks the Cen-
tre de Physique Théorique de Marseille, where this work began, for its
hospitality. J-LT was also supported by the Division of Mathematical Sci-
ences of the US National Science Foundation, under grant DMS-0806821.

2. Background and tools

In this section we recall some general properties of dilatations and
pseudo-Anosov homeomorphisms, namely algebraic and spectral radius
properties. We also summarizes basic tools for proving our results (for
example see [28, 9, 22, 23]).

To guide the reader, we will first outline the general method used to
find the least dilatation δ+

g :
Summary: to find the least dilatation δ+

g on a surface M of genus g.
(1) Start with a known pseudo-Anosov homeomorphism on M , with

dilatation α, that stabilizes orientable foliations (we use the fam-
ily in [12]).

(2) Enumerate all reciprocal polynomials with Perron root less that α
(see Section 2.2 for definitions, and Appendix A for an explicit
algorithm). For genus g > 2, this requires a computer, but is a
standard calculation.

(3) Of these polynomials, eliminate the ones that are incompatible
with the Lefschetz theorem (see Section 2.3). The remaining poly-
nomial with the smallest root gives a lower bound on the least
dilatation δ+

g . For genus g > 4, this step requires a computer.
(4) If possible, construct an explicit pseudo-Anosov homeomorphism

on M having the lower bound in the previous step as a dilatation.
We do this by either exhibiting a sequence of Dehn twists, or by

TOME 61 (2011), FASCICULE 1



110 Erwan LANNEAU & Jean-Luc THIFFEAULT

the Rauzy–Veech construction (see Appendix B). This confirms
that we have found δ+

g .

2.1. Affine structures and affine homeomorphisms

To each pseudo-Anosov homeomorphism φ one can associate an affine
structure on M for which φ is affine.

2.1.1. Affine structures

A surface of genus g > 1 is called a flat surface if it can be obtained
by edge-to-edge gluing of polygons in the plane using translations or
translations composed with − id. We will call such a surface (M, q) where
q is the form dz2 defined locally. The metric on M has zero curvature
except at the zeroes of q where the metric has conical singularities of angle
(k + 2)π (with k > −1). The integer k is called the degree of the zero
of q. A point that is not singular is regular. We will use the convention
that a singular point of degree 0 is regular. A measured foliation M is a
linear flow on this flat surface M for an affine structure.

The Gauss–Bonnet formula applied to the singularities reads
∑
i ki =

4g−4. We will call the integer vector (or simply the stratum) (k1, . . . , kn)
with ki > −1 the singularity data of the measured foliation.

If one restricts gluing to translations only then the surface is called a
translation surface; otherwise it is called a half-translation surface. For a
translation surface the degree of all singularities is even; the converse is
false in general.

There is a standard construction, the orientating cover, that produce
a translation surface from a half-translation surface.

Construction 2.1. — Let N be a half-translation surface with sin-
gularity data (k1, . . . , kn). Then there exists a translation surface M and
a double branched cover π : M → N , branched precisely over the singu-
lar points of odd degree. In addition π is the minimal double branched
cover in this class.

ANNALES DE L’INSTITUT FOURIER
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2.1.2. Affine homeomorphisms

A homeomorphism f is affine with respect to (M, q) if f permutes the
singularities, f is a diffeomorphism on the complement of the singulari-
ties, and the derivative map Df of f is a constant matrix in PSL2(R).

There is a standard classification of the elements of PSL2(R) into three
types: elliptic, parabolic and hyperbolic. This induces a classification of
affine homeomorphisms. An affine homeomorphism is parabolic, ellip-
tic, or pseudo-Anosov, respectively, if |Tr(Df)| = 2, Tr(Df)| < 2, or
|Tr(Df)| > 2, respectively (where Tr is the trace).

2.1.3. Pseudo-Anosov homeomorphisms

Since we are interested in pseudo-Anosov homeomorphisms we will
assume that |Tr(Df)| > 2. Then there exists an eigenvalue λ of Df such
that |λ| > 1 and Tr(Df) = λ + λ−1. The two eigenvectors associated
to λ and λ−1 determine two directions on the flat surface M , invariant
by φ. Of course φ expends leaves of the stable foliation by the factor
|λ| and shrinks leaves of the unstable foliation by the same factor. We
can assume that these directions are horizontal and vertical. In these
coordinates (M, q), the pair of associated measured foliations (stable and
unstable) of φ are given by the horizontal and vertical measured foliations
Im(q) and Re(q) and the derivative of φ is the matrix A =

(
±λ−1 0

0 ±λ

)
.

By construction the dilatation λ(φ) of φ equals |λ|. The singularity data
of a pseudo-Anosov φ is the singularity data of its invariant measured
foliation.

The group PSL2(R) naturally acts on the set of flat surfaces. With
above notations the matrix A fixes the surface (M, q), that is, (M, q)
can be obtained from A · (M, q) by “cutting” and “gluing” (i.e., the two
surfaces represent the same point in the moduli space). The converse
is true: if A stabilizes a flat surface (M, q), then there exists an affine
diffeomorphism f : M →M such that Df = A.

Masur and Smillie [21] proved the following result:

Theorem 2.1 (Masur, Smillie). — For each integer partition (k1, . . . ,

kn) of 4g−4 with ki > 0 even, there is a pseudo-Anosov homeomorphism

TOME 61 (2011), FASCICULE 1



112 Erwan LANNEAU & Jean-Luc THIFFEAULT

φ with singularity data (k1, . . . , kn) that fixes an orientable measured
foliation.

For each integer partition (k1, . . . , kn) of 4g−4 with ki > −1, there is a
pseudo-Anosov homeomorphism φ with singularity data (k1, . . . , kn) that
fixes a non-orientable measured foliation, with the following exceptions:

(1,−1), (1, 3), and (4).

Convention. — For the remainder of this paper, unless explicitly
stated (in particular in Section 4), we shall assume that pseudo-Anosov
homeomorphisms preserve orientable measured foliations.

For instance, if g = 3 and φ preserves an orientable measured foliation,
then there are 5 possible strata for the singularity data of φ:

(8), (2, 6), (4, 4), (2, 2, 4), and (2, 2, 2, 2).

2.2. Algebraic properties of dilatations

The next theorem follows from basic results in the theory of pseudo-
Anosov homeomorphisms (see for example [28]).

Theorem 2.2 (Thurston). — Let φ be a pseudo-Anosov homeomor-
phism on a genus g surface that leaves invariant an orientable measured
foliation. Then

(1) The linear map φ∗ defined on H1(M,R) has a simple eigenvalue
ρ(φ∗) ∈ R such that |ρ(φ∗)| > |x| for all other eigenvalues x;

(2) φ is affine, for the affine structure determined by the measured
foliations, and the eigenvalues of the derivative Dφ are ρ(φ∗)±1;

(3) |ρ(φ∗)| > 1 is the dilatation λ of φ.

A Perron root is an algebraic integer λ > 1 all whose other conjugates
satisfy |λ′| < λ. Observe that these are exactly the numbers that arise as
the leading eigenvalues of Perron–Frobenius matrices. Since φ∗ preserves
a symplectic form, the characteristic polynomial χφ∗ is a reciprocal degree
2g polynomial.

Remark 2.3. — The dilatation of a pseudo-Anosov homeomorphism
φ is the Perron root of a reciprocal degree 2g polynomial, namely χφ∗(X)
if ρ(φ∗) > 0 and χφ∗(−X) otherwise.

ANNALES DE L’INSTITUT FOURIER
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There is a converse to Theorem 2.2, but the proof does not seem as
well-known, so we include a proof here (see [3] Lemma 4.3).

Theorem 2.4. — Let φ be a pseudo-Anosov homeomorphism on a
surface M with dilatation λ. Then the following are equivalent:

(1) λ is an eigenvalue of the linear map φ∗ defined on H1(M,R).
(2) The invariant measured foliations of φ are orientable.

Proof. — Suppose the stable measured foliation on (M, q) is non-orien-
table. There exists a double branched cover π : N → M which orients
the foliation (we denote by τ the involution of the covering). Let [w]
be an eigenvector of φ∗ in H1(M,R) with eigenvalue λ. The vector [w]
pulls back to an eigenvector [w′] of the adjoint φ∗ in H1(N,R) for the
eigenvalue λ.

The stable foliation on N now also defines a cohomology class [Re(ω)]
where ω2 = π∗q. By construction [Re(ω)] is an eigenvector for the eigen-
value λ. By Theorem 2.2 λ is simple so that the two classes [Re(ω)]
and [w′] must be linearly dependent. But since [w′] is invariant by the
deck transformation τ , while [Re(ω)] is sent to −[Re(ω)] by τ , we get a
contradiction. �

Combining this theorem with two classical results of Casson–Bleiler [6]
and Thurston [9] we get

Theorem 2.5. — Let f be a homeomorphism on a surface M and let
P (X) be the characteristic polynomial of the linear map f∗ defined on
H1(M,R). Then one has

(1) If P (X) is irreducible over Z, has no roots of unity as zeroes,
and is not a polynomial in Xk for k > 1, then f is isotopic to a
pseudo-Anosov homeomorphism φ;

(2) In addition, if the maximal eigenvalue (in absolute value) of the
action of f on the fundamental group is λ > 1, then the dilatation
of φ is λ;

(3) In addition, if λ is the Perron root of P (X), then φ leaves invariant
orientable measured foliations.

Proof. — The first point asserts that f is isotopic to a pseudo-Anosov
homeomorphism φ [6, Lemma 5.1]. The second point asserts that φ has
dilatation λ [9, Exposé 10]. Finally by the previous theorem, the last

TOME 61 (2011), FASCICULE 1



114 Erwan LANNEAU & Jean-Luc THIFFEAULT

assumption implies that the invariant measured foliations of φ are ori-
entable. �

We will need a more precise statement. The following has been re-
marked by Bestvina:

Proposition 2.6. — The statement “P is irreducible over Z” in part
(1) of Theorem 2.5 can be replaced by “P is symplectically irreducible
over Z”, meaning that P is not the product of two nontrivial reciprocal
polynomials.

2.3. Pseudo-Anosov homeomorphisms
and the Lefschetz theorem

In this section, we recall the well-known Lefschetz theorem for homeo-
morphisms on compact surfaces (see for example [5]). If p is a fixed point
of a homeomorphism f , we define the index of f at p to be the algebraic
number Ind(f, p) of turns of the vector (x, f(x)) when x describes a small
loop around p.

Theorem (Lefschetz theorem). — Let f be a homeomorphism on a
compact surface M . Denote by Tr(f∗) the trace of the linear map f∗ de-
fined on the first homology group H1(M,R). Then the Lefschetz number
L(f) is 2− Tr(f∗). Moreover the following equality holds:

L(f) =
∑
p=f(p)

Ind(f, p).

For a pseudo-Anosov homeomorphism φ, if Σ ∈ M is a singularity of
the stable foliation of φ (of degree 2d) then there are 2(d+ 1) emanating
rays. The orientation of the foliation defines d+ 1 outgoing separatrices
and d+ 1 ingoing separatrices.

Proposition 2.7. — Let Σ be a fixed singularity of φ of degree 2d
and let ρ(φ∗) be the leading eigenvalue of φ∗. Then

• If ρ(φ∗) < 0 then φ exchanges the set of outgoing separatrices
and the set of ingoing separatrices. Moreover Ind(φ,Σ) = 1.
• If ρ(φ∗) > 0 then either

– φ fixes each separatrix and Ind(φ,Σ) = 1− 2(d+ 1) < 0, or

ANNALES DE L’INSTITUT FOURIER
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– φ permutes cyclically the outgoing separatrices (and ingoing
separatrices) and Ind(φ,Σ) = 1.

(a) (b)

Figure 2.1. Mapping of the 4(d+ 1) hyperbolic sectors by φ near a
degree 2d = 6 singularity: (a) ρ(φ∗) < 0: the sectors are permuted
and the index is 1; (b) ρ(φ∗) > 0: the sectors can either be fixed (left,
index 1 − 2(d + 1) = −7) or permuted (right, index 1). The index
is defined as the number of turns of a vector joining x to φ(x) as x
travels counterclockwise around a small circle. The separatrices of
the unstable foliation are alternately labeled ingoing (i) and outgoing
(o). The grey areas indicate a hyperbolic sector and its possible
images for each case.

Proof of Proposition 2.7. — Obviously φ acts on the set of separatrices
(namely the set of outgoing separatrices and ingoing separatrices). It is
clear that ρ(φ∗) < 0 if and only if φ exchanges these two sets. In that case,
Ind(φ,Σ) = 1 for any fixed point Σ, since the tip of the vector (x, f(x))
never crosses the hyperbolic sector containing x and is thus constrained
to make a single turn counterclockwise. (A hyperbolic sector is the region
between adjacent ingoing and outgoing separatrices, see figure 2.1.)

If ρ(φ∗) > 0 then φ fixes globally the set of outgoing separatrices. Let
us assume that φ fixes an outgoing separatrix γu of the unstable foliation
Fu. Let γs1 and γs2 be two adjacent incoming separatrices for the stable
foliation Fs that define a sector containing γu and another (ingoing)
separatrix of Fu. Since γu is fixed by φ, the sector determined by γs1 and
γs2 is also fixed. φ preserves orientation so that γs1 (and so γs2) is fixed.

TOME 61 (2011), FASCICULE 1
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Hence, the other separatrix of Fu in the sector is fixed. By induction,
each separatrix of Fu is fixed.

There are 4(d + 1) hyperbolic sectors. For each sector, the vector
(x, h(x) describes an angle of −π plus the sector angle, π/2(d+ 1). Thus
the total angle is 4(d+ 1)(−π + π/2(d+ 1)) = 2π(1− 2(d+ 1)).

If φ has no fixed separatrices then clearly φ permutes the outgoing
separatrices. In addition, φ is isotopic to a rotation, thus φ permutes
cyclically the separatrices [18]. In that case Ind(φ,Σ) = 1, for the same
reason as the ρ(φ∗) < 0 case above. �

We will use the following corollaries:

Corollary 2.8 (Lefschetz theorem revisited for pseudo-Anosov ho-
meomorphisms). — Let Sing(φ) be the set of fixed singularities of degree
d > 0 of the pseudo-Anosov homeomorphism φ. Let Fix(φ) be the set of
regular fixed points of φ (i.e., of degree d = 0).

Then if ρ(φ∗) > 0,

2− Tr(φ∗) =
∑

Σ∈Sing(φ)

Ind(φ,Σ)−# Fix(φ)

where Ind(φ,Σ) = 1 or 1− 2(d+ 1) and 2d is the degree of Σ.
If ρ(φ∗) < 0,

2− Tr(φ∗) = # Sing(φ) + # Fix(φ) .

Corollary 2.9. — Let Σ be a fixed singularity of φ (of degree 2d).
Let us assume that ρ(φ∗) > 0 and Ind(φ,Σ) = 1. Then

∀i = 1, . . . d, Ind(φi,Σ) = 1

and
Ind(φd+1,Σ) = 1− 2(d+ 1).

We will use this corollary with d = 2 and d = 4 in the coming sections,
so we prove it only for those cases.

Proof of Corollary 2.9. — If Σ is a singularity of degree 2 (d = 1) then
there are 2 outgoing separatrices. Ind(φ,Σ) = 1 implies that φ permutes
these two separatrices so that φ2 fixes them. Hence Ind(φ2,Σ) = 1 −
2(1 + 1) = −3.

If Σ is a singularity of degree 4 (d = 2) then there are three outgoing
separatrices. Ind(φ,Σ) = 1 implies that φ permutes cyclically these three
separatrices. Hence Ind(φ2,Σ)=1 and Ind(φ3,Σ)=1−2(2+1) = −5. �
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3. Genus three: A proof of Theorem 1.2 for g = 3

We write ρ(P ) for the largest root (in absolute value) of a polyno-
mial P ; for the polynomials we consider this is always real and with
strictly larger absolute value than all the other roots, though it could
have either sign. If ρ(P ) > 0 then it is a Perron root; otherwise ρ(P (−X))
is a Perron root.

We find all reciprocal polynomials with a Perron root less than our can-
didate and then we test whether a polynomial is compatible with a given
stratum. This is straightforward: we simply try all possible permutations
of the singularities and separatrices, and calculate the contribution to the
Lefschetz numbers for each iterate of φ. Then we see whether the deficit
in the Lefschetz numbers can be exactly compensated by regular peri-
odic orbits. If not, the polynomial cannot correspond to a pseudo-Anosov
homeomorphism on that stratum.

We prove the theorems out of order since genus 3 is simplest. We know
that δ+

3 6 ρ(X3 −X2 − 1) ' 1.46557 (for instance see [12] or [17]). We
will construct a pseudo-Anosov homeomorphism with a smaller dilatation
than 1.46557 and prove that this dilatation is actually the least dilatation.

Recall that δ+
3 is the Perron root of some reciprocal polynomial P

of degree 6 (see Remark 2.3). As discussed in Appendix A, it is not
difficult to find all reciprocal polynomials with a Perron root ρ(P ), 1 <
ρ(P ) < ρ(X3 − X2 − 1): there are only two, listed in Table 3.1 (see
also Appendix A.2 for an alternate approach to this problem). Let us

polynomial Perron root
P1 = (X3 −X − 1)(X3 +X2 − 1) 1.32472
P2 = X6 −X4 −X3 −X2 + 1 1.40127

Table 3.1. List of all reciprocal monic degree 6 polynomials P with
Perron root 1 < ρ(P ) < ρ(X3 −X2 − 1) ' 1.46557.

assume that δ+
3 < ρ(X3 − X2 − 1) and see if we get a contradiction.

We let φ be a pseudo-Anosov homeomorphism with λ(φ) = δ+
3 . By the

above discussion there are only two possible candidates for a reciprocal
annihilating polynomial P of the dilatation of φ, namely λ(φ) = ρ(Pi)
for some i ∈ {1, 2}. In the next subsection we shall prove that there are
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no pseudo-Anosov homeomorphisms on a genus three surface (stabilizing
orientable foliations) with a dilatation ρ(P1). We shall then show that
a pseudo-Anosov homeomorphism with dilatation ρ(P2) exists on this
surface.

3.1. First polynomial: λ(φ) = ρ(P1)

Let φ∗ be the linear map defined on H1(X,R) and let χφ∗ be its char-
acteristic polynomial. By Theorem 2.2 the leading eigenvalue ρ(φ∗) of φ∗
is ±ρ(P1). The minimal polynomial of the dilatation of φ is X3−X − 1;
thus if ρ(φ∗) > 0 then X3 − X − 1 divides χφ∗ , otherwise X3 − X + 1
divides χφ∗ . Requiring the polynomial to be reciprocal leads to χφ∗ = P1
for the the first case and χφ∗ = P1(−X) = (X3 −X + 1)(X3 −X2 + 1)
for the second.

The trace of φn∗ (and so the Lefschetz number of φn) is easy to compute
in terms of its characteristic polynomial. Let us analyze carefully the two
cases depending on the sign of ρ(φ∗).

(1) If ρ(φ∗) < 0 then χφ∗(X) = P1(−X) = (X3−X+1)(X3−X2+1).
Let ψ = φ2. Observe that ψ is a pseudo-Anosov homeomorphism
and ρ(ψ∗) > 0 is a Perron root. >From Newton’s formulas (see
Appendix A), we have Tr(φ∗) = −1, Tr(ψ∗) = 3, Tr(ψ2

∗) = −1,
and Tr(ψ3

∗) = 3, so that L(φ) = 3, L(ψ) = −1, L(ψ2) = 3,
and L(ψ3) = −1.

As we have seen in Section 2, there are 5 possible strata for the
singularity data of φ, and so for ψ, namely,

(8), (2, 6), (4, 4), (2, 2, 4), and (2, 2, 2, 2).

Since L(ψ2) = 3 there are at least 3 singularities (of index +1)
fixed by ψ2; thus we need only consider strata (2, 2, 4) and
(2, 2, 2, 2). (From Corollary 2.8 regular fixed points can only give
negative index since ρ(ψ2

∗) > 0).
For stratum (2, 2, 4), the single degree-4 singularity must be

fixed, and its three outgoing separatrices must be fixed by ψ3. The
contribution to the index is then −5, which contradicts L(ψ3) =
−1 since there is no way to make up the deficit.
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For stratum (2, 2, 2, 2), since ψ2 fixes at least three singulari-
ties they account for +3 of the Lefschetz number L(ψ2) = 3. But
the fourth singularity must also be fixed by ψ2, so it adds +1
or −3 to the Lefschetz number, depending on the permutation
of its two separatrices. The only compatible scenario is that it
adds +1, with the difference accounted by a single regular fixed
point that contributes −1. Since all four singularities are thus
fixed by ψ2 = φ4, this means that their permutation σ ∈ S4 must
satisfy σ4 = id. There are three cases: either the singularities
are all fixed by φ, they are permuted in groups of two, or they
are cyclically permuted. For the first two cases, the singularities
are also fixed by ψ = φ2, so by Corollary 2.9 they cannot con-
tribute positively to ψ2, which they must as we saw above. If the
four singularities are all cyclically permuted, then they contribute
nothing to L(φ) = 3 and there is only one regular fixed point, so
we get a contradiction here as well.

(2) If ρ(φ∗) > 0 then χφ∗(X) = P1(X). We have Tr(φ∗) = −1 and
Tr(φ2

∗) = 3, so that L(φ) = 3 and L(φ2) = −1. Since L(φ) = 3
there are at least 3 fixed singularities; thus we need only consider
strata (2, 2, 4) and (2, 2, 2, 2).
L(φ) = 3 implies that all the singularities are necessarily fixed,

with positive index. Let us denote by Σ1, Σ2 two degree-2 singu-
larities. Since Ind(φ,Σi) = 1, by Corollary 2.9 one has Ind(φ2,Σi)
= −3, leading to L(φ2) 6 −6 + 2 = −4; but L(φ2) = −1, which
is a contradiction.

3.2. Second polynomial: λ(φ) = ρ(P2)

As in the previous section, we can rule out most strata associated
with P2 both for positive (P2(X)) or negative (P2(−X)) dominant root.
For P2(−X), however, there remain three strata that cannot be elimi-
nated:

(8), (2, 6), and (2, 2, 2, 2).

We single out the last stratum, (2, 2, 2, 2), to illustrate that this is a candi-
date. Indeed, assume that three of the degree 2 singularities are cyclically
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L(φn) 2 0 5 -4 7 -3 16 -12 23 -25 46 -55 80 -112 160
L(23) 0 0 3 0 0 3 0 0 3 0 0 -9 0 0 3
L(21) 1 1 1 -3 1 1 1 -3 1 1 1 -3 1 1 1
Lro 1 -1 1 -1 6 -7 15 -9 19 -26 45 -43 79 -113 156

Table 3.2. For the first 15 iterates of φ, contribution to the Lefschetz
numbers from the various orbits, for the polynomial P2(−X) from
Table 3.1 on stratum (2, 2, 2, 2). The first row specifies the iterate
of φ; the second the total Lefschetz number; the third the contribu-
tion from the three permuted degree-2 singularities; the fourth the
contribution from the fixed degree-2 singularity; the fifth the contri-
bution from the regular (degree 0) orbits. Note that L(23), L(21),
and Lro sum to L.

permuted, and the fourth one is fixed. For the triplet of singularities as-
sume that the two ingoing (or outgoing) separatrices are permuted by φ6,
so they are fixed by φ12. At iterates 3 and 9 the three singularities are
fixed but their separatrices are permuted, and ρ(φ3) and ρ(φ9) are both
negative, so by Proposition 2.7 the total contribution to the Lefschetz
number from these three singularities is 3. At iterate 6 we have ρ(φ6) > 0
but the separatrices are permuted, so again from Proposition 2.7 the total
contribution is 3. Finally, at iterate 12 the singularities and their sepa-
ratrices are fixed, so the total contribution to L(φ12) is 3 · (1− 4) = −9.

For the fixed singularity of degree 2, assume that the two separatri-
ces are permuted by φ2, so they are fixed by φ4. Hence, the singular-
ity contributes 1 to L(φn) except when n is a multiple of 4: we then
have ρ(φn) > 0 again by Proposition 2.7 the contribution is 1− 4 = −3.
As can be seen in Table 3.2, the deficit in L(φn) can be exactly made up
by introducing regular periodic orbits (it is easy to show that this can
be done for arbitrary iterates). To complete the proof of 1.2 for g = 3, it
remains to be shown that such a homeomorphism can be constructed.

3.3. Construction of a pseudo-Anosov homeomorphism
by Dehn twists

We show how to realize in terms of Dehn twists a pseudo-Anosov home-
omorphism whose dilatation is the Perron root of P2(X). The curves we
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c1

a1

b1
c2

a2

b2

Figure 3.1. Curves used to define Dehn twists.

use for Dehn twists are shown in Figure 3.1. For example, a positive twist
about c1 is written Tc1 ; a negative twist about b2 is written T−1

b2
.

Proposition 3.1. — There exists a pseudo-Anosov homeomorphism
on a genus 3 surface, stabilizing orientable foliations, and having for
dilatation the Perron root of the polynomial P2(X).

Proof. — Let us consider the sequence of Dehn twists

Ta1
Ta1

Tb1Tc1Ta2
Tb2Tc2Tc2T

−1
a3
T−1
b3
.

Its action on homology has P2(−X) as a characteristic polynomial. Since
P2(X) is irreducible and has no roots that are also roots of unity [26],
then by Theorem 2.5 the homeomorphism is isotopic to a pseudo-Anosov
homeomorphism, say f (we also use Bestvina’s remark, Proposition 2.6).

We can compute the dilatation of f by calculating the action on the
fundamental group (or using the code described in the remark below). A
straightforward calculation shows that the dilatation is the Perron root
of the polynomial P2(X), so f must also stabilize a pair of orientable
foliations. Hence, it realizes our systole δ+

3 . �

Remark 3.2. — To search for pseudo-Anosov homeomorphisms, we
used a computer code written by Matthew D. Finn [10], which calculates
the dilatation of words in terms of Dehn twists. The code uses the fast
method of Moussafir [24] adapted to higher genus. Hence, we can examine
a large number of words and find candidates with the required dilatation.

4. Genus two: A proof of Theorem 1.1

We prove theorem 1.1 in two parts: we first find the value of the sys-
tole δ2, then demonstrate its uniqueness.
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Recall that a surface M of genus g is called hyperelliptic if there exists
an involution τ (called the hyperelliptic involution) with 2g + 2 fixed
points. It is a classical fact that each genus two surface is hyperelliptic.
The fixed points are also called the Weierstrass points. We now make
more precise the qualification “up to hyperelliptic involution and covering
transformation” of Theorem 1.1.

Remark 4.1. — If (M, q) is a hyperelliptic surface, then for each con-
jugacy class of a pseudo Anosov homeomorphism φ on M there exists
another conjugacy class, namely τ ◦ φ, having the same dilatation. For
instance in genus 1 the two Anosov homeomorphisms φ = ( 2 1

1 1 ) and
τ ◦ φ =

(−2 −1
−1 −1

)
have the same dilatation.

A second construction that produces another conjugacy class with the
same dilatation is the following. Let φ be a pseudo-Anosov homeomor-
phism on a genus two surface M stabilizing a non-orientable foliation
with singularity data (1, 1, 2). Then there exists a branched double cov-
ering π : M → S2 such that φ descends to a pseudo-Anosov φ̃ on the
sphere, fixing a non-orientable measured foliation and having singular-
ity data (−1,−1,−1,−1,−1, 1, 0) (see the proof of Theorem 1.1 below).
Let the orientating double cover be π′ : N → S2. Now φ̃ lifts to a new
pseudo-Anosov homeomorphism ϕ on the genus-two surface N (stabiliz-
ing orientable foliations with singularity data (4)):

M
φ //

��

M

��

N

vvnnnnnnnnnnnnnnn
ϕ // N

wwnnnnnnnnnnnnnnn

S2
φ̃

// S2

Now λ(φ) = λ(φ̃) = λ(ϕ) (see also [16] for more details). But of course
the conjugacy classes of φ and ϕ are not the same.

Finally we will use the following result.

Proposition 4.2. — Let (M, q) be a genus two flat surface and let τ
be the affine hyperelliptic involution. Let φ be an affine homeomorphism.
Then φ commutes with τ .

Proof of Proposition 4.2. — Let P = {Q1, . . . ,Q6} be the set of Weier-
strass points, i.e., the set of fixed points of τ .
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Firstly let us show that φ preserves the set of Weierstrass points. Since
φ−1◦τ ◦φ is a non-trivial involution, it is an automorphism of the complex
surface, thus the fixed points of φ−1 ◦ τ ◦ φ are also Weierstrass points.
Let p be a Weierstrass point. Then φ−1 ◦ τ ◦ φ(p) = p or τ ◦ φ(p) = φ(p).
Hence φ(p) is a fixed point of τ , and thus φ(p) is a Weierstrass point.

Now let ψ = [φ, τ ] = φ◦τ ◦φ−1◦τ be the commutator of φ and τ . Since
τ and φ are affine homeomorphisms, ψ is also an affine homeomorphism.
The derivative of ψ is equal to the identity so that ψ is a translation.
Since φ−1 ◦τ(Q1) = φ−1(Q1) ∈ P one has τ ◦φ−1 ◦τ(Q1) = φ−1(Q1) and
ψ(Q1) = φ◦φ−1(Q1) = Q1. The translation ψ fixes a regular point. Thus
it also fixes the separatrix issued from this point, and therefore ψ = id
and φ commutes with τ . �

Proof of Theorem 1.1 (systole). — Let φ be a pseudo-Anosov home-
omorphism with λ(φ) = δ2. We know that δ+

2 is the Perron root of
X4−X3−X2−X + 1 (see Zhirov [30]; see also Appendix C for a differ-
ent construction). Let us assume that δ2 < δ+

2 . Thus φ preserves a pair
of non-orientable measured foliations. The allowable singularity data for
these foliations are (2, 2), (1, 1, 2) or (1, 1, 1, 1). (Masur and Smillie [21]
showed that (4) and (1, 3) cannot occur for non-orientable measured fo-
liations.)

It is well known that each genus two surface is a branched double
covering of the standard sphere. Let π : M → S2 be the covering and τ

the associated involution. It can be shown that τ is affine for the metric
determined by φ (see [16]). Thus Proposition 4.2 applies and φ commutes
with τ . Hence φ induces a pseudo-Anosov homeomorphism φ̃ on the
sphere S2 with the same dilatation. Of course φ̃ leaves invariant a non-
orientable pair of measured foliations. The singularity data for φ are
(2, 2), (1, 1, 2), or (1, 1, 1, 1); The singularity data for φ̃ are respectively
(−1,−1,−1,−1, 0, 0), (−1,−1,−1,−1,−1, 1, 0), or (−1,−1,−1,−1,−1,
−1, 1, 1). (For the first case, the singularity data cannot be (−1,−1,−1,
−1,−1,−1, 2), otherwise the cover π would be the orientating cover —
the branched points are precisely the singular points of odd degree, see
Remark 2.1 — thus the foliations of φ would be orientable.)

There exists an (orientating) double covering π′ : N → S2 such that
φ̃ lifts to a pseudo-Anosov homeomorphism f on N that stabilizes an
orientable measured foliation. Actually, since the deck group is Z/2Z,
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there are two lifts: f and τ ◦f , where τ denote the hyperelliptic involution
on N . Since Tr((τ ◦f)∗)=−Tr(f), there is one lift, say f , with ρ(χf∗) > 0.
By construction λ(f) = δ2 = ρ(χf∗). Let us compute the genus ofN using
the singularity data of f as follows.

(1) If the singularities of φ are (2, 2) then the singularities of f are
(0); thus N is a torus.

(2) If the singularities of φ are (1, 1, 2) then the singularities of f are
(0, 4); thus N is a genus two surface.

(3) If the singularities of φ are (1, 1, 1, 1) then the singularities of f
are (4, 4); thus N is a genus three surface.

In the first case one has δ2 > δ1, but since δ1 > δ+
2 this contradicts

the assumption δ2 < δ+
2 . In the second case δ2 > δ+

2 which is also a
contradiction. Let us analyze the third case. Since λ(f) = δ2 < δ+

2 and
f preserves an orientable measured foliation on a genus three surface,
Table 4.1 gives all possible minimal polynomials for δ2 with 1 < ρ(P ) <
ρ(X4−X3−X2−X+1) (see Appendix A). We will obtain a contradiction

polynomial Perron root
P1 = (X3 −X − 1)(X3 +X2 − 1) 1.32472
P2 = X6 −X4 −X3 −X2 + 1 1.40127
P3 = (X3 +X − 1)(X3 −X2 − 1) 1.46557
P4 = X6 −X5 −X3 −X + 1 1.50614
P5 = X6 −X5 −X4 +X3 −X2 −X + 1 1.55603
P6 = X6 − 2X5 + 3X4 − 5X3 + 3X2 − 2X + 1 1.56769
P7 = X6 −X4 − 2X3 −X2 + 1 1.58235
P8 = X6 − 2X5 + 2X4 − 3X3 + 2X2 − 2X + 1 1.63557
P9 = X6 −X5 +X4 − 4X3 +X2 −X + 1 1.67114

Table 4.1. List of all reciprocal monic degree 6 polynomials P such
that the Perron root λ = ρ(P ) satisfies 1 < λ < ρ(X4 −X3 −X2 −
X + 1) ' 1.72208.

for each case. For each polynomial Pi, we calculate the Lefschetz number
of iterates of f (see Table 4.2).

(1) Polynomial Pi for i ∈ {1, 3, 6, 9} cannot be a candidate since the
number of singularities is 2 and L(f) or L(f2) is greater than or
equal to 3.
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L(f) L(f2)
P1 3
P3 3
P6 4
P9 3

L(f) L(f3)
P2 2 −1
P4 1 −2
P5 1 1
P7 2 −4

Table 4.2. Lefschetz number of iterates of the pseudo-Anosov home-
omorphism f .

(2) Polynomial Pi for i ∈ {2, 4, 5, 7} cannot be a candidate. Indeed
the singularities are fixed with positive index, thus by Corol-
lary 2.9 we should have L(f3) 6 −10, but we know L(f3) > −4
from Table 4.2.

Finally the last case we have to consider is P8. In that case, the Lef-
schetz number of f is 0 and the Lefschetz number of f3 is −3. Let Σ1 and
Σ2 be the two singularities of f on N . Let us assume that the two singu-
larities are fixed, so the index of f at Σi is necessarily positive. Then by
Corollary 2.9 Ind(f3,Σi) = −5, so that L(f3) = −3 = −10 −# Fix(f3)
and # Fix(f3) = −7, which is a contradiction. Hence Σ1 and Σ2 are
exchanged by f , and therefore by f3. The formula L(f3) = −3 reads
# Fix(f3) = 3, so that f has a unique length 3 periodic orbit (and no fixed
points). Recall also that f commutes with the hyperelliptic involution τ

on N . This involution has exactly 8 fixed points on N : the two singular-
ities and 6 regular points, which we will denote by {Σ1,Σ2,Q1, . . . ,Q6}.

Let {S, f(S), f2(S)} be the length-3 orbit. Since f ◦ τ = τ ◦ f the set
{τ(S), τ(f(S)), τ(f2(S))} is also a length-3 orbit and thus by uniqueness{

S, f(S), f2(S)
}

=
{
τ(S), τ(f(S)), τ(f2(S))

}
.

If τ(S) = S then S = Qi for some i and {S, f(S), f2(S)} is a subset of
{Q1, . . . ,Q6}. Otherwise let us assume that τ(S) = f(S). Applying f one
gets f2(S) = f(τ(S)) = τ(f(S)) = τ2(S) = S which is a contradiction.
We get the same contradiction if τ(S) = f2(S). Therefore τ(S) = S and
{S, f(S), f2(S)} is a subset of {Q1, . . . ,Q6}.

Up to permutation one can assume that this set is {Q1,Q2,Q3}. Since
f preserves the set {Σ1,Σ2} then f also preserves {Q4,Q5,Q6}. Hence
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f has a fixed point or another length-3 periodic orbit, which is a contra-
diction. This ends the proof of the first part of Theorem 1.1. �

We now prove the uniqueness of the pseudo-Anosov homeomorphism
realizing the systole in genus two, up to conjugacy, hyperelliptic involu-
tion, and covering transformations (see Remark 4.1).

Proof of Theorem 1.1 (uniqueness). — We will prove that there is no
other construction that realizes the systole in genus two. The proof uses
essentially McMullen’s work [23]. Let φ and φ′ be two pseudo-Anosov
homeomorphisms on M with λ(φ) = δ2 and let (M, q), (M ′, q′) be the
two associated flat surfaces.

The proof decomposes into 4 steps. We first show that one can assume
that φ and φ′ leave invariant an orientable measured foliation with sin-
gularity data (4). Then we show that we can assume, up to conjugacy,
that the two surfaces (M, q) and (M ′, q′) are isometric. Finally we show
that the derivatives Dφ and Dφ′ of the affine homeomorphism on M are
conjugate. We then conclude that φ and φ are conjugated in the mapping
class group Mod(2).

Step 4.3. — If the foliation is non-orientable then we have seen (proof
of Theorem 1.1) that the singularity data of φ is (1, 1, 2). By Remark 4.1
there exists a branched double covering π : M → P1 such that φ descends
to a pseudo-Anosov on the sphere P1 with singularity (−1,−1,−1,−1,
−1, 1, 0). Now the orientating cover π̃ : M̃ → P1 gives a pseudo-Anosov
homeomorphism φ̃ on the genus 2 surface M̃ , with orientable foliation and
singularity data (4). In addition λ(φ) = λ(φ̃). Hence, from this discussion
one can assume that φ stabilizes an orientable measured foliation. The
singularity data of the measured foliation is either (4) or (2, 2). Using the
Lefschetz theorem, one shows that (2, 2) is impossible.

Step 4.4. — Up to the hyperelliptic involution, we can assume that
Tr(φ) > 0 and Tr(φ′) > 0. There is natural invariant we can associate to
a flat surface with a pseudo-Anosov homeomorphism ϕ: this is the trace
field (see [14]), the number field generated by λ(ϕ) + 1

λ(ϕ) . In our case
of course the trace field of the surfaces (M, q) and (M ′, q′) is the same
since the dilatation of φ and φ′ is the same. More precisely the trace field
is Q[t], where t = δ2 + δ−1

2 . A straightforward calculation gives that the
minimal polynomial of t is X2 −X − 3, so the trace field is Q(

√
13).
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Since the discriminant ∆ = 13 6≡ 1 mod 8, Theorem 1.1 of [23] implies
that there exists a A ∈ SL2(R) such that A(M, q) = (M ′, q′). (We can
always assume that the area of the flat surfaces (M, q) and (M ′, q′) is 1.)
In particular there exists an affine homeomorphism f : M → M ′ such
that Df = A. Hence f−1φ′f is a pseudo-Anosov homeomorphism on the
same affine surface (M, q).

Step 4.5. — Now the derivatives of the two affine maps φ and φ′ (on
the same flat surface (M, q)) belong to the Veech group of the surface
(M, q). (This group has 3 cusps and genus zero — see [23], Theorem 9.8.)
Using the Rauzy–Veech induction, we can check that Dφ and A−1Dφ′A

are conjugated in this group.

Step 4.6. — Thus there exists B ∈ SL2(R) such thatDφ = B−1Dφ′B.
Now let h : M → M be such that Dh = B; hence one has Dφ =
Dh−1Dφ′Dh. Finally h−1φ′hφ−1 is an affine diffeomorphism with de-
rivative map equal to the identity, and so it is a translation. Since the
metric has a unique singularity (of type (4)), h−1φ′hφ−1 = id. We con-
clude that φ and φ′ are conjugate in the mapping class group Mod(2),
and the theorem is proved.

�

5. Genus four: A proof of Theorem 1.2 for g = 4

5.1. Polynomials

The techniques of the previous sections can also be applied to the
genus 4 case. The only difference is that for genus four and higher we
rely on a set of Mathematica scripts to test whether a polynomial is
compatible with a given stratum. This is straightforward: we simply try
all possible permutations of the singularities and separatrices, and cal-
culate the contribution to the Lefschetz numbers for each iterate of φ.
Then we see whether the deficit in the Lefschetz numbers can be exactly
compensated by regular periodic orbits. If not, the polynomial cannot
correspond to a pseudo-Anosov homeomorphism on that stratum.
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polynomial Perron root
P1 = X8 −X5 −X4 −X3 + 1 1.28064
P2 = (X3 −X − 1)(X3 +X2 − 1)(X − 1)2 1.32472
P3 = (X3 −X − 1)(X3 +X2 − 1)(X + 1)2 1.32472
P4 = (X3 −X − 1)(X3 +X2 − 1)(X2 −X + 1) 1.32472
P5 = (X3 −X − 1)(X3 +X2 − 1)(X2 +X + 1) 1.32472
P6 = (X3 −X − 1)(X3 +X2 − 1)(X2 + 1) 1.32472

Table 5.1. List of all reciprocal monic degree 8 polynomials P with
Perron root 1 < ρ(P ) < ρ(X8 −X7 +X6 −X5 −X4 −X3 +X2 −
X + 1) ' 1.34372.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L(φn) 2 2 5 -2 7 -1 9 -2 14 -13 13 -17 28 -33 40
L(101) 1 1 1 1 1 1 1 1 1 1 1 -11 1 1 1
L(21) 1 1 1 -3 1 1 1 -3 1 1 1 -3 1 1 1
Lro 0 0 3 0 5 -3 7 0 12 -15 11 -3 26 -35 38

Table 5.2. For the first 15 iterates of φ, contribution to the Lefschetz
numbers from the various orbits, for the polynomial P1(−X) from
Table 5.1 on stratum (2, 10). See the caption to Table 3.2 for details.

Again, we start with δ+
4 6 ρ(X8−X7 +X6−X5−X4−X3 +X2−X+

1) ' 1.34372 (for instance see [12] or [17]) and search for candidate poly-
nomials with smaller dilatation (see Appendix A), shown in Table 5.1.
Seeking a contradiction, we instead immediately find that P1(−X) is an
allowable polynomial on strata

(2, 10), (2, 2, 2, 2, 4), and (2, 2, 2, 6).

As an example we show the contributions to the Lefschetz numbers in
Table 5.2 on stratum (2, 10). Each singularity is fixed (as they must be
since there is only one of each type), and their separatrices are first fixed
by φ12 (degree 10) and φ4 (degree 2), respectively. We can easily show
that the Lefschetz numbers are consistent for arbitrary iterate. It turns
out that we can construct a pseudo-Anosov homeomorphism having this
dilatation.
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5.2. Construction of a pseudo-Anosov homeomorphism
by Dehn twists

We use the same approach as in Section 3.3 to find the candidate word.

Proposition 5.1. — There exists a pseudo-Anosov homeomorphism
on a genus 4 surface, stabilizing orientable foliations, and having for
dilatation the Perron root of the polynomial P1(X).

Proof. — Let us consider the sequence of Dehn twists

Ta1
Tb1Tc1Ta2

Tb2Tc2Tb3Tc3Tb4 .

Its action on homology has P1(−X) as a characteristic polynomial. Since
P1(X) is irreducible and has no roots that are also roots of unity [26],
then by Theorem 2.5 the homeomorphism is isotopic to a pseudo-Anosov
homeomorphism, say f .

We compute the dilatation of f by calculating the action on the fun-
damental group, which shows that the dilatation is the Perron root of
the polynomial P1(X). Hence, f must also stabilize a pair of orientable
foliations, and it realizes our systole δ+

4 . �

6. Higher genus

6.1. Genus five: A proof of Theorem 1.2 for g = 5

This time there is a known candidate with a lower dilatation than
Hironaka & Kin’s [12]: Leininger’s pseudo-Anosov homeomorphism [19]
having Lehmer’s number ' 1.17628 as a dilatation. This pseudo-Anosov
homeomorphism has invariant foliations corresponding to stratum (16).
(The Lefschetz numbers are also compatible with stratum (4, 4, 4, 4).)
The polynomial associated with its action on homology has ρ(P ) < 0.
An exhaustive search (see Appendix A) leads us to conclude that there
is no allowable polynomial with a lower dilatation, so there is nothing
else to check.

As we finished this paper we learned that Aaber & Dunfield [1] have
found a pseudo-Anosov homeomorphism with dilatation lower than δ+

5
(stabilizing a non-orientable foliation), implying that δ5 < δ+

5 .
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6.2. Genus six: A proof of Theorem 1.3 for g = 6
(computer-assisted)

For genus 6, we have demonstrated that the Lefschetz numbers asso-
ciated with P (−X), with P the polynomial in Table 1.2, are compatible
with stratum (16, 4), with Lehmer’s number as a root (Lehmer’s polyno-
mial is a factor). (There is another polynomial with the same dilatation
that is compatible with the stratum (20).) We have not yet constructed
an explicit pseudo-Anosov homeomorphism with this dilatation for genus
6, so Theorem 1.3 is a weaker form than 1.2: it only asserts that δ+

6 is
not less than this dilatation. Note, however, that whether or not this
pseudo-Anosov homeomorphism exists this is the first instance where
the minimum dilatation is not lower than for smaller genus.

6.3. Genus seven: A proof of Theorem 1.3 for g = 7
(computer-assisted)

Again, we have not constructed the pseudo-Anosov homeomorphism
explicitly, but the Lefschetz numbers for the polynomial P (−X), with P
as in Table 1.2, are compatible with stratum (2, 2, 2, 2, 2, 14).

As we finished this paper we learned that Aaber & Dunfield [1] and
Kin & Takasawa [15] have found a pseudo-Anosov homeomorphism with
dilatation equal to the systole δ+

7 .

6.4. Genus eight: A proof of Theorem 1.3 for g = 8
(computer-assisted)

Genus eight is roughly the limit of this brute-force approach: it takes
our computer program about five days to ensure that we have the mini-
mizing polynomial. The bound described in Appendix A yields 5× 1012

cases for the traces, most of which do not correspond to integer-coefficient
polynomials.

Yet again, we have not constructed the pseudo-Anosov homeomor-
phism explicitly, but the Lefschetz numbers for the polynomial P (−X),
with P as in Table 1.2, are compatible with stratum (6, 22).
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As we finished this paper we learned that Hironaka [11] has found a
pseudo-Anosov homeomorphism with dilatation equal to the systole δ+

8 .
Examining the cases with even g leads to a natural question:

Question 6.1. — Is the minimum value of the dilatation of pseudo-
Anosov homeomorphisms on a genus g surface, for g even, with orientable
invariant foliations, equal to the largest root of the polynomial X2g −
Xg+1 −Xg −Xg−1 + 1?

Appendix A. Searching for polynomials
with small Perron root

A.1. Newton’s formulas

The crucial task in our proofs is to find all reciprocal polynomials with
a largest real root bounded by a given value α (typically the candidate
minimum dilatation). Moreover, these must be allowable polynomials for
a pseudo-Anosov homeomorphism: the largest root (in absolute value)
must be real and strictly larger than all other roots, and it must be
outside the unit circle in the complex plane.

The simplest way to find all such polynomials is to bound the coeffi-
cients directly. For example, in genus 3, If we denote an arbitrary recip-
rocal polynomial by P (X) = X6 + aX5 + bX4 + cX3 + bX2 + aX + 1,
we want to find all polynomials with Perron root smaller than α =
ρ(X3 − X2 − 1) ' 1.46557 (the candidate minimum dilatation at the
beginning of Section 3). Let t = α + α−1; a straightforward calculation
assuming that half the roots of P (X) are equal to α shows

|a| 6 3t, |b| 6 3(t2 + 1), |c| 6 t(t2 + 6).

Plugging in numbers, this means |a| 6 6, |b| 6 18, and |c| 6 26. Allowing
for X → −X since we only care about the absolute value of the largest
root, we have a total of 12, 765 cases to examine. Out of these, only
two polynomials actually have a root small enough and satisfy the other
constraints (reality, uniqueness of largest root), as given in Section 3.

The problem with this straightforward approach (also employed by
Cho and Ham for genus 2, see [7]) is that it scales very poorly with in-
creasing genus. For genus 4, the number of cases is 9, 889, 930; for genus 5,
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we have 63, 523, 102, 800 cases (we use for α the dilatation of Hironaka
& Kin’s pseudo-Anosov homeomorphism [12], currently the best general
upper bound on δg). As g increases, the target dilatation α decreases,
which should limit the number of cases, but the quantity t = α + α−1

converges to unity, and the bound depends only weakly on α− 1.
An improved approach is to start from Newton’s formulas relating the

traces to the coefficients: for a polynomial P (X) = Xn + a1X
n−1 +

a2X
n−2 + . . . + an−1X + an which is the characteristic polynomial of a

matrix M , we have

Tr(Mk) =

{
−kak −

∑k−1
m=1 am Tr(Mk−m), 1 6 k 6 n;

−
∑n
m=1 am Tr(Mk−m), k > n.

For a reciprocal polynomial, we have an−k = ak. We can use these for-
mulas to solve for the ak given the first few traces Tr(Mk), 1 6 k 6 g

(g = n/2, n is even in this paper). We also have

Lemma A.1. — If the characteristic polynomial P (X) of a matrix M
has a largest eigenvalue with absolute value r, then

|Tr(Mk)| 6 n rk;

Furthermore, if P (X) is reciprocal and of even degree, then

|Tr(Mk)| 6 1
2n(rk + r−k).

Proof. — Obviously,

|Tr(Mk)| =

∣∣∣∣∣
n∑
m=1

skm

∣∣∣∣∣ 6
n∑
m=1
|sm|k 6 n rk

where sk are the eigenvalues of M . If the polynomial is reciprocal and n
is even, then

|Tr(Mk)| =

∣∣∣∣∣∣
n/2∑
m=1

(skm + s−km )

∣∣∣∣∣∣ 6 1
2n(rk + r−k).

�

We now have the following prescription for enumerating allowable poly-
nomials, given n and a largest root α:

(1) Use Lemma A.1 to bound the traces Tr(Mk) ∈ Z, k = 1, . . . , n/2;
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(2) For each possible set of n/2 traces, solve for the coefficients of the
polynomial;

(3) If these coefficients are not all integers, move on to the next pos-
sible set of traces;

(4) If the coefficients are integers, check if the polynomial is allowable:
largest eigenvalue real and with absolute value less than α, outside
the unit circle, and nondegenerate;

(5) Repeat step 2 until we run out of possible values for the traces.

Let’s compare with the earlier numbers for g = 5: assuming Tr(M) > 0,
we have 7, 254, 775 cases to try, which is already a factor of 104 fewer
than with the coefficient bound. Moreover, of these 7, 194, 541 lead to
fractional coefficients, and so are discarded in step 3 above. This only
leaves 60, 234 cases, roughly a factor of 106 fewer than with the coefficient
bound. Hence, with this simple approach we can tackle polynomials up
to degree 16 (g = 8). More refined approaches will certainly allow higher
degrees to be reached.

A final note on the numerical technique: we use Newton’s iterative
method to check the dominant root of candidate polynomials. A nice
feature of polynomials with a dominant real root is that their graph is
strictly convex upwards for x greater than the root (when that root is
positive, otherwise for x less than the root). Hence, Newton’s method
is guaranteed to converge rapidly and uniquely for appropriate initial
guess (typically, 5 iterates is enough for about 6 significant figures). If
the method does not converge quickly, then the polynomial is ruled out.

A.2. Mahler measures

Another approach is to use the Mahler measure of a polynomial. If P
is a degree 2g monic polynomial that admits a Perron root, say α, then
the Mahler measure of P satisfies M(P ) 6 αg. Thus to list all possible
polynomials with a Perron root less than a constant α, we just have to
list all possible polynomials with a Mahler measure less than αg. Such
lists already exist in the literature (for example in [4]).
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Appendix B. Rauzy–Veech induction
and pseudo-Anosov homeomorphisms

In this section we recall very briefly the basic construction of pseudo-
Anosov homeomorphisms using the Rauzy–Veech induction (for details
see [29], §8, and [27, 20]). We will use this to construct the minimizing
pseudo-Anosov homeomorphisms in genus 3 and 4.

B.1. Interval exchange map

Let I ⊂ R be an open interval and let us choose a finite partition of
I into d > 2 open subintervals {Ij , j = 1, . . . , d}. An interval exchange
map is a one-to-one map T from I to itself that permutes, by translation,
the subintervals Ij . It is easy to see that T is precisely determined by
a permutation π that encodes how the intervals are exchanged, and a
vector λ = {λj}j=1,...,d with positive entries that encodes the lengths of
the intervals.

B.2. Suspension data

A suspension datum for T is a collection of vectors {ζj}j=1,...,d such
that

(1) ∀j ∈ {1, . . . , d}, Re(ζj) = λj ;
(2) ∀k, 1 6 k 6 d− 1, Im(

∑k
j=1 ζj) > 0;

(3) ∀k, 1 6 k 6 d− 1, Im(
∑k
j=1 ζπ−1(j)) < 0.

To each suspension datum ζ, we can associate a translation surface
(M, q) = M(π, ζ) in the following way. Consider the broken line L0 on
C = R2 defined by concatenation of the vectors ζj (in this order) for
j = 1, . . . , d with starting point at the origin (see Figure B.1). Similarly,
we consider the broken line L1 defined by concatenation of the vectors
ζπ−1(j) (in this order) for j = 1, . . . , d with starting point at the origin.
If the lines L0 and L1 have no intersections other than the endpoints,
we can construct a translation surface S by identifying each side ζj on
L0 with the side ζj on L1 by a translation. The resulting surface is a
translation surface endowed with the form dz2.
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Let I ⊂M be the horizontal interval defined by I = (0,
∑d
j=1 λj)×{0}.

Then the interval exchange map T is precisely the one defined by the first
return map to I of the vertical flow on M .

B.3. Rauzy–Veech induction

The Rauzy–Veech induction R(T ) of T is defined as the first return
map of T to a certain subinterval J of I (see [27, 20] for details).

We recall very briefly the construction. The type ε of T is defined by
0 if λd > λπ−1(d) and 1 otherwise. We define a subinterval J of I by

J =
{
I\T (Iπ−1(d)) if T is of type 0;
I\Id if T is of type 1.

The Rauzy–Veech induction R(T ) of T is defined as the first return map
of T to the subinterval J . This is again an interval exchange transforma-
tion, defined on d letters (see e.g., [27]). Moreover, we can compute the
data of the new map (permutation and length vector) by a combinatorial
map and a matrix. We can also define the Rauzy–Veech induction on the
space of suspensions. For a permutation π, we call the Rauzy class the
graph of all permutations that we can obtain by the Rauzy–Veech induc-
tion. Each vertex of this graph corresponds to a permutation, and from
each permutation there are two edges labelled 0 and 1 (the type). To each
edge, one can associate a transition matrix that gives the corresponding
vector of lengths.

B.4. Closed loops and pseudo-Anosov homeomorphisms

We now recall a theorem of Veech:

Theorem (Veech). — Let γ be a closed loop, based at π, in a Rauzy
class and R = R(γ) be the product of the associated transition matrices.
Let us assume that R is irreducible. Let λ be an eigenvector for the
Perron eigenvalue α of R and τ be an eigenvector for the eigenvalue 1

α of
R. Then

(1) ζ = (λ, τ) is a suspension data for T = (π, λ);
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(2) The matrixA =
(
α−1 0

0 α

)
is the derivative map of an affine pseudo-

Anosov diffeomorphism φ on the suspension M(π, ζ) over (π, λ);
(3) The dilatation of φ is α;
(4) All pseudo-Anosov homeomorphisms that fix a separatrix are con-

structed in this way.

Since genus 4 is simpler to construct than genus 3, we present the
genus 4 case first in detail, and briefly outline the construction of the
other case.

B.5. Construction of an example for g = 4

We shall prove

Theorem B.1. — There exists a pseudo-Anosov homeomorphism on
a genus four surface, stabilizing orientable measured foliations, and hav-
ing for dilatation the maximal real root of the polynomial X8 − X5 −
X4 −X3 + 1 (namely 1.28064...).

B.5.1. Construction of the translation surface for g = 4

Let |α| > 1 be the maximal real root of the polynomial P1(X) =
X8−X5−X4−X3 + 1 with α < −1, so that α8 +α5−α4 +α3 + 1 = 0.
In the following, we will present elements of Q[α] in the basis {αi}i=0,...,7.
Thus the octuplet (a0, . . . , a7) stands for

∑7
i=0 aiα

i.
We start with the permutation π = (5, 3, 9, 8, 6, 2, 7, 1, 4) and the closed

Rauzy path

0− 1− 0− 0− 1− 1− 1− 0− 1− 0− 0− 1− 0− 0.

The associated Rauzy–Veech matrix is

R =


1 1 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 0
0 0 0 0 0 1 0 1 1
1 0 0 1 0 0 1 0 0
0 0 1 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
1 0 0 0 0 1 1 1 0
1 1 0 1 0 0 1 0 0

 .
One checks that the characteristic polynomial of R is Q(X) with the
property that Q(X) factors into Q(X4) = P1(−X)S(X), where S(X)
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is a polynomial. Let λ and τ be the corresponding eigenvectors for the
Perron root α4 of Q, expressed in the α-basis:

λ1 = (0, 1,−2, 1,−1, 0, 1,−1)
λ2 = (0,−1, 1, 0, 1, 0,−1, 0)
λ3 = (−1, 0,−1, 0, 0,−1, 0, 0)
λ4 = (−1, 2,−1, 1, 0,−1, 1, 0)
λ5 = (1,−1, 1, 0, 0, 1, 0, 0)
λ6 = (−1, 1,−1, 1,−1,−1, 0,−1)
λ7 = (1,−2, 2,−2, 1, 1,−1, 1)
λ8 = (0, 0, 1,−1, 1, 0, 0, 1)
λ9 = (1, 0, 0, 0, 0, 0, 0, 0)

τ1 = (−1, 0, 0, 0, 0,−1, 0, 0)
τ2 = (0, 0,−1, 1, 0, 1, 0,−1)
τ3 = (0, 0,−1, 0,−1, 0, 0,−1)
τ4 = (0, 1, 0, 0, 0, 0, 1, 0)
τ5 = (0, 0, 0, 1, 0, 0, 0, 0)
τ6 = (0, 0,−1, 0, 0, 0, 1, 0)
τ7 = (0, 0, 0, 0, 0, 0,−1, 0)
τ8 = (0, 1, 0, 0, 0, 0, 0, 0)
τ9 = (−1, 0, 0, 0, 0, 0, 0, 0).

For i = 1, . . . , 9 we construct the vectors in R2 ζi =
(
λi
τi

)
. The resulting

surface (M, q) = M(π, ζ) is drawn in Figure B.1.
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Figure B.1. Construction of (M, q). There are two singularities for
the metric: one with conical angle 4π (hollow circles) and one with
conical angle 12π (filled circles). The stratum is thus (2, 10).

B.5.2. Coordinates of the translation surface

By construction, the coordinates of (M, q) belong to Q[α]. We denote
the vertices by pi for i = 1, . . . , 18 with p1 = 0 (see Figure B.2). Obviously
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for i 6 9, pi =
∑i
j=1 ζj , and for i > 10, pi =

∑9
j=1 ζj −

∑i−9
j=1 ζπ−1(j). A

direct calculation gives
p1 = ((0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0))
p2 = ((0, 1,−2, 1,−1, 0, 1,−1), (−1, 0, 0, 0, 0,−1, 0, 0))
p3 = ((0, 0,−1, 1, 0, 0, 0,−1), (−1, 0,−1, 1, 0, 0, 0,−1))
p4 = ((−1, 0,−2, 1, 0,−1, 0,−1), (−1, 0,−2, 1,−1, 0, 0,−2))
p5 = ((−2, 2,−3, 2, 0,−2, 1,−1), (−1, 1,−2, 1,−1, 0, 1,−2))
p6 = ((−1, 1,−2, 2, 0,−1, 1,−1), (−1, 1,−2, 2,−1, 0, 1,−2))
p7 = ((−2, 2,−3, 3,−1,−2, 1,−2), (−1, 1,−3, 2,−1, 0, 2,−2))
p8 = ((−1, 0,−1, 1, 0,−1, 0,−1), (−1, 1,−3, 2,−1, 0, 1,−2))
p9 = ((−1, 0, 0, 0, 1,−1, 0, 0), (−1, 2,−3, 2,−1, 0, 1,−2))
p10 = ((0, 0, 0, 0, 1,−1, 0, 0), (−2, 2,−3, 2,−1, 0, 1,−2))
p11 = ((1,−2, 1,−1, 1, 0,−1, 0), (−2, 1,−3, 2,−1, 0, 0,−2))
p12 = ((1,−3, 3,−2, 2, 0,−2, 1), (−1, 1,−3, 2,−1, 1, 0,−2))
p13 = ((0,−1, 1, 0, 1,−1,−1, 0), (−1, 1,−3, 2,−1, 1, 1,−2))
p14 = ((0, 0, 0, 0, 0,−1, 0, 0), (−1, 1,−2, 1,−1, 0, 1,−1))
p15 = ((1,−1, 1,−1, 1, 0, 0, 1), (−1, 1,−1, 1,−1, 0, 0,−1))
p16 = ((1,−1, 0, 0, 0, 0, 0, 0), (−1, 0,−1, 1,−1, 0, 0,−1))
p17 = ((0,−1, 0, 0, 0, 0, 0, 0), (0, 0,−1, 1,−1, 0, 0,−1))
p18 = ((1,−1, 1, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0))

B.5.3. Construction of the pseudo-Anosov diffeomorphism

Let A be the hyperbolic matrix
(
α−1 0

0 α

)
. Of course by construction A4

stabilizes the translation surface (M, q) and hence there exists a pseudo-
Anosov homeomorphism on M with dilatation α4. We shall prove that
this homeomorphism admits a root.

Let (M ′, q′) be the image of (M, q) by the matrix A. We only need to
prove that (M ′, q′) and (M, q) defines the same translation surface, i.e.,
one can cut and glue (M ′, q′) in order to recover (M, q). This is

Theorem B.2. — The surfaces (M ′, q′) and (M, q) are isometric.

Corollary B.3. — There exists a pseudo-Anosov diffeomorphism
f : X → X such that Df = A. In particular the dilatation of f is |α|.

Proof of Theorem B.2. — Using the two relations α8 = −1 − α3 +
α4 −α5 and α−1 = α2 −α3 +α4 +α7 and the relations that give the pi,
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one gets by a straightforward calculation the coordinates p’i = Api of
the surface (M ′, q′):

p’1 = ((0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0))
p’2 = ((1,−2, 1,−1, 0, 1,−1, 0), (0,−1, 0, 0, 0, 0,−1, 0))
p’3 = ((0,−1, 1, 0, 0, 0,−1, 0), (1,−1, 0, 0, 0, 1, 0, 0))
p’4 = ((0,−2, 2,−1, 0, 0,−1, 1), (2,−1, 0, 0,−1, 1, 0, 0))
p’5 = ((2,−3, 4,−2, 0, 1,−1, 2), (2,−1, 1, 0,−1, 1, 0, 1))
p’6 = ((1,−2, 3,−1, 0, 1,−1, 1), (2,−1, 1, 0, 0, 1, 0, 1))
p’7 = ((2,−3, 5,−3, 0, 1,−2, 2), (2,−1, 1,−1, 0, 1, 0, 2))
p’8 = ((0,−1, 2,−1, 0, 0,−1, 1), (2,−1, 1,−1, 0, 1, 0, 1))
p’9 = ((0, 0, 1, 0, 0, 0, 0, 1), (2,−1, 2,−1, 0, 1, 0, 1))
p’10 = ((0, 0, 0, 1,−1, 0, 0, 0), (2,−2, 2,−1, 0, 1, 0, 1))
p’11 = ((−2, 1,−2, 2,−1,−1, 0,−1), (2,−2, 1,−1, 0, 1, 0, 0))
p’12 = ((−3, 3,−3, 3,−1,−2, 1,−1), (2,−1, 1,−1, 0, 1, 1, 0))
p’13 = ((−1, 1, 0, 1,−1,−1, 0, 0), (2,−1, 1,−1, 0, 1, 1, 1))
p’14 = ((0, 0, 0, 0,−1, 0, 0, 0), (1,−1, 1,−1, 0, 0, 0, 1))
p’15 = ((−1, 1,−2, 2,−1, 0, 1,−1), (1,−1, 1, 0, 0, 0, 0, 0))
p’16 = ((−1, 0,−1, 1,−1, 0, 0,−1), (1,−1, 0, 0, 0, 0, 0, 0))
p’17 = ((−1, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 0))
p’18 = ((−1, 1,−1, 1, 0, 0, 0,−1), (0, 0, 0, 0, 1, 0, 0, 0))

We will cut M into several pieces in order to recover M ′ such that the
boundary gluings agree. Consider the decomposition in Figure B.2.

We enumerate the pieces on M from the left to the right. For instance,
the first piece on M has coordinates p1 p2 p3 p17 p18. The corresponding
piece onM ′ has coordinates p’3 p’4 p’6 p’8 p’14. The translation is−−−→p’8 p1 =
−−−−→p’14 p2 = −−−→p’3 p3 = −−−−→p’4 p18. �

piece # coordinates on M coordinates on M ′ translation vectors

1 p1 p2 p3 p17 p18 p’3 p’4 p’6 p’8 p’14
−−−→
p’8 p1 =

−−−−→
p’14 p2 =

−−−→
p’3 p3 =

−−−−→
p’4 p18

2 p3 p16 p17 p’18 p’1 p’17
−−−−→
p’18 p3 =

−−−−→
p’1 p16 =

−−−−→
p’17 p2

3 p3 p4 p16 p’6 p’4 p’5
−−−→
p’6 p3 =

−−−→
p’4 p4 =

−−−−→
p’5 p16

4 p4 p5 p14 p15 p16 p’11 p’12 p’13 p’9 p’10
−−−−→
p’11 p4 =

−−−−→
p’12 p5 = · · · =

−−−−−→
p’10 p16

5 p5 p6 p14 p’8 p’6 p’7
−−−→
p’8 p5 =

−−−→
p’6 p6 =

−−−−→
p’7 p14

6 p6 p8 p9 p10 p11 p13 p14 p’15 p’16 p’17 p’1 p’2 p’3 p’14
−−−−→
p’15 p6 =

−−−−→
p’16 p8 = · · · =

−−−−−→
p’14 p14

7 p6 p7 p8 p’8 p’9 p’13
−−−→
p6 p’9 =

−−−−→
p7 p’13 =

−−−→
p8 p’8

8 p11 p12 p13 p’14 p’8 p’13
−−−−−→
p’14 p11 =

−−−−→
p’8 p12 =

−−−−−→
p’13 p13
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Figure B.2. Partition of (M, q) and (M ′, q′) = A(M, q).

B.6. Construction of an example for g = 3

We shall prove

Theorem B.4. — There exists a pseudo-Anosov homeomorphism on
a genus three surface, stabilizing orientable measured foliations, and hav-
ing for dilatation the maximal real root of the polynomial X6 − X4 −
X3 −X2 + 1 (namely 1.40127...).

Proof. — Let |α| > 1 be the maximal real root of the polynomial
P2(X) = X6 −X4 −X3 −X2 + 1 with α < −1, so that α6 − α4 + α3 −
α2 + 1 = 0. We start with the permutation π = (6, 3, 8, 2, 7, 4, 10, 9, 5, 1)
and the closed Rauzy path

1− 1− 1− 0− 0− 1− 0− 1− 0− 0.

ANNALES DE L’INSTITUT FOURIER



SYSTOLE IN SMALL GENUS 141

The associated Rauzy–Veech matrix is

R =


1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1 1
0 0 1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0

 .
The associated translation surface and its image are presented in Fig-
ure B.3. �

Figure B.3. Partition of (M, q) and (M ′, q′) = A(M, q).

Appendix C. Genus two

Let us consider the two sequences of Dehn twists on a genus two sur-
face,

T 2
a1
Tc1Tb2T

−1
a2
Tb1 and T 2

a1
T−1
b2
T−1
c1 T−1

a2
Tb1 .

Their actions on the first homology group are respectively
( 1 −3 0 1

1 −2 0 1
0 2 2 −1
0 1 1 0

)
and
( 1 −1 1 −1

1 0 1 −1
0 −1 −1 2
0 0 −1 1

)
. The characteristic polynomials of these matrices are,

respectively, X4−X3−X2−X +1 and X4−X3 +3 X2−X +1; thus The-
orem 2.5 implies that the isotopy classes of these homeomorphisms are
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pseudo-Anosov. Let φ1 and φ2 be the corresponding maps. One can cal-
culate their dilatations from their action on the fundamental group [9].
We check that the dilatations, λ, are the same, namely the Perron root
of the polynomial X4−X3−X2−X +1 (λ ' 1.72208).

Theorem 2.4 thus implies that φ1 fixes an orientable measured foliation,
and hence δ+

2 = λ(φ1) and φ2 fixes a non-orientable measured foliation.
We conclude that δ−2 = λ(φ2).

These two homeomorphisms are related by covering transformations
(see Remark 4.1).
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