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POSITIVITY PROPERTIES OF TORIC VECTOR
BUNDLES

by Milena HERING, Mircea MUSTAŢĂ & Sam PAYNE (*)

Abstract. — We show that a torus-equivariant vector bundle on a complete
toric variety is nef or ample if and only if its restriction to every invariant curve
is nef or ample, respectively. Furthermore, we show that nef toric vector bundles
have a nonvanishing global section at every point and deduce that the underlying
vector bundle is trivial if and only if its restriction to every invariant curve is trivial.
We apply our methods and results to study, in particular, the vector bundlesML
that arise as the kernel of the evaluation map H0(X,L) ⊗ OX → L, for ample
line bundles L. We give examples of twists of such bundles that are ample but not
globally generated.

Résumé. — Nous prouvons qu’un fibré vectoriel équivariant sur une variété
torique complète est nef ou ample si et seulement si sa restriction à chaque courbe
invariante est nef ou ample, respectivement. Nous montrons également qu’étant
donne un fibré vectoriel torique nef E et un point x ∈ X, il existe une section de E
non-nulle en x; on déduit de cela que E est trivial si et seulement si sa restriction
à chaque courbe invariante est triviale. Nous appliquons ces résultats et méthodes
pour étudier en particulier les fibrés vectoriels ML, définis en tant que noyau
des applications d’évaluation H0(X,L) ⊗ OX → L, ou L est un fibré en droites
ample. Finalement, nous donnons des exemples des fibrés vectoriels toriques qui
sont amples mais non engendrés par leur sections globales.

1. Introduction

Let X be a complete toric variety. If L is a line bundle on X, then various
positivity properties of L admit explicit interpretations in terms of convex
geometry. These interpretations can be used to deduce special properties
of toric line bundles. For example, if L is nef then it is globally generated.
Moreover, L is nef or ample if and only if the intersection number of L with

Keywords: Toric variety, toric vector bundle.
Math. classification: 14M25, 14F05.
(*) The second author was partially supported by NSF grant DMS 0500127 and by a
Packard Fellowship. The third author was supported by the Clay Mathematics Institute.



608 Milena HERING, Mircea MUSTAŢĂ & Sam PAYNE

every invariant curve is nonnegative or positive, respectively. In this paper,
we investigate the extent to which such techniques and results extend to
equivariant vector bundles of higher rank.

Our first main result Theorem 2.1 says that nefness and ampleness can
be detected by restricting to invariant curves also in higher rank. More
precisely, if E is an equivariant vector bundle on X, then E is nef or ample
if and only if for every invariant curve C on X, the restriction E|C is nef
or ample, respectively. Note that such a curve C is isomorphic to P1 (by
convention, when considering invariant curves, we assume that they are
irreducible), and therefore

E|C ' OP1(a1)⊕ · · · ⊕ OP1(ar)

for suitable a1, . . . , ar ∈ Z. In this case E|C is nef or ample if and only if
all ai are nonnegative or positive, respectively. We apply the above result
in Section 3 to describe the Seshadri constant of an equivariant vector
bundle E on a smooth toric variety X in terms of the decompositions of
the restrictions of E to the invariant curves in X.

The characterization of nef and ample line bundles has an application
in the context of the bundlesML that appear as the kernel of the evalua-
tion map H0(X,L) ⊗ OX → L, for globally generated line bundles L. We
show that if C is an invariant curve on X, and L is ample, then ML|C
is isomorphic to O⊕aP1 ⊕ OP1(−1)⊕b for nonnegative integers a and b. We
then deduce that, for any ample line bundle L′ on X, the tensor product
ML ⊗ L′ is nef.

Our second main result Theorem 6.1 says that if E is a nef equivariant
vector bundle on X then, for every point x ∈ X, there is a global section
s ∈ H0(X, E) that does not vanish at x. This generalizes the well-known
fact that nef line bundles on toric varieties are globally generated. On the
other hand, we give examples of ample toric vector bundles that are not
globally generated (see Examples 4.16 and 4.17).

The proof of Theorem 6.1 relies on a description of toric vector bundles
in terms of piecewise-linear families of filtrations, introduced by the third
author in [36], that continuously interpolate the filtrations appearing in
Klyachko’s Classification Theorem [23]. As an application of this result, we
show that if E is a toric vector bundle on a complete toric variety, then E is
trivial (disregarding the equivariant structure) if and only if its restriction
to each invariant curve C on X is trivial. This gives a positive answer to a
question of V. Shokurov.

In the final section of the paper we discuss several open problems.
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2. Ample and nef toric vector bundles

We work over an algebraically closed field k of arbitrary characteristic.
Let N ' Zn be a lattice, M its dual lattice, ∆ a fan in NR = N ⊗Z R,
and X = X(∆) the corresponding toric variety. Then X is a normal n-
dimensional variety containing a dense open torus T ' (k∗)n such that the
natural action of T on itself extends to an action of T on X. In this section,
we always assume that X is complete, which means that the support |∆|
is equal to NR. For basic facts about toric varieties we refer to [13].

An equivariant (or toric) vector bundle E on X is a locally free sheaf
of finite rank on X with a T -action on the corresponding geometric vector
bundle V(E) = Spec(Sym(E)) such that the projection ϕ : V(E) −→ X is
equivariant and T acts linearly on the fibers of ϕ. In this case, note that the
projectivized vector bundle P(E) = Proj(Sym(E)) also has a T -action such
that the projection π : P(E) −→ X is equivariant. Neither V(E) nor P(E)
is a toric variety in general. However, every line bundle on X admits an
equivariant structure, so if E splits as a sum of line bundles E ' L1⊕· · ·⊕Lr,
then E admits an equivariant structure. In this case, both V(E) and P(E)
admit the structure of a toric variety; see [30, pp. 58–59].

Note that given an equivariant vector bundle E on X, we get an induced
algebraic action of T on the vector space of sections Γ(Uσ, E), for every
cone σ ∈ ∆. In fact, E is determined as an equivariant vector bundle by the
T -vector spaces Γ(Uσ, E) (with the corresponding gluing over Uσ1 ∩ Uσ2).
Moreover, if σ is a top-dimensional cone, and if xσ ∈ X is the corresponding
fixed point, then we get a T -action also on the fiber E ⊗ k(xσ) of E at xσ
such that the linear map Γ(Uσ, E) −→ E ⊗ k(xσ) is T -equivariant.

Given an algebraic action of T on a vector space V , we get a decompo-
sition

V = ⊕u∈MVu,

where Vu is the χu-isotypical component of V , which means that T acts
on Vu via the character χu. For every w ∈ M , the (trivial) line bundle

TOME 60 (2010), FASCICULE 2



610 Milena HERING, Mircea MUSTAŢĂ & Sam PAYNE

Lw := O(divχw) has a canonical equivariant structure, induced by the
inclusion of Lw in the function field of X. For every cone σ ∈ ∆ we have

Γ(Uσ,Lw) = χ−w · k[σ∨ ∩M ],

and Γ(Uσ,Lw)u = k·χ−u (when w−u is in σ∨). Note that this is compatible
with the convention that T acts on k · χu ⊆ Γ(Uσ,OX) by χ−u (we follow
the standard convention in invariant theory for the action of the group on
the ring of functions; in toric geometry one often reverses the sign of u in
this convention, making use of the fact that the torus is an abelian group).
We also point out that if σ is a maximal cone, then T acts on the fiber of
Lw at xσ by χw. It is known that every equivariant line bundle on Uσ is
equivariantly isomorphic to some Lw|Uσ , where the class of w in M/M ∩σ⊥
is uniquely determined.

For every cone σ ∈ ∆, the restriction E|Uσ decomposes as a direct sum
of equivariant line bundles L1 ⊕ · · · ⊕ Lr. Moreover, each such Li is equiv-
ariantly isomorphic to some Lui |Uσ , where the class of ui is uniquely de-
termined in M/M ∩ σ⊥. If σ is a top-dimensional cone, then in fact the
multiset {u1, . . . , ur} is uniquely determined by E and σ.

A vector bundle E on X is nef or ample if the line bundle O(1) on P(E)
is nef or ample, respectively. For basic results about nef and ample vector
bundles, as well as the big vector bundles and Q-twisted vector bundles
discussed below, see [25, Chapter 6]. It is well-known that a line bundle
on a complete toric variety is nef or ample if and only if its restriction
to each invariant curve is so. The following theorem extends this result to
toric vector bundles. Recall that every invariant curve on a complete toric
variety is isomorphic to P1. Every vector bundle on P1 splits as a sum of
line bundles O(a1)⊕· · ·⊕O(ar), for some integers a1, . . . , ar. Such a vector
bundle is nef or ample if and only if all the ai are nonnegative or positive,
respectively.

Theorem 2.1. — A toric vector bundle on a complete toric variety is
nef or ample if and only if its restriction to every invariant curve is nef or
ample, respectively.

Proof. — The restriction of a nef or ample vector bundle to a closed sub-
variety is always nef or ample, respectively, so we must show the converse.
First we consider the nef case. Suppose the restriction of E to every invari-
ant curve is nef, so the degree of OP(E)(1) is nonnegative on every curve
in P(E) that lies in the preimage of an invariant curve in X. Let C be an
arbitrary curve in P(E). We must show that the degree of OP(E)(1) on C

is nonnegative. Let v1, . . . , vn be a basis for N , with γi the one-parameter
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subgroup corresponding to vi. Let C1 be the flat limit of t · C as t goes to
zero in γ1. Hence [C1] is a one-dimensional cycle in P(E) that is linearly
equivalent to [C], and π(C1) is invariant under γ1. Now let Ci be the flat
limit of t · Ci−1 as t goes to zero in γi, for 2 6 i 6 n. Then [Ci] is lin-
early equivalent to [C], and π(Ci) is invariant under the torus generated by
γ1, . . . , γi. In particular, [Cn] is linearly equivalent to [C] and every com-
ponent of Cn lies in the preimage of an invariant curve in X. Therefore the
degree of OP(E)(1) on Cn, and hence on C, is nonnegative, as required.

Suppose now that the restriction of E to every invariant curve is ample.
Note first that X is projective. Indeed, the restriction of det(E) to every
invariant curve on X is ample, and since det(E) has rank one, we deduce
that det(E) is ample.

Let us fix an ample line bundle L on X, and choose an integer m that
is greater than (L ·C) for every invariant curve C in X. The restriction of
Symm(E)⊗ L−1 to each invariant curve is nef, and hence Symm(E)⊗ L−1

is nef. It follows that Symm(E) is ample, and hence E is ample as well [25,
Proposition 6.2.11 and Theorem 6.1.15]. �

Remark 2.2. — Note that if E is a vector bundle on an arbitrary com-
plete variety X, then E is nef if and only if for every irreducible curve
C ⊂ X, the restriction E|C is nef (this simply follows from the fact that
every curve in P(E) is contained in some P(E|C)). The similar criterion for
ampleness fails since there are non-ample line bundles that intersect posi-
tively every curve (see, for example, [20, Chap. I, §10]). However, suppose
that X is projective, and that we have finitely many curves C1, . . . , Cr such
that a vector bundle E on X is nef if and only if all E|Ci are nef. In this
case, arguing as in the above proof we see that a vector bundle E on X is
ample if and only if all E|Ci are ample.

Remark 2.3. — The assumption in the theorem that E is equivariant
is essential. To see this, consider vector bundles E on Pn (see [31, Section
2.2] for the basic facts that we use). If rk(E) = r, then for every line ` in
Pn we have a decomposition

E|` ' OP1(a1)⊕ · · · ⊕ OP1(ar),

where we assume that the ai are ordered such that a1 > . . . > ar. We put
a` = (a1, . . . , ar). If we consider on Zr the lexicographic order, then the set
U of lines given by

U = {` ∈ Gr(1,Pn) | a` 6 a`′ for every `′ ∈ Gr(1,Pn)}

TOME 60 (2010), FASCICULE 2
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is open in the Grassmannian Gr(1,Pn). The vector bundle E is uniform if
U = Gr(1,Pn).

Suppose now that E is a rank two vector bundle on P2 that is not uniform
(for an explicit example, see [31, Theorem 2.2.5]). Let (a1, a2) be the value
of a` for ` ∈ U . If ϕ is a general element in Aut(Pn), then every torus-
fixed line is mapped by ϕ to an element in U . It follows that if E ′ =
ϕ∗(E)⊗OP2(−a2), then E ′|` is nef for every torus-invariant line `. On the
other hand, if ϕ(`) 6∈ U , and if E|ϕ(`) ' OP1(b1) ⊕ OP1(b2), then b2 < a2
(note that a1 + a2 = b1 + b2 = deg(E)), hence E ′|` is not nef.

Remark 2.4. — Recall that a vector bundle E is called big if the line
bundle OP(E)(1) is big, which means that its Iitaka dimension is equal
to dim P(E). The analogue of Theorem 2.1 does not hold for big vector
bundles: there are toric vector bundles E such that the restriction of E to
every invariant curve is big, but E is not big. Consider for example X = Pn,
for n > 2, and E = TPn(−1). An irreducible torus-invariant curve in Pn is
a line. For such a line ` we have

E|` ' O`(1)⊕O⊕(n−1)
` .

In particular, we see that E|` is big and nef. However, E is not big: the
surjection O⊕(n+1)

Pn −→ TPn(−1) in the Euler exact sequence induces an
embedding of P(E) in Pn × Pn, such that OP(E)(1) is the restriction of
pr∗2(OPn(1)). Therefore the Iitaka dimension of OP(E)(1) is at most n <

dim P(E).

Remark 2.5. — The argument in the proof of Theorem 2.1 shows more
generally that a line bundle L on P(E) is nef if and only if its restriction to
every P(E|C) is nef, where C is an invariant curve on X. On the other hand,
such a curve C is isomorphic to P1, and E|C is completely decomposable.
Therefore P(E|C) has a structure of toric variety of dimension rk(E). If we
consider the invariant curves in each such P(E|C), then we obtain finitely
many curves R1, . . . , Rm in P(E) (each of them isomorphic to P1), that
span the Mori cone of P(E). In particular, the Mori cone of P(E) is rational
polyhedral.

3. Q-twisted bundles and Seshadri constants

Recall that a Q-twisted vector bundle E〈δ〉 on X consists formally of
a vector bundle E on X together with a Q-line bundle δ ∈ Pic(X) ⊗ Q.
Just as Q-divisors simplify many ideas and arguments about positivity
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of line bundles, Q-twisted vector bundles simplify many arguments about
positivity of vector bundles. We refer to [25, Section 6.2] for details. One
says that a Q-twisted vector bundle E〈δ〉 is nef or ample if OP(E)(1) + π∗δ

is nef or ample, respectively. If Y is a subvariety of X, then the restriction
of E〈δ〉 to Y is defined formally as

E〈δ〉|Y = E|Y 〈δ|Y 〉.

Remark 3.1. — Since every Q-divisor is linearly equivalent to a T -
invariant Q-divisor, the proof of Theorem 2.1 goes through essentially
without change to show that a Q-twisted toric vector bundle is nef or
ample if and only if its restriction to every invariant curve is nef or ample,
respectively.

Suppose that X is smooth and complete, E is nef, and x is a point in X.
Let p : X̃ → X be the blowup at x, with exceptional divisor F . Recall that
the Seshadri constant ε(E , x) of E at x is defined to be the supremum of the
rational numbers λ such that p∗E〈−λF 〉 is nef. The global Seshadri constant
ε(E) is defined as infx∈X ε(E , x). See [19] for background and further details
about Seshadri constants of vector bundles.

We now apply Theorem 2.1 to describe Seshadri constants of nef toric
vector bundles on smooth toric varieties. We start with the following general
definition. Suppose that X is a complete toric variety, E is a toric vector
bundle on X, and x ∈ X is a fixed point. For each invariant curve C passing
through x, we have a decomposition

E|C ' O(a1)⊕ · · · ⊕ O(ar).

We then define τ(E , x) := min{ai}, where the minimum ranges over all ai,
and over all invariant curves passing through x. We also define τ(E) :=
minx τ(E , x), where the minimum is taken over all fixed points of X. In
other words, τ(E) is the minimum of the ai, where the minimum ranges
over all invariant curves in X. Note that Theorem 2.1 says that E is nef or
ample if and only if τ(E) is nonnegative or strictly positive, respectively.

We now give the following characterization of Seshadri constants of toric
vector bundles at fixed points, generalizing a result of Di Rocco for line
bundles [6].

Proposition 3.2. — Let X be a smooth complete toric variety of di-
mension n, and E a nef toric vector bundle on X. If x ∈ X is a torus-fixed
point, then ε(E , x) is equal to τ(E , x).

Proof. — Let λ be a nonnegative rational number, and let p : X̃ → X be
the blowup at a T -fixed point x, with exceptional divisor F . Then X̃ is a

TOME 60 (2010), FASCICULE 2
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toric variety and p is an equivariant morphism, so p∗E〈−λF 〉 is nef if and
only if its restriction to every invariant curve is nef.

Let C̃ be an invariant curve in X̃. If C̃ is contained in F , then the
restriction of p∗E〈−λF 〉 to C̃ is isomorphic to a direct sum of copies of
OP1〈λH〉, where H is the hyperplane class on P1 (note that O(−F )|F is
isomorphic to OPn−1(1)).

If C̃ is not contained in the exceptional divisor, then p maps C̃ isomor-
phically onto an invariant curve C in X. If C does not contain x then the
restriction of p∗E〈−λF 〉 to C̃ is isomorphic to E|C , which is nef. On the
other hand, if x ∈ C then (F · C̃) = 1. Then the restriction of p∗E〈−λF 〉
to C̃ is isomorphic to E|C〈−λH〉. Therefore, if the restriction of E to C is
isomorphic to O(a1)⊕ · · · ⊕ O(ar), then the restriction of p∗E〈−λF 〉 to C̃
is nef if and only if λ 6 ai for all i. By Theorem 2.1 for Q-twisted bundles
(see Remark 3.1 above), it follows that ε(E , x) = τ(E , x), as claimed. �

Corollary 3.3. — Under the assumptions in the proposition, the
global Seshadri constant ε(E) is equal to τ(E).

Proof. — It is enough to show that the minimum of the local Seshadri
constants ε(E , x) occurs at a fixed point x ∈ X. Now, since E is equivariant,
ε(E , x) is constant on each T -orbit in X. It then follows from the fact
that the set of non-nef bundles in a family is parametrized by at most
a countable union of closed subvarieties [25, Proposition 1.4.14] that if a
torus orbit Oσ is contained in the closure of an orbit Oτ , then the local
Seshadri constants of E at points in Oσ are less than or equal to those at
points in Oτ . Therefore, the minimal local Seshadri constant must occur
along a minimal orbit, which is a fixed point. �

For the following two corollaries, let X be a smooth complete toric vari-
ety, with E a toric vector bundle on X.

Corollary 3.4. — Let p : X̃ → X be the blowup of X at a fixed point,
with exceptional divisor F . For every integer m > 0, we have τ(p∗E ⊗
O(−mF )) > min{m, τ(E) − m}. In particular, if E is ample then p∗E ⊗
O(−F ) is nef.

Proof. — Similar to the proof of Proposition 3.2. �

Corollary 3.5. — Let q : X ′ → X be the blowup of X at k distinct
fixed points, with exceptional divisors F1, . . . , Fk. If the Seshadri constant
ε(E) is greater than or equal to two, then q∗E ⊗ O(−F1 − · · · − Fk) is nef.

Proof. — Similar to the proof of Proposition 3.2, using the fact that an
invariant curve C in X contains at most two fixed points. �
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As mentioned above, the set of non-nef bundles in a family is at most
a countable union of Zariski closed subsets. However, in the toric case we
deduce from Theorem 2.1 that the set of non-nef bundles is closed.

Corollary 3.6. — Let S be a variety, and let E be a vector bundle on
X × S such that, for every point s ∈ S, the restriction Es of E to X × {s}
admits the structure of a toric vector bundle. Then the set of points s such
that Es is nef is open in S.

Proof. — By Theorem 2.1, it is enough to prove the corollary when X =
P1. In this case the assertion is clear, since a vector bundle F ' O(a1) ⊕
· · · ⊕ O(ar) on P1 is nef if and only if h0(P1,F∨(−1)) = 0. �

4. The bundles ML

Vector bundles appear naturally in the study of linear series on a pro-
jective variety. For example, suppose that L is a globally generated line
bundle on X. The kernelML of the evaluation map H0(X,L)⊗OX −→ L

is a vector bundle whose behavior is closely related to the geometry of L.
If L is very ample, then the projective normality of X in the embedding
given by L, or the minimal degree in the syzygies of the ideal of X are
governed by properties ofML (see [15] and [16]). Note that if X is a toric
variety, and if we fix an equivariant structure on L, thenML becomes an
equivariant vector bundle.

Recall the following well-known question about linear series on smooth
toric varieties. It would be quite interesting to understand what conditions
would guarantee a positive answer. This question motivates our study of
the vector bundlesML.

Question 4.1. — ([29]) If L1 and L2 are ample line bundles on a smooth
projective toric variety X, is the multiplication map

(4.1) H0(X,L1)⊗H0(X,L2) −→ H0(X,L1 ⊗ L2)

surjective?

Fakhruddin [11] proved that this question has a positive answer for an
ample line bundle L1 and a globally generated line bundle L2 on a smooth
toric surface. Recently, Haase, Nill, Pfaffenholz and Santos [18] were able to
prove this for arbitrary toric surfaces. Moreover it is well known [10, 26, 3]
that for an ample line bundle L on a possibly singular toric variety of
dimension n, the multiplication map

(4.2) H0(X,Lm)⊗H0(X,L) −→ H0(X,Lm+1)

TOME 60 (2010), FASCICULE 2



616 Milena HERING, Mircea MUSTAŢĂ & Sam PAYNE

is surjective for m > n− 1.

Remark 4.2. — Question 4.1 can be restated in terms of Minkowski
sums of polytopes, as follows. Recall that an ample divisor D on a toric
variety corresponds to a lattice polytope P ⊂ MR. Let P1, P2 be the
lattice polytopes in MR corresponding to ample divisors D1 and D2 on
X. Question 4.1 is equivalent to the question whether the natural addition
map

(4.3) (P1 ∩M)× (P2 ∩M) −→ (P1 + P2) ∩M

is surjective.

Remark 4.3. — Question 4.1 has a positive answer in general if and
only if it has a positive answer whenever L1 = L2. Indeed, given two
line bundles L1 and L2 on the smooth toric variety X we may consider
the toric variety Y = P(L1 ⊕ L2) (note that Y is smooth, too). Since
π∗OY (m) = Symm(L1 ⊕ L2), it follows that if

H0(Y,OY (1))⊗H0(Y,OY (1)) −→ H0(Y,OY (2))

is surjective, then (4.1) is surjective, too.

Remark 4.4. — The argument in the previous remark can be restated
combinatorially, as follows. Let D1 and D2 be ample T -Cartier divisors,
with P1 and P2 the corresponding lattice polytopes. Let Q ⊂MR×R be the
Cayley sum of P1 and P2, which is the convex hull of (P1×{0})∪(P2×{1}).
If the addition map (Q ∩M)× (Q ∩M) −→ 2Q ∩M is surjective, then so
is the map (4.3) above. Note that Q is the polytope corresponding to the
line bundle OY (1) as in the previous remark, and if X is smooth then the
toric variety corresponding to Q is smooth.

We now turn to the study of the vector bundlesML. Let X be a complete
toric variety, and L a globally generated line bundle on X. LetML be the
kernel of the evaluation map associated to L:

ML := ker
(
H0(X,L)⊗OX −→ L

)
.

Since L is globally generated,ML is a vector bundle of rank h0(L)− 1. By
definition, we have an exact sequence

(4.4) 0 −→ML −→ H0(X,L)⊗OX −→ L −→ 0.

If L′ is another globally generated line bundle, then Hi(X,L′) vanishes
for i greater than zero. Therefore, by tensoring with L′ the exact se-
quence (4.4), we see that the multiplication map H0(X,L)⊗H0(X,L′) −→
H0(X,L ⊗ L′) is surjective if and only if H1(X,ML ⊗ L′) = 0. We also
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get from this exact sequence that in general Hi(X,ML⊗L′) = 0 for every
i > 2.

Remark 4.5. — Suppose that P1 and P2 are the lattice polytopes in MR
corresponding to the ample divisors D1 and D2 on X, as in Remark 4.2.
If L1 = O(D1) and L2 = O(D2), then the points w in (P1 + P2) ∩M that
are not sums of lattice points of P1 and P2 correspond exactly to the torus
weights w for which H1(X,ML1 ⊗ L2)w 6= 0.

Proposition 4.6. — If L and L′ are line bundles on X, with L ample,
then for every fixed point x ∈ X we have

τ(ML ⊗ L′, x) = τ(L′, x)− 1.

In particular, ML ⊗ L′ is nef if and only if L′ is ample, and ML ⊗ L′ is
ample if and only if (L′ · C) > 2 for every invariant curve C.

We need to describe the restriction of ML to the invariant curves on
X. We do this recursively, by first restricting ML to the prime invariant
divisors in X.

Proposition 4.7. — Let L be an ample line bundle on the projective
toric variety X. If D is a prime invariant divisor in X, then

(ML)|D 'ML|D ⊕O
⊕m
D ,

where m = h0(X,L⊗O(−D)).

Proof. — We have an exact sequence

0 −→ O(−D) −→ OX −→ OD −→ 0.

After tensoring with L, and using the fact that H1(X,L ⊗ O(−D)) = 0
(see, for example, Corollary 2.5 in [28]), we deduce that the restriction
map H0(X,L) −→ H0(D,L|D) is surjective. This restriction map induces
a commutative diagram with exact rows

0 −−−−→ (ML)|D −−−−→ H0(X,L)⊗OD −−−−→ LD −−−−→ 0yϕ yψ ∥∥∥
0 −−−−→ ML|D −−−−→ H0(D,L|D)⊗OD −−−−→ LD −−−−→ 0.

We have seen that ψ is surjective (hence also split), and therefore ϕ is also
surjective and split, and ker(ϕ) ' ker(ψ). The proposition follows. �

Corollary 4.8. — If C is an invariant curve on X, then

(4.5) (ML)|C ' O⊕aP1 ⊕OP1(−1)⊕b,

where a = h0(L)− (L · C)− 1 and b = (L · C).
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Proof. — We can find a sequence of irreducible torus-invariant subvari-
eties

C = V1 ⊂ V2 ⊂ · · · ⊂ Vn = X,

with dim(Vi) = i for all i. Applying the proposition (n − 1) times, we see
that (ML)|C 'ML|C ⊕O

⊕a
C for some a.

On the other hand, on C ' P1 we have MO(m) ' O(−1)⊕m for every
m > 0 (note thatMO(m) is a vector bundle of rank m and degree −m such
that h0(MO(m)) = 0). Hence (ML)|C has an expression as in (4.5), and a

and b can be determined using the fact that the rank ofML is h0(L) − 1
and deg((ML)|C) = −(L · C). �

Proof of Proposition 4.6. — The first assertion in the proposition follows
directly from Corollary 4.8. Note that for every invariant curve C, the
restriction ML|C has O(−1) as a factor (this is a consequence of the fact
that (L · C) > 0). The last two assertions in the proposition follow from
the first one using Theorem 2.1. �

In light of Proposition 4.6, and motivated by Question 4.1, we see that
it would be desirable to get conditions on nef toric vector bundles that
would guarantee the vanishing of higher cohomology. It is well-known that
the higher cohomology of a nef line bundle on a toric variety vanishes.
However, as the following example shows, this fails in higher rank even for
ample toric vector bundles.

Example 4.9. — Let

P = 〈(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (1, 1, 1, 3)〉

and let L be the corresponding ample line bundle on the toric variety X.
By Proposition 4.6, the toric vector bundleML ⊗ L2 is ample on X. The
product map H0(X,L) ⊗H0(X,L2) → H0(X,L3) is not surjective, since
the point (1, 1, 1, 1) ∈ 3P cannot be written as the sum of a lattice point
in P and one in 2P . Therefore H1(X,ML ⊗ L2) is nonzero.

The toric variety X in the example above appears also in Example 4.16,
where we show that the ample vector bundle ML3 ⊗ L2 is not globally
generated. This toric variety is singular, but there are also ample vector
bundles with nonvanishing higher cohomology on smooth toric varieties, in-
cluding projective spaces. We thank O. Fujino for pointing out the following
example.

Example 4.10. — Let F : Pn → Pn be the toric morphism induced by
multiplication by q on NR, where q is an integer greater than n+ 1. This
map F is known as the qth toric Frobenius morphism; see Remark 4.14
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below. Let T be the tangent bundle on Pn, and K ' O(−n − 1) the
canonical bundle. The restriction of the pullback F ∗T to each invariant
curve splits as O(q)⊕(n−1)⊕O(2q). We deduce that for 1 6 j 6 n, ∧jF ∗T⊗
K is ample. Now, by [12, Proposition 3.5], if Hi(Pn,∧jF ∗T ⊗K) = 0 then
Hi(Pn,∧jT ⊗ K) = 0. On the other hand, Hi(Pn,∧jT ⊗ K) is nonzero
exactly when i = n − j, by Serre duality. In particular, ∧jF ∗T ⊗ K is
an ample vector bundle on Pn with nonvanishing higher cohomology for
1 6 j < n.

We mention that L. Manivel proved in [27] some interesting vanishing
results for ample (but not necessarily toric) vector bundles on smooth toric
varieties. He showed that if E is such a vector bundle, then Hi(X,ΩpX ⊗
Sj(E)) = 0 for every i > rk(E), and Hi(X,ΩpX ⊗ ∧j(E)) = 0 for every i >
rk(E)−j. Further vanishing theorems for not necessarily equivariant vector
bundles and reflexive sheaves on toric varieties have been proved by Fujino
[12]. However, these results do not apply in our setting, to give vanishing
for H1(X,ML ⊗ L′) when L and L′ are ample. An interesting question is
whether one could get stronger vanishing theorems for equivariant vector
bundles.

We now turn to the question of the global generation of the bundles of
the formML⊗L′. Let L and L′ be globally generated line bundles on the
complete toric variety X. We have seen that if both L and L′ are ample
then ML ⊗ L′ is nef. Furthermore, if (L′ · C) > 2 for every T -invariant
curve C then ML ⊗ L′ is ample. We now give a necessary and sufficient
combinatorial condition for ML ⊗ L′ to be generated by global sections.
As an application of this combinatorial criterion, we give examples of nef
and ample toric vector bundles that are not globally generated.

Fix T -Cartier divisors D and D′ on X such that L ' O(D) and L′ '
O(D′). This makes L and L′ equivariant line bundles, and therefore ML

and ML ⊗ L′ become toric vector bundles with the induced equivariant
structures. It is convenient to work with the negatives of the usual lattice
polytopes associated to D and D′, so we put P = −PD and P ′ = −PD′ .
Therefore P is the convex hull of the lattice points u ∈ M such that
H0(X,L)u is not zero, and similarly for P ′ (recall that we assume that
L and L′ are globally generated). For each maximal cone σ ∈ ∆, let uσ and
u′σ be the lattice points such that the restrictions of D and D′ to Uσ are
equal to div(χuσ ) and div(χu′σ ), respectively. Thus P is the convex hull of
the uσ, and similarly for P ′. Note that H0(X,L)u = k · χ−u if u ∈ P ∩M ,
and it is zero otherwise.
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Proposition 4.11. — If L and L′ are globally generated, then the
vector bundle ML ⊗ L′ is generated by global sections if and only if
P ∩ (u + u′σ − P ′) contains at least two lattice points for every lattice
point u ∈ P r {uσ} and every maximal cone σ ∈ ∆.

Note that both P and (u+ u′σ − P ′) contain u, so the condition in Propo-
sition 4.11 is that the intersection of P with (u+ u′σ − P ′) should contain
at least one other lattice point.

Proof. — Tensoring the exact sequence (4.4) with L′ gives an exact se-
quence

0 −→ H0(X,ML ⊗L′)w −→ (H0(X,L)⊗H0(X,L′))w −→ H0(X,L⊗L′)w,

for every w ∈ M . It follows that H0(X,ML ⊗ L′)w consists of the sums∑
u auχ

−u⊗χu−w with
∑
u au = 0, where the sum is over those u ∈ (P∩M)

with w − u ∈ P ′.
For every maximal cone σ in ∆, let xσ be the unique T -fixed point in Uσ.

The vector bundle ML ⊗ L′ is globally generated if and only if for every
such σ, the image of H0(X,ML ⊗ L′) in the fiber at xσ has dimension
rk(ML ⊗ L′) = h0(L) − 1. Let us fix w ∈ M . Since D′ = div(χu′σ ) on
Uσ, it follows that the image of the section s =

∑
u auχ

−u ⊗ χu−w ∈
H0(X,ML ⊗ L′)w in the fiber at xσ of H0(X,L) ⊗ L′ is aw−u′σχ

u′σ−w if
w − u′σ is in P .

Suppose now that w−u′σ ∈ P . If there is at most one u ∈ P∩(w−P ′)∩M ,
then in the sum defining s we have at most one term, and aw−u′σ = 0 for
every section s as above. Otherwise, χu′σ−w lies in the image of H0(ML ⊗
L′)w. Note that if u ∈ P and u′ ∈ P ′ are such that u+ u′ = uσ + u′σ, then
u = uσ and u′ = u′σ (this follows since uσ and u′σ are vertices of P and P ′,
respectively). This shows that if w−u′σ = uσ, then #(P∩(w−P ′)∩M) = 1.
It follows from the above discussion that the image of H0(X,ML ⊗ L′) in
the fiber at xσ has rank h0(L)− 1 if and only if for every lattice point u in
P r {uσ} we have #(P ∩ (u′σ + u− P ′) ∩M) > 2. �

Corollary 4.12. — Let L be a globally generated line bundle on a
toric variety X. ThenML ⊗ L is globally generated.

Proof. — For every maximal cone σ, and for all u ∈ P ∩M r {uσ}, the
lattice points u and uσ are contained in P ∩(u+ uσ − P ), and the assertion
follows from Proposition 4.11. �

Remark 4.13. — The above corollary can also be deduced using the
Koszul complex associated to the evaluation map of L, which shows that
ML is a quotient of

(
∧2H0(X,L)

)
⊗ L−1.
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Remark 4.14. — For every positive integer q, let Fq : X −→ X be the qth

toric Frobenius morphism: this is induced by multiplication by q on NR.
The name is due to the fact that if k has characteristic p then Fp is the
relative Frobenius morphism on X. If W ⊆ H0(X,Lq) is the vector sub-
space generated by s⊗q, for s ∈ H0(X,L), then we have an exact sequence
of equivariant vector bundles

0 −→ F ∗q (ML) −→W ⊗OX −→ Lq −→ 0.

Arguing as in the proof of Proposition 4.11, one can show that F ∗q (ML)⊗L′
is globally generated if and only if, for every maximal cone σ and every
lattice point u ∈ P r {uσ}, the set P ∩ 1

q (u′σ + qu − P ′) contains at least
two lattice points.

Our main application of Proposition 4.11 is to give examples of toric
vector bundles that are ample or nef, but not globally generated.

Example 4.15. — Let P = 〈(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 2)〉, and let
L, X be the ample line bundle and toric variety associated to −P . (1) Then
ML2 ⊗ L is nef by Proposition 4.6, but not globally generated, since u =
(1, 1, 1) ∈ 2P , and the maximal cone corresponding to (0, 0, 0) violates the
condition in Proposition 4.11. If f : Y −→ X is a resolution of singularities,
then f∗(ML2 ⊗ L) gives an example of a nef but not globally generated
toric bundle on a smooth toric threefold.

By going to dimension four, we can similarly get an example of an ample
toric vector bundle that is not globally generated (note, however, that in
this case the toric variety is not smooth).

Example 4.16. — Let

P = 〈(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (1, 1, 1, 3)〉,

and let L, X be the ample line bundle and the toric variety associated to
−P . Note that ML3 ⊗ L2 is ample by Proposition 4.6. However, it is not
globally generated, since

3P ∩ ((1, 1, 1, 1)− 2P ) ∩M = {(1, 1, 1, 1)} ,

hence the condition in Proposition 4.11 is not satisfied for the maximal
cone σ corresponding to (0, 0, 0, 0), and for u = (1, 1, 1, 1) ∈ 3P .

We can get similar examples in dimension three, if we consider also bun-
dles of the form F ∗q (ML)⊗ L′.

(1) Note that the polarized toric varieties associated to P and to −P are canonically
isomorphic.
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Example 4.17. — Let P = 〈(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 3)〉. If F2 :
X −→ X is the toric Frobenius morphism as in Remark 4.14, then E :=
(F ∗2ML2)⊗L3 is ample but not globally generated. Indeed, for every q and
every invariant curve C on X we have F ∗qML2 |C ' O⊕aP1 ⊕ OP1(−q)⊕b,
with a, b given by Corollary 4.8. Hence E is ample by Theorem 2.1. On the
other hand, if σ is the maximal cone corresponding to (0, 0, 0), since

2P ∩
(

(1, 1, 1)− 3
2
P

)
∩M = {(1, 1, 1)},

we see by Remark 4.14 that E is not globally generated.

The following proposition shows that when L is normally generated, the
vector bundles appearing in the preceding examples are always globally
generated. Recall that a line bundle L on a projective variety X is normally
generated if it is very ample, and the induced embedding of X by the
complete linear system |L| is projectively normal. If P is a lattice polytope
in MR, and X, L are the toric variety and the ample line bundle associated
to P , then L is normally generated if and only if for every m > 2 we have

mP ∩M = ((m− 1)P ∩M) + (P ∩M).

Proposition 4.18. — If L is normally generated, then MLj ⊗ Lk is
globally generated for all j, k > 1.

Proof. — It suffices to show thatMLj ⊗ L is globally generated. Let P
be the polytope associated to L as in Proposition 4.11. Suppose that σ is
a maximal cone, and let w be a lattice point in jP r {juσ}. Since L is
normally generated, we can write w = u + u′ with u ∈ (j − 1)P ∩M and
u′ ∈ P ∩M r {uσ}. Then {w, u+ uσ} ⊆ jP ∩ (w+ uσ − P ) ∩M , and now
we apply Proposition 4.11. �

When X is smooth, an even stronger statement holds.

Proposition 4.19. — Let L,L′ be ample line bundles on a smooth
toric variety X, and suppose that the multiplication map

H0(X,L)⊗H0(X,L′) −→ H0(X,L⊗ L′)

is surjective. ThenML⊗L′ ⊗ L′ is globally generated.

Proof. — Let P and P ′ be the polytopes associated to L and L′, as in
Proposition 4.11. Suppose that σ is a maximal cone, and let w ∈ (P + P ′)∩
M\{uσ+u′σ}. Since by assumption the map P∩M+P ′∩M −→ (P + P ′)∩M
is surjective, we can write w = u+u′ for some u ∈ P ∩M and u′ ∈ P ′∩M .
Since X is smooth, we may assume in addition that u′ 6= u′σ. It is now easy
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to see that {w, u+ u′σ} ⊆ (P + P ′) ∩ (w + u′σ − P ′) ∩M , and we conclude
applying Proposition 4.11. �

The following example shows that Proposition 4.19 does not hold for
arbitrary toric varieties.

Example 4.20. — Let X,L be as in Example 4.15. Then the multipli-
cation map

H0(X,L2)⊗H0(X,L) −→ H0(X,L3)
is surjective. HoweverML3 ⊗L is not globally generated. Indeed, we have

3P ∩ ((1, 1, 1)− P ) = {(1, 1, 1)},

and so the condition of Proposition 4.11 is not satified for σ the cone
corresponding to (0, 0, 0), and u = (1, 1, 1) ∈ 3P .

5. Restricting toric vector bundles to invariant curves

We have shown that a toric vector bundle is nef or ample if and only if
its restriction to every invariant curve is nef or ample, and that Seshadri
constants of nef toric vector bundles can be computed from restrictions
to invariant curves, but we have so far avoided the question of how to
compute these restrictions. In this section, we show how to compute the
splitting type of the restriction of a toric vector bundle to an invariant
curve, using continuous interpolations of filtrations appearing in Klyachko’s
classification of toric vector bundles. In order to do this, we review this
classification as well as the definition of the continuous interpolations from
[36]. In this section, unless explicitly mentioned otherwise, X does not need
to be complete. However, in order to simplify some statements, we always
assume that the maximal cones in ∆ have full dimension rk(N).

We systematically use the notation for equivariant line bundles intro-
duced at the beginning of §2. For every cone σ ∈ ∆, the restriction E|Uσ
decomposes as a direct sum of equivariant line bundles L1⊕· · ·⊕Lr. More-
over, each such Li is equivariantly isomorphic to some Lui |Uσ , where the
class of ui is uniquely determined in M/M ∩ σ⊥. If σ is a top-dimensional
cone, then in fact the multiset {u1, . . . , ur} is uniquely determined by E
and σ.

We now consider T -equivariant line bundles on invariant curves.

Example 5.1. — Suppose that X is complete, and let C be the invariant
curve in X associated to a codimension one cone τ , with σ and σ′ the
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maximal cones containing τ . Let u and u′ be linear functions in M that
agree on τ . Then we have a T -equivariant line bundle Lu,u′ on the union
Uσ∪Uσ′ , obtained by gluing Lu|Uσ and Lu′ |Uσ′ using the transition function
χu−u

′ , which is regular and invertible on Uτ . In the above we implicitly
order σ and σ′, but we hope that this will not create any confusion. The
underlying line bundle of Lu,u′ |C is O(m), where u − u′ is m times the
primitive generator of τ⊥ that is positive on σ. It is easy to see that every
equivariant line bundle on Uσ ∪ Uσ′ is equivariantly isomorphic to some
Lu,u′ . Note that one can similarly define Lu,u′ for any two top-dimensional
cones σ and σ′, if u− u′ ∈ (σ ∩ σ′)⊥.

Lemma 5.2. — With the notation in the above example, every
T -equivariant line bundle on C = V (τ) is equivariantly isomorphic to
Lu,u′ |C for some unique pair of linear functions u and u′ that agree on τ .

Proof. — Suppose L is a T -equivariant line bundle on V (τ). On the
affine piece C ∩ Uσ we can choose an isotypical section s which is nonzero
at the T -fixed point xσ. Then the locus where s vanishes is closed, T -
invariant, and does not contain xσ, and hence is empty. Therefore, s gives
an equivariant trivialization that identifies L with O(divχu) over C ∩ Uσ,
where u is the isotypical type of s. Similarly, there is an isotypical section
s′ that identifies L with O(divχu′) over C ∩ Uσ′ . Then there is a nonzero
constant c ∈ k∗ such that cs′ = χu · s over Uτ , and it follows that L is
equivariantly isomorphic to Lu,u′ |C . Uniqueness follows from the fact that
T acts on the fibers of L over the fixed points xσ and xσ′ by the characters
χu and χu

′ , respectively. �

The lemma implies that the T -equivariant Picard group of V (τ) is naturally
isomorphic to the subgroup of M ×M consisting of those pairs (u, u′) such
that u− u′ vanishes on τ .

In order to describe the splitting type of the restriction of an equivari-
ant vector bundle E on X to an invariant curve, we start by recalling the
continuous interpolations of the filtrations appearing in Klyachko’s classi-
fication of toric vector bundles. See [23] and [35, Section 2] for proofs and
further details.

Suppose that X is a toric variety such that all maximal cones in the fan
have dimension rk(N). Given a toric vector bundle E on X, let E denote
the fiber of E at the identity of the torus T . For every cone σ in ∆, and
for every u ∈M , evaluating sections at the identity gives an injective map
Γ(Uσ, E)u ↪→ E. We denote by Eσu the image of this map.
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Given v ∈ |∆| and t ∈ R, we define a vector subspace Ev(t) ⊆ E, as
follows. Choose a cone σ containing v, and let

Ev(t) =
∑
〈u,v〉>t

Eσu .

It is clear that for a fixed v ∈ |∆|, the vector subspaces {Ev(t)}t∈R give a
decreasing filtration of E indexed by real numbers.

This filtration can be described more explicitly as follows. Suppose that
u1, . . . , ur ∈M are such that

E|Uσ '
r⊕
i=1
Lui |Uσ .

If Li ⊆ E is the fiber of Lui at the identity in T , then we get a decomposition
E = L1⊕· · ·⊕Lr. With this notation, Eσu is spanned by those Li for which
ui − u ∈ σ∨. It is easy to deduce from this that

(5.1) Ev(t) =
⊕
〈ui,v〉>t

Li.

This description implies in particular that the definition of Ev(t) is inde-
pendent of the choice of σ.

In addition, the above description shows that the filtrations we have
defined are “piecewise-linear” with respect to ∆, in the sense that for every
maximal cone σ in ∆ there is a decomposition E =

⊕
u∈M Eu such that

Ev(t) =
⊕
〈u,v〉>t

Eu

for every v ∈ σ and every real number t. Indeed, with the notation in (5.1),
it is enough to take Eu to be the direct sum of the Lj for which uj = u.

For every cone σ, if u, u′ ∈ M are such that u′ ∈ σ∨, multiplication by
χu
′ induces an inclusion

Eσu ⊆ Eσu−u′ .
In particular, we have Eσu = Eσu−u′ if u′ ∈ σ⊥. If vρ is the primitive gen-
erator of a ray ρ in ∆, and i ∈ Z, we write Eρ(i) for Evρ(i). It follows
from the previous discussion that if u ∈ M is such that 〈u, vρ〉 = i, then
Eρ(i) = Eρu.

Klyachko’s Classification Theorem. — The category of toric vec-
tor bundles on X(∆) is naturally equivalent to the category of finite-
dimensional k-vector spaces E with collections of decreasing filtrations
{Eρ(i)}i∈Z parametrized by the rays in ∆, and satisfying the following
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compatibility condition: For each maximal cone σ ∈ ∆, there is a decom-
position E =

⊕
u∈M Eu such that

Eρ(i) =
∑

〈u,vρ〉> i

Eu,

for every ray ρ of σ and i ∈ Z.

Of course, the equivalence of categories is given by associating to a toric
vector bundle E its fiber E over the identity in the dense torus, with filtra-
tions Eρ(i) as above. Note that the filtrations {Ev(t)}t∈R give continuous
interpolations of the filtrations {Eρ(i)}i∈Z. They were introduced in [36]
to study equivariant vector bundles with trivial ordinary total Chern class.

Remark 5.3. — Let E be an equivariant vector bundle onX, and {Eρ(i)}
the filtrations that appear in the above theorem. It is easy to see that E
is equivariantly isomorphic to a direct sum of equivariant line bundles if
and only if there is a decomposition E = L1 ⊕ · · · ⊕ Lr, with each Lj a
one-dimensional subspace, and such that each Eρ(i) is a direct sum of some
of the Lj . Of course, the Lj are the fibers of the corresponding line bundles
at the identity of T .

We mention one continuity result for these filtrations that we will need
[36, Lemma 4.7]. On the set ∐

`

Gr(`, E),

of subspaces of E, partially ordered by inclusion, consider the poset topol-
ogy. A subset S ⊂

∐
` Gr(`, E) is closed in this topology if and only if every

subspace of E that contains an element of S is also in S. The map taking
a point v ∈ |∆| and a real number t to Ev(t) is a continuous map from
|∆| ×R to

∐
` Gr(`, E).

Evaluation at the identity gives a canonical isomorphism

Γ(X, E)u =
⋂
σ∈∆

Γ(Uσ, E)u
∼−→
⋂
v∈|∆|

Ev(〈u, v〉).

The infinite intersection
⋂
v E

v(〈u, v〉) is the same as the finite intersection⋂
ρE

ρ(〈u, vρ〉), but the advantage of working with the R-graded interpo-
lations is that it allows us to use continuity and convexity to find global
sections, generalizing standard convexity arguments for constructing iso-
typical global sections of toric line bundles, as in [13, Section 3.4]. It also
facilitates the computation of the restriction of E to an invariant curve, as
we will see below.
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From now on we assume that X is complete. Our next goal is to describe
the equivariant vector bundles on the invariant curves in X. Recall that a
well-known result due to Grothendieck says that every vector bundle on P1

splits as a sum of line bundles. It does not follow tautologically that every
T -equivariant vector bundle splits equivariantly as a sum of line bundles,
but this has been shown by Kumar [24] and may also be deduced from
[23, Example 2.3.3 and Section 6.3]. For the reader’s convenience, we give
below a direct argument based on Klyachko’s Classification Theorem. We
start with the following lemma.

Lemma 5.4. — Given two flags F` and F`′ of subspaces in a finite
dimensional vector space V , there is a decomposition V = L1 ⊕ · · · ⊕ Lr,
with all Li one-dimensional, such that every subspace in either F` or F`′
is a direct sum of some of the Li.

Proof. — After refining the two flags, we may assume that both F` and
F`′ are complete flags. Recall that the intersection of two Borel subgroups
in a linear algebraic group contains a maximal torus (see [7], Cor. 1.5).
Therefore the intersection of the stabilizers of the two flags contains the
stabilizer of a collection of one-dimensional subspaces L1, . . . , Lr. These
subspaces satisfy our requirement. �

Corollary 5.5. — Let X be a complete toric variety. Any
T -equivariant vector bundle E on the invariant curve C = V (τ) splits
equivariantly as a sum of line bundles

E ∼= Lu1,u′1
|C ⊕ · · · ⊕ Lur,u′r |C .

Proof. — By Lemma 5.2, it is enough to show that E decomposes as a
direct sum of T -equivariant line bundles. If X = P1, this is clear: it is
enough to apply the criterion in Remark 5.3 and Lemma 5.4. The general
case reduces easily to this one: the exact sequence

0 −→M ∩ τ⊥ −→M −→M/M ∩ τ⊥ −→ 0

induces an exact sequence of tori

0 −→ T ′ −→ T −→ TC −→ 0,

where TC is the dense torus in C, and T ′ = Spec(k[M/M ∩τ⊥]). We choose
a splitting of T −→ TC . Since T ′ acts trivially on C, it follows that we have
a decomposition E = E1 ⊕ · · · ⊕ Em, where each Ei is a TC-equivariant
bundle, and T ′ acts on Ei via a character χi. We can decompose each Ei as
a direct sum of TC-equivariant line bundles, and each of these is, in fact, a
T -equivariant subbundle of E . �
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We will see below that the pairs (ui, u′i) that appear in the above corollary
are uniquely determined by E (up to reordering). We first give a condition
for an analogue of the corollary to hold in a suitable neighborhood of the
invariant curve. More precisely, let V (τ) be the invariant curve correspond-
ing to a codimension one cone τ in ∆, and let σ and σ′ be the maximal
cones containing τ . If the restriction of E to Uσ ∪ Uσ′ splits as a certain
sum of line bundles Lu,u′ , then the restriction of E to V (τ) has the same
splitting type, tautologically. But the restriction of a toric vector bundle
to Uσ ∪ Uσ′ need not split as a sum of line bundles, even for a rank two
bundle on a toric surface.

Example 5.6 (Tangent bundle on P2 r pt). — Let σ1 and σ2 be two
maximal cones in the fan defining X = P2, and let E = TX be the tangent
bundle of X. If U = Uσ1 ∪ Uσ2 , then E|U does not split as a sum of line
bundles, even if we disregard the equivariant structure. Indeed, note first
that since the complement of U is a point, it has codimension two in P2.
In particular, Pic(U) ' Pic(P2), and for every vector bundle F on P2,
we have Γ(P2,F) ' Γ(U,F). If E|U is decomposable, then it has to be
isomorphic to O(a)⊕O(b)|U . Restricting to a line that is contained in U ,
we then see that we may take a = 2 and b = 1. On the other hand

h0(U,O(2)⊕O(1)) = h0(P2,O(2)⊕O(1)) = 9,

while h0(U, E) = h0(P2, TP2) = 8, a contradiction.

However, we have the following combinatorial condition that guarantees
the restriction of a toric vector bundle to the union of two invariant affine
open subvarieties splits. Given the equivariant vector bundle E on X and
v ∈ NR, let F`(v) be the partial flag of subspaces of E appearing in the
filtration Ev(t).

Proposition 5.7. — Let σ and σ′ be two maximal cones in ∆. If F`(v)
is constant on the relative interiors of σ and σ′, then the restriction of E to
Uσ ∪ Uσ′ splits equivariantly as a sum of line bundles.

Proof. — Let F` and F`′ be the partial flags in E associated to points
in the relative interiors of σ and σ′, respectively. It follows from Lemma 5.4
that there is a splitting E = L1⊕· · ·⊕Lr such that every subspace appearing
in F` and F`′ is a sum of some of the Li.

Now, for any ray ρ of σ, every subspace appearing in the filtration Eρ(i)
is in F`, by the continuity of the interpolations [36, Lemma 4.7]. Similarly,
if ρ′ is a ray of σ′ then every subspace Eρ′(i) is in F`′. In particular, each
of these subspaces is the sum of some of the Lj , hence by Remark 5.3 we
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deduce that the restriction of E to Uσ ∪ Uσ′ splits as a sum of equivariant
line bundles. �

With E fixed, there is a canonical coarsest subdivision ∆′ of ∆ such that
F`(v) is constant on the relative interior of each maximal cone in ∆′, as
follows. Suppose σ is a maximal cone in ∆, and let u1, . . . , ur in M be such
that

E|Uσ '
r⊕
i=1
Lui |Uσ .

It follows from (5.1) that if Li ⊆ E is the subspace corresponding to Lui ,
then

Ev(t) =
⊕
〈ui,v〉>t

Li

for every v in σ and t in R. Hence F`(v) is constant on the interior of
a top dimensional cone contained in σ if and only if this interior does
not meet any of the hyperplanes (ui − uj)⊥, with ui 6= uj . Therefore the
maximal cones of ∆′ are exactly the closures of all chambers of σ lying
in the complement of the above hyperplane arrangement, for all maximal
cones σ in ∆.

Note that we have a proper birational toric morphism p : X ′ → X

associated to this subdivision, whereX ′ = X(∆′), and the restriction of p∗E
to any union of two invariant affine open subvarieties splits equivariantly
as a sum of line bundles Lu,u′ . For any invariant curve C in X, we can
choose an invariant curve C ′ in X ′ projecting isomorphically onto C, and
the splitting type of E|C is tautologically the same as the splitting type of
p∗E|C′ , which we can compute more easily.

We now assume that E and V (τ) satisfy the hypothesis of Proposition 5.7.
By the proposition, we can find a multiset uC ⊂M ×M such that

E|U '
⊕

(u,u′)∈uC

Lu,u′ ,

where U = Uσ ∪ Uσ′ . The following lemma relates uC to the filtrations on
E corresponding to σ and σ′.

Lemma 5.8. — Let C be the invariant curve corresponding to the in-
tersection of two adjacent maximal cones σ and σ′. If F`(v) is constant on
the interiors of σ and σ′, then
(5.2)

dim
(
Ev(t) ∩ Ev

′
(t′)
)

= #{(u, u′) ∈ uC | 〈u, v〉 > t and 〈u′, v′〉 > t′}

for any v ∈ σ and v′ ∈ σ′, and for any real numbers t and t′.
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Proof. — By Proposition 5.7, the restriction of E to Uσ ∪Uσ′ splits as a
sum of line bundles E ' Lu1,u′1

⊕ · · · ⊕ Lur,u′r , where uC =
{(u1, u

′
1), . . . , (ur, u′r)} (note that we might have repetitions). Let Li be

the fiber of the subbundle Lui,u′i over the identity. Then

Ev(t) =
⊕
〈ui,v〉>t

Li and Ev
′
(t′) =

⊕
〈u′
j
,v′〉>t′

Lj .

Therefore Ev(t)
⋂
Ev

′(t′) is the sum of those Li such that 〈ui, v〉 > t and
〈u′i, v′〉 > t′. The assertion in the lemma follows. �

Remark 5.9. — Note that the pairs (u1, u
′
1), . . . , (ur, u′r) such that

E|Uσ∪Uσ′ '
r⊕
i=1
Lui,u′i

are unique, up to reordering. This is an easy consequence of equation (5.2),
since the left-hand side of the formula does not depend on the choice of the
pairs (ui, u′i). We can deduce from this also the uniqueness of the decom-
position in Corollary 5.5.

Corollary 5.10. — If X is a complete toric variety, and if E is a T -
equivariant vector bundle on the invariant curve C = V (τ), then the pairs
(ui, u′i) such that

E ∼= Lu1,u′1
|C ⊕ · · · ⊕ Lur,u′r |C

are unique, up to reordering.

Proof. — We may argue as in the proof of Corollary 5.5 to reduce to the
case when X = P1. In this case the hypothesis in Lemma 5.8 is clearly
satisfied, and we get our assertion as in the previous remark. �

6. Sections of nef toric vector bundles and a triviality
criterion

It is well-known that every nef line bundle on a complete toric variety
is globally generated. As Examples 4.15, 4.16 and 4.17 show, we cannot
expect the same result to hold in higher rank. The correct generalization
in higher rank is given by the following theorem.

Theorem 6.1. — If E is a nef toric vector bundle on the complete toric
variety X, then for every point x ∈ X there is a section of E that does not
vanish at x.
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Proof. — We will systematically use the notation introduced in §5. Note
that if f : X ′ −→ X is a proper, birational toric morphism, then we may
replace X and E by X ′ and f∗E . Indeed, f∗E is nef, and we have an
isomorphism Γ(X, E) ' Γ(X ′, f∗E). Hence in order to find a section of E
that does not vanish at some x ∈ X, it is enough to find a section s′ of f∗E
that does not vanish at some point in the fiber f−1(x). We deduce that
after subdividing ∆, we may assume that F`(v) is constant on the interior
of each maximal cone.

Since the space of global sections of E has a basis of T -eigensections,
the subset of X where all global sections vanish is closed and T -invariant.
Therefore, it will suffice to prove that E has a nonvanishing global section
at every fixed point. Let x = xσ be the fixed point corresponding to a
maximal cone σ.

Consider u1, . . . , ur in M such that

E|Uσ '
r⊕
i=1
Lui |Uσ .

We have seen that if Li ⊆ E is the fiber of Lui at the identity of T then

Ev(t) =
⊕
〈ui,v〉>t

Li

for all v in σ and t ∈ R. By assumption, if ui 6= uj , then ui − uj does not
vanish on the interior of σ. After reordering, we may assume u1 > · · · > ur
on σ. Let u = u1 and L = L1. There is a χu-isotypical section s of E over
Uσ that is nonvanishing at x, and whose value at the identity spans L. We
claim that s extends to a regular section of E over all of X. To prove the
claim, we must show that Ev(〈u, v〉) contains L for every v ∈ NR.

After further subdividing ∆, we may also assume that for every maximal
cone σ′, if

E|Uσ′ '
r⊕
i=1
Lu′

i
|Uσ′ ,

then for every i such that u 6= u′i, the linear function u−u′i does not vanish
on the interior of σ′.

Let v be a point in NR. Choose v0 in the interior of σ such that the
segment S = [v0, v) is disjoint from the codimension two cones in ∆, so
[v0, v) passes through a sequence of maximal cones

σ = σ0, σ1, . . . , σs

such that σj−1 and σj intersect in codimension one, for 1 6 j 6 s. Let vj be
a point in the interior of σj , and let τj = σj∩σj+1. It is enough to show that
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Evs(〈u, vs〉) contains L. Indeed, if this holds for every vs in the interior of σs
then we conclude by the continuity of the interpolation filtrations that L ⊆
Ev(〈u, v〉) as well. Since L ⊆ Ev0(〈u, v0〉) by construction, we see that in
order to conclude it is enough to show that Evj (〈u, vj〉) ⊆ Evj+1(〈u, vj+1〉),
for every 0 6 j 6 s− 1.

Let ui,j ∈M be such that for 0 6 j 6 s we have

E|Uσj '
r⊕
i=1
L−ui,j |Uσj .

Note that for every t we have

(6.1) dimk E
vj (t) = #{i | 〈ui,j , vj〉 > t}.

After reordering the ui,j , we may assume that ui,0 = ui for every i, and
that we have

E|Uσj∪Uσj+1
'

r⊕
i=1
Lui,j ,ui,j+1

for j 6 s− 1.
We denote by Ψi the piecewise linear function on the segment S, that is

given on S ∩ σj by ui,j . Since E|V (τj) is nef, we deduce that ui,j > ui,j+1
on σj . This implies that each Ψi is convex.

For every j ∈ {0, . . . , s}, let Ij be the set of those i 6 r such that Ψi > u

on σj . Since 〈u, v0〉 > Ψi(v0) for every i, and since Ψi is convex, it follows
that Ij ⊆ Ij+1 for j 6 s− 1. By assumption, 〈ui,j , vj〉 > 〈u, vj〉 if and only
if ui,j − u lies in σ∨j . Therefore (6.1) implies that

#Ij = dimk E
vj (〈u, vj〉).

On the other hand, Lemma 5.8 gives

dimk (Evj (〈u, vj〉) ∩ Evj+1(〈u, vj+1〉)) = #(Ij ∩ Ij+1) = #Ij .

We conclude that Evj (〈u, vj〉) ⊆ Evj+1(〈u, vj+1〉) for 0 6 j 6 s− 1 and, as
we have seen, this completes the proof. �

Corollary 6.2. — Let E be a toric vector bundle on the smooth com-
plete toric variety X.

i) Suppose that E is ample, and let x ∈ X be a torus-fixed point. If
y 6= x is another point in X then there is a section s ∈ H0(X, E)
such that s(x) = 0 and s(y) 6= 0. Moreover, for every nonzero
v ∈ TxX, there is s ∈ H0(X, E) such that x lies in the zero-locus
Z(s) of s, but v 6∈ TxZ(s).
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ii) If the Seshadri constant ε(E) is at least two then, for every distinct
torus-fixed points x1, . . . , xk on X, and for every x that is different
from all xi, there is s ∈ H0(X, E) such that s(xi) = 0 for all i, and
s(x) 6= 0. In particular, h0(E) > k + 1.

Proof. — For i), let p : X̃ −→ X be the blow-up of x, with exceptional
divisor F . We deduce from Corollary 3.4 that p∗(E) ⊗ O(−F ) is nef, and
both assertions follow from Theorem 6.1 since

H0(X̃, p∗(E)⊗O(−F )) '
{
s ∈ H0(X, E) | s(x) = 0

}
.

Similarly, ii) follows from Corollary 3.5 and Theorem 6.1. �

Remark 6.3. — Note that in rank one, the property in Corollary 6.2 i)
says that E separates points and tangent vectors, that is, E is very ample.
In higher rank, however, the property is weaker than the very ampleness
of E (which by definition means the very ampleness of OP(E)(1)).

Our next goal is to prove the characterization of trivial toric vector bun-
dles. This is the toric generalization of the assertion that a vector bundle
on Pn is trivial if and only if its restriction to every line is trivial (see
[31, Theorem 3.2.1]). The result answers affirmatively a question posed by
V. Shokurov. We call a toric vector bundle trivial if it is isomorphic to O⊕r
disregarding the equivariant structure.

Theorem 6.4. — Let E be a toric vector bundle on the complete toric
variety X. Then E is trivial if and only if its restriction to every irreducible
invariant curve on X is trivial.

Proof. — We prove the assertion by induction on r = rk(E), the case
r = 0 being vacuous. Note first that since the restriction of E to every
invariant curve is trivial, in particular nef, it follows from Theorem 2.1
that E is nef. Therefore Theorem 6.1 implies that for every point x ∈ X,
there is a a section s ∈ Γ(X, E) that does not vanish at x. Fix a maximal
cone σ ∈ X, and choose a section s0 that does not vanish at xσ. We may
assume that s0 is χu-isotypical for some u ∈M .

Claim. — If s is an isotypical section of E that does not vanish at a
fixed point xσ then s is nowhere vanishing.

The claim implies that our section s0 gives a trivial equivariant subbundle
L of E , with rk(L) = 1. The restriction of the quotient E/L to any invariant
curve is trivial, hence the inductive assumption implies that E/L is trivial.
Since H1(X,OX) = 0, it follows that the exact sequence

0→ L → E → E/L → 0
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splits (non-equivariantly), hence E is trivial. Therefore, it is enough to prove
the claim.

If we have a proper, birational toric morphism f : X ′ −→ X then it
is enough to prove the claim for the section f∗(s) ∈ Γ(X ′, f∗E). After
subdividing ∆, we may assume that F`(v) is constant on the interior of
every maximal cone σ. Proposition 5.7 implies that given two maximal
cones σ1 and σ2 whose intersection τ has codimension one, if U = Uσ1∪Uσ2 ,
then

E|U ' Lu1,u′1
⊕ · · · ⊕ Lur,u′r

for suitable ui, u′i ∈M . Since the restriction E|V (τ) is trivial, it follows that
ui = u′i for every i. Therefore the restriction E|U is trivial (disregarding the
equivariant structure).

Suppose s ∈ Γ(X, E) is an isotypical section that does not vanish at xσ1 .
Then the restriction s|Uσ1

corresponds to (ϕ1, . . . , ϕr), where one of the
ϕi is a nonzero constant function, via the isomorphism E|U ' O⊕rU . The
analogous assertion then holds for s|U , and we conclude that s does not
vanish at xσ2 . This implies the claim, and the theorem follows. �

7. Open questions

In this section we list several open questions. The first questions are
motivated by the corresponding results in the rank one case. It is likely
that the situation in higher rank is more complicated, but it would be
desirable to have explicit examples to illustrate the pathologies in rank
> 1.

Question 7.1. — Suppose that E is a toric vector bundle on the complete
toric variety X. Is the k-algebra

(7.1)
⊕
m>0

H0(X, Symm(E))

finitely generated?

For the corresponding assertion in the case of line bundles, see for ex-
ample [9]. Note that if f : Y −→ X is a toric resolution of singularities of
X, then the projection formula implies that the k-algebra corresponding
to E is isomorphic to the k-algebra corresponding to f∗(E). Therefore it is
enough to consider Question 7.1 when X is smooth.

One can ask whether P(E) satisfies the following stronger property. Sup-
pose that Y is a complete variety such that Pic(Y ) is finitely generated
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(note that every projective bundle over a toric variety has this property).
Following [21] we say that Y is a Mori Dream Space if for every finite set
of line bundles L1, . . . , Lr on Y , the k-algebra

(7.2)
⊕

m1,...,mr>0
H0(Y, Lm1

1 ⊗ · · · ⊗ Lmrr )

is finitely generated. (The definition in loc. cit. requires X to be Q-factorial,
but this condition is not relevant for us.) Equivalently, it is enough to put
the condition that the k-algebra

(7.3)
⊕

m1,...,mr∈Z

H0(Y, Lm1
1 ⊗ · · · ⊗ Lmrr )

is finitely generated, when L1, . . . , Lr generate Pic(X) as a group (if they
generate Pic(X) as a semigroup, then it is enough to let m1, . . . ,mr vary
over N).

It is well-known that a complete toric variety is a Mori Dream Space.
This follows using the fact that in this case the k-algebra (7.2) is isomorphic
to
⊕

m>0 H
0(P,O(m)), where P = P(L1⊕· · ·⊕Lm) is again a toric variety.

In fact, if X is smooth, and if L1, . . . , Lr form a basis of Pic(X), then the
k-algebra (7.3) is a polynomial ring, the homogeneous coordinate ring of
X (see [5]).

Question 7.2. — If X is a complete toric variety, and if E is a toric vector
bundle on X, is P(E) a Mori Dream Space? Since Pic(P(E)) is generated
by O(1) and by the pull-backs of the line bundles on X, this can be restated
as follows: if L1, . . . , Lr are arbitrary line bundles on X, is the k-algebra

(7.4)
⊕

m,m1,...,mr>0
H0(X, Symm(E)⊗ Lm1

1 ⊗ · · · ⊗ Lmrr )

finitely generated?

Note that Remark 2.5 gives some positive evidence in the direction of this
question (it is a general fact that the Mori cone of a Mori Dream Space is
rational polyhedral).

Remark 7.3. — It is clear that a positive answer to Question 7.2 implies
a positive answer to Question 7.1. However, the converse is also true: if
the k-algebra (7.1) is finitely generated for every toric vector bundle, then
Question 7.2 has a positive answer. Indeed, given a toric vector bundle E
on X, and L1, . . . , Lr ∈ Pic(X), let E ′ = E ⊕ L1 ⊕ · · · ⊕ Lr. Since⊕
m,m1,...,mr>0

H0(X, Symm(E)⊗Lm1
1 ⊗· · ·⊗Lmrr ) '

⊕
m>0

H0(X, Symm(E ′)),

we see that this is a finitely generated k-algebra.
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Remark 7.4. — In connection with Question 7.2, note the following
module-theoretic finiteness statement. Suppose that X is a smooth toric
variety, and that E is a reflexive sheaf on X, not necessarily equivariant.
Choose a basis L1, . . . , Lr for Pic(X), and let S be the homogeneous coor-
dinate ring of X. If

M =
⊕

m1,...,mr∈Z

H0(X, E ⊗ Lm1
1 ⊗ · · · ⊗ Lmrr ),

then M is finitely generated as an S-module. This follows using some basic
facts about the homogeneous coordinate ring for which we refer to [5].
Indeed, via the correspondence between graded S-modules and coherent
sheaves, one can express every coherent sheaf on X as a quotient of a direct
sum of line bundles on X. If we write E∨ as the quotient of L′1 ⊕ · · · ⊕ L′s,
where L′i = L

mi,1
1 ⊗· · ·⊗Lmi,rr , we see by taking duals that M is embedded

in the free module S⊕s. Since S is Noetherian, it follows that M is a finitely
generated S-module.

Recall that a vector bundle E is very ample if the line bundle O(1) on
P(E) is very ample. In light of Examples 4.15, 4.16 and 4.17, it seems
unlikely that the following question would have a positive answer, but it
would be nice to have explicit counterexamples.

Question 7.5. — Let E be an ample toric vector bundle on a smooth
complete toric variety X. Is E very ample? Is E globally generated?

Examples 4.9 and 4.10 show that the higher cohomology groups of an
ample toric vector bundle E do not vanish in general. The cohomology of
E is canonically identified with the cohomology of the ample line bundle
O(1) on P(E), hence some projectivized toric vector bundles have ample
line bundles with non-vanishing cohomology. It should be interesting to
find conditions on E that guarantee that ample line bundles on P(E) have
no higher cohomology. In characteristic p, a condition that guarantees such
vanishing is the splitting of the Frobenius morphism on P(E) (we refer to
[2] for basic facts about Frobenius split varieties).

Question 7.6. — Let E be a toric vector bundle on a complete toric
variety X over a field of positive characteristic. When is P(E) Frobenius
split?

We point out that this condition is independent of twisting E by a line
bundle. Note also that every toric variety is Frobenius split. In particular,
P(E) is Frobenius split if E decomposes as a sum of line bundles. Fur-
thermore, some indecomposable toric vector bundles have Frobenius split
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projectivizations: for example, the tangent bundle on the projective space
Pn. Indeed, we have

P(TPn) ' {(q,H) ∈ Pn × (Pn)∗ | q ∈ H},

hence P(TPn) is a homogeneous variety, and all homogeneous varieties are
Frobenius split.

It would be interesting to find a criterion for a toric vector bundle to be
big. We propose the following.

Question 7.7. — Let E be a toric vector bundle on the projective toric
variety X. Is it true that E is big if and only if for every morphism f : P1 −→
X whose image intersects the torus, we have f∗(E) big?

It is easy to see that if E is a big toric vector bundle on the projective
toric variety X, and if f : C −→ X is a non-constant morphism from a
projective curve C such that Im(f) intersects the torus, then f∗(E) is big.
Indeed, one can use the fact that a vector bundle E is big if and only if for
some (every) ample line bundle A we have

H0(X, Symm(E)⊗A−1) 6= 0

for some m > 0 [25, Example 6.1.23]. In our situation, fix an ample line
bundle A on X, and consider on A an equivariant structure. Let m > 0 be
such that there is a nonzero s ∈ H0(X, Symm(E)⊗A−1). It is clear that we
may assume that s is an eigenvalue for the corresponding torus action. In
particular, the zero-set Z(s) is contained in the complement of the torus.
Therefore f∗(s) gives a nonzero section in H0(C, f∗(Symm(E))⊗f∗(A)−1).
Since f∗(A) is ample on C, it follows that f∗(E) is big.

For line bundles it is known that the converse is also true (see §3 in [34]).
This is the toric analogue of a result from [1] describing the big cone as the
dual of the cone of movable curves.

In light of Corollary 4.8, we consider the following

Question 7.8. — Let L be an ample line bundle on the projective toric
variety X. Is the vector bundleML semistable, with respect to some choice
of polarization?

We mention a similar result for curves: if X is a smooth projective curve
of genus g, thenML is a semistable bundle if either deg(L) > 2g + 1 (see
[8]), or if L = ωX (see [32]).

While we have focused on algebraic notions of positivity, there are parallel
notions of positivity in differential geometry, and the relation between these

TOME 60 (2010), FASCICULE 2



638 Milena HERING, Mircea MUSTAŢĂ & Sam PAYNE

different types of positivity is not completely understood. Recall that a
vector bundle is positive in the sense of Griffiths if it admits a Hermitian
metric such that the quadratic form associated to the curvature tensor is
positive definite. Griffiths proved that any such positive vector bundle is
ample and asked whether the converse is true. See [17] for background
and further details. This problem has remained open for forty years and is
known in few cases—for very ample vector bundles [17, Theorem A], and
for ample vector bundles on curves [4]. Ample toric vector bundles should
be an interesting testing ground for the existence of such positive metrics.

Question 7.9. — Let E be an ample toric vector bundle on a smooth
complex projective toric variety. Is E necessarily positive in the sense of
Griffiths?

With his differential geometric approach to positivity, Griffiths advanced
a program to relate ampleness to numerical positivity. Fulton and Lazars-
feld completed one part of this program by proving that the set of poly-
nomials in Chern classes that are numerically positive for ample vector
bundles are exactly the Schur positive polynomials, the nonzero polyno-
mials that are nonnegative linear combinations of the Schur polynomials
[14]. It is natural to wonder whether this result could have been predicted
through a careful study of toric vector bundles.

Question 7.10. — Are the Schur positive polynomials the only numeri-
cally positive polynomials for ample toric vector bundles?

It should also be interesting to look for a combinatorial proof that the
Schur positive polynomials are numerically positive for ample toric vec-
tor bundles. One natural approach would be to use the characterization of
equivariant Chern classes of toric vector bundles in terms of piecewise poly-
nomial functions [33, Theorem 3], together with the combinatorial formulas
for localization on toric varieties from [22].
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