Annales de l'institut Fourier

GEORGES LION

Familles d'opérateurs et frontière en théorie du potentiel

Annales de l'institut Fourier, tome 16, n° 2 (1966), p. 389-453 http://www.numdam.org/item?id=AIF 1966 16 2 389 0>

© Annales de l'institut Fourier, 1966, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

FAMILLES D'OPÉRATEURS ET FRONTIÈRE EN THÉORIE DU POTENTIEL

Par Georges LION

Introduction.

Le présent travail a trouvé son point de départ dans un mémoire fort important de G. A. Hunt, paru dans Illinois Journal of Mathematics [20].

Cet auteur y établit, sous des hypothèses générales, l'existence de liens étroits entre, d'une part, la théorie des processus de Markov, et d'autre part, la théorie du Potentiel, au point où l'ont conduite les travaux de Henri Cartan, Brelot, Choquet et Deny.

Au chapitre xv de son mémoire, Hunt associe un semi-groupe fortement continu à tout noyau continu V tendant vers 0 à l'infini,

- vérifiant le principe complet du maximum,
- et tel que toute fonction continue, tendant vers 0 à l'infini, soit limite uniforme d'une suite de V-potentiels.

L'intermédiaire essentiel de cette démonstration est la construction d'une famille résolvante. Nous avons pensé que cet intermédiaire pouvait mériter un sort plus autonome; de plus, nous nous sommes efforcés d'étudier la situation en l'absence de l'hypothèse de densité des V-potentiels.

Le résultat est un théorème d'existence et d'unicité de la famille résolvante associée à tout noyau continu, tendant vers 0 à l'infini, et vérifiant soit le principe de domination, soit le principe complet du maximum.

Dans l'étude des noyaux non bornés, nous avons repris l'idée d'approximation de Hunt, mais nous n'avons pas eu recours à la notion de changement de temps.

Réciproquement, nous avons caractérisé les familles résolvantes relativement aux deux principes cités ci-dessus.

Ayant déterminé ces familles résolvantes, il était naturel de tenter de leur associer des semi-groupes. Il s'agit là d'un problème très ardu en toute généralité.

Dans la lecture d'un article de D. Ray [30], nous avons puisé l'idée d'une hypothèse de séparation moins restrictive que l'hypothèse de densité de Hunt, et permettant d'associer un semi-groupe à la famille résolvante (V₁).

En vue d'appliquer les résultats de Ray, il faut passer de l'espace localement compact de départ à son compactifié; les théorèmes de prolongement correspondants font l'objet du chapitre III.

Ensuite, il nous a paru utile de simplifier la démonstration de Ray, et cela nous a conduit à partir d'une hypothèse un peu plus générale, énoncée grâce à la notion de fonction surmédiane. Cette hypothèse est suffisante pour retrouver les conclusions du théorème de Ray, à savoir:

- l'existence de lim $\lambda V_{\lambda} f(x)$, pour tout x et toute f continue;
- l'existence et la continuité à droite du semi-groupe.

Nous avons pu caractériser les cas où la fonction limite est continue en x. Enfin nous avons situé le problème qui nous intéresse ici par rapport à la notion de mesures maximales relatives à un cône de fonctions continues.

Des divers résultats qui précèdent nous avons déduit les théorèmes de représentation d'un noyau continu par l'intégrale d'un semi-groupe. Le cas des noyaux vérifiant le principe complet du maximum et l'hypothèse de séparation citée ci-dessus a fait l'objet d'une note ([26]). Outre ce cas, mentionnens:

- Les noyaux vérifiant le principe complet, sur un espace discret;
- Les noyaux continus vérifiant le principe de domination et l'hypothèse de densité de Hunt, sur un espace compact;
- Les noyaux strictement positifs vérifiant le principe de domination sur un espace fini.

Dans le chapitre vi, nous avons introduit des familles d'opérateurs généralisant effectivement les familles résolvantes. A leur sujet, nous avons obtenu des résultats similaires à ceux du chapitre iv. Quant aux méthodes, elles sont différentes; ici, rien ne correspond plus à la notion de fonctions surmédianes, essentielle au chapitre iv; en outre, nous n'avons pas fait d'hypothèse de séparation. Par contre, l'étude faite au chapitre iv n'entre pas dans ce nouveau cadre; en effet, nous raisonnons sur un espace métrisable, et nous utilisons le théorème de représentation intégrale de Choquet.

Nous avons terminé par un exemple qui met en évidence le caractère partiel des résultats obtenus ici. Partant d'un semi-groupe et de la famille résolvante associée, nous montrons que $\lambda V_{\lambda}f(x)$ peut ne pas avoir de limite, lorsque λ tend vers l'infini. Ce fait prouve que la méthode présentée au chapitre iv est loin d'épuiser toutes les possibilités de construction de semi-groupes.

Il m'est agréable de conclure cette introduction en exprimant ma reconnaissance envers M. Choquet, qui a bien voulu reconnaître à ce travail la qualité de thèse, et en présider le jury. Je remercie également M. Deny, dont les encouragements et les conseils n'ont jamais cessé de m'être utiles, M. Serre qui s'est préoccupé du second sujet et P. A. Meyer qui a su orienter mes recherches aux tournants décisifs.

« Après la rédaction de ce travail, nous avons eu connaissance du livre de P. A. Meyer: Probabilités et Potentiels. Y figure une démonstration du théorème de Ray identique à celle que nous avons donnée ci-dessus. Ajoutons qu'une remarque simple de l'auteur permet de montrer l'équivalence de l'hypothèse de Ray et de l'hypothèse notée présentement (H). »

TABLE DES MATIÈRES

CHAPITRE PREMIER. — Principes Classiques en théorie du Potentiel	395
1. Notations 2. Les noyaux 3. Énoncé de principes 4. Équivalence des principes 5. Prolongement des principes	395 395 396 397 398
Снарітке іі. — Familles Résolvantes	4 00
1. Notations 2. Famille résolvante associée à un noyau borné 3. Famille résolvante associée à un noyau non borné 4. Étude des réciproques	400 401 403 406
Снарітке III. — Prolongement au Compactifié	409
1. Position du problème	409 409 410
Chapitre iv. — Fonctions surmédianes	416
1. Introduction 2. Résultats préliminaires 3. Frontière de l'espace K 4. Mesures maximales 5. Cas particulier: l'ensemble A est fermé 6. Étude d'un exemple	416 417 418 423 425 426
Chapitre v. — Noyaux et semi-groupes	427
1. Le théorème de Hille-Yosida 2. Principe complet du maximum et semi-groupes sous-markoviens 3. Étude d'un cas particulier 4. Principe de domination et semi-groupes 5. Cas des espaces discrets 6. Étude d'un exemple	427 428 430 431 432 436

GEORGES LION

Chapitre vi. — Frontière de Choquet et Familles d'opérateurs	4 37
1. Notations	437
2. Relations d'équivalence et espace quotient associés à H	438
3. Applications du théorème de Choquet	439
4. Critère de continuité de la fonction limite	442
5. Étude d'un cas particulier	445
6. Solution du problème lorsque K est fini	449
7. Un contre exemple	450

CHAPITRE PREMIER

PRINCIPES CLASSIQUES EN THÉORIE DU POTENTIEL

1. Notations.

Soit X un espace localement compact; soit K le compactifié d'Alexandroff de X; soit ω le point à l'infini.

Si X est compact, on désignera par K l'espace compact obtenu par adjonction à X du point isolé ω .

Notons \mathcal{C}_{K} l'espace vectoriel des fonctions numériques réelles, continues sur X, et à supports compacts.

Notons \mathcal{C}_0 l'espace vectoriel des fonctions numériques réelles, continues sur X, et tendant vers 0 à l'infini.

Notons \mathcal{C} l'espace vectoriel des fonctions numériques réelles, continues sur X, et tendant vers une limite à l'infini.

L'espace C sera souvent identifié à l'espace des fonctions numériques réelles continues sur K, en raison de l'isomorphisme canonique déterminé par l'injection de X dans K.

Les trois espaces \mathcal{C}_{κ} , \mathcal{C}_{0} , \mathcal{C} sont normés par la norme de la convergence uniforme sur X.

Enfin notons \mathcal{C}_{κ}^+ , \mathcal{C}_0^+ , \mathcal{C}^+ , les cônes des fonctions positives (1) de chacun des trois espaces \mathcal{C}_{κ} , \mathcal{C}_0 , \mathcal{C} .

2. Les noyaux.

DÉFINITION. — On appelle noyau continu sur X, toute application linéaire V de $\mathcal{C}_{\mathbf{K}}$ dans $\mathcal{C}_{\mathbf{0}}$, telle que $V(\mathcal{C}_{\mathbf{K}}^+)$ soit contenu dans $\mathcal{C}_{\mathbf{0}}^+$.

Le noyau V est dit borné (2) s'il existe une constante M telle l'inégalité : $||f|| \le 1$, entraîne : $||Vf|| \le M$.

(1) Le terme positif est pris au sens large (positif ou nul).

(2) Deny emploie dans ce cas le qualificatif « uniforme » (voir [14]).

Par contre, on trouve « borné » dans un sens très différent, dans Choquet-Deny [7].

Tout noyau borné peut être prolongé à l'espace \mathcal{C}_0 de la façon suivante: soit f une fonction de \mathcal{C}_0^+ , et soit Vf l'enveloppe supérieure des fonctions $V\varphi$, pour φ appartenant à \mathcal{C}_K^+ et majorée par f; ainsi définie, la fonction Vf appartient à \mathcal{C}_0^+ , car \mathcal{C}_K^+ est dense dans \mathcal{C}_0^+ .

Si l'espace X est compact, tout noyau continu est borné. On dit qu'un noyau est strictement positif, si pour tout x de X, il existe dans \mathcal{C}_{K} une fonction f telle que Vf(x) soit strictement positif.

Exemples. — I. Prenons pour espace X l'espace euclidien \mathbf{R}^n (n > 2); et posons:

$$Vf(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n-2}} dy \quad (f \in \mathcal{C}_K).$$

Le noyau V n'est pas borné.

II. Soit μ une mesure positive à support compact dont le potentiel newtonien U^{μ} est continu.

Posons:

$$Vf(x) = \int_{\mathbf{R}^n} \frac{f(y)}{|x - y|^{n-2}} d\mu(y).$$

Si f appartient à \mathcal{C}^+ , la fonction Vf est à priori semi-continue inférieurement; si k désigne la borne supérieure de f sur le support de μ , la fonction V(k-f) est de même semi-continue inférieurement; or nous avons:

$$Vf = kU^{\mu} - V(k - f).$$

Ainsi la fonction ∇f est continue sur \mathbb{R}^n , et le noyau \mathbb{V} est borné.

III. Si X est un espace fini, tout noyau peut être représenté par une matrice carrée à coefficients positifs et réciproquement (voir Choquet-Deny [8]).

3. Énoncé des principes.

a) Principe complet du maximum.

Pour tous $a \geqslant 0$, f et $g \in \mathcal{C}_{K}^{+}$, l'inégalité :

$$Vf(x) \leqslant Vg(x) + a$$

a lieu partout sur X pourvu qu'elle ait lieu sur le support de f.

b) Principe du maximum positif faible.

Si, pour f appartenant à \mathcal{C}_{K} , la fonction Vf n'est pas négative, elle atteint son maximum (strictement positif) en au moins un point de X où f est positive.

c) Principe fort du maximum.

Pour toute fonction f de \mathcal{C}_{K} , l'inégalité: $\nabla f(x) \leq 1$, a lieu partout sur X pourvu qu'elle ait lieu sur le support de f.

d) Principe classique du maximum.

Pour toute fonction f de $\mathcal{C}_{\mathbf{k}}^+$, l'inégalité: $Vf(x) \leq 1$, a lieu partout sur X pourvu qu'elle ait lieu sur le support de f.

e) Principe de domination.

Pour toutes f et g dans \mathcal{C}_{K}^{+} , l'inégalité: $Vf(x) \leqslant Vg(x)$, a lieu partout sur X pourvu qu'elle ait lieu sur le support de f.

Les noyaux définis dans les exemples I et II, vérifient le principe a) (voir Cartan-Deny [4], et Brelot [3]).

4. Équivalence des principes.

Théorème. — Les principes a) et b), sont équivalents.

Hunt a remarqué l'implication: a) entraı̂ne b).

Démontrons par l'absurde la réciproque.

Supposons qu'il existe une constante a positive, et deux fonctions f et g de \mathcal{C}_{K}^{+} , telles que l'on ait : $Vf(x) \leqslant Vg(x) + a$, pour tout x du support de f.

Supposons d'autre part, qu'il existe un point x_0 , hors du support de f, vérifiant l'inégalité: $Vf(x_0) > Vg(x_0) + a$.

Posons:

$$b = \operatorname{V} f(x_0) - \operatorname{V} g(x_0);$$
 et soit $c = b - a$.

Soit $U = \left\{ x \in X; Vf(x) - Vg(x) > b - \frac{c}{2} \right\}$. Cet ensemble U est ouvert, disjoint du support de f, et contient x_0 .

Il existe dans \mathcal{C}_{K}^{+} une fonction φ , égale à 1 en tout point de U. Si la fonction $\nabla \varphi$ est identiquement nulle, posons k=1, sinon, posons : $k=\sup_{x\in Y} \nabla \varphi(x)$.

La fonction $\psi = f - g - \frac{c}{3k} \varphi$, contredit le principe b); en effet, pour $x \in U$, on a :

$$V\psi(x)\leqslant b-rac{c}{2}$$
 et $V\psi(x_0)\geqslant b-rac{c}{3}$

Ainsi, la fonction $V\psi$ a un maximum strictement positif, qu'elle ne peut atteindre que dans U où la fonction ψ n'est jamais positive.

Remarque. — On connaît les implications: a) entraîne c) et e); et c) entraîne d) (voir Deny [16]). Tenant compte du théorème qui précède, on en conclut: b) entraîne c).

Lorsque X est un espace discret, nous allons démontrer la réciproque : c) entraîne b).

Supposons qu'il existe une fonction f de \mathcal{C}_{κ} , telle que soient disjoints les ensembles A et B définis ainsi:

A =
$$\{x \in X; f(x) \ge 0\},\$$

B = $\{x \in X; V f(x) = b > 0\},\$

(où b est le maximum de Vf).

Soit φ la fonction caractéristique de l'ensemble compact B. Posons: $f^- = \sup(-f, 0)$, et $g = f + f^-\varphi$; la fonction g

est nulle sur B; en vertu du principe d), qui découle de c), on a:

$$c = \sup_{x \in X} Vf^-\varphi(x) = \sup_{x \in B} Vf^-\varphi(x),$$

$$b + c = \sup_{x \in X} Vg(x) = \sup_{x \in B} Vg(x).$$

et

Or, pour tout élément y du support de g, on a :

$$Vg(y) = Vf(y) + Vf^-\varphi(y) < b + c.$$

La fonction g contredit donc le principe c); cette contradiction signifie que l'hypothèse de départ est impossible, et le principe b) est vérifié par le noyau V.

Dans ce même ordre d'idées, Kishi a démontré complètement les équivalences: $a) \iff c) \iff d$) et e), sous les hypothèses suivantes: le noyau V est un noyau-fonction, strictement positif, et régulier (voir à ce sujet Kishi [21], ou Durier [18]).

5. Prolongement des principes.

Soit f une fonction de \mathcal{C}_0^+ ; posons, lorsque cette expression est finie:

$$\mathbf{V}f(x) = \sup_{\substack{\varphi \leqslant f_+ \\ \varphi \in \mathcal{C}^+_{\mathbf{x}}}} \mathbf{V}\varphi(x), \quad (x \in \mathbf{X}).$$

Les fonctions f pour lesquelles Vf(x) définit sur X une fonction continue, engendrent dans \mathcal{C}_0 un sous-espace vectoriel noté $\mathfrak{D}(V)$. La fonction Vf peut ne pas appartenir à \mathcal{C}_0 . Lorsque le noyau V est borné, le sous-espace $\mathfrak{D}(V)$ est égal à \mathcal{C}_0 .

Nous allons étudier deux cas où un principe, valable pour des fonctions de \mathcal{C}_{κ}^+ , vaut encore pour des fonctions de $\mathfrak{D}(V)^+$

a) Principe de domination pour un noyau strictement positif. Supposons l'inégalité: $\nabla f(x) \leq \nabla g(x)$, vérifiée pour tout x du support de f(f) et g appartenant à $\mathfrak{D}(\nabla)^+$).

Soit φ dans $\mathcal{C}_{\mathbf{k}}^+$, majorée par f; pour tout x du support de φ , on a: $\nabla \varphi(x) \leqslant \nabla g(x)$; d'autre part, il existe dans $\mathcal{C}_{\mathbf{k}}^+$ une fonction h telle que $\nabla h(x)$ majore 1, pour tout x du support de φ .

La fonction g est limite d'une suite croissante de fonctions g_n de \mathcal{C}_{κ}^+ ; ainsi Vg est limite de la suite croissante Vg_n ; sur le support de φ , la convergence est uniforme.

Soit $\varepsilon > 0$, pour *n* assez grand on a donc:

$$Vg(x) \leqslant Vg_n(x) + \varepsilon$$
 (x appartenant au support de φ),

d'où:

$$V\varphi(x) \leqslant Vg_n(x) + \epsilon Vh(x)$$
 (x appartenant au support de φ).

En vertu du principe de domination, cette inégalité a lieu partout sur X; en passant à la limite successivement sur n, ε et φ , on en conclut l'inégalité demandée : $Vf \leqslant Vg$.

b) Principe complet du maximum;

Reprenons les mêmes notations et soit a une constante positive; si l'inégalité: $\nabla f(x) \leqslant \nabla g(x) + a$, a lieu pour tout x du support de f l'inégalité: $\nabla \varphi(x) \leqslant \nabla g_n(x) + a + \varepsilon$, a lieu pour tout x du support de φ ; cette inégalité a donc lieu partout sur X. On conclut de même: $\nabla f \leqslant \nabla g + a$.

CHAPITRE II

FAMILLES RÉSOLVANTES

1. Notations.

Soit une famille d'opérateurs linéaires continus de \mathcal{C}_0 dans lui-même, notés V_{λ} , définis pour $\lambda > 0$, ou pour $\lambda \geqslant 0$, selon les cas.

Nous dirons que (V_{λ}) est une famille *résolvante* si l'on a pour tous λ et μ , l'égalité:

$$(\mu-\lambda)V_{\lambda}V_{\mu}=V_{\lambda}-V_{\mu}.$$

En conséquence, les opérateurs V_{λ} sont permutables; l'image et le noyau de ces opérateurs ne dépendent pas de λ .

La famille résolvante (V_{λ}) est dite positive, si pour tout λ , l'opérateur V_{λ} est positif (c'est-à-dire que $V_{\lambda}(\mathcal{C}_0^+)$ est contenu dans \mathcal{C}_0^+).

La famille résolvante (V_{λ}) est sous-markovienne, si pour tout λ , on a : $\lambda ||V_{\lambda}|| \leq 1$, (il s'agit là de la norme de l'opérateur V_{λ} , dans l'espace de Banach $\mathcal{L}(\mathcal{C}_{0})$).

Proposition. — L'application: $\lambda \to V_{\lambda}$, de R_+ dans $\mathfrak{A}(\mathcal{C}_0)$ est analytique.

En effet, de l'équation résolvante, on déduit, pour tout entier n:

$$(\mu-\lambda)^n V_\lambda V_\mu^n = (\mu-\lambda)^n V_\mu^{n+1} + (\mu-\lambda)^{n+1} V_\lambda V_\mu^{n+1}.$$

Fixons μ , et prenons λ dans l'intervalle défini par l'inégalité :

$$|\lambda - \mu| < \frac{1}{||V_{\mu}||};$$

par addition membres à membres des égalités précédentes, nous obtenons :

$$V_{\lambda} = \sum_{n=0}^{\infty} (\mu - \lambda)^n V_{\mu}^{n+1}.$$

Nous avons ainsi le développement en série de V_{\lambda}.

2. Famille résolvante associée à un noyau borné.

Théorème I. — a) Soit un noyau continu V, borné, strictement positif et vérifiant le principe de domination; alors il existe une famille résolvante (V_{λ}) , et une seule, telle que l'on ait: $V = V_0$; de plus, une telle famille est positive.

b) Soit un noyau continu V, borné, et vérifiant le principe complet du maximum; alors il existe une famille résolvante (V_{λ}) , et une seule, telle que l'on ait: $V = V_0$; de plus, une telle famille est positive et sous-markovienne.

Démonstration. — Pour $\lambda < \frac{1}{||V||}$, la série $\sum_{n=0}^{\infty} (-\lambda)^n V^{n+1}$ définit un opérateur V_{λ} qui vérifie la condition:

$$V\,-\,V_{\lambda}=\lambda VV_{\lambda}=\lambda V_{\lambda}V\,(1).$$

Il existe un prolongement analytique maximal de cette fonction V_{λ} : notons encore V_{λ} ce prolongement, et soit [0, k[son intervalle de définition; dans cet intervalle la condition (1) reste vérifiée.

Prenons λ et μ dans l'intervalle [0, k[; on a alors:

$$V_{\mu}(I-\lambda V_{\lambda}) = (I-\mu V_{\mu}) \; V(I-\lambda V_{\lambda}) = (I-\mu V_{\mu}) \; V_{\lambda}. \label{eq:Vmu}$$

De cette égalité, on déduit l'équation résolvante.

Montrons à présent que les opérateurs V_{λ} sont positifs. Soit f une fonction de \mathcal{C}_0^+ , et soit $V_{\lambda}f = h^+ - h^-$; de l'égalité

$$\lambda V V_{\lambda} f = V f - V_{\lambda} f,$$

on déduit l'inégalité:

$$Vf(x) \geqslant \lambda Vh^{+}(x) - \lambda Vh^{-}(x),$$

pour tout x du support de h^+ .

En vertu du chapitre 1, § 5, et dans chacun des cas présents, la même inégalité a lieu sur tout l'espace X. Donc $V_{\lambda}f$ appartient à \mathcal{C}_0^+ .

De ce fait, on déduit l'inégalité: $||V_{\lambda}|| \le ||V||$, pour tout $\lambda \in [0, k]$.

Supposons que k soit un nombre fini, et prenons

$$\mu>k-rac{1}{||\mathbf{V}||};$$

la série $\sum_{n=0}^{\infty} (\mu - \lambda)^n V_{\mu}^{n+1}$ converge vers V_{λ} , pour $\lambda < k$ (en vertu de la proposition préliminaire); d'autre part, cette série prolonge la définition de V_{λ} , à l'intervalle $\left[0, \ \mu + \frac{1}{||V||}\right]$; ainsi k n'est pas fini.

L'unicité de la famille résolvante se déduit aussitôt de la proposition préliminaire.

Il nous reste à prouver l'inégalité: $\lambda ||V_{\lambda}|| \leq 1$, dans le cas b). Soit f une fonction de \mathcal{C}_0^+ inférieure à 1; soit a le maximum de $V_{\lambda}f$; il existe dans X un élément x_0 tel que l'on ait:

$$V_{\lambda}f(x_0)=a,$$

et:

$$f(x_0) - \lambda V_{\lambda} f(x_0) \geqslant 0$$

(en vertu du principe du maximum positif faible appliqué à $V_{\lambda}f = V(f - \lambda V_{\lambda}f)$).

Nous trouvons l'inégalité cherchée: $\lambda a \leqslant f(x_0) \leqslant 1$.

Remarque. — Si l'espace X est compact, le théorème I a) subsiste sans la restriction: « V est strictement positif ». Cette restriction entraîne l'existence de deux constantes a et b, telles que l'on ait:

$$0 < a \leqslant V(1) \leqslant b,$$

d'où l'on déduit:

$$\lambda V_{\lambda}(a) \leqslant \lambda V_{\lambda} V(1) \leqslant V(1) \leqslant b;$$

ainsi on a:

$$|\lambda||V_{\lambda}|| \leqslant \frac{b}{a}$$

Dans [20], Hunt démontre la partie b) du théorème I, sous l'hypothèse supplémentaire : « L'espace $V(\mathcal{C}_{\mathbf{K}})$ est partout dense dans $\mathcal{C}_{\mathbf{0}}$ ».

3. Famille résolvante associée à un noyau non borné.

Théorème II. — Soit X un espace localement compact, dénombrable à l'infini, et V un noyau continu sur X, vérifiant le principe complet du maximum; alors il existe une famille résolvante (V_{λ}) , et une seule, telle que l'on ait:

$$\nabla f - \nabla_{\lambda} f = \nabla_{\lambda} \nabla f = \nabla \nabla_{\lambda} f, \quad (f \in \mathcal{C}_{K}, \ \lambda > 0).$$

De plus, la famille (V_{λ}) est positive et sous-markovienne; et, quand λ tend vers 0, $V_{\lambda}f$ tend vers Vf, uniformément sur X.

Pour démontrer ce théorème, nous allons procéder par étapes.

1) Construisons une suite de noyaux bornés V_n , tendant en croissant vers V. Soit (K_n) une suite de compacts de X, vérifiant les conditions:

$$K_n \subset \dot{K}_{n+1}$$
 et $X = \bigcup K_n$.

Pour tout entier n, il existe une application continue φ_n de X dans [0, 1], égale à 1 sur K_n , nulle hors de K_{n+1} ; pour toute f de \mathcal{C}_K , posons: $V_n(f) = V(\varphi_n f)$.

Cette formule définit un noyau continu V_n , vérifiant le principe complet du maximum et borné; dès que K_n contient le support de f, on a : $V_n f = V f$.

2) Associons à chaque noyau V_n , la famille résolvante (V_{λ}^n) , dont l'existence est assurée par le théorème I.

Soit f une fonction de \mathcal{C}_{K}^{+} , et S_{f} le support (compact) de f. Choisissons m assez grand pour que K_{m} contienne S_{f} .

On a alors:

$$Vf = V_m f = V_{\lambda}^m f + \lambda V_{\lambda}^m V_m f = V_{\lambda}^m f + \lambda V_m V_{\lambda}^m f.$$

Pour $n \ge m$, posons: $h_n = V_{\lambda}^n f$, et $h_m = V_{\lambda}^m f$; de la formule précédente, nous déduisons:

$$h_n + \lambda V(\varphi_n h_n) = h_m + \lambda V(\varphi_m h_m).$$

Soit
$$h = \text{Inf}(h_n, h_m)$$
, $g_n = h_n - h$, et: $g_m = h_m - h$.

Retranchons la fonction $h + \lambda V \varphi_m h$, nous obtenons l'égalité:

$$g_n + \lambda V(\varphi_n h_n - \varphi_m h) = g_m + \lambda V(g_m \varphi_m),$$

qui entraîne, l'inégalité:

$$\lambda V \varphi_m g_m(x) \leqslant \lambda V (\varphi_n h_n - \varphi_m h)(x),$$

valable pour tout x du support de g_m ; cette inégalité a lieu partout sur X en vertu du principe de domination; ainsi on a : $g_m \ge g_n$, et $h_m \ge h_n$.

En résumé, dès que K_n contient le support de f, la suite des fonctions $V_{\lambda}^n f$ est décroissante; elle tend donc vers une limite que nous noterons $V_{\lambda} f$.

3) Montrons que la convergence est uniforme sur X.

Soit $g = Vf = V_{\lambda}^n f + \lambda V_{\lambda}^n Vf$; pour *n* assez grand, la suite des fonctions $V_{\lambda}^n g$ est croissante.

Soit $\varepsilon > 0$; il existe un compact K, hors duquel g(x) est majoré par ε ; si u est une application continue de X dans [0, 1], à support compact, égale à 1 sur K, la fonction g - gu est majorée par ε sur X.

Prenons K_m contenant les supports de u et de f, et $m \leqslant n$; on a:

$$V_{\lambda}^{n}(gu) \leqslant V_{\lambda}^{m}(gu) \leqslant V_{\lambda}^{m}g \leqslant V_{\lambda}^{n}g \leqslant V_{\lambda}^{n}(gu) + \frac{\varepsilon}{\lambda}$$

d'où l'on déduit:

$$0 \leqslant V_{\lambda}^{n} g - V_{\lambda}^{m} g \leqslant \frac{\varepsilon}{\lambda},$$

donc:

$$V_{\lambda}^{m}f - V_{\lambda}^{n}f \leqslant \varepsilon, \quad (f \in \mathcal{C}_{K}^{+}).$$

La convergence uniforme de $V_{\lambda}^{n}f$ vers $V_{\lambda}f$ est ainsi vérifiée pour toute fonction de C_{0} , car C_{K} y est dense et on a:

$$\lambda ||V_{\lambda}^{n}|| \leqslant 1.$$

Les opérateurs V_{λ} , limites fortes de V_{λ}^{n} , constituent une famille résolvante sous-markovienne, positive.

De l'égalité: $\nabla f = \nabla_{\lambda}^{n} f + \lambda \nabla_{\lambda}^{n} \nabla f$, on déduit, par passage à la limite sur n;

$$Vf = V_{\lambda}f + \lambda V_{\lambda}Vf \quad (f \in \mathcal{C}_{\mathbf{K}}).$$

Prenons de nouveau f dans \mathcal{C}_{K}^{+} ; de l'inégalité: $V_{\lambda}f \leqslant Vf$, on déduit: $\lim_{\lambda \to 0} \lambda V_{\lambda}f = 0$, uniformément sur X; si g appartient à \mathcal{C}_{0} , il en est de même de $\lambda V_{\lambda}g$, donc $V_{\lambda}f$ tend vers Vf quand λ tend vers 0, uniformément sur X.

Démontrons l'égalité:

$$VV_{\lambda}f = V_{\lambda}Vf \quad (f \in \mathcal{C}_{K}^{+}).$$

Soit h une fonction de $\mathcal{C}_{\mathbf{K}}^+$, majorée par $\mathbf{V}_{\lambda}f$; dès que \mathbf{K}_n contient les supports de f et de h, on a l'inégalité:

$$h \leqslant \varphi_n \mathbf{V}_{\lambda}^n f$$

qui entraîne:

$$Vh \leqslant V_n V_{\lambda}^n f = V_{\lambda}^n V f.$$

En passant à la limite sur n, puis sur h, on démontre l'inégalité:

$$VV_{\lambda}f \leqslant V_{\lambda}Vf$$
.

D'autre part, on a, pour tout $\mu > 0$: $VV_{\lambda}f \geqslant V_{\mu}V_{\lambda}f = V_{\lambda}V_{\mu}f$; faisons tendre μ vers 0, il vient:

$$VV_{\lambda}f \geqslant V_{\lambda}Vf$$
.

Ainsi est démontrée l'égalité:

$$\lambda V V_{\lambda} f = \lambda V_{\lambda} V f = V f - V_{\lambda} f, \quad (f \in \mathcal{C}_{K}).$$

4) Il reste à démontrer l'unicité de la famille résolvante. Supposons qu'il existe deux telles familles (V_{λ}) et (W_{λ}) , vérifiant la condition:

$$V_{\lambda}f + \lambda VV_{\lambda}f = W_{\lambda}f + \lambda VW_{\lambda}F, \quad (f \in \mathcal{C}_{\kappa}^{+}, \lambda > 0).$$

Posons:

$$g_1 = V_{\lambda}f - \text{Inf}(V_{\lambda}f, W_{\lambda}f),$$

 $g_2 = W_{\lambda}f - \text{Inf}(V_{\lambda}f, W_{\lambda}f).$

Ainsi, on a: $g_1 + \lambda V g_1 = g_2 + \lambda V g_2$; pour tout x du support de g_1 , a lieu l'inégalité: $V g_1(x) \leq V g_2(x)$, cette inégalité a donc lieu partout sur X, ce qui entraîne: $g_1 \geq g_2$; on démontrerait de même l'inégalité inverse, d'où l'on déduit finalement:

$$V_{\lambda}f = W_{\lambda}f$$
.

Remarques. — 1) A l'exception de la partie 3), les mêmes raisonnements s'appliquent à tout noyau continu, strictement positif, et vérifiant le principe de domination.

2) Hunt a démontré le présent théorème en usant d'une méthode probabiliste, et sous l'hypothèse supplémentaire citée à la fin du § 2.

4. Étude des réciproques.

Théorème III. — a) Soit $(V_{\lambda})_{\lambda \geqslant 0}$ une famille résolvante d'opérateurs strictement positifs, définis sur \mathcal{C}_0 ; alors tout opérateur V_{λ} vérifie le principe de domination.

b) Soit $(V_{\lambda})_{\lambda>0}$ une famille résolvante d'opérateurs positifs et sous-markovienne; alors tout opérateur V_{λ} vérifie le principe complet du maximum.

Remarque. — Dans la partie a) il suffit que l'un des opérateurs V_{λ} soit strictement positif, pour que tous les autres le soient.

Introduisons de nouvelles notations. Pour $\mu > \lambda$, désigne par $\mathcal{E}^{\mu}_{\lambda}$ l'ensemble des fonctions de \mathcal{C}^{+}_{0} , vérifiant la condition:

$$(\mu - \lambda)V_{\mu}f \leqslant f$$
.

On vérifie aussitôt que $\mathcal{E}^{\mu}_{\lambda}$ est un cône convexe, semiréticulé inférieurement; si f appartient à \mathcal{E}^{+}_{0} , $V_{\lambda}f$ appartient à $\mathcal{E}^{\mu}_{\lambda}$, en vertu de l'équation résolvante:

$$(\mu - \lambda) V_{\mu} V_{\lambda} f = V_{\lambda} f - V_{\mu} f \leqslant V_{\lambda} f.$$

Posons $T_{\lambda}^{\mu}f = V_{\lambda}f + \frac{f}{\mu - \lambda}$; si f appartient à \mathcal{C}_{0}^{+} , alors $T_{\lambda}^{\mu}f$ appartient à $\mathcal{E}_{\lambda}^{\mu}$. En effet, on a la formule:

$$(\mu-\lambda)V_{\mu}T_{\lambda}^{\mu}f=V_{\lambda}f-V_{\mu}f+V_{\mu}f=V_{\lambda}f\leqslant T_{\lambda}^{\mu}f.$$

Réciproquement, pour toute fonction u de $\mathcal{E}^{\mu}_{\lambda}$, il existe une fonction f dans \mathcal{C}^{+}_{0} , telle que l'on ait : $u = T^{\mu}_{\lambda}f$; on calcule f ainsi :

$$f = (\mu - \lambda)(\mathrm{T}_{\lambda}^{\mu}f - \mathrm{V}_{\lambda}f) = (\mu - \lambda)(u - (\mu - \lambda)\mathrm{V}_{\mu}u),$$

et cette formule détermine bien une fonction positive.

Démontrons un lemme préliminaire:

Lemme I. — Soient $f \in \mathcal{C}_0^+$ et $u \in \mathcal{E}_{\lambda}^{\mu}$; si l'inégalité:

$$T^{\mu}_{\lambda}f(x) \leqslant u(x),$$

a lieu pour tout x du support de f, alors elle a lieu sur tout X. Posons $v = \text{Inf}(T_{\lambda}^{u}f, u)$, et soit g une fonction de \mathcal{C}_{0}^{+} telle que l'on ait: $v = T_{\lambda}^{\mu}g$; on a donc:

$$V_{\lambda}g=(\mu-\lambda)V_{\mu}T_{\lambda}^{\mu}g\leqslant(\mu-\lambda)V_{\mu}T_{\lambda}^{\mu}f=V_{\lambda}f;$$

c'est-à-dire:

$$T^{\mu}_{\lambda}g - \frac{g}{\mu - \lambda} \leqslant T^{\mu}_{\lambda}f - \frac{f}{\mu - \lambda}$$

Par hypothèse on a, pour tout x du support de f, l'égalité: $T^{\mu}_{\lambda}f(x) = \nu(x) = T^{\mu}_{\lambda}g(x)$, et ceci entraîne $g(x) \geqslant f(x)$; cette inégalité a donc lieu partout sur X, et ainsi on a :

$$T^{\mu}_{\lambda}g \geqslant T^{\mu}_{\lambda}f$$

c'est-à-dire : $T^{\mu}_{\lambda}f = T^{\mu}_{\lambda}g = \nu$, d'où découle aussitôt la conclusion du lemme.

Nous pouvons démontrer la partie a) du théorème : supposons l'inégalité : $V_{\lambda}f(x) \leqslant V_{\lambda}g(x)$, vérifiée pour tout x du support de $f(\lambda \geqslant 0, f$ et $g \in \mathcal{C}_{\mathbf{k}}^+$).

Pour tout tel x, on a donc:

$$\mathrm{T}_{\lambda}^{\mu}f(x)\leqslant \mathrm{V}_{\lambda}\mathrm{g}(x)+rac{f(x)}{\mu-\lambda}.$$

L'opérateur V_{λ} étant strictement positif, il existe dans \mathcal{C}_{K}^{+} une fonction h donnant lieu, pour tout x du support de f, à l'inégalité: $f(x) \leqslant V_{\lambda}h(x)$.

Ainsi, l'inégalité: $T_{\lambda}^{\mu}f \leqslant V_{\lambda}g + \frac{V_{\lambda}h}{\mu - \lambda}$, a lieu sur tout X.

En faisant tendre μ vers l'infini, nous obtenons l'inégalité demandée : $V_{\lambda}f \leqslant V_{\lambda}g$.

Lorsque la famille est sous-markovienne on a le résultat suivant:

Lemme II. — Si les fonctions u et v appartiennent à $\mathcal{E}^{\mu}_{\lambda}$, alors la fonction Inf (u, v + 1) appartient aussi à $\mathcal{E}^{\mu}_{\lambda}$.

Soit h_n une suite croissante de fonctions de \mathcal{C}_0^+ , tendant vers 1. Posons $w_n = \text{Inf } (u, v + h_n)$; quand n tend vers l'infini, w_n tend vers w = Inf (u, v + 1); et la convergence est uniforme sur tout compact, donc aussi sur X, car w appartient à \mathcal{C}_0^+ .

Or on a:

$$(\mu-\lambda)V_{\mu}w_{n}\leqslant (\mu-\lambda)V_{\mu}v+(\mu-\lambda)V_{\mu}h_{n}\leqslant v+1,$$

donc, à la limite:

$$(\mu - \lambda)V_{\mu}w \leqslant v + 1.$$

D'autre part on sait:

$$(\mu - \lambda)V_{\mu}w \leqslant (\mu - \lambda)V_{\mu}u \leqslant u;$$

ainsi ω appartient à $\mathcal{E}^{\mu}_{\lambda}$.

Démontrons l'assertion b) du théorème.

L'inégalité: $V_{\lambda}f(x) \leq V_{\lambda}g(x) + a$, $(f, g \in \mathcal{C}_{K}^{+}, a \geq 0)$, ayant lieu sur le support de f, entraîne pour un tel x:

$$T^{\mu}_{\lambda}f(x) \leqslant V_{\lambda}g(x) + a + \frac{f(x)}{\mu - \lambda} \leqslant V_{\lambda}g(x) + a + \frac{k}{\mu - \lambda}$$

où k est la borne supérieure de f sur X.

En vertu du lemme II la fonction

$$\operatorname{Inf}\left(\mathrm{T}_{\lambda}^{\mu}f,\,\mathrm{V}_{\lambda}g+a+rac{k}{\mu-\lambda}
ight)$$

appartient à $\mathcal{E}^{\mu}_{\lambda}$; donc on a d'après le lemme I:

$$T^{\mu}_{\lambda}f \leqslant V_{\lambda}g + a + \frac{k}{\mu - \lambda},$$

qui conduit de même à:

$$V_{\lambda}f \leqslant V_{\lambda}g + a.$$

Remarque. — Supposons la famille (V_{λ}) sous-markovienne; supposons de plus que, pour toute fonction f de \mathcal{C}_{K} , $V_{\lambda}f$ tende vers une fonction Vf, uniformément sur X, quand λ tend vers 0. L'application $f \to Vf$ définit alors un noyau continu vérifiant le principe complet du maximum, mais non borné en général.

CHAPITRE III

PROLONGEMENT AU COMPACTIFIÉ

1. Position du problème.

Partant d'un noyau continu, défini sur $\mathcal{C}_{\mathbf{K}}$ ou sur $\mathcal{C}_{\mathbf{0}}$, et vérifiant le principe complet du maximum, nous sommes arrivés à une famille résolvante (V_{λ}) sous-markovienne, définie sur $\mathcal{C}_{\mathbf{0}}$; dans le but d'appliquer à cette famille résolvante les résultats de Ray [30] et de Choquet [5], nous devons nous placer sur un espace compact; c'est-à-dire étendre de $\mathcal{C}_{\mathbf{0}}$ à \mathcal{C} , l'espace de définition des opérateurs V_{λ} .

D'autre part l'image $V_{\lambda}(\mathcal{C})$ devra contenir les fonctions constantes; nous cherchons donc à prolonger l'opérateur V_{λ} de façon que l'on ait: $V_{\lambda}(1) = \frac{1}{\lambda}$.

Nous verrons qu'un tel prolongement est possible et qu'il est unique.

Remarque. — Si l'espace X est compact, il y a lieu de lui adjoindre un point isolé, qui jouera un rôle analogue au point à l'infini d'un espace localement compact non compact.

2. Prolongement d'une famille résolvante sous-markovienne.

Proposition. — Soit $(V_{\lambda})_{\lambda>0}$, une famille résolvante, positive, sous-markovienne, définie sur \mathcal{C}_0 pour $\lambda>0$.

Si on a, de plus, pour tout $\lambda > \hat{0}$:

$$||V_{\lambda}|| \leqslant \frac{1}{k+\lambda},$$

alors il existe une famille résolvante $(W_{\lambda})_{\lambda>0}$, positive, sousmarkovienne, définie sur C pour $\lambda>0$, et telle que:

Pour toute fonction f de \mathcal{C}_0 , on ait: $W_{\lambda}f = V_{\lambda}f$, et $W_{\lambda}(1) = \frac{1}{k+\lambda}$.

De plus une telle famille est unique.

Démonstration. – a) Soit g une fonction de C, et

$$f = g - g(\omega)$$
.

Ainsi f appartient à \mathcal{C}_0 et l'on a nécessairement:

$$W_{\lambda}g(x) = W_{\lambda} f(x) + W_{\lambda}[g(\omega)] = V_{\lambda} f(x) + \frac{g(\omega)}{k+\lambda}, \quad (x \in X),$$
 et

$$W_{\lambda}g(\omega) = \frac{g(\omega)}{k+\lambda}$$

Ces inégalités suffisent à déterminer W_{\lambda}g.

b) Vérifions l'équation résolvante à propos de (W_{λ}) :

$$\begin{split} (\mu - \lambda) W_{\mu} W_{\lambda} g &= (\mu - \lambda) W_{\mu} \bigg[V_{\lambda} f + \frac{g(\omega)}{k + \lambda} \bigg] \\ &= (\mu - \lambda) V_{\mu} V_{\lambda} f + (\mu - \lambda) \frac{g(\omega)}{(k + \mu)(k + \lambda)} \\ &= V_{\lambda} f - V_{\mu} f + \frac{g(\omega)}{k + \lambda} - \frac{g(\omega)}{k + \mu} = W_{\lambda} g - W_{\mu} g. \end{split}$$

L'opérateur W_{λ} est positif :

Soit g une fonction de C^+ ; on a:

$$f = g - g(\omega) \geqslant - g(\omega),$$

d'où:

$$\mathrm{W}_{\lambda} f = \mathrm{V}_{\lambda} f \geqslant rac{-g(\omega)}{k+\lambda} \qquad \mathrm{et} \qquad \mathrm{W}_{\lambda} g = \mathrm{V}_{\lambda} f + rac{g(\omega)}{k+\lambda} \geqslant 0.$$

Et l'inégalité: $||W_{\lambda}|| \leq \frac{1}{k+\lambda}$ entraîne que la famille (W_{λ}) est sous-markovienne.

3. Prolongement d'un noyau continu à l'espace K.

Soit V un noyau continu borné, défini sur X et vérifiant le principe complet du maximum.

DÉFINITION. — On dit que l'on prolonge le noyau V en posant $W(1) = \frac{1}{k}$, si l'opérateur W, défini sur \mathcal{C} par la formule :

$$Wg = V(g - g(\omega)) + \frac{g(\omega)}{k},$$

est un noyau continu vérifiant le principe complet du maximum.

Remarque. — Pour que ce prolongement ait lieu, il faut que la norme de V dans $\mathcal{L}(\mathcal{C}_0)$ soit majorée par $\frac{1}{k}$.

Cette condition n'est pas suffisante, comme le prouve l'exemple suivant:

Soit X l'ensemble des deux éléments x_1 et x_2 . Soit V le noyau représenté par la matrice:

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Ce noyau V vérifie le principe b) du chapitre 1, donc le principe complet.

Soit W un prolongement de V, représenté par la matrice :

$$\begin{pmatrix} 1 & 0 & \frac{1}{k} - 1 \\ 1 & 1 & \frac{1}{k} - 2 \\ 0 & 0 & \frac{1}{k} \end{pmatrix}, \quad \left(0 < k < \frac{1}{2} \right).$$

Soit

$$g(x_1) = \frac{1}{k} - 1, \quad g(x_2) = -\frac{1}{2}, \quad g(\omega) = -1;$$

Calculons Wg:

$$Wg(x_1) = 0$$
, $Wg(x_2) = \frac{1}{2}$, $Wg(\omega) = -\frac{1}{k}$.

Ainsi, quel que soit le nombre k, le noyau W ne vérifie pas le principe complet du maximum.

Démontrons trois lemmes:

Lemme I. — Si l'on peut prolonger le noyau V en posant $W(1) = \frac{1}{k}$, alors il existe une famille résolvante $(T_{\lambda})_{\lambda>0}$, positive, sous-markovienne, définie sur \mathcal{C}_0 pour $\lambda>0$ et telle que l'on ait: $V=T_k$.

Le noyau W vérifie le principe complet du maximum, il existe donc une famille résolvante (W_{λ}) d'opérateurs de \mathcal{C} , définis pour $\lambda > 0$ et tels que l'on ait $W_0 = W$. (Au chapitre II le résultat a été démontré pour \mathcal{C}_0).

On peut donc écrire la formule:

$$W_{\lambda} - W = -\lambda W_{\lambda}W = -\lambda WW_{\lambda}, \quad (\lambda \geqslant 0).$$

D'autre part, l'inégalité: $||W||\leqslant \frac{1}{k}$, permet de définir l'opérateur U_{μ} somme de la série

$$\sum_{n=0}^{\infty} (k-\mu)^n \mathbf{W}^{n+1}, \quad (0 < \mu \leqslant k).$$

L'opérateur U_{μ} est évidemment positif sur \mathcal{C} ; de plus on a :

$$(k - \mu)WU_{\mu} = (k - \mu) U_{\mu}W = U_{\mu} - W, \quad (0 < \mu \leqslant k).$$

Prolongeons la famille U_{μ} en posant:

$$U_{\mu} = W_{\mu-k}, \quad (\mu > k).$$

La famille $(U_{\mu})_{\mu>0}$ est positive; pour tout $\mu>0$ on a l'égalité :

$$(k - \mu)U_{\mu}W = (k - \mu)WU_{\mu} = U_{\mu} - W,$$

d'où l'on déduit:

$$\begin{array}{l} \mathbf{U}_{\mu}(\mathbf{I}+(k-\lambda)\mathbf{U}_{\lambda})=(\mathbf{I}+(k-\mu)\mathbf{U}_{\mu})\mathbf{W}(\mathbf{I}+(k-\lambda)\mathbf{U}_{\lambda})\\ =(\mathbf{I}+(k-\mu)\mathbf{U}_{\mu})\mathbf{U}_{\lambda},\\ \mathbf{c'est}\text{-}\dot{\mathbf{a}}\text{-}\mathbf{dire}: \end{array}$$

 $\mathrm{U}_{\mu}-\mathrm{U}_{\lambda}=(\lambda-\mu)\mathrm{U}_{\mu}\mathrm{U}_{\lambda}.$

Il s'agit donc d'une famille résolvante.

Pour $\mu \leqslant k$, on a

$$U_{\mu}(1) = \sum_{n=0}^{\infty} \frac{(k-\mu)^n}{k^{n+1}} = \frac{1}{\mu};$$

par prolongement analytique, cette égalité a lieu pour tout $\mu > k$.

La famille $(U_{\mu})_{\mu>0}$ est donc sous-markovienne et $U_k=W$. Prenant la restriction T_{μ} de U_{μ} à \mathcal{C}_0 , on obtient la famille cherchée.

Lemme II. — Soit $(V_{\lambda})_{\lambda>0}$ une famille résolvante, positive, définie sur \mathcal{C}_0 ; s'il existe une famille $(T_{\mu})_{\mu>0}$ résolvante, positive, sous-markovienne et telle que l'on ait, pour tout $\lambda>0$, $V_{\lambda}=T_{k+\lambda}$.

Alors la norme $||V_{\lambda}||$ est majorée par $\frac{1}{k+\lambda}$.

Ce lemme est évident car la famille (T_{μ}) est sous-markovienne.

Lemme III. — Soit (V_{λ}) une famille résolvante, positive, définie sur \mathcal{C}_0 pour $\lambda \geqslant 0$ et telle que l'on ait, pour tout $\lambda \geqslant 0$,

$$||V_{\lambda}|| \leqslant \frac{1}{k+\lambda}, \quad (k > 0);$$

Alors tout opérateur W_{λ} de la famille prolongée à \mathbb{C} vérifie le principe complet du maximum sur K.

Le prolongement $(W_{\lambda})_{\lambda \geqslant 0}$ existe en vertu du théorème I du présent chapitre; de plus, pour tout $\lambda > 0$, le noyau défini par W_{λ} vérifie le principe complet du maximum (chapitre 11, théorème III).

Il reste donc à vérifier ce principe pour le noyau $W = W_0$. Soient $a \ge 0$, f et g dans \mathcal{C}^+ , tels que l'inégalité:

$$Wf(x) \leqslant Wg(x) + a$$

soit vérifiée pour tout élément x du support de f.

Lorsque λ tend vers 0, $W_{\lambda}f$ tend vers Wf uniformément sur K, et de même $W_{\lambda}g$ tend vers Wg.

Soit $\varepsilon > 0$; pour λ assez petit, l'inégalité:

$$W_{\lambda}f(x) \leqslant W_{\lambda}g(x) + a + \varepsilon$$
,

est vérifiée sur le support de f.

Par application du principe complet, on obtient:

$$W_{\lambda}f \leqslant W_{\lambda}g + a + \varepsilon$$
,

d'où, par convergence uniforme:

$$Wf \leq Wg + a + \varepsilon$$
.

Cette inégalité ayant lieu pour tout $\varepsilon > 0$, on en conclut:

$$Wf \leqslant Wg + a$$
.

Théorème II. — Soit V un noyau continu sur X, vérifiant le principe complet du maximum; soit $(V_{\lambda})_{\lambda>0}$ la famille résolvante associée à V. Les trois nombres suivants sont égaux:

$$\begin{cases} a = \inf_{\lambda > 0} \left(\frac{1}{||V_{\lambda}||} - \lambda \right) \\ b = \sup_{k > 0} \left\{ k > 0; \text{ on prolonge V en posant } W(1) = \frac{1}{k} \right\} \\ c = \sup_{k > 0} \left\{ k > 0; \text{ il existe une famille résolvante sous-markovienne } (T_{\lambda})_{\lambda > 0} \text{ telle que } V_{\lambda} = T_{k+\lambda} \right\}.$$

Démonstration. — Quatre cas sont possibles à priori:

- 1) $b \neq 0$; on a alors: $b \leqslant c$ (lemme I);
- 2) $c \neq 0$; on a alors: $c \leqslant a$ (lemme II);
- 3) $a \neq 0$; on a alors: $a \leqslant b$ (lemme III);
- 4) a = b = c = 0.

Ces quatre cas conduisent à l'égalité a = b = c.

Exemples. — I. Au noyau cité plus haut on associe la famille résolvante définie ainsi:

$$V_{\lambda} = \begin{pmatrix} \frac{1}{1+\lambda} & 0\\ \frac{1}{(1+\lambda)^2} & \frac{1}{1+\lambda} \end{pmatrix}, \quad (\lambda > 0).$$

On peut calculer:

$$||V_{\lambda}|| = \frac{2+\lambda}{(1+\lambda)^2}, \qquad \mathrm{et} \qquad \frac{1}{||V_{\lambda}||} - \lambda = \frac{1}{2+\lambda}.$$

Ainsi, on retrouve le fait que V n'est pas prolongeable. (Pour: $0 > \lambda > -1$, les opérateurs V_{λ} sont positifs, mais ils ne vérifient pas le principe complet du maximum).

II. Construisons un exemple où l'on ait:

$$\frac{1}{||\mathbf{V}||} \neq a \neq 0.$$

Il suffit de considérer:

$$V = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$$
, d'où $\frac{1}{||V||} = \frac{1}{3}$,

et

$$V_{\lambda} = \begin{pmatrix} \frac{2}{1+2\lambda} & 0\\ \frac{1}{(1+2\lambda)^2} & \frac{2}{1+2\lambda} \end{pmatrix},$$

ce qui donne:

$$\frac{1}{||V_{\lambda}||} - \lambda = \frac{\lambda + 1}{4\lambda + 3};$$

d'où l'on déduit:

$$a = \frac{1}{4} \neq \frac{1}{||\mathbf{V}||}$$

CHAPITRE IV

FONCTIONS SURMÉDIANES

1. Introduction.

Dans ce chapitre K désigne un espace compact et \mathcal{C} désigne l'espace vectoriel des fonctions numériques continues sur K. Soit (V_{λ}) une famille résolvante, positive, définie sur \mathcal{C} pour $\lambda > 0$, on suppose de plus l'égalité: $\lambda V_{\lambda}(1) = 1$.

Ray s'est préoccupé de savoir sous quelles hypothèses on peut conclure que chaque opérateur V_{λ} est l'intégrale d'un semi-groupe sous-markovien (voir [30]). Le théorème de Hille-Yosida (voir chapitre v) permet de ramener cette question à la suivante:

Lorsque la fonction f appartient à C, la fonction $\lambda V_{\lambda} f(x)$ a-t-elle une limite quand λ tend vers l'infini?

Ray a répondu positivement sous la condition suivante : les fonctions 1-surmédianes (3) séparent les points de K. Notons \hat{f} la limite (simple) de $\lambda V_{\lambda} f$; Ray a montré que pour tout x d'un ensemble A et pour toute f de \mathcal{C} on a : $\hat{f}(x) = f(x)$.

Il a ensuite étudié le semi-groupe associé à (V_{λ}) et les processus de Markov qui s'en déduisent.

Notre propos est d'étendre les premiers résultats de Ray au cas où c'est le cône de toutes les fonctions surmédianes qui sépare les points de K; les méthodes s'en trouveront d'autant simplifiées; puis nous ferons le lien du problème étudié ici avec les travaux de Bauer sur la frontière de Choquet, et aussi avec la notion de mesures maximales; enfin, nous

⁽³⁾ C'est-à-dire les fonctions de \mathcal{C}^+ vérifiant pour tout $\lambda > 0$ l'inégalité :

donnerons une condition nécessaire et suffisante pour que la fonction \hat{f} soit continue sur K, et un exemple où ceci n'a pas lieu.

2. Résultats préliminaires.

DÉFINITION. — On dit qu'une fonction f de \mathcal{C}^+ est λ -surmédiane si, pour tout $\mu > \lambda$, on a l'inégalité: $(\mu - \lambda)V_{\mu}f \leqslant f$.

L'ensemble ε_λ des fonctions λ-surmédianes est un cône

convexe, semi-réticulé inférieurement.

Toute constante positive appartient à \mathcal{E}_{λ} .

Si la fonction g appartient à C^+ , en vertu de l'équation résolvante la fonction $V_{\lambda}g$ appartient à \mathcal{E}_{λ} .

Lemme I. — Si la fonction f est λ -surmédiane, alors l'inégalité : $\mu' \geqslant \mu$, entraîne $(\mu' - \lambda)V_{\mu}f \geqslant (\mu - \lambda)V_{\mu}f$. En effet on peut écrire :

$$\begin{array}{l} (\mu'-\lambda)V_{\mu}f-(\mu-\lambda)V_{\mu}f=(\mu'-\lambda)(V_{\mu}f-V_{\mu}f)+(\mu'-\mu)V_{\mu}f\\ =(\mu'-\mu)[V_{\mu}f-(\mu'-\lambda)V_{\mu}V_{\mu'}f]\\ =V_{\mu}[(\mu'-\mu)(f-(\mu'-\lambda)V_{\mu'}f)], \end{array}$$

et cette dernière fonction est bien positive.

Soit x un élément de K, et f une fonction λ -surmédiane; puisque $(\mu - \lambda)V_{\mu}f(x)$ croît avec μ , cette quantité tend vers une limite lorsque μ tend vers l'infini. Soit $\hat{f}(x)$ cette limite. Nous savons d'autre part :

 $\mu V_{\mu} f = (\mu - \lambda) V_{\mu} f + \lambda V_{\mu} f,$

et

$$||\lambda V_{\mu}f|| \leqslant \frac{\lambda ||f||}{\mu}.$$

Donc nous avons:

$$\hat{f}(x) = \lim_{\mu \to \infty} \mu V_{\mu} f(x), \quad (x \in K; f \in \mathcal{E}_{\lambda}).$$

Lemme II. — L'inégalité: $\lambda' \geqslant \lambda$ entraîne l'inclusion: $\mathcal{E}_{\lambda'} \supset \mathcal{E}_{\lambda}$.

En effet soit f appartenant à δ_{λ} ; nous avons, pour $\mu > \lambda'$:

$$(\mu-\lambda')V_{\mu}f=(\mu-\lambda)V_{\mu}f+(\lambda-\lambda')V_{\mu}f\leqslant (\mu-\lambda)V_{\mu}f\leqslant f.$$

Donc la fonction f appartient à \mathcal{E}_{λ} .

La réunion \mathscr{E} des cônes \mathscr{E}_{λ} est un cône convexe, semi-réticulé inférieurement. Nous dirons dorénavant qu'une fonction de \mathscr{E} est surmédiane si elle appartient au cône \mathscr{E} .

Démontrons un résultat général sur les familles résolvantes. Notons H l'adhérence de l'espace vectoriel $V_{\lambda}(\mathcal{C})$ dans \mathcal{C} .

PROPOSITION. — Pour que l'on ait, pour tout x de K, l'égalité:

$$\lim_{\lambda \to \infty} \lambda V_{\lambda} f(x) = f(x), \tag{1}$$

il faut et il suffit que f appartienne à H.

Et alors la convergence est uniforme sur K.

1) Démontrons que la condition est nécessaire; l'espace H est l'intersection des hyperplans fermés le contenant. Soit donc L une forme linéaire continue sur $\mathcal C$ et nulle sur H; on peut écrire : $L=L^+-L^-$, où L^+ et L^- définissent deux mesures positives sur K.

Si la fonction continue f vérifie la condition (1), on a en vertu du théorème de Lebesgue:

$$L^+(f) = \lim_{\lambda \to \infty} L^+(\lambda V_{\lambda} f)$$
 et $L^-(f) = \lim_{\lambda \to \infty} L^-(\lambda V_{\lambda} f)$.

Ayant, pour tout λ , l'égalité: $L(\lambda V_{\lambda} f) = 0$, on en déduit: L(f) = 0, et f appartient à H.

2) Réciproquement, supposons qu'il existe une fonction g de $\mathcal C$ telle que l'on ait $f=V_\mu g$.

Alors l'équation résolvante :

$$\lambda V_{\lambda}V_{\mu}g = V_{\mu}g + \mu V_{\lambda}V_{\mu}g - V_{\lambda}g,$$

entraîne la convergence, uniforme sur K, de $\lambda V_{\lambda} f$ vers f.

En vertu de l'égalité: $\lambda V_{\lambda}(1) = 1$, on a le même résultat pour toute fonction f de H.

Nous ferons l'hypothèse suivante:

(H): L'ensemble des fonctions surmédianes sépare les points de K.

Théorème I. — Lorsque f appartient à C, et x à K, $\lambda V_{\lambda} f(x)$ tend vers une limite $\hat{f}(x)$, quand λ tend vers l'infini.

En effet, la propriété a lieu pour toute fonction f surmédiane; elle a donc aussi lieu pour toute fonction appartenant à l'espace vectoriel D engendré par \mathcal{E} .

Or cet espace D contient les constantes, sépare les points de K, est réticulé. D'après le théorème de Stone-Weierstrass, cet espace vectoriel D est partout dense dans C.

Soit donc f une fonction de C, et (f_n) une suite de fonctions de D tendant vers f uniformément sur K. Nous avons:

$$\lambda V_{\lambda} f(x) - \lambda' V_{\lambda'} f(x) = \lambda V_{\lambda} (f - f_n)(x) - \lambda' V_{\lambda'} (f - f_n)(x) + (\lambda V_{\lambda} - \lambda' V_{\lambda'}) f_n(x).$$

Les deux premiers termes sont majorés en valeur absolue par $||f - f_n||$.

Ainsi la convergence est démontrée.

Remarque. — Pour toute fonction f de \mathcal{E} , on a l'inégalité : $\hat{f} \leqslant f$.

L'égalité $f = V_{\lambda}g$, entraîne: $f = \hat{f}$ (et la convergence est uniforme).

L'inégalité: $f \geqslant 0$, entraîne: $\hat{f} \geqslant 0$.

3. Frontière de l'espace K.

Soit Γ l'ensemble des fonctions f de \mathcal{C} vérifiant l'inégalité : $\hat{f} \leq f$. L'ensemble Γ est un cône convexe, semi-réticulé inférieurement, fermé et il contient le cône \mathcal{E} .

Introduisons les notations de Bauer (voir [22]).

Soit \mathcal{M}_1^+ l'ensemble des mesures positives de masse 1 sur K. Pour toute fonction f de \mathcal{C} , désignons par S(f) le compact

où la fonction f atteint son minimum.

Pour toute mesure μ de M_1^+ , notons S_{μ} le support de μ . Pour tout x de K on note M_x , l'ensemble des mesures μ de M_1^+ , vérifiant pour toute fonction f de Γ , l'inégalité:

$$\mu(f) \leqslant f(x)$$
.

L'ensemble M_x n'est pas vide, car il contient la mesure ε_x . Cet ensemble contient aussi la mesure μ_x définie ainsi:

$$\mu_x(f) = \hat{f}(x), \quad (f \in \mathcal{C}).$$

Pour toute mesure μ de M_x , on a:

$$\mu(V_{\lambda}f) = V_{\lambda}f(x), \quad (f \in \mathcal{C}).$$

En effet la fonction $V_{\lambda}f$ appartient à $\Gamma \cap (-\Gamma) = H$.

Lemme I. — Pour toute f de &, et toute μ de M_x , on a l'inégalité :

$$\mu(f) \geqslant \mu_x(f)$$
.

En effet soit $f \in \mathcal{E}_{\lambda}$ et $k > \lambda$; nous avons:

$$\mu(f) \geqslant \mu[(k-\lambda)V_k f] = (k-\lambda)V_k f(x).$$

Passant à la limite on obtient:

$$\mu(f) \geqslant \hat{f}(x) = \mu_x(f).$$

Lemme II. — Les deux conditions suivantes sont équivalentes :

- a) pour toute fonction f de &, on $a: f(x) = \hat{f}(x)$;
- b) l'ensemble M_x se réduit à ϵ_x .

La condition a) signifie l'égalité: $\mu_x = \varepsilon_x$; donc b) entraîne a). Réciproquement la condition a) entraîne pour toute f de ε et toute μ de M_x : $\mu(f) \geqslant f(x)$, (lemme I).

On a l'inégalité inverse par définition de M_x , donc les mesures μ et ϵ_x coïncident sur le cône ϵ , donc sur l'espace D, et aussi sur ϵ par convergence uniforme.

Définition. — L'ensemble A des éléments x de K vérifiant la condition a) (ou b)) est appelé frontière de Choquet de K relativement au cône Γ .

Remarque. — On obtiendrait la même frontière en partant du cône E.

Il nous faut maintenant montrer que cet ensemble A n'est pas vide, suivons pour cela la méthode de Choquet-Bauer.

On dit qu'un compact E de K est extrémal (4) si, pour tout x de E et toute μ de M_x , le support S_{μ} est contenu dans E.

L'ensemble des compacts extrémaux, ordonné par inclusion, est inductif vers le bas; il y a donc des éléments minimaux.

Lemme III. — L'ensemble A n'est pas vide et toute fonction de Γ y atteint son minimum.

Montrons d'abord que, pour toute f appartenant à Γ , le compact $\mathrm{S}(f)$ est extrémal.

En effet soit $x \in S(f)$ et $\mu \in M_x$; l'inégalité: $\mu(f) \leqslant f(x)$, entraîne que S_{μ} est contenu dans S(f).

⁽⁴⁾ Au lieu d'extrémal on dit parfois stable.

Soit donc M un compact extrémal minimal contenu dans

S(f).

Si l'ensemble M contenait deux points distincts, il existerait dans Γ une fonction g non constante sur M. Soit M' le compact où la restriction de g à M atteint son minimum. Soit x dans M' et μ dans M_x ; on sait déjà que l'ensemble S_{μ} est contenu dans M; donc l'inégalité: $\mu(g) \leqslant g(x)$, entraîne, comme plus haut, l'inclusion: $S_{\mu} \subset M'$; le compact M' serait donc extrémal et distinct de M.

Le compact M est donc nécessairement réduit à un point ξ . Toute mesure de M_{ξ} est ponctuelle donc égale à ϵ_{ξ} , et ξ appartient à l'ensemble A.

Soient x un élément de K et f une fonction de C; posons :

$$\overline{f}(x) = \inf_{\substack{\mathbf{v}_{\mathbf{A}} \geqslant f_{\mathbf{A}} \\ \mathbf{v} \in \Gamma}} \nu(x), \quad \text{et} \quad \underline{f}(x) = \sup_{\substack{\mathbf{w}_{\mathbf{A}} \leqslant f_{\mathbf{A}} \\ \mathbf{w} \in -\Gamma}} \omega(x),$$

(nous désignons par f_A , φ_A , φ_A , les restrictions à A des fonctions f, φ , φ).

Le fait que Γ soit un cône entraîne les inégalités:

$$\overline{f+g} \leqslant \overline{f} + \overline{g}$$
, et $\underline{f+g} \geqslant \underline{f} + \underline{g}$.

Pour de telles fonctions ν et w, la fonction $\nu - w$ atteint son minimum sur A, donc cette fonction est positive partout sur K.

Nous en déduisons l'inégalité: $f \leqslant \overline{f}$.

Enfin si la fonction f appartient à Γ on a: $f \geqslant \overline{f}$.

Lemme IV. — a) Pour toute fonction f de &, on a l'égalité: f = f; b) pour toute fonction f de &D, on a les inégalités:

$$f \leqslant \hat{f} \leqslant \overline{f}$$
.

Démonstration. — a) Soit f appartenant à \mathcal{E}_{λ} ; pour tout $k > \lambda$, on a: $(k - \lambda) V_k f \leqslant f$, or la fonction $(k - \lambda) V_k f$ appartient à — Γ , et ceci entraîne: $(k - \lambda) V_k f(x) \leqslant \underline{f}(x)$, qui donne l'inégalité: $\hat{f} \leqslant f$, en passant à la limite sur k.

D'autre part, soit w une fonction de $-\Gamma$, telle que l'on ait : $w_{\mathbf{A}} \leq f_{\mathbf{A}}$.

La fonction f-w appartient au cône Γ , étant positive sur A, elle est positive partout sur K.

Ainsi pour tout $k > \lambda$, on a: $(k - \lambda)V_k w \leq (k - \lambda)V_k f$; cette inégalité entraîne: $\hat{w} \leq \hat{f}$.

L'appartenance: $w \in \Gamma$, entraîne l'inégalité: $w \leqslant \hat{w}$; finalement on a bien: $f \leqslant \hat{f}$.

b) Soit h une fonction de D, égale à f-g, où f et g appartiennent à &.

On a:

$$\hat{h} = \hat{f} - \hat{g} = \underline{f} - \underline{g} \geqslant (\underline{f} - \underline{g}) = \underline{h}.$$

Et de même on a : $\hat{h} \leqslant \overline{h}$.

Théorème II. — Pour tout x de K, le support de la mesure μ_x est contenu dans \overline{A} .

En effet soit une fonction f de \mathcal{C}^+ , nulle sur A; pour tout $\epsilon > 0$, il existe dans D une fonction h différant de f d'au plus ϵ .

La fonction h étant majorée sur A par ε , la fonction \overline{h} est majorée par ε , il en est de même de la fonction \hat{h} .

Ainsi pour tout x de K, on a:

$$0 \leqslant \mu_x(f) \leqslant \mu_x(h) + \varepsilon \leqslant 2\varepsilon,$$

d'où:

$$\mu_x(f)=0.$$

Remarque. — Le compact \overline{A} est la frontière de Silov de K relativement à Γ .

Pour toute mesure de Radon $\mu,$ notons μV_{λ} la mesure définie par :

$$\langle \mu, V_{\lambda} f \rangle = \langle \mu V_{\lambda}, f \rangle, \quad (f \in \mathcal{C}).$$

Corollaire I. — Pour tous x dans K et $\lambda > 0$, la mesure $\varepsilon_x V_{\lambda}$ a son support contenu dans le compact \overline{A} .

Prenons une fonction f de C^+ , nulle sur l'ensemble A; on a : $\hat{f} = 0$.

En vertu de l'équation résolvante, et en posant $\mu = \varepsilon_x V_{\lambda}$, on a :

$$V_{\lambda}f(x) = \lim_{k \to \infty} k V_k V_{\lambda}f(x) = \lim_{k \to \infty} \int_{\mathbb{K}} k V_k f(y) \ d\mu(y).$$

Invoquons le théorème de Lebesgue:

$$V_{\lambda}f(x) = \int_{\mathbb{K}} \hat{f}(y) d\mu(y) = 0.$$

COROLLAIRE II. — Le noyau de l'opérateur linéaire V_{λ} est identique à l'idéal des fonctions continues nulles sur le compact \overline{A} .

Nous connaissons déjà l'un des deux résultats à démontrer. Réciproquement supposons que $V_{\lambda}f$ soit nulle sur K.

Alors pour tout μ , la fonction $V_{\mu}f$ est nulle; la fonction f étant égale à \hat{f} sur A, est bien nulle sur le compact \overline{A} .

Corollaire III. — Si la fonction $V_{\lambda}f$ a un maximum strictement positif, elle atteint ce maximum en au moins un point de \overline{A} où la fonction f est positive.

Soient C le compact où $V_{\lambda}f$ atteint son maximum, et D le compact où f est positive. Supposons que les deux compacts $C \cap D$ et \overline{A} soient disjoints.

Il existe une fonction g continue, positive, nulle sur l'ensemble \overline{A} , et majorant la fonction sup $(1,2 \ f)$ sur le compact $C \cap D$.

La fonction $V_{\lambda}(f-g)$, égale à $V_{\lambda}f$, atteint son maximum seulement sur C.

Hors du compact D, la fonction f - g est strictement négative.

Sur le compact C n D on a l'inégalité:

$$f(x) - g(x) \le \inf(-f(x), f(x) - 1) < 0.$$

Ainsi le principe du maximum positif faible, vérifié par le noyau V_{λ} , est contredit par la fonction f-g; donc $C \cap D$ rencontre \overline{A} .

4. Mesures maximales.

Prenons les notations de Choquet, Meyer et Mokobodzki (voir [6], [10], [27], [29]).

Définition. — Soit μ et ν deux mesures positives sur K; par définition on dira: $\mu \prec \nu$, si pour toute fonction f de Γ on a l'inégalité: $\mu(f) \geqslant \nu(f)$.

On vérifie aisément qu'il s'agit là d'une relation d'ordre. Cette relation entraı̂ne, pour toute f de H, l'égalité:

$$\mu(f) = \nu(f).$$

Ainsi pour toute fonction f de C, on $a: \mu(\hat{f}) = \nu(\hat{f})$.

Lemme I. — Soit μ une mesure positive sur K; les deux conditions suivantes sont équivalentes:

a) la mesure μ est maximale pour l'ordre \succ ;

b) pour toute fonction f de C on $a: \mu(f) = \mu(f)$.

Démontrons: $a) \Longrightarrow b$; posons: $\nu(f) = \mu(f)$, $(f \in \mathcal{C})$; ainsi ν est une mesure positive sur K; si l'on choisit f dans Γ , on a:

$$\nu(f) = \mu(\hat{f}) \leqslant \mu(f).$$

Et ν, qui majore μ pour l'ordre >, lui est identique.

Démontrons $b \mapsto a$; soit ν une mesure majorant μ pour l'ordre \triangleright . Prenons une fonction f dans le cône Γ ; on a :

$$v(\mathbf{f}) \leqslant v(f) \leqslant \mu(f) = \mu(\mathbf{f});$$

or on connaît l'égalité:

$$\mu(\hat{f}) = \nu(\hat{f});$$

on en déduit : $\mu(f) = \nu(f)$. Cette égalité se prolonge à l'espace \mathcal{C} par densité. Ainsi μ est maximale.

Lemme II. — Toute mesure maximale est portée par les ensembles $A_f = \{x \in X; f(x) = \hat{f}(x)\}\$ et réciproquement, $(f \in \mathcal{C})$.

En effet le résultat est évident si la fonction f appartient à Γ ; si f est la différence de deux fonctions g et h de Γ , on a l'inclusion: $A_f \supset A_g \cap A_h$; et de même, si f est la limite uniforme d'une suite de fonctions f_n appartenant à $\Gamma - \Gamma$, on a: $A_f \supset \bigcap_n A_{f_n}$. La réciproque est immédiate.

Lemme III. — Toute mesure positive μ est majorée par une mesure maximale unique.

Soit v une mesure maximale majorant μ ; on a:

$$v(f) = v(\hat{f}) = \mu(\hat{f}), \quad (f \in \mathcal{C}).$$

Cette égalité détermine complètement la mesure v.

En particulier l'unique mesure maximale majorant ε_x est la mesure μ_x .

Pour $\mu \in M_x$ et $f \in \mathcal{C}$, on a: $\mu(\hat{f}) = \hat{f}(x)$, et pour $f \in \Gamma$: $\mu(f) \geqslant \mu_x(f)$.

Ainsi on a la relation: $\mu_x \succ \mu$.

Théorème III. — Le dual de l'espace vectoriel H est réticulé. En effet, soit p une forme linéaire positive sur H; pour toute mesure μ positive, prolongeant p, on a:

$$\mu(\hat{f}) = \lim_{\lambda \to \infty} p(\lambda V_{\lambda} f), \quad (f \in \mathcal{C}).$$

Cette égalité détermine complètement une seule mesure maximale associée à la forme p. Or le cône des mesures maximales est identique au cône des mesures positives portées par les ensembles A_f, (lemme II). C'est donc un ensemble réticulé.

5. Cas particulier : l'ensemble A est fermé.

Théorème IV. — Les trois conditions sont équivalentes:

- A) Pour toute fonction f de C, la fonction $\lambda V_{\lambda} f$ tend vers \hat{f} , quand λ tend vers l'infini, uniformément sur K;
 - B) Pour toute fonction f de C, la fonction \hat{f} est continue sur K.
 - C) L'ensemble A est fermé dans K.

Les implications A) \Longrightarrow B) \Longrightarrow C) sont aisées.

Démontrons C) \Longrightarrow A), et pour cela considérons seulement le cas des fonctions f de \mathcal{E} , (car D = \mathcal{E} – \mathcal{E} est partout dense dans \mathcal{E}).

Si f appartient à $\mathcal{E}_{\lambda}(k-\lambda)$ $V_k f$ tend vers \hat{f} en croissant; sur A, où f coïncide avec \hat{f} , la convergence est uniforme, en vertu du lemme de Dini. Pour tout x hors de A, on a:

$$(k-\lambda)V_{k}f(x)=\int_{A}(k-\lambda)V_{k}f(y)\ d\mu_{x}(y);$$

or la masse totale de μ_x vaut 1 quel que soit x; ainsi la convergence de $(k - \lambda)$ $V_k f$ vers \hat{f} est uniforme sur K.

COROLLAIRE I. — L'espace de Banach H est isomorphe à l'espace des fonctions continues sur le compact A.

Soit φ une fonction continue sur A; quelle que soit la fonction Φ continue sur K et prolongeant φ , on a:

$$\hat{\Phi}(x) = \int_{\mathbf{A}} \varphi(y) \ d\mu_x(y).$$

Ainsi, $\hat{\Phi}$ appartient à H.

Réciproquement, la restriction de $\hat{\Phi}$ à A est égale à φ .

COROLLAIRE II. — Tout opérateur V_{λ} induit sur A un noyau de Hunt.

En effet, la restriction de V_{λ} à A vérifie le principe complet du maximum (voir § 3, corollaire III, et chapitre 1).

De plus, l'image de $\mathcal{C}(A)$ par V_{λ} est dense dans $\mathcal{C}(A)$, isomorphe à H.

6. Étude d'un exemple.

Soit X l'espace topologique somme des trois demi-axes:

$$D_1 =]-\infty, a]; \qquad D_2 =]-\infty, b]; \qquad D_3 = [c, +\infty[,$$

où les abscisses de a, b et c, sont nulles.

Soit K le compactifié d'Alexandroff de X, ω le point à l'infini. Pour toute f continue sur K, soit f_i la restriction de f à D_i . Si $f(\omega)$ est nul, on pose:

$$V_{\lambda}f(x) = \begin{cases} e^{-\lambda x} \int_{-\infty}^{x} e^{\lambda u} f_{1}(u) \ du, & (x \in D_{1}); \\ e^{-\lambda x} \int_{-\infty}^{x} e^{\lambda u} f_{2}(u) \ du, & (x \in D_{2}); \\ e^{-\lambda x} \int_{-\infty}^{0} e^{\lambda u} \left(\frac{f_{1}(u) + f_{2}(u)}{2}\right) du + e^{-\lambda x} \int_{0}^{x} e^{\lambda u} f_{3}(u) \ du, \\ & (x \in D_{3}). \end{cases}$$

Enfin, si $f(\omega)$ n'est pas nul, on pose:

$$V_{\lambda}f = V_{\lambda}(f - f(\omega)) + \frac{f(\omega)}{\lambda}$$

Il s'en suit, pour tout x différent de c: $\hat{f}(x) = f(x)$; et

$$\hat{f}(c) = \frac{f(a) + f(b)}{2}, \quad \mu_c = \frac{\varepsilon_a + \varepsilon_b}{2}.$$

Ainsi, la fonction f n'est pas toujours continue sur K, et l'ensemble A est dans ce cas l'ouvert $K - \{c\}$.

CHAPITRE V

NOYAUX ET SEMI-GROUPES

Dans ce chapitre, nous allons établir certaines conditions suffisantes pour qu'un noyau soit l'intégrale d'un semi-groupe.

1. Le théorème de Hille-Yosida.

DÉFINITIONS. — Soit E un espace de Banach réel; on appelle semi-groupe défini sur E, toute famille d'opérateurs linéaires continus K_t , de E dans lui-même, définis pour $t \ge 0$, et vérifiant l'égalité:

$$K_t K_{t'} = K_{t+t'}, \quad (t \text{ et } t' \geqslant 0).$$

L'opérateur K_0 est idempotent, et parfois égal à l'identité. On dira que le semi-groupe (K_t) est fortement continu si, pour tout x de E, l'application: $t \to K_t x$, de R_+ dans E, est continue.

On dira que le semi-groupe (K_t) est sous-markovien si, pour tout $t \ge 0$, on a l'inégalité: $||K_t|| \le 1$.

Rappelons le théorème de Hille-Yosida (voir [19]).

Théorème. — Soit $(V_{\lambda})_{\lambda>0}$, une famille résolvante d'opérateurs de E, vérifiant la condition suivante:

Pour tout entier
$$n > 0$$
, on $a: ||V_{\lambda}^n|| \leqslant \frac{\alpha}{\lambda^n}$.

Alors il existe un semi-groupe fortement continu d'opérateurs K_i , définis sur l'espace $\overline{V(E)}$, et tels que l'on ait:

a)
$$V_{\lambda}x = \int_{0}^{+\infty} e^{-\lambda t} K_{t}x \, dt, \quad (\lambda > 0, x \in \overline{V(E)}),$$

$$||\mathbf{K}_t|| \leqslant \alpha,$$

$$K_0 = I.$$

On a noté V(E) l'image de E par un opérateur V_{λ} quelconque.

Esquissons une démonstration rapide du théorème: On vérifie les résultats suivants, pour tout x appartenant à $\overline{V(E)}$:

$$\lim_{k\to\infty} k \mathbf{V}_k x = x; \qquad \lim_{k\to\infty} \mathbf{B}_k \mathbf{V}_{\lambda} x = \lambda \mathbf{V}_{\lambda} x - x,$$

(en posant $B_k = k(kV_k - I)$); pour k fixé, les opérateurs $\operatorname{Exp}(tB_k)$ forment un semi-groupe fortement continu, et on a : $||\operatorname{Exp}(tB_k)|| \leq \alpha$; enfin, quand k tend vers l'infini, $\operatorname{Exp}(tB_k)$ x tend vers un élément de $\overline{V(E)}$, noté $K_k x$.

Pour vérifier la formule intégrale, posons

$$S_{\lambda,k}x = \int_0^{+\infty} e^{-\lambda t} Exp(tB_k)x dt,$$

on a:

$$\begin{aligned} \mathbf{V}_{\lambda} x &= \mathbf{S}_{\lambda,k} (\lambda \mathbf{I} - \mathbf{B}_k) \mathbf{V}_{\lambda} x = \lambda \mathbf{S}_{\lambda,k} \mathbf{V}_{\lambda} x - \mathbf{S}_{\lambda,k} [k(\lambda \mathbf{V}_{\lambda} - \mathbf{I})] \mathbf{V}_k x \\ &= \mathbf{S}_{\lambda,k} x + (\lambda \mathbf{S}_{\lambda,k} \mathbf{V}_{\lambda} - \mathbf{S}_{\lambda,k}) (x - k \mathbf{V}_k x). \end{aligned}$$

Ainsi on obtient:

$$\lim_{k \to \infty} S_{\lambda,k} x = V_{\lambda} x = \int_0^{+\infty} e^{-\lambda t} K_t x \, dt.$$

2. Principe complet du maximum et semi-groupes sous-markoviens.

Soit V un noyau continu vérifiant le principe complet du maximum sur un espace X localement compact (5).

Désignons par $(V_{\lambda})_{\lambda>0}$ la famille résolvante sous-markovienne associée à V. Nous ferons dans ce paragraphe l'hypothèse suivante :

(H) L'ensemble des fonctions surmédianes relativement à (V_{λ}) , sépare les points de K.

Cette hypothèse signifie que cet ensemble sépare les points de X, et que, pour tout x de X, il existe une fonction surmédiane non nulle en x; c'est le cas, en particulier, si l'espace vectoriel $V(\mathcal{C}_K)$ sépare les points de K.

Soit (W_{λ}) la famille résolvante, définie sur \mathcal{C} , qui prolonge (V_{λ}) ; le cône des fonctions surmédianes relativement à (W_{λ}) sépare les points de K, et contient les constantes. On peut donc appliquer la théorie du chapitre IV.

⁽⁵⁾ Si le noyau V n'est pas borné, on supposera X dénombrable à l'infini.

Désignons par B l'espace des fonctions boréliennes bornées sur K (6).

Théorème I. — Soit V un noyau continu sur X, vérifiant le principe complet du maximum et l'hypothèse (H). Il existe alors un semi-groupe d'opérateurs P_t , définis sur \mathcal{B} pour $t \geqslant 0$, sous-markoviens, positifs tels que l'on ait:

$$\begin{split} \mathrm{P}_0 f(x) &= \hat{f}(x) & (x \in \mathrm{X}, f \in \mathcal{C}_{\mathtt{K}}), \\ \mathrm{V} f(x) &= \int_0^{+\infty} \mathrm{P}_t f(x) \; dt & (x \in \mathrm{X}, f \in \mathcal{C}_{\mathtt{K}}), \end{split}$$

de plus, l'application: $t \to P_t f(x)$ est continue à droite et pourvue de limite à gauche $(f \in \mathcal{C}_K)$.

L'essentiel de ce théorème a été démontré par Ray, qui a établi la formule de représentation pour tout opérateur $W_{\lambda}(\lambda > 0)$, sous l'hypothèse précisée au chapitre iv.

Résumons en quelques points la démonstration du théorème; d'après le théorème précédent, il existe un semi-groupe d'opérateurs K_t , définis sur l'espace $\overline{W(\mathcal{C})}$. Soit $t \ge 0$, et $x \in K$, la forme linéaire : $h \to K_t h(x)$ peut être prolongée à \mathcal{C} , et définit sur K une mesure positive μ . Le théorème de Lebesgue prouve alors l'existence de $\lim_{k \to \infty} K_t k W_k f(x) = \mu(\hat{f})$, pour toute f de \mathcal{C} . Notons $P_t f(x)$ cette limite; la forme linéaire ainsi définie sur \mathcal{C} se prolonge à \mathcal{B} , de façon unique.

Le même théorème de Lebesgue permet de démontrer, pour f continue, l'égalité: $P_{t+t}f = P_tP_tf$; par passage à la limite cette égalité a lieu pour toute fonction de \mathcal{B} .

Démontrons la formule intégrale; soit $f \in \mathcal{C}$, et $x \in K$. On a :

$$W_{\lambda}f(x) = \lim_{k \to \infty} W_{\lambda}kW_{k}f(x) = \lim_{k \to \infty} \int_{0}^{+\infty} e^{-\lambda t}K_{t}kW_{k}f(x) dt$$
$$= \int_{0}^{+\infty} e^{-\lambda t}P_{t}f(x) dt.$$

Si maintenant f appartient à \mathcal{C}_{K}^{+} , on sait d'après le chapitre 11, que $V_{\lambda}f$ tend vers Vf, quand λ tend vers 0; on a donc, par convergence monotone, l'égalité:

$$Vf(x) = \lim_{\lambda \to 0} \int_0^{+\infty} e^{-\lambda t} P_t f(x) dt = \int_0^{+\infty} P_t f(x) dt.$$

(6) Si K n'est pas métrisable, $\mathcal B$ désigne le plus petit espace vectoriel de fonctions bornées, contenant $\mathcal C$, et stable pour les passages à la limite simple.

Passons à la dernière assertion de l'énoncé; soit $x \in X$ et $f \in \mathcal{C}$.

Prenons g dans \mathcal{C}^+ , et soit $f = W_{\lambda}W_{\mu}g$; on a:

$$e^{-\lambda t}\mathrm{K}_t f(x) \,=\, e^{-\lambda t}\mathrm{K}_t \int_0^\infty e^{-\lambda u}\mathrm{K}_u\mathrm{W}_\mu g(x)\;du \,=\, \int_t^\infty e^{-\lambda v}\mathrm{K}_v\mathrm{W}_\mu g(x)\;dv.$$

Cette fonction est continue et décroissante de t.

Par convergence uniforme il en est de même pour toute fonction f appartenant à $W_{\lambda}(\mathcal{C}^+)$.

Prenons maintenant f dans le cône \mathcal{E}_{λ} ; pour tout k > 0, on a :

$$kW_{k+\lambda}f = kW_{\lambda}(f - kW_{k+\lambda}f)$$
 et $f - kW_{k+\lambda}f \geqslant 0$.

La fonction $e^{-\lambda t}$ K_t $kW_{k+\lambda}f(x)$ est une fonction continue et décroissante de t. Elle tend en croissant (chapitre v, § 2, lemme I) vers $e^{-\lambda t}$ $P_tf(x)$ lorsque k tend vers l'infini.

Ainsi, $e^{-\lambda t}P_tf(x)$ est décroissante, et continue à droite.

La fonction $P_t f(x)$ est continue à droite et pourvue de limite à gauche, lorsque f appartient à \mathcal{E} . Il en est de même pour toute fonction de \mathcal{C} , par convergence uniforme.

Remarque. — La famille résolvante (W_{λ}) étant donnée, il existe un seul semi-groupe (P_t) tel que l'on ait:

$$W_{\lambda}f(x) = \int_{0}^{+\infty} e^{-\lambda t} P_{t}f(x) dt, \quad (\lambda > 0, \ f \in \mathcal{C}, \ x \in K),$$

et que l'application: $t \to P_t f(x)$, soit continue à droite.

C'est un résultat d'unicité de la transformation de Laplace.

D'autre part, si le noyau V est borné, il existe une seule famille résolvante (V_{λ}) telle que l'on ait : $V = V_0$: le prolongement d'une telle famille à $\mathcal C$ est unique.

Ainsi, le semi-groupe associé à V est unique, si V est borné.

3. Étude d'un cas particulier.

Précisons le théorème précédent dans la situation du chapitre 1v, § 5.

Théorème II. — Soit V un noyau continu sur X, vérifiant le principe complet du maximum, l'hypothèse (H), et tel que, pour toute fonction f continue, la fonction f soit continue; alors il existe un semi-groupe fortement continu d'opérateurs P_t,

définis sur C pour $t \ge 0$, sous-markoviens, positifs, et un seul, tel que l'on ait:

$$Vf(x) = \int_0^{+\infty} P_t f(x) dt, \quad (f \in \mathcal{C}_K, x \in X).$$

Démonstration. — a) Existence; la fonction \hat{f} appartient à l'espace $\overline{W(\mathcal{C})}$, ainsi la formule: $P_t f = K_t \hat{f}$, définit sur \mathcal{C} un semi-groupe fortement continu.

b) Unicité: la méthode employée par Deny dans [14], convient. Soit (P_t) un tel semi-groupe, f une fonction de \mathcal{C}_{κ}^+ , et $x \in X$; posons:

$$V_{\lambda}f(x) = \int_{0}^{+\infty} e^{-\lambda t} P_{t}f(x) dt;$$

la fonction $V_{\lambda}f$ est à priori semi-continue inférieurement sur X; il en est de même de la fonction:

$$\int_0^{+\infty} (1 - e^{-\lambda t}) P_t f(x) dt = V f(x) - V_{\lambda} f(x).$$

Ces fonctions sont donc continues sur X. D'autre part, le théorème de Fubini permet d'écrire:

$$\nabla f - \nabla_{\lambda} f = \lambda \nabla \nabla_{\lambda} f$$
.

Au chapitre 11, on a prouvé l'unicité d'une telle famille (V_{λ}) ; comme plus haut, l'unicité du semi-groupe tient à la transformation de Laplace.

Remarques. — I. On peut démontrer ce théorème en appliquant le théorème de Hunt (voir [20]) au noyau V restreint au compact A.

- II. Courrège et Priouret (voir [11]), utilisent le présent résultat dans le cas où l'on sait d'avance : $f = \hat{f}$.
- III. Cette démonstration d'unicité est valable même si le noyau V n'est pas borné.

4. Principe de domination et semi-groupes.

Soit K un espace compact, \mathcal{C} l'espace des fonctions continues sur K.

Théorème III. — Soit V un noyau continu vérifiant le principe de domination, et tel que l'espace vectoriel $V(\mathcal{C})$ soit

partout dense dans C; alors il existe un semi-groupe fortement continu d'opérateurs P_t , définis sur C pour $t \ge 0$, positifs, et un seul tel que l'on ait:

$$Vf(x) = \int_0^{+\infty} P_t f(x) dt$$
, $(f \in \mathcal{C}, x \in K)$ et $P_0 = I$.

Démonstration. — a) Existence; l'hypothèse de densité citée ci-dessus entraîne que le noyau V est strictement positif. Donc, en vertu du théorème I, chapitre 11, il existe une famille résolvante (V_{λ}) telle que $V = V_0$; d'autre part, on a déjà remarqué (chapitre 11, fin du § 2) l'existence de deux constantes a et b, strictement positives et donnant lieu à l'inégalité:

$$\lambda V_{\lambda} a \leqslant V(1) \leqslant b$$
.

On en déduit, par récurrence sur $n: \lambda^n V_{\lambda}^n(a) \leqslant b$.

Il reste donc à appliquer le théorème de Hille-Yosida, en prenant:

$$\alpha = \frac{b}{a}$$
, et $E = \overline{V(\mathcal{C})} = \mathcal{C}$.

De la formule:

$$V_{\lambda}f(x) = \int_{0}^{+\infty} e^{-\lambda t} P_{t}f(x) \ dt, \quad (\lambda > 0, \ f \in \mathcal{C}, \ x \in K),$$

on déduit la formule de l'énoncé en faisant tendre à vers 0.

b) Unicité; elle a été démontrée par Deny (voir [17], § 3) qui démontre également la réciproque du présent théorème.

5. Cas des espaces discrets.

Soit X un espace discret; soit $(V_{\lambda})_{\lambda>0}$ une famille résolvante d'opérateurs positifs, définis sur \mathcal{C}_0 .

On suppose de plus les deux conditions suivantes vérifiées

- 1) Pour tout entier n, on a: $\lambda^n ||V_{\lambda}^n|| \leq \alpha$;
- 2) L'un au moins des opérateurs V_{λ} vérifie le principe de domination, pour tout couple de fonctions appartenant à \mathcal{C}_0^+ .

Lemme. — Sous les deux conditions 1) et 2), il existe un semigroupe fortement continu d'opérateurs P_t , positifs, définis sur C_0 , et un seul, tel que l'on ait:

$$\mathbf{V}_{\lambda}f\left(x\right)=\int_{\mathbf{0}}^{+\infty}e^{-\lambda t}\mathbf{P}_{t}f(x)\;dt,\quad(\lambda>0,\,f\in\mathcal{C}_{\mathbf{0}},\,x\in\mathbf{X}),$$

et

$$||\mathbf{P}_t|| \leqslant \alpha^2$$
.

Démonstration. — L'unicité du semi-groupe tient simplement à la transformation de Laplace; pour l'existence divisons le raisonnement en plusieurs étapes.

a) Notons V l'opérateur de la famille (V_{λ}) qui vérifie le principe de domination. On dira : xRy s'il existe un nombre k > 0, tel que pour toute fonction f de \mathcal{C}_0 , on ait l'égalité :

$$Vf(y) = k Vf(x);$$

la relation R est une relation d'équivalence; on notera $R(\omega)$ la classe d'équivalence des éléments de X où s'annulent toutes les fonctions Vf, et R(x) la classe d'équivalence de x.

On dit qu'une fonction g de \mathcal{C}_0 est compatible avec la relation R, si g est nulle sur $R(\omega)$, et si la relation xRy entraîne g(y) = kg(x).

L'ensemble des fonctions compatibles est un sous-espace vectoriel G, fermé, de \mathcal{C}_0 , et contient $V(\mathcal{C}_0)$; soit \mathcal{E}_1 le cône des fonctions surmédianes compatibles; l'espace vectoriel

$$D_1 = \delta_1 - \delta_1,$$

est réticulé et contenu dans G; d'autre part, il contient $V(\mathcal{C}_0)$. Soit h une fonction compatible; soit (x, y) un couple d'éléments de X; dans tous les cas, il existe dans \mathcal{C}_0 une fonction f, telle que l'on ait:

$$Vf(x) = h(x)$$
 et $Vf(y) = h(y)$;

la fonction Vf appartenant à D₁, on en conclut que G est l'adhérence de D₁, d'après le théorème de Stone (voir [31]).

Étudions maintenant la suite de fonctions kV_kh , $(h \in G)$.

Si f appartient à \mathcal{E}_{λ} , on sait que, lorsque k tend vers l'infini, $kV_{k+\lambda}$ f tend en croissant vers une limite f; la convergence a lieu uniformément sur X en vertu du théorème de Dini.

La même conclusion subsiste pour la suite $kV_k f$, en vertu de la formule:

$$kV_k f = kV_{k+\lambda} f + k\lambda V_k V_{k+\lambda} f$$
.

Et cette conclusion s'étend à toute fonction de G (car: $G = \overline{D}_1$ et $k||V_k|| \leqslant \alpha$).

Remarque. — Si f appartient à $\overline{V(\mathcal{C}_0)}$, alors on a: $f = \hat{f}$.

b) Pour toute fonction f appartenant à $\mathcal{C}_{\mathbf{K}}^+$ nous allons construire une fonction h de G telle que l'on ait:

$$Vh = Vf$$
.

Il suffira d'effectuer cette construction pour les fonctions f nulles hors d'une classe d'équivalence notée S, et différente de $R(\omega)$.

Il existe dans S un élément ξ où, pour toute fonction g de \mathcal{C}_0^+ , la fonction V_g restreinte à S atteint son maximum.

Ainsi le quotient:

$$k(y) = \frac{\operatorname{V} g(y)}{\operatorname{V} g(\xi)}, \quad (y \in S),$$

ne dépend pas du choix de g dans \mathcal{C}_0^+ , et est compris entre 0 et 1.

Soit φ_y la fonction caractéristique de $\{y\}$; posons

$$\beta(y) = V \varphi_{r}(\xi).$$

On a la formule:

$$k = \sum_{y \in S} \varphi_y k(y).$$

La fonction k appartient à \mathcal{C}_0^+ ; on peut donc calculer:

$$Vk(\xi) = \sum_{y \in S} k(y) \ \beta(y).$$

Posons maintenant: $h = \frac{\nabla f}{\nabla k(\xi)}$, sur l'ensemble S, et h = 0 ailleurs.

La fonction h est compatible; d'autre part on a :

$$Vh(\xi) = \sum_{y \in S} h(y) \ \beta(y) = h(\xi) \sum_{y \in S} k(y) \ \beta(y) = Vf(\xi).$$

Pour tout y de S on a:

$$Vh(y) = k(y) Vh(\xi) = k(y)Vf(\xi) = Vf(y).$$

Enfin le principe de domination entraı̂ne partout Vh = Vf. Pour tout k > 0 on a donc: $V_k f = V_k h$; ceci entraı̂ne l'existence de $\lim_{k \to \infty} k V_k f = \hat{f}$, la convergence ayant lieu unifor-

mément sur X; enfin on a:

et

$$|| \ || \leqslant \alpha || f ||$$
.

c) Appliquons maintenant le théorème 1 de ce chapitre. On a :

$$V_{\lambda}f(x) = \int_0^{\infty} e^{-\lambda t} K_t f(x) dt, \quad (x \in X; \ f \in \overline{V(\mathcal{C}_0)}; \lambda > 0),$$

$$||\mathbf{K}_t|| \leqslant \alpha.$$

Prenons maintenant f dans \mathcal{C}_0 :

$$\mathrm{V}_{\lambda}k\mathrm{V}_{k}f(x)=\int_{0}^{\infty}e^{-\lambda t}\mathrm{K}_{t}k\mathrm{V}_{k}f(x)\;dt.$$

Lorsque k tend vers l'infini, on obtient:

$$V_{\lambda}f(x) = \int_{0}^{\infty} e^{-\lambda t} K_{t}\hat{f}(x) dt,$$

d'où le résultat, en posant $P_t f = K_t \hat{f}$, car on a l'inégalité:

$$||\mathbf{P}_t f|| \leqslant ||\mathbf{K}_t|| \, ||\hat{f}|| \leqslant \alpha^2 ||f||.$$

COROLLAIRE I. — Soit X un espace fini, V un noyau strictement positif vérifiant le principe de domination; alors il existe un semi-groupe fortement continu, d'opérateurs positifs P_t, définis sur C, et un seul, tel que l'on ait:

$$Vf(x) = \int_0^\infty P_t f(x) dt, \quad (x \in X, f \in \mathcal{C}).$$

En effet, la famille résolvante associée à un tel noyau vérifie la condition 2), et on voit comme au § 4 que la condition 1) est satisfaite.

COROLLAIRE II. — Soit X un espace discret, V un noyau continu (7), vérifiant le principe complet du maximum; alors il existe un semi-groupe fortement continu d'opérateurs positifs sous-markoviens P_t , définis sur C_0 , et un seul tel que l'on ait:

$$Vf(x) = \int_0^\infty P_t f(x) dt, \quad (x \in X, f \in \mathcal{C}_K).$$

En effet d'après le chapitre 11, la famille résolvante associée à V est sous-markovienne; on a donc : $\alpha = 1$.

(7) Si le noyau V n'est pas borné on devra supposer que X est dénombrable.

6. Étude d'un exemple.

Soit V le noyau défini au chapitre 1, § 2, II; le support de μ est compact, supposons qu'il ne soit contenu dans aucun hyperplan de \mathbf{R}^n ; ainsi, l'espace des V-potentiels sépare les points de \mathbf{R}^n , et on peut appliquer le théorème I du présent chapitre. L'ensemble A associé à la résolvante du noyau V a pour adhérence le support de μ ; c'est un ensemble finement fermé; P. A. Meyer propose la conjecture suivante:

L'ensemble A est-il le support fin de μ ?

Dans ce chapitre, on a vu que l'existence de $\lim_{\lambda \to \infty} \lambda V_{\lambda} f$, permettait de construire un semi-groupe; à la fin du chapitre suivant, on verra que cette méthode n'englobe pas toutes les possibilités de construction de semi-groupes.

CHAPITRE VI

FRONTIÈRE DE CHOQUET ET FAMILLES D'OPÉRATEURS

1. Notations.

Dans tout ce chapitre, K désigne un espace compact métrisable.

L'ensemble I est filtré par un filtre $\mathcal F$ ayant une base dénombrable.

Nous étudierons des familles d'opérateurs linéaires continus de \mathcal{C} , positifs, notés A_i , et tels que:

- i) Pour tous i et j, on ait: $A_iA_j = A_jA_i$ $(i, j \in I)$;
- ii) Pour toute f de C, on ait:

$$\lim_{\mathcal{F}} A_i A_{i_0} f = A_{i_0} f,$$

La convergence étant uniforme sur K;

iii) Tout opérateur A_i laisse invariantes les fonctions constantes sur K.

Exemples. — I. Soit (V_i) une famille résolvante sous-markovienne.

Posons $I = \mathbf{R}_+$, $A_i = iV_i$, et prenons pour \mathcal{F} le filtre engendré par les demi-droites $[n, +\infty[$.

II. Soit (P_i) un semi-groupe fortement continu d'opérateurs markoviens définis sur \mathcal{C} pour i > 0; posons: $I = \mathbb{R}_+^*$ et prenons pour \mathcal{F} le filtre des voisinages de 0 dans \mathbb{R}_+^* . Les propriétés i), ii), iii) sont vérifiées.

Dans ce chapitre, nous tenterons de répondre à la question suivante: Pour x dans K, et f dans C, $A_i f(x)$ a-t-il une limite suivant \mathcal{F} ?

Notons H le sous-espace vectoriel fermé de \mathcal{C} , engendré par $A_i(\mathcal{C})$ lorsque i parcourt I.

Proposition. — Pour que l'on ait, pour tout x de K, l'égalité:

$$\lim_{\mathcal{F}} A_i f(x) = f(x),$$

il faut et il suffit que f appartienne à H; et alors la convergence est uniforme sur K.

Si l'on remarque que, le filtre F étant à base dénombrable, on peut appliquer le théorème de Lebesgue, la démonstration est identique à celle de la proposition analogue au début du chapitre iv.

2. Relation d'équivalence et espace quotient associés à H.

Nous dirons: xRy, si pour toute fonction h de H, on a:

$$h(x) = h(y);$$

la relation R est une relation d'équivalence; deux éléments x et y de K, non équivalents, peuvent être inclus dans deux ouverts saturés et disjoints; ainsi l'espace quotient K/R est séparé donc compact. De plus cet espace est métrisable (Bourbaki, Topologie chapitre IX, § 2).

Dans la suite, R(x) désigne la classe d'équivalence de x; c'est un ensemble fermé dans K. Notons \mathcal{C}' l'espace vectoriel des fonctions continues sur K' = K/R; notons H' le sousespace de \mathcal{C}' isomorphe à H, \mathcal{C}_1 le sous-espace de \mathcal{C} isomorphe à \mathcal{C}' ; soit φ la surjection de K sur K'.

Pour tout x de K, soit M_x l'ensemble des mesures positives μ vérifiant pour toute fonction h de H, l'égalité:

$$\mu(h)=h(x).$$

Pour tout x' de K', on définit de même $M_{x'}$.

Toute mesure de M_x (et de $M_{x'}$) est de masse égale à 1. La relation : xRy, entraîne : $M_x = M_y$.

Soit F l'ensemble des éléments x de K, tels que M_x coı̈ncide avec l'ensemble des mesures positives, de masse 1, portées par R(x).

De même, soit F' l'ensemble des éléments x' de K', tels que $M_{x'}$ soit réduit à la seule mesure $\varepsilon_{x'}$.

Rappelons que F' est la frontière de Choquet de K' relativement à H'. Rappelons aussi le théorème de représentation intégrale de Choquet, qui s'applique ici puisque H' sépare les points de K', et dont les conclusions sont:

- L'ensemble F' n'est pas vide;
- Pour tout x' de K' il existe une mesure ν de $M_{x'}$ portée par F';
 - L'ensemble F' est un Gô.

Nous allons traduire ces résultats sur l'espace K.

3. Applications du théorème de Choquet.

Théorème I. — L'ensemble F est identique à $\varphi^{-1}(F')$; c'est un G_{δ} non vide.

a) Démontrons l'inclusion: $F \subset \varphi^{-1}(F')$.

Soit $x \in F$, $x' = \varphi(x)$ et ν une mesure de $M_{x'}$. En vertu du théorème de Hahn-Banach, il existe une mesure μ , que l'on peut supposer positive, telle que l'on ait : $\nu = \varphi(\mu)$.

Soit h' dans H' et $h = h' \circ \varphi$; nous avons les égalités:

$$\mu(h) = \nu(h') = h'(x') = h(x),$$

donc μ appartient à M_x .

Or x appartient à F, la mesure μ a donc son support contenu dans R(x) et la mesure ν a pour support $\{x'\}$ (voir Bourbaki, Intégration chap. v, \S 6); ainsi x' appartient à F'.

b) Démontrons l'inclusion inverse: $F \supset \varphi^{-1}(F')$.

Soit x dans K, tel que $\varphi(x) = x'$ appartienne à F'.

Si μ appartient à M_x , $\varphi(\mu)$ appartient à $M_{x'}$; donc $\varphi(\mu)$ est égale à $\varepsilon_{x'}$.

Si S est le support de μ , $\phi(S)$ est le support de $\phi(\mu)$, donc on a :

$$\varphi(S) = \{x'\}.$$

Le support S de μ est contenu dans R(x) et x appartient à F. La seconde partie de l'énoncé découle aussitôt du théorème de Choquet.

Théorème II. — Pour tout x de K il existe une mesure μ de M_x portée par F.

En effet, soit: $x' = \varphi(x)$, et ν une mesure de $M_{x'}$ portée par F'. Il existe une mesure μ dans M_x telle que l'on ait: $\nu = \varphi(\mu)$.

L'ensemble F étant un borélien saturé de K, on peut écrire :

$$\mu(F) = \nu(F') = 1.$$

Théorème III. — Pour tout x dans K et toute f dans C_1 , $A_i f(x)$ tend suivant \mathcal{F} vers une limite $\hat{f}(x)$, égale à f(x) lorsque x appartient à F.

Soit x dans F, $\varepsilon_x A_i$ la mesure positive sur K définie par:

$$\varepsilon_x A_i(f) = A_i f(x).$$

Posons

$$v_i^x = \varphi(\varepsilon_x A_i)$$
 et $x' = \varphi(x)$.

Lorsque J parcourt \mathcal{F} , les ensembles $\{v_i^x\}_{i\in J}$ forment une base de filtres $\mathcal{B}_{x'}$, sur l'espace $\mathcal{M}_1^+(K')$ des mesures positives sur K', de masse 1.

Par compacité vague de $M_1^+(K')$, il existe des mesures vaguement adhérentes à $\mathcal{B}_{x'}$; soit ν une telle mesure.

Pour toute h' de H', $v_i^x(h') = A_i(h' \cdot \varphi)$ (x) tend vers h'(x') suivant \mathcal{F} (par application de la proposition préliminaire).

Il s'en suit nécessairement:

$$v(h') = h'(x'), \quad v \in M_{x'} \quad \text{et} \quad v = \varepsilon_{x'}.$$

La base de filtre $\mathcal{B}_{x'}$ n'ayant qu'une seule valeur d'adhérence, converge vers $\varepsilon_{x'}$.

Ainsi, pour toute f de \mathcal{C}_1 , $A_i f(x)$ tend vers f(x) suivant \mathcal{F} . Prenons maintenant x hors de F et soit μ dans M_x portée par F.

Soit f dans C_1 ; on a:

$$A_i f(x) = \int_F A_i f(y) d\mu(y).$$

Le filtre F étant à base dénombrable, on peut appliquer le théorème de Lebesgue:

Suivant \mathcal{F} , $A_i f(x)$ tend vers une limite $\hat{f}(x)$ égale à :

$$\int_{\mathbf{F}}\lim_{\mathbf{F}}\,\mathbf{A}_{\mathbf{i}}f\left(y\right)d\mu\left(y\right)=\int_{\mathbf{F}}f(y)\;d\mu\left(y\right).$$

COROLLAIRE I. — Pour tout x' de K', il existe dans $M_{x'}$ une seule mesure portée par F'.

Soit ν une telle mesure, et f' une fonction de C'.

Posons $f = f' \circ \varphi$; la fonction A_i f appartient à H, il lui correspond dans H' une fonction f_i' . Suivant \mathcal{F} , $A_i f$ tend simplement vers \hat{f} , égale à f sur F. Donc on a:

$$\mathbf{v}(f')=\int_{\mathbf{F}'}f'(y')\;d\mathbf{v}(y')=\int_{\mathbf{F}'}\lim_{\mathcal{F}}f'_{\mathbf{i}}(y')\;d\mathbf{v}(y')=\lim_{\mathcal{F}}f'_{\mathbf{i}}(x'),$$
d'où :

$$\mathbf{v}(f') = \widehat{f' \circ \varphi}(x), \qquad (x \in \varphi^{-1}(x')).$$

Cette égalité détermine entièrement ν , qui sera notée $\nu_{x'}$. On peut en déduire (8) que le dual de H' (donc celui de H) est réticulé.

COROLLAIRE II. — Pour que x appartienne à F il faut et il suffit que, pour toute fonction f de C_1 , on ait: $f(x) = \hat{f}(x)$. La condition a été reconnue comme nécessaire.

Réciproquement soit f' dans C'; on a:

$$\mathbf{v}_{x'}(f') = \widehat{f' \circ \varphi}(x) = f' \circ \varphi(x) = f'(x')$$

donc: $\gamma_{x'} = \varepsilon_{x'}$; cette mesure étant portée par F', x' appartient à F' et x appartient à F.

Théorème IV. — Pour tout i dans I, la mesure $\varepsilon_x A_i$ est portée par F.

Soit Γ_1 le sous-ensemble de \mathcal{C}_1 défini par la condition $f \leqslant f$. C'est un cône convexe, semi-réticulé inférieurement, contenant H.

D'après le théorème de Stone, Γ_1 engendre un espace vectoriel D_1 partout dense dans C_1 . L'espace K' étant métrisable, il existe dans C', donc dans C_1 , un ensemble dénombrable dense.

Nous pouvons supposer que cet ensemble est contenu dans D_1 ; notons le $(h_n)_{n\geq 0}$. On a: $h_n=f_n-g_n$, où f_n et g_n appartiennent à Γ_1 . Pour toute fonction f de \mathcal{C}_1 on peut écrire:

$$\int_{\mathbb{K}} \hat{f}(y) \ d\varepsilon_x A_i(y) = \lim_{\mathcal{F}} \int_{\mathbb{K}} A_{i'} f(y) \ d\varepsilon_x A_i(y) = \lim_{\mathcal{F}} A_i A_{i'} f(x)$$

$$= A_i f(x),$$

et

$$A_{i}f(x) = \int_{K} f(y) d\epsilon_{x} A_{i}(y).$$

(8) Voir Choquet-Meyer [10].

Pour tout $n \geqslant 0$, on peut donc écrire:

$$\int_{\mathbb{K}} |f_n(y) - \hat{f}_n(y)| \ d\varepsilon_x A_i(y) = \int_{\mathbb{K}} |g_n(y) - \hat{g}_n(y)| \ d\varepsilon_x A_i(y) = 0.$$

L'ensemble G_n où la fonction f_n diffère de \hat{f}_n est négligeable pour $\varepsilon_x A_i$.

Il en est de même de G'_n , où g_n diffère de \hat{g}_n ; si bien que l'on a :

$$\mathbf{e}_{x}\mathbf{A}_{i}\left[\bigcup_{n}\left(\mathbf{G}_{n}\cup\mathbf{G}_{n}^{\prime}\right)\right]=0.$$

Pour tout ξ n'appartenant pas à cette réunion, on a:

$$f_n(\xi) = \hat{f}_n(\xi)$$
 et $g_n(\xi) = \hat{g}_n(\xi)$,

d'où, par convergence uniforme:

$$f(\xi) = \hat{f}(\xi),$$

pour toute f de \mathcal{C}_1 ; l'élément ξ appartient à F et l'on en déduit : $\epsilon_x A_i(F)=1.$

COROLLAIRE. — Le noyau de l'opérateur A_i contient l'idéal des fonctions nulles sur F.

4. Critère de continuité de la fonction limite.

Démontrons un théorème analogue au théorème IV (chap. IV).

Théorème V. — Les conditions suivantes sont équivalentes:

- A) Pour toute fonction f de C_1 , $A_i f$ tend vers \hat{f} suivant \mathcal{F} , uniformément sur K.
 - B) Pour toute fonction f de C_1 , \hat{f} est continue sur K.
 - C) L'ensemble F est fermé dans K.

Les implications $A \Longrightarrow B \Longrightarrow C$ sont aisées compte tenu du corollaire II, théorème III, § 3 de ce chapitre.

Démontrons: $C \Longrightarrow B$; pour toute fonction f de C posons:

$$\overline{f}(x) = \inf_{\substack{h_{\mathbf{F}} \geqslant f_{\mathbf{F}} \\ h \in \mathbf{H}}} h(x), \qquad \underline{f}(x) = \sup_{\substack{h_{\mathbf{F}} \leqslant f_{\mathbf{F}} \\ h \in \mathbf{H}}} h(x)$$

où $f_{\mathbf{F}}$ et $h_{\mathbf{F}}$ désignent les restrictions de f et de h à l'ensemble \mathbf{F} .

D'après le théorème de représentation intégrale de Choquet, si h est positive sur F, h est positive partout sur K.

Donc pour tout x de K, on a: $\underline{f}(x) \leqslant \overline{f}(x)$, et pour toute h de H: $h = \overline{h} = \underline{h}$.

L'application $f \to \overline{f}(x)$ est une fonctionnelle sous-linéaire. Choisissons une fonction f_0 de \mathcal{C} ; il existe, d'après le théorème de Hahn-Banach, une mesure π telle que l'on ait:

$$\begin{cases} \pi(f_0) = \overline{f}_0(x), \\ \pi(f) \leqslant \overline{f}(x), \end{cases}$$
 pour toute fonction f de \mathcal{C} .

Si h appartient à H, les inégalités:

$$\pi(h) \leqslant \overline{h}(x) = h(x),$$

et

$$-\pi(h)\leqslant \overline{(-h)}(x)=-h(x),$$

entraînent:

$$\pi(h) = h(x).$$

Enfin, si g est négative, on a:

$$\pi(g) \leqslant \overline{g}(x) \leqslant 0,$$

donc π appartient à M_x .

Montrons maintenant que π est portée par F.

Soit $\xi \notin F$; le complémentaire U de F est un voisinage ouvert de ξ , et pour toute fonction g de \mathcal{C}^+ , dont le support est contenu dans U, $\pi(g)$ est nul; donc ξ n'appartient pas au support de π .

D'après le paragraphe précédent, si l'on suppose f_0 appartenant à \mathcal{C}_1 , on en déduit:

$$\overline{f}_0(x) = \pi(f_0) = \widehat{f}_0(x).$$

De même: $\hat{f}_{0}(x) = f_{0}(x)$.

Ainsi \hat{f}_0 est à la fois semi-continue inférieurement et supérieurement.

Remarque. — On peut aussi démontrer, pour tout x de F, et toute f de C:

$$\overline{f}(x) = \sup_{\xi \in x} f(\xi).$$

Démontrons maintenant: $B \Longrightarrow A$; soit f une fonction de \mathcal{C}_1 :

Nous avons démontré la formule :

$$\hat{f}(x) = \inf_{\substack{h_F \geqslant f_F \\ h \in H}} h(x) = \sup_{\substack{h_F \leqslant f_F \\ h \in H}} h(x).$$

Pour tout $\varepsilon > 0$, et pour tout x de K, il existe une fonction h_x dans H telle que l'on ait : $\hat{f}(x) - h_x(x) < \varepsilon$, et que f majore h_x sur F. Par représentation intégrale, \hat{f} majore h_x partout sur K.

Soit U_x l'ouvert de K défini par:

$$U_x = \{ y \in K; \hat{f}(y) - h_x(y) < \epsilon \}.$$

Les ouverts U_x recouvrent K; on peut en déduire un recouvrement fini: U_1, U_2, \ldots, U_n , associés à h_1, h_2, \ldots, h_n . On a les inégalités:

$$0 \leqslant \hat{f} - \sup (h_1, h_2, \ldots h_n) < \varepsilon.$$

De même il existe dans H, m fonctions h'_1, h'_2, \ldots, h'_m telles que l'on ait:

$$0 \leqslant \operatorname{Inf}(h'_1, h'_2, \ldots, h'_m) - \hat{f} < \varepsilon.$$

Posons: $u = \sup (h_1, h_2, \ldots, h_n)$ et

$$v = \operatorname{Inf}(h'_1, h'_2, \ldots, h'_m).$$

Sachant l'égalité: $A_i f = A_i \hat{f}$, on peut écrire:

$$u_i = \sup (A_i h_1, \ldots, A_i h_n) \leqslant A_i u \leqslant A_i f$$

et:

$$A_i f \leqslant A_i \varphi \leqslant \inf(A_i h'_1, \ldots, A_i h'_m) = \varphi_i.$$

Suivant \mathcal{F} , u_i tend vers u, v_i tend vers v, uniformément sur K. Il existe donc J dans \mathcal{F} , tel que, pour tout i dans J, on ait:

$$||u-u_i|| \leqslant \epsilon, \quad \text{ et } \quad ||v-v_i|| \leqslant \epsilon;$$

ce qui entraîne: $||u_i - v_i|| \leqslant 4\epsilon$.

Ainsi, pour i dans J, on a:

$$||\hat{f} - A_i f|| \le ||\hat{f} - u|| + ||u - u_i|| + ||u_i - A_i f|| \le 6\varepsilon.$$

Remarque. — Comme au début de ce chapitre on peut prouver directement que, si la fonction \hat{f} est continue sur K, elle appartient à H.

5. Étude d'un cas particulier.

Soit x un élément de K; posons pour toute fonction f de C:

$$p_x(f) = \limsup_{\mathcal{F}} A_i f(x).$$

La fonctionnelle p_x est une fonction sous-linéaire sur \mathcal{C} , dont la restriction au sous-espace \mathcal{C}_1 est une forme linéaire. On dira que ξ appartient au support de p_x si, pour tout voisinage V de ξ , il existe une fonction f de \mathcal{C} , nulle hors de V, et telle que $p_x(f)$ ne soit pas nul. Le support de p_x est un ensemble compact.

Lemme I. — Soit f_0 une fonction de C, x un élément de K. Il existe dans M_x une mesure μ telle que l'on ait:

$$\mu(f_0) = p_x(f_0)$$
 et $\mu(g) \leqslant p_x(g)$,

pour toute fonction g de C.

De plus toute mesure vérifiant cette condition appartient à M_x . Il s'agit là d'une simple application du théorème de Hahn-Banach; la démonstration s'achève comme au paragraphe précédent.

Lemme II. — Pour tout x de F et toute f de C, on a l'inégalité :

$$p_x(f) \leqslant \sup_{\xi_{\mathbf{R}x}} f(\xi).$$

C'est une conséquence du lemme I et du fait que x appartienne à F.

Remarques. — I) Si x appartient à F le support de p_x est contenu dans R(x).

II. Soit Γ le sous-ensemble de \mathcal{C} défini par la condition : pour tout x de F on a : $p_x(f) \leqslant f(x)$. Cette condition entraîne :

$$p_x(f) \leqslant \inf_{\xi \mathbf{R} x} f(\xi).$$

Or on peut démontrer l'inégalité similaire à l'inégalité du lemme II:

$$\lim_{\mathscr{F}}\inf \, \mathrm{A}_{\mathbf{i}}f(x) \geqslant \inf_{\xi \mathbf{R}x} f(\xi), \quad (f \in \mathcal{C}).$$

Finalement, pour toute f de Γ et tout x de F, $\lim_{\mathcal{F}} A_i f(x)$ existe et est égale à :

 $\inf_{\xi \mathbf{R}x} f(\xi).$

Par représentation intégrale, la convergence a lieu en tout x de K.

L'ensemble Γ est un cône convexe, semi-réticulé inférieurement; si l'on sait de plus que ce cône Γ sépare les points de K, l'espace vectoriel engendré est partout dense dans \mathcal{C} et la convergence de $A_i f(x)$ a lieu pour tout f de \mathcal{C} .

III. Si (A_i) est une famille résolvante, le cône Γ associé contient le cône des fonctions surmédianes, nous avons donc retrouvé le résultat du théorème I du chapitre IV, dans le cas métrisable.

Revenons au cône Γ :

Théorème VI. — Si le cône Γ sépare les points de F,

- a) pour tout x de F le support de p_x est ponctuel,
- b) pour tout x de K et toute f de C, $A_i f(x)$ a une limite suivant \mathcal{F} .

Démonstration. — a) Soit x dans F; supposons que le support de p_x , qui est contenu dans R(x), contienne deux points α et β . Soit f une fonction de Γ vérifiant l'inégalité : $f(\alpha) < f(\beta)$. Soit :

et
$$0<\epsilon< f(\beta)-f(\alpha), \qquad \mathrm{B}=f^{-1}(]f(\alpha)+\epsilon,+\infty[)$$

$$\mathrm{B}'=f^{-1}(]-\infty,\;f(\alpha)+\epsilon]).$$

L'ensemble B est ouvert et contient β ; l'ensemble B' est fermé et contient α ; ils forment une partition de K.

Soit φ_1 une application continue de K dans [0,1], dont le support est contenu dans B, et telle que $p_x(\varphi_1)$ soit strictement positif.

Soit une mesure μ associée à ϕ_1 dans les conditions du lemme I.

Nous avons:

$$p_x(f) \geqslant \mu(f) \geqslant \mu(B') \left(\inf_{\xi \in x} f(\xi)\right) + \mu(B)(f(\alpha) + \varepsilon),$$

et

$$p_x(f) = \inf_{\xi_{\mathbf{R}x}} f(\xi),$$

(car f appartient à Γ).

On en déduit:

$$p_x(f) \mu(B) \geqslant \mu(B) (f(\alpha) + \epsilon),$$

tandis que l'on sait:

$$p_x(f) \leqslant f(\alpha)$$
.

Ces deux inégalités ne sont compatibles que si $\mu(B)$ est nul; or on a:

$$\mu(\mathbf{B}) \geqslant \mu(\varphi_1) = p_x(\varphi_1) > 0.$$

Cette contradiction entraîne: le support de p_x est ponctuel.

b) Soit x dans F et $\{x_0\}$ le support de p_x ; soit f dans C et μ associée à f dans les conditions du lemme I. Le support de μ est contenu dans celui de p_x , donc on $a: \mu = \varepsilon_{x_0}$. Ainsi on a:

$$\lim \sup_{\mathcal{F}} A_i f(x) = p_x(f) = f(x_0).$$

La fonction p_x est donc linéaire sur \mathcal{C} , et $A_i f(x)$ tend vers $f(x_0)$ suivant \mathcal{F} .

Par représentation intégrale on peut conclure, à l'existence de $\lim_{\mathcal{F}} A_i f(x) = \hat{f}(x)$, pour tout x de K et toute f de \mathcal{C} .

Remarques. — I. Soit x dans Γ et x_0 le support de p_x ; pour toute fonction f de Γ , on sait:

$$p_x(f) = f(x_0) = \inf_{\xi_{\mathbf{R}x}} f(\xi).$$

Donc en x_0 la restriction de f à R(x) atteint son minimum.

II. Si x n'appartient pas à F, le support de p_x ne peut pas être ponctuel; sinon, soit $\{a\}$ ce support. Pour toute h dans H l'égalité h(x) = h(a) a lieu, si bien que l'on a : xRa; d'autre part, on a pour toute f de \mathcal{C}_1 : $\hat{f}(x) = f(a) = \hat{f}(a)$, si bien que a appartient à F, et il en est de même de x.

III. La mesure p_x est portée par F et appartient à M_x ; c'est l'une des mesures dont l'existence est assurée par le théorème II; posant $x' = \varphi(x)$, on peut écrire:

$$\varphi(p_x) = \mathsf{v}_{x'}$$

Lorsque x parcourt F, soit A le sous-ensemble de F constitué par les supports des mesures p_x .

Si x appartient à A, l'égalité: $f(x) = \hat{f}(x)$, est vérifiée pour toute fonction f de \mathcal{C} ; réciproquement l'égalité: $p_x = \varepsilon_x$, entraîne: $x \in A$.

Donnons une autre caractérisation de l'ensemble A.

Proposition. — Pour que l'élément x de F appartienne à A, il faut et il suffit que pour toute mesure positive μ , distincte de ε_x , il existe une fonction f dans Γ vérifiant l'inégalité:

$$\mu(f) > f(x)$$
.

a) Démontrons que la condition est suffisante : en effet, si x n'appartient pas à A, la mesure p_x est distincte de ε_x , et donne lieu, pour toute f de Γ , à l'inégalité :

$$p_x(f) \leqslant f(x)$$
.

b) Réciproquement, soit: $x \in A$, yRx, et $f \in \Gamma$; il s'en suit:

$$f(y) \geqslant f(x) = \hat{f}(x) = \hat{f}(y).$$

Soit μ une mesure positive, vérifiant l'inégalité: $\mu(f) \leqslant f(x)$, pour toute f de Γ . Une telle mesure appartient à M_x car Γ contient H. Le support de μ est donc contenu dans R(x); ainsi on a: $\mu(f) = f(x)$, et l'égalité: $\mu = \varepsilon_x$, découle du fait que Γ sépare les points de Γ .

Remarques. — I. Si une fonction f de \mathcal{C} est nulle sur A, la fonction f est nulle sur K. Donc les supports des mesures p_x et $\varepsilon_x A_i$ sont contenus dans \overline{A} , $(x \in K, i \in I)$.

- II. Si le cône Γ sépare les points de K, on peut démontrer que ces mesures sont *portées* par l'ensemble A (la démontration est analogue à celle du théorème IV).
- III. Pour tout élément y' de F', l'intersection: A $\cap \varphi^{-1}(y')$, est réduite à un seul élément de A, noté s(y'); on peut alors

écrire une formule de désintégration de la mesure p_x :

$$p_x = \int_{\mathbb{F}'} \, \epsilon_{s(y')} \, d \mathsf{v}_{\varphi(x)}(y').$$

IV. En raisonnant comme dans la démonstration du théorème V, on voit que, pour que l'ensemble A soit fermé, il faut et il suffit que, pour toute f de \mathcal{C} , la fonction \hat{f} soit continue sur K.

6. Solution du problème lorsque K est fini.

Théorème VII. — Pour tout x dans K, $A_i f(x)$ tend vers une limite suivant \mathcal{F} .

Soit f une fonction définie sur K, g sa restriction à F; on a pour tout i l'égalité: $A_i f = A_i g$; soient R_1, \ldots, R_n , les classes d'équivalence contenues dans F, et f_k la restriction de f à R_k ; on a:

$$g = f_1 + \cdots + f_n.$$

Pour $k \neq j$, et $x \in R_k$, le support de p_x étant contenu dans R_k , on a:

$$p_x(f_i)=0,$$

ce qui entraîne:

$$\lim_{\sigma_i} A_i f_j(x) = 0.$$

Il reste donc à examiner $A_iu(x)$, pour u nulle hors de R(x). Il existe un filtre \mathcal{F}' , plus fin que \mathcal{F} , et tel que, suivant \mathcal{F}' , $A_iu(x)$ ait une limite l. Soit h la fonction de \mathcal{C}_1 , égale à l sur R(x), et nulle en dehors. Nous avons, pour tout y de F:

$$h(y) = \lim_{\mathcal{F}'} \Lambda_i u(y);$$

Pour tout i' de I, on peut donc écrire :

$$\mathbf{A}_{i'}h = \lim_{\mathcal{F}'} \mathbf{A}_{i'}\mathbf{A}_{i}u = \lim_{\mathcal{F}} \mathbf{A}_{i}\mathbf{A}_{i'}u = \mathbf{A}_{i'}u,$$

car la mesure $\varepsilon_x A_i$, est portée par F, et le filtre \mathcal{F}' est plus fin que \mathcal{F} .

La convergence, suivant F, de A_{i'}u, découle de l'égalité:

$$\mathbf{A}_{i'}u=\mathbf{A}_{i'}h,$$

et du fait que h appartient à \mathcal{C}_1 .

7. Un contre exemple.

Nous allons voir que, dans certains cas, $A_i f(x)$ n'a pas de limite suivant \mathcal{F} .

Soit X l'espace produit $\mathbf{R}_+x\{\alpha,\beta\}$. Soit K le compactifié de X, ω le point à l'infini. Soit a un nombre > 1, dont la valeur sera précisée par la suite.

Pour:

$$a^{2p-\frac{1}{2}} < t \leqslant a^{2p+\frac{1}{2}}, \quad \text{on pose}: \quad g(t) = \alpha;$$

pour:

$$a^{2p-1-\frac{1}{2}} < t \leqslant a^{2p-\frac{1}{2}}, \quad \text{on pose:} \quad g(t) = \beta, (p \in \mathbf{Z}).$$

Soit f une fonction continue sur K, et $\lambda > 0$; posons:

$$V_{\lambda}f(x,\alpha) = V_{\lambda}f(x,\beta) = \int_{0}^{+\infty} e^{-\lambda t} f[x+t,g(x+t)] dt,$$
 et

$$V_{\lambda}f(\omega) = \frac{f(\omega)}{\lambda}$$

Il est aisé de vérifier que l'intégrale posée a un sens, qu'elle définit une fonction continue sur K, et que la famille des opérateurs V_{λ} est une famille résolvante positive et sousmarkovienne.

Choisissons la fonction f ainsi:

$$f(t, \alpha) = e^{-t}, \qquad f(t, \beta) = -e^{-t}.$$

On a alors:

$$\lambda V_{\lambda} f(0, \alpha) = \lambda V_{\lambda} f(0, \beta) = \lambda \int_{0}^{+\infty} e^{-(\lambda+1)t} s(t) \ dt,$$

où la fonction s(t) vaut +1 (ou -1), selon que g(t) est égal à α (ou à β). Ainsi on a :

$$\lambda V_{\lambda} f(0) = \frac{\lambda}{\lambda + 1} \int_{0}^{+\infty} e^{-u} s\left(\frac{u}{\lambda + 1}\right) du.$$

Soit n un entier positif;

a) pour $\lambda + 1 = a^{2n}$, on a : $s\left(\frac{u}{\lambda + 1}\right) = s(u)$, d'où l'on déduit

$$\lambda V_{\lambda} f(0) = \frac{\lambda}{\lambda + 1} \int_{0}^{+\infty} e^{-u} s(u) du;$$

b) pour $\lambda + 1 = a^{2n+1}$, on a:

$$s\left(\frac{u}{\lambda+1}\right) = -s(u),$$

d'où l'on déduit:

$$\lambda V_{\lambda} f(0) = \frac{-\lambda}{\lambda + 1} \int_{0}^{+\infty} e^{-u} s(u) \ du;$$

or on a l'inégalité:

$$\int_{0}^{+\infty} e^{-u} s(u) du \geqslant \int_{\frac{1}{\sqrt{a}}}^{\sqrt{a}} e^{-u} du - \int_{0}^{\frac{1}{\sqrt{a}}} e^{-u} du - \int_{\sqrt{a}}^{+\infty} e^{-u} du,$$

et la première de ces intégrales est strictement positive dès que a est assez grand pour que $\int_{\frac{1}{\sqrt{a}}}^{\sqrt{a}} e^{-u}$ du majore $\frac{2}{3}$. Donc on a:

$$\limsup_{\lambda \Rightarrow \infty} \lambda V_{\lambda} f(0) > 0, \qquad \text{et} \qquad \liminf_{\lambda \Rightarrow \infty} \lambda V_{\lambda} f(0) < 0.$$

Ainsi l'existence de $\lim_{\mathcal{F}} A_i f(x)$ n'est pas assurée en général, même pour une famille résolvante définie comme intégrale d'un semi-groupe.

Il semble donc, que, pour représenter une famille résolvante par l'intégrale d'un semi-groupe, on doive explorer d'autres voies que le calcul de $\lim_{\lambda} \lambda V_{\lambda} f(x)$.

BIBLIOGRAPHIE

- [1] H. BAUER, Frontière de Silov et problème de Dirichlet, Séminaire Brelot, Choquet, Deny: Théorie du potentiel, t. 3 (1958-59), nº 7, 23 p.
- [2] N. BOURBAKI, Éléments de Mathématiques, Livres III, V, VI, Actualités scientifiques et industrielles, Hermann, Paris.
- [3] M. Brelot, Éléments de la théorie classique du potentiel (1959), Centre de documentation Universitaire, Paris, Cours rédigé par Christian Houzel.
- [4] Cartan et Deny, Le principe du maximum en théorie du potentiel et la notion de fonction surharmonique, Acta. scient. Math. Szeged, t. 12 (1950), 81-100.
- [5] G. Choquet, Le théorème de représentation intégrale dans les ensembles convexes compacts, Ann. Inst. Fourier, Grenoble, t. 10 (1960), 333-344.

- [6] G. Choquet, Remarques à propos de la démonstration d'unicité de P. A. Meyer, Séminaire Brelot, Choquet, Deny, théorie du potentiel. t. 6 (1962), nº 8.
- [7] G. Сноquet et J. Deny, Aspects linéaires de la théorie du potentiel, Noyaux de composition satisfaisant au principe du balayage sur tout ouvert, C. R. Acad. Sc. Paris, t. 250 (1960),4260-4262.
- [8] G. Choquet et J. Deny, Modèles finis en théorie du potentiel, journal d'analyse mathématique, t. 5 (1956-57), 77-135.
- [9] G. Choquet et J. Deny, Ensembles semi-réticulés et ensembles réticulés de fonctions continues, Journal Maths pures et appliquées, 9e série, t. 36 (1957), 179-189.
- [10] G. Choquet et P. A. Meyer, Existence et unicité des représentations intégrales dans les convexes compact quelconques; Ann. Inst. Fourier, Grenoble, t. 13 (1962), 139-154.
- [11] COURREGE et PRIOURET, Axiomatique du problème de Dirichlet et processus de Markoff, Séminaire Brelot, Choquet, Deny, th. du potentiel, t. 8 (1963-64), no 8.
- [12] J. Deny, Familles fondamentales, noyaux associés, Ann. Inst. Fourier, Grenoble, t. 3 (1951), 73-101.
- [13] J. Deny, Les noyaux élémentaires, Séminaire Brelot, Choquet, Deny, Théorie du potentiel, t. 4 (1959-60), nº 4, 12 p.
- [14] J. Deny, Les principes fondamentaux de la théorie du potentiel; Séminaire Brelot, Choquet, Deny: Théorie du potentiel, t. 5 (1960-61), nº 6.
- [15] J. Deny, Éléments de théorie du potentiel par rapport à un noyau de Hunt, Séminaire Brelot, Choquet, Deny, Théorie du potentiel, t. 5 (1960-61), nº 8.
- [16] J. Deny, Les principes du maximum en théorie du potentiel, Séminaire Brelot, Choquet, Deny, Théorie du potentiel, t. 6 (1962), nº 10.
- [17] J. Deny, Noyaux de convolution de Hunt et noyaux associés à une famille fondamentale, *Ann. Inst. Fourier*, t. 12 (1962), 643-667.
- [18] R. Durier, Travaux de Kishi sur les relations entre divers principes de théorie du potentiel, Séminaire Brelot, Choquet, Deny, Théorie du potentiel, t. 9 (1964-65), nº 8.
- [19] HILLE and Philips, Functional analysis and semi-groups, American mathematical society colloquium publications, Providence R I 1957.
- [20] G. A. Hunt, Markoff processes and Potentials, Illinois Journal of Math. t. 1 (1957), 44-93 et 316-369, t. 2 (1958), 151-215.
- [21] M. Kishi, Maximum principles in the potential theory, Nagoya mathsjournal, t. 23 (1963), 165-187.
- [22] P. Kree, Frontière de Silov, d'après H. Bauer, Séminaire Choquet, Initiation à l'analyse, 1^{re} année (1962), nº 3 bis.
- [23] G. Lion, Construction du semi-groupe associé à un noyau de Hunt, Séminaire Brelot, Choquet, Deny, théorie du potentiel, t. 5 (1960-61), nº 7.
- [24] G. Lion, Théorème de représentation d'un noyau par l'intégrale d'un semi-groupe, Séminaire Brelot, Choquet, Deny: Th. du Potentiel, t. 6, no 3.

- [25] G. Lion, Familles résolvantes et frontières de Choquet, Séminaire Brelot, Choquet, Deny, Th. du potentiel, 9e année (1964-65), nº 6.
- [26] G. Lion, Principe complet du maximum et semi-groupes sous-markoviens, C. R. Acad. Sc. Paris, t. 258 (1964), 3621-3623.
- [27] P. A. MEYER, Sur les démonstrations nouvelles du théorème de Choquet, Séminaire Brelot, Choquet, Deny, théorie du potentiel, t. 6 (1961-62), nº 7.
- [28] P. A. Meyer, Brelot's axiomatic theory of the Dirichlet problem and Hunt's theory, Ann. Inst. Fourier, Grenoble, t. 13 (1963), 357-372.
- [29] G. Моковордкі, Principe de balayage, principe de domination, Séminaire Choquet, Initiation à l'analyse, 1^{re} année (1962), n° 1.
- [30] D. RAY, Resolvents, transition functions and strongly Markovian processes, Annals of Maths, série 2, t. 70 (1959), 43-72.
- [31] M. H. Stone, The generalized Weierstrass approximation theorem; Maths. Mag. t. 21 (1948), 167-184 et 237-254.

(Thése, Fac. Sciences Orsay, 1966.)

Georges Lion, Les Payauds, 23-Auriat.