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VANISHING OF THE FIRST REDUCED
COHOMOLOGY WITH VALUES IN AN

Lp-REPRESENTATION

by Romain TESSERA

Abstract. — We prove that the first reduced cohomology with values in a
mixing Lp-representation, 1 < p < ∞, vanishes for a class of amenable groups
including connected amenable Lie groups. In particular this solves for this class
of amenable groups a conjecture of Gromov saying that every finitely generated
amenable group has no first reduced `p-cohomology. As a byproduct, we prove a
conjecture by Pansu. Namely, the first reduced Lp-cohomology on homogeneous,
closed at infinity, Riemannian manifolds vanishes. We also prove that a Gromov
hyperbolic geodesic metric measure space with bounded geometry admitting a
bi-Lipschitz embedded 3-regular tree has non-trivial first reduced Lp-cohomology
for large enough p. Combining our results with those of Pansu, we characterize
Gromov hyperbolic homogeneous manifolds: these are the ones having non-zero
first reduced Lp-cohomology for some 1 < p <∞.

Résumé. — Nous prouvons que pour une classe de groupes moyennables, in-
cluant tous les groupes moyennables de Lie connexes, la cohomologie réduite en de-
gré 1 à valeurs dans une représentation mélangeante sur un espace Lp, pour p > 1,
est nulle. En particulier, cela démontre pour cette classe de groupes moyennables
une conjecture de Gromov s’appliquant à tous les groupes de type fini moyen-
nables. Nous obtenons également la version “de Lie” de cette conjecture, qui avait
été formulée par Pansu. Nous montrons par ailleurs qu’un espace métrique hyper-
bolique possédant un arbre 3-regulier quasi-isométriquement plongé a un premier
groupe de cohomologie Lp réduite non trivial pour p assez grand. Finalement, en
combinant nos résultats avec ceux de Pansu, nous obtenons une caractérisation
des variétés riemanniennes homogènes hyperboliques au sens de Gromov : ce sont
celles qui possèdent de la cohomologie Lp réduite en degré 1 pour p assez grand.

Keywords: Reduced Lp-cohomology, amenable groups, Folner sequences, hyperbolic met-
ric spaces, homogeneous Riemannian manifold.
Math. classification: 20F65, 22F30.
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1. Introduction

1.1. A weak generalization of a result of Delorme.

In [8], Delorme proved the following deep result: every connected solv-
able Lie groups has the property that every weakly mixing(1) unitary rep-
resentation π has trivial first reduced cohomology, i.e., H

1
(G, π) 6= 0. This

was recently extended to connected amenable Lie groups, see [17, The-
orem 3.3], and to a large class of amenable groups including polycyclic
groups by Shalom [25]. Shalom also proves that this property, that he calls
Property HFD, is invariant under quasi-isometry between amenable dis-
crete groups. Property HFD has nice implications in various contexts. For
instance, Shalom shows that an amenable finitely generated group with
Property HFD has a finite index subgroup with infinite abelianization [25,
Theorem 4.3.1]. In [6], we prove [6, Theorem 4.3] that an amenable finitely
generated group with Property HFD cannot quasi-isometrically embed into
a Hilbert space unless it is virtually abelian.

It is interesting and natural to extend the definition of Property HFD to
isometric representations of groups on certain classes of Banach spaces.

In this paper, we prove that a weak version of Property HFD, also in-
variant under quasi-isometry, holds for isometric Lp-representations of a
large class of amenable groups including connected amenable Lie groups
and polycyclic groups: for 1 < p < ∞, every strongly mixing isometric
Lp-representation π has trivial first reduced cohomology (see Section 2 for
a precise statement).

1.2. Lp-cohomology.

The Lp-cohomology (for p not necessarily equal to 2) of a Riemannian
manifold has been introduced by Gol’dshtein, Kuz’minov, and Shvedov in
[10]. It has been intensively studied by Pansu [19, 22, 21] in the context
of homogeneous Riemannian manifolds and by Gromov [12] for discrete
metric spaces and groups. The Lp-cohomology is invariant under quasi-
isometry in degree one [15]. But in higher degree, the quasi-isometry in-
variance requires some additional properties, like for instance the uniform
contractibility of the space [12] (see also [3, 21]). Most authors focus on

(1) A unitary representation is called weakly mixing if it contains no finite dimensional
sub-representation.
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VANISHING OF THE FIRST REDUCED COHOMOLOGY 853

the first reduced Lp-cohomology since it is easier to compute and already
gives a fine quasi-isometry invariant (used for instance in [1, 3]). The `2-
Betti numbers of a finitely generated group, corresponding to its reduced
`2-cohomology(2) , have been extensively studied in all degrees by authors
like Gromov, Cheeger, Gaboriau and many others. In particular, Cheeger
and Gromov proved in [4] that the reduced `2-cohomology of a finitely gen-
erated amenable group vanishes in all degrees. In [12], Gromov conjectures
that this should also be true for the reduced `p-cohomology. For a large
class of finitely generated groups with infinite center, it is known [12, 16]
that the reduced `p-cohomology vanishes in all degrees, for 1 < p < ∞.
The first reduced `p-cohomology for 1 < p <∞ is known to vanish [2, 18]
for certain non-amenable finitely generated groups with “a lot of commu-
tativity” (e.g., groups having a non-amenable finitely generated normal
subgroup with infinite centralizer).

A consequence of our main result is to prove that the first reduced
`p-cohomology, 1 < p < ∞, vanishes for large class of finitely generated
amenable groups, including for instance polycyclic groups.

On the other hand, it is well known [12] that the first reduced `p-cohomo-
logy of a Gromov hyperbolic finitely generated group is non-zero for p large
enough. Although the converse is false(3) for finitely generated groups, we
will see that it is true in the context of connected Lie groups. Namely, a
connected Lie group has non-zero reduced first Lp-cohomology for some
1 < p <∞ if and only if it is Gromov hyperbolic.

Acknowledgments. I would like to thank Pierre Pansu, Marc Bourdon and
Hervé Pajot for valuable discussions about Lp-cohomology. Namely, Marc
explained to me how one can extend a Lipschitz function defined on the
boundary ∂∞X of a Gromov hyperbolic space X to the space itself, pro-
viding a non-trivial element in H1

p (X) for p large enough (see the proof of
Theorem 9.2 in Section 9). According to him, this idea is originally due to
Gabor Elek. I would like to thank Yaroslav Kopylov for pointing out to me
the reference [10] where the Lp-cohomology was first introduced. I am also
grateful to Yves de Cornulier, Pierre Pansu, Gilles Pisier, and Michael Puls
for their useful remarks and corrections.

(2) We write `p when the space is discrete.
(3) In [7] for instance, we prove that any non-amenable discrete subgroup of a semi-
simple Lie group of rank one has non-trivial reduced Lp-cohomology for p large enough.
On the other hand, non-cocompact lattices in SO(3, 1) are not hyperbolic. See also [2]
for other examples.
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854 Romain TESSERA

2. Main results

(The definitions of first Lp-cohomology, p-harmonic functions and of first
cohomology with values in a representation are postponed to Section 4.)

Let G be a locally compact group acting by measure-preserving bĳec-
tions on a measurable space equipped with an infinite measure (X,m). We
say that the action is strongly mixing (or mixing) if for every measurable
subset of finite measure A ⊂ X, m(gA ∩A) → 0 when g leaves every com-
pact subset of G. Let π be the corresponding continuous representation
of G in Lp(X,m), where 1 < p < ∞. In this paper, we will call such a
representation a mixing Lp-representation of G.

Definition 2.1. — [26] Let G be a locally compact, compactly gener-
ated group and let S be a compact generating subset of G. We say that G
has Property (CF) (Controlled Følner) if there exists a sequence of compact
subsets of positive measure (Fn) satisfying the following properties.

• Fn ⊂ Sn for every n;
• there is a constant C <∞ such that for every n and every s ∈ S,

µ(sFn M Fn)
µ(Fn)

6 C/n.

Such a sequence Fn is called a controlled Følner(4) sequence.

In [26], we proved that following family(5) of groups are (CF).

(1) Polycyclic groups and connected amenable Lie groups;
(2) semidirect products Z[ 1

mn ] o m
n

Z, with m,n co-prime integers with
|mn| > 2 (if n = 1 this is the Baumslag-Solitar group BS(1,m));
semidirect products

(⊕
i∈I Qpi

)
o m

n
Z with m,n co-prime integers,

and (pi)i∈I a finite family of primes (including ∞: Q∞ = R)) di-
viding mn;

(3) wreath products F o Z for F a finite group.

Our main result is the following theorem.

Theorem 2.2. — Let G be a group with Property (CF) and let π be
a mixing Lp-representation of G. Then the first reduced cohomology of G
with values in π vanishes, i.e., H1(G, π) = 0.

(4) A controlled Følner sequence is in particular a Følner sequence, so that Property (CF)
implies amenability.
(5) This family of groups also appears in [6].

ANNALES DE L’INSTITUT FOURIER
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Invariance under quasi-isometry. The proof of [25, Theorem 4.3.3]
that Property HFD is invariant under quasi-isometry can be used iden-
tically in the context of Lp-representations and replacing the hypothesis
“weak mixing” by “mixing” since the induced representation of a mixing
Lp-representation is also a mixing Lp-representation. As a result, we obtain
that the property that H1(G, π) = 0 for every mixing Lp-representation is
invariant under quasi-isometry between discrete amenable groups. It is also
stable by passing to (and inherited by) co-compact lattices in amenable lo-
cally compact groups.

It is well known [24] that for finitely generated groups G, the first re-
duced cohomology with values in the left regular representation in `p(G) is
isomorphic to the space HDp(G) of p-harmonic functions with gradient in
`p modulo the constants. We therefore obtain the following corollary.

Corollary 2.3. — Let G be a discrete group with Property (CF).
Then every p-harmonic function on G with gradient in `p is constant.

Using Von Neumann algebra technics, Cheeger and Gromov [4] proved
that every finitely generated amenable group G has no nonconstant har-
monic function with gradient in `2, the generalization to every 1 < p <∞
being conjectured by Gromov.

To obtain a version of Corollary 2.3 for Lie groups, we prove the following
result (see Theorem 5.1).

Theorem 2.4. — Let G be a connected Lie group. Then for 1 6 p <

∞, the first Lp-cohomology of G is topologically (canonically) isomorphic
to the first cohomology with values in the right regular representation in
Lp(G), i.e.,

H1
p (G) ' H1(G, ρG,p).

Now, since this isomorphism induces a natural bĳection

HDp(G) ' H1(G, ρG,p),

we can state the following result that was conjectured by Pansu in [22].
Recall that a Riemannian manifold is called closed at infinity if there exists
a sequence of compact subsets An with regular boundary ∂An such that
µd−1(∂An)/µd(An) → 0, where µk denotes the Riemannian measure on
submanifolds of dimension k of M .

Corollary 2.5. — Let M be a homogeneous Riemannian manifold. If
it is closed at infinity, then for every p > 1, every p-harmonic function on
M with gradient in Lp(TM) is constant. In other words, HDp(M) = 0.

TOME 59 (2009), FASCICULE 2



856 Romain TESSERA

Together with Pansu’s results [23, Théorème 1], we obtain the following
dichotomy.

Theorem 2.6. — LetM be a homogeneous Riemannian manifold. Then
the following dichotomy holds.

• Either M is quasi-isometric to a homogeneous Riemannian manifold
with strictly negative curvature, and then there exists p0 > 1 such
that HDp(M) 6= 0 if and only if p > p0;

• or HDp(M) = 0 for every p > 1.

We also prove

Theorem 2.7. — (see Corollary 9.3) A homogeneous Riemannian man-
ifold M has non-zero first reduced Lp-cohomology for some 1 < p < ∞ if
and only if it is non-elementary(6) Gromov hyperbolic.

To prove this corollary, we need to prove that a Gromov hyperbolic Lie
group has non-trivial first reduced Lp-cohomology for p large enough. This
is done in Section 9. Namely, we prove a more general result.

Theorem 2.8. — (see Theorem 9.2) Let G be a Gromov hyperbolic
metric measure space with bounded geometry having a bi-Lipschitz embed-
ded 3-regular tree, then for p large enough, it has non-trivial first reduced
Lp-cohomology.

Corollary 9.3 and Pansu’s contribution to Theorem 2.6 yield the following
corollary.

Corollary 2.9. — A non-elementary Gromov hyperbolic homogeneous
Riemannian manifold is quasi-isometric to a homogeneous Riemannian
manifold with strictly negative curvature.

(See [14] for an algebraic description of homogeneous manifolds with
strictly negative curvature).

3. Organization of the paper.

In the following section, we recall three definitions of first cohomology:
• a coarse definition of the first Lp-cohomology on a general metric

measure space which is due to Pansu;

(6) By non-elementary, we mean not quasi-isometric to R.
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VANISHING OF THE FIRST REDUCED COHOMOLOGY 857

• the usual definition of first Lp-cohomology on a Riemannian mani-
fold;

• the first cohomology with values in a representation, which is de-
fined for a locally compact group.

In Section 5, we construct a natural topological isomorphism between the
Lp-cohomology of a connected Lie group G and the cohomology with values
in the right regular representation of G in Lp(G). We use this isomorphism
to deduce Corollary 2.5 from Theorem 2.2.

The proof of Theorem 2.2 splits into two steps. First (see Theorem 6.1),
we prove that for any locally compact compactly generated group G and
any mixing Lp-representation π of G, every 1-cocycle b ∈ Z1(G, π) is sub-
linear, which means that for every compact symmetric generating subset S
of G, we have

‖b(g)‖ = o(|g|S)

when |g|S →∞, |g|S being the word length of g with respect to S. Then, we
adapt to this context a remark that we made with Cornulier and Valette
(see [6, Proposition 3.6]): for a group with Property (CF), a 1-cocycle
belongs to B

1
(G, π) if and only if it is sublinear. The part “only if” is

an easy exercise and does not require Property (CF). To prove the other
implication, we consider the affine action σ of G on E associated to the
1-cocycle b and use Property (CF) to construct a sequence of almost fixed
points for σ.

In Section 8, we propose a more direct approach(7) to prove Corollary 2.5.
The interest is to provide an explicit approximation of an element of Dp(G)
by a sequence of functions in W 1,p(G) using a convolution-type argument.

Finally, in Section 9, we prove that a Gromov hyperbolic homogeneous
manifold has non-trivial Lp-cohomology for p large enough. This section
can be read independently.

4. Preliminaries

4.1. A coarse notion of first Lp-cohomology
on a metric measure space

The following coarse notion of (first) Lp-cohomology is essentially due to
[21] (see also the chapter about Lp-cohomology in [12]).

(7) However, the ingredients are the same: sublinearity of cocycles, and existence of a
controlled Følner sequence.

TOME 59 (2009), FASCICULE 2



858 Romain TESSERA

Let X = (X, d, µ) be a metric measure space, and let p > 1. For all s > 0,
we write ∆s = {(x, y) ∈ X2, d(x, y) 6 s}.

First, let us introduce the p-Dirichlet space Dp(X).

• The space Dp(X) is the set of measurable functions f on X such
that ∫

∆s

|f(x)− f(y)|pdµ(x)dµ(y) <∞

for every s > 0.
• Let Dp(X) be the Banach space Dp(X)/C equipped with the norm

‖f‖Dp
=

(∫
∆1

|f(x)− f(y)|pµ(x)dµ(y)
)1/p

.

• By a slight abuse of notation, we identify Lp with its image in Dp.

Definition 4.1. — The first Lp-cohomology of X is the space

H1
p (X) = Dp(X)/Lp(X),

and the first reduced Lp-cohomology of X is the space

H1
p(X) = Dp(X)/Lp(X)

Dp(X)
.

Definition 4.2 (1-geodesic spaces). — We say that a metric space X =
(X, d) is 1-geodesic if for every two points x, y ∈ X, there exists a sequence
of points x = x1, . . . xm = y, satisfying

• d(x, y) = d(x1, x2) + . . .+ d(xm−1, xm),
• for all 1 6 i 6 m− 1, d(xi, xi+1) 6 1.

Remark 4.3. — Let X and Y be two 1-geodesic metric measure spaces
with bounded geometry in the sense of [21]. Then it follows from [21] that
if X and Y are quasi-isometric, then H1

p (X) ' H1
p (Y ) and H1

p(X) '
H1

p(Y ).

Example 4.4. — Let G be a locally compact compactly generated group,
and let S be a symmetric compact generating set. Then the word metric
on G associated to S,

dS(g, h) =∈ {n ∈ N, g−1h ∈ Sn},

defines a 1-geodesic left-invariant metric on G. Moreover, one checks eas-
ily two such metrics (associated to different S) are bilipschitz equivalent.
Hence, by Pansu’s result, the first Lp-cohomology of (G,µ, dS) does not
depend on the choice of S.

ANNALES DE L’INSTITUT FOURIER
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Definition 4.5 (coarse notion of p-harmonic functions). — Let f ∈
Dp(X) and assume that p > 1. The p-Laplacian(8) of f is

∆pf(x) =
1

V (x, 1)

∫
d(x,y)61

|f(x)− f(y)|p−2(f(x)− f(y))dµ(y),

where V (x, 1) is the volume of the closed ball B(x, 1). A function f ∈
Dp(X) is called p-harmonic if ∆pf = 0. Equivalently, the p-harmonic func-
tions are the minimizers of the variational integral∫

∆1

|f(x)− f(y)|pdµ(x)dµ(y).

Definition 4.6. — We say that X satisfies a Liouville Dp-Property if
every p-harmonic function on X is constant.

As Dp(X) is a strictly convex, reflexive Banach space, every f ∈ Dp(X)
admits a unique projection f̃ on the closed subspace Lp(X) such that
d(f, f̃) = d(f, Lp(X)). One can easily check that f − f̃ is p-harmonic. In
conclusion, the reduced cohomology class of f ∈ Dp(X) admits a unique
p-harmonic representant modulo the constants. We therefore obtain

Proposition 4.7. — A metric measure space X has Liouville Dp-Pro-
perty if and only if Hp

1
(X) = 0.

4.2. First Lp-cohomology on a Riemannian manifold

Let M be Riemannian manifold, equipped with its Riemannian measure
m. Let 1 6 p <∞.

Let us first define, in this differentiable context, the p-Dirichlet space
Dp.

• Let Dp be the vector space of continuous functions whose gradient
is (in the sense of distributions) in Lp(TM).

• Equip Dp(M) with a pseudo-norm ‖f‖Dp
= ‖∇f‖p, which induces

a norm on Dp(M) modulo the constants. Denote by Dp(M) the
completion of this normed vector space.

• Write W 1,p(M) = Lp(M) ∩Dp(M). By a slight abuse of notation,
we identify W 1,p(M) with its image in Dp(M).

(8) Here we define a coarse p-Laplacian at scale 1: see [27, Section 2.2] for a more general
definition.

TOME 59 (2009), FASCICULE 2



860 Romain TESSERA

Definition 4.8. — The first Lp-cohomology of M is the quotient space

H1
p (M) = Dp(M)/W 1,p(M),

and the first reduced Lp-cohomology of M is the quotient

Hp
1
(M) = Dp(M)/W 1,p(M),

where W 1,p(M) is the closure of W 1,p(M) in the Banach space Dp(M).

Definition 4.9 (p-harmonic functions). — A function f ∈ Dp(M) is
called p-harmonic if it is a weak solution of

div(|∇f |p−2∇f) = 0,

that is, ∫
M

〈|∇f |p−2∇f,∇ϕ〉dm = 0,

for every ϕ ∈ C∞0 . Equivalently, p-harmonic functions are the minimizers
of the variational integral ∫

M

|∇f |pdm.

Definition 4.10. — We say that M satisfies a Liouville Dp-Property
if every p-harmonic function on M is constant.

As Dp(M) is a strictly convex, reflexive Banach space, every f ∈ Dp(M)
admits a unique projection f̃ on the closed subspace W 1,p(M) such that
d(f, f̃) = d(f,W 1,p(M)). One can easily check that f − f̃ is p-harmonic. In
conclusion, the reduced cohomology class of f ∈ Dp(M) admits a unique
p-harmonic representant modulo the constants. Hence, we get the following
well-known fact.

Proposition 4.11. — A Riemannian manifold M has Liouville Dp-
Property if and only if Hp

1
(M) = 0.

Remark 4.12. — In [21], Pansu proves (in particular) that if a Riemann-
ian manifold has bounded geometry (which is satisfied by a homogeneous
manifold), then the first Lp-cohomology defined as above is topologically
isomorphic to its coarse version defined at the previous section. In partic-
ular, the Liouville Dp-Property is invariant under quasi-isometry between
Riemannian manifolds with bounded geometry.

ANNALES DE L’INSTITUT FOURIER
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4.3. First cohomology with values in a representation

Let G be a locally compact group, and π a continuous linear representa-
tion on a Banach space E = Eπ. The space Z1(G, π) is defined as the set
of continuous functions b : G→ E satisfying, for all g, h in G, the 1-cocycle
condition b(gh) = π(g)b(h) + b(g). Observe that, given a continuous func-
tion b : G → E, the condition b ∈ Z1(G, π) is equivalent to saying that G
acts by affine transformations on E by α(g)v = π(g)v + b(g). The space
Z1(G, π) is endowed with the topology of uniform convergence on compact
subsets.

The subspace of coboundaries B1(G, π) is the subspace (not necessarily
closed) of Z1(G, π) consisting of functions of the form g 7→ v − π(g)v for
some v ∈ E. In terms of affine actions, B1(G, π) is the subspace of affine
actions fixing a point.

The first cohomology space of π is defined as the quotient space

H1(G, π) = Z1(G, π)/B1(G, π).

The first reduced cohomology space of π is defined as the quotient space

H1(G, π) = Z1(G, π)/B1(G, π),

where B1(G, π) is the closure of B1(G, π) in Z1(G, π) for the topology
of uniform convergence on compact subsets. In terms of affine actions,
B1(G, π) is the space of actions σ having almost fixed points, i.e., for every
ε > 0 and every compact subset K of G, there exists a vector v ∈ E such
that for every g ∈ K,

‖σ(g)v − v‖ 6 ε.

If G is compactly generated and if S is a compact generating set, then this
is equivalent to the existence of a sequence of almost fixed points, i.e., a
sequence vn of vectors satisfying

lim
n→∞

sup
s∈S

‖σ(s)vn − vn‖ = 0.

5. Lp-cohomology and affine actions on Lp(G).

Let G be a locally compact group equipped with a left-invariant Haar
measure. Let G act on Lp(G) by right translations, which defines a repre-
sentation ρG,p defined by

ρG,p(g)f(x) = f(xg) ∀f ∈ Lp(G).

TOME 59 (2009), FASCICULE 2



862 Romain TESSERA

Note that this representation is isometric if and only if G is unimodular,
in which case ρG,p is isomorphic to the left regular representation λG,p. In
particular, in this case, the corresponding first reduced cohomologies are
the same.

Now suppose that the group G is also compactly generated and equipped
with a word metric dS associated to a compact symmetric generating subset
S. In this section, we prove that the first cohomology with values in the
regular Lp-representation ρG,p is topologically isomorphic to the first Lp-
cohomology H1

p (G) (here, we mean the coarse version, see Section 4.1). By
the result of Pansu mentioned in Remark 4.12, if G is a connected Lie group
equipped with left-invariant Riemannian metric m, we can also identify
H1(G, ρG,p) with the first Lp-cohomology on (G,m) (see Section 4.2). We
also obtain a direct proof of this fact.

We consider here the two following contexts: where G is a compactly
generated locally compact group equipped with a length function dS ; or G
is a connected Lie group, equipped with a left-invariant Riemannian metric.

Consider the linear map J : Dp(G) → Z1(G, ρG,p) defined by

J(f)(g) = b(g) = f − ρG,p(g)f.

J is clearly well defined and induces a linear map

HJ : H1
p (G) → H1(G, ρG,p).

Theorem 5.1. — For 1 6 p < ∞, the canonical map HJ : H1
p (G) →

H1(G, ρG,p) is an isomorphism of topological vector spaces.

Let us start with a lemma.

Lemma 5.2. — Let 1 6 p < ∞ and b ∈ Z1(G, ρG,p). Then there exists
a 1-cocycle c in the cohomology class of b such that

(1) the map G×G→ C : (g, x) 7→ c(g)(x) is continuous;
(2) the continuous map f(x) = c(x−1)(x) satisfies c(g) = f − ρG,p(g)f ;
(3) moreover if G is a Riemannian connected Lie group, then c can be

chosen such that f lies in Dp(G) (and in C∞(G)).

Proof of the lemma. — Note that a cocycle b always satisfies b(1) = 0.
Let ψ be a continuous, compactly supported probability density on G. We
define c ∈ Z1(G, ρG,p) by

c(g) =
∫
G

b(gh)ψ(h)dh−
∫
G

b(h)ψ(h)dh =
∫
G

b(h)(ψ(g−1h)− ψ(h))dh.
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We have

c(gg′) =
∫
G

b(gg′h)ψ(h)dh−
∫
G

b(h)ψ(h)dh

= ρG,p(g)
∫
G

b(g′h)ψ(h)dh+
∫
G

b(g)ψ(h)dh−
∫
G

b(h)ψ(h)dh

But note that∫
G

b(g)ψ(h)dh =
∫
G

b(ghh−1)ψ(h)dh

= ρG,p(g)
∫
G

ρG,p(h)b(h−1)ψ(h)dh+
∫
G

b(gh)ψ(h)dh

= −ρG,p(g)
∫
G

b(h)ψ(h)dh+
∫
G

b(gh)ψ(h)dh.

So we obtain

c(gg′) = ρG,p(g)
(∫

G

b(g′h)ψ(h)dh−
∫
G

b(h)ψ(h)dh
)

+
∫
G

b(gh)ψ(h)dh−
∫
G

b(h)ψ(h)dh

= ρG,p(g)c(g′) + c(g).

So c is a cocycle.
Let us check that c belongs to the cohomology class of b. Using the

cocycle relation, we have

c(g) =
∫
G

(ρG,p(g)b(h) + b(g))ψ(h)dh−
∫
G

b(h)ψ(h)dh

= b(g) +
∫
G

(ρG,p(g)b(h)− b(h))ψ(h)dh

= b(g) + ρG,p(g)
∫
G

b(h)ψ(h)dh−
∫
G

b(h)ψ(h)dh.

But since
∫
G
b(h)ψ(h)dh ∈ Lp(G), we deduce that c belongs to the coho-

mology class of b.
Now, let us prove that (g, x) 7→ c(g)(x) is continuous. It is easy to see

from the definition of c that g 7→ c(g)(x) is defined and continuous for
almost every x: fix such a point x0. We conclude remarking that the cocycle
relation implies

c(g)(x0x) = c(xg)(x0)− c(g)(x0).

Now we can define f(x) = c(x−1)(x) = −c(g)(1) and again the cocycle
relation for c implies that c(g) = f − ρG,p(g)f .
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Finally, assume that G is a Lie group and choose a smooth ψ. The func-
tion ψ̂ defined by

ψ̂(g) = ψ(g−1)

is also smooth and compactly supported. We have

c(g)(x) = f(x)− f(xg) =
∫
G

b(h)(x)(ψ̂(h−1g)− ψ̂(h−1))dh.

Hence, f is differentiable and

∇f(x) = −
∫
G

b(h)(x)(∇ψ̂)(h−1))dh,

and so ∇f ∈ Lp(TG). �

Proof of Theorem 5.1. — The last statement of the lemma implies that
HJ is surjective. The injectivity follows immediately from the fact that f
is determined up to a constant by its associated cocycle b = I(f).

We now have to prove that the isomorphism HJ is a topological isomor-
phism. This is immediate in the context of the coarse Lp-cohomology. Let
us prove it for a Riemannian connected Lie group. Let S be a compact
generating subset of G and define a norm on Z1(G, ρG,p) by

‖b‖ = sup
s∈S

‖b(s)‖p.

Let ψ be a smooth, compactly generated probability density on G as in
the proof of Lemma 5.2. Denote

f ∗ ψ̂(x) =
∫
G

f(k)ψ̂(k−1x)dk =
∫
G

f(xh)ψ(h)dh =
∫
G

f(k)ψ(x−1k)dk.

We have

Lemma 5.3. — There exists a constant C < ∞ such that for every
f ∈ Dp(G),

C−1‖f ∗ ψ̂‖Dp 6 ‖J(f)‖ 6 C‖f‖Dp .

Proof of the lemma. — First, one checks easily that if b is the cocycle
associated to f , then the regularized cocycle c constructed in the proof of
Lemma 5.2 is associated to f ∗ ψ.

We have

∇(f ∗ ψ̂)(x) =
∫
f(k)∇ψ̂(k−1x)dk

=
∫

(f(k)− f(x))∇ψ̂(k−1x)dk

=
∫

(f(xh)− f(x))∇ψ̂(h−1)dh.
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So

‖∇(f ∗ ψ̂)‖p 6 sup
h∈Supp(ψ̂)

∫
|f(xh)− f(x)|p‖∇ψ̂‖p∞dx

= sup
h∈Supp(ψ̂)

‖b(h)‖p‖∇ψ̂‖p∞,

which proves the left-hand inequality of Lemma 5.3. Let g ∈ G and γ :
[0, d(1, g)] → G be a geodesic between 1 and g. For any f ∈ Dp(G) and
x ∈ G, we have

(f − ρG,p(g)f)(x) = f(x)− f(xg) =
∫ d(1,g)

0

∇f(x) · γ′(t)dt.

So we deduce that

‖f − ρG,p(g)f‖p 6 d(1, g)‖∇f‖p,

which proves the right-hand inequality of Lemma 5.3. �

Continuity of HJ follows from continuity of J which is an immediate
consequence of Lemma 5.3.

Let us prove that the inverse of HJ is continuous. Let bn be a sequence
in Z1(G, ρG,p), converging to 0 modulo B1(G, ρG,p). This means that there
exists a sequence an in B1(G, ρG,p) such that ‖bn+an‖ → 0. By Lemma 5.2,
we can assume that bn(g) = fn − ρG,p(g)fn with f ∈ Dp(G). On the
other hand, an = h − ρG,p(g)h with h ∈ Lp(G). As compactly supported,
regular(9) functions on G are dense in Lp(G), we can assume that h is
regular. So finally, replacing fn by fn + hn, which is in Dp(G), we can
assume that J(fn) → 0. Then, by Lemma 5.3, ‖fn ∗ ψ̂‖Dp → 0. But by the
proof of Lemma 5.2, fn ∗ ψ̂ is in the class of Lp-cohomology of fn. This
finishes the proof of Theorem 5.1. �

6. Sublinearity of cocycles

Theorem 6.1. — Let G be a locally compact compactly generated
group and let S be a compact symmetric generating subset. Let π be a
mixing Lp-representation of G. Then, every 1-cocycle b ∈ Z1(G, π) is sub-
linear, i.e.,

‖b(g)‖ = o(|g|S)

when |g|S →∞, |g|S being the word length of g with respect to S.

(9) Regular here, means either continuous, or smooth if G is a Lie group.
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Let Lp(X,m) the Lp-space on which G acts. We will need the following
lemma.

Lemma 6.2. — Let us keep the assumptions of the theorem. For any
fixed j ∈ N,

‖π(g1)v1 + . . .+ π(gj)vj‖pp → ‖v1‖pp + . . .+ ‖vj‖pp

when dS(gk, gl) →∞ whenever k 6= l, uniformly with respect to (v1, . . . , vj)
on every compact subset of (Lp(X,m))j .

Proof of Lemma 6.2. — First, let us prove that if the lemma holds
pointwise with respect to v = (v1, . . . , vj), then it holds uniformly on every
compact subset K of (Lp(X,m))j . Let us fix some ε > 0. Equip (Lp(X,m))j

with the norm

‖v‖ = max
i

‖vi‖p,

and take a finite covering of K by balls of radius ε: B(w, ε), w ∈W , where
W is a finite subset of K. Take min16k 6=i6j dS(gk, gl) large enough so that
for any w ∈W , ‖π(g1)v1+ . . .+π(gj)vj‖pp is closed to ‖v1‖pp+ . . .+‖vj‖pp up
to ε. As π(g) preserves the Lp-norm for every g ∈ G, we immediately see
that for any v in K, ‖π(g1)v1+. . .+π(gj)vj‖pp is closed to ‖v1‖pp+. . .+‖vj‖pp
up to some ε′ only depending on K, p and ε, and such that ε′ → 0 when
ε→ 0.

So now, we just have to prove the lemma for v1, . . . , vj belonging to a
dense subset of Lp(X,m). Thus, assume that for every 1 6 k 6 j, vk is
bounded and compactly supported. Let us denote by Ak the support of
vk. For every finite sequence g = g1, . . . , gj of elements in G, we write, for
every 1 6 i 6 j,

• Ui,g =
(⋃

l 6=i glAl

)
∩ giAi;

• Ai,g = giAi r Ui,g.

The key point of the proof is the following observation. �

Claim 6.3. — For every 1 6 i 6 j,

m(Ui,g) → 0,

when the relative distance between the gk goes to ∞.
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Proof of the claim. — For u, v ∈ L2(G,m), write 〈u, v〉 =
∫
X
u(x)v(x)

dm(x). For every 1 6 i 6 j,

m

⋃
l 6=i

glAl

 ∩ giAi

 =

〈∑
l 6=i

π(gl)1Al
, π(gi)1Ai

〉

=
∑
l 6=i

〈π(gl)1Al
, π(gi)1Ai〉

=
∑
l 6=i

〈
π(g−1

l gi)1Ai , 1Al

〉
=

∑
l 6=i

m(g−1
l giAi ∩Al) → 0

by mixing property of the action. �

Proof of the lemma. — First, observe that by the claim,

‖π(gi)vi1Ui,ḡ‖pp 6 ‖vi‖p∞m(Ui,g) → 0,

when the relative distance between the gk goes to ∞. In other words, as
π(gi)vi = π(gi)vi1Ai,ḡ

+ π(gi)vi1Ui,ḡ
,

‖π(gi)vi1Ai,ḡ − π(gi)vi‖pp → 0.

In particular,
‖π(gi)vi1Ai,ḡ‖pp → ‖vi‖pp.

On the other hand, the Ai,ḡ are piecewise disjoint. So finally, we have

lim
dS(gl,gk)→∞

‖π(g1)v1 + . . .+ π(gj)vj‖pp

= lim
dS(gl,gk)→∞

‖π(g1)v11A1,g
+ . . .+ π(gj)vj1Aj,g

‖pp

= lim
dS(gl,gk)→∞

‖π(g1)v11A1,g
‖p + . . .+ ‖π(gj)vj1Aj,g

‖pp

= ‖v1‖pp + . . .+ ‖vj‖pp,

which proves the lemma. �

Proof of Theorem 6.1. — Fix some ε > 0. Let g = s1 . . . sn be a minimal
decomposition of g into a product of elements of S. Let m 6 n, q and r < m

be positive integers such that n = qm+ r. To simplify notation, we assume
r = 1. For 1 6 i < j 6 n, denote by gj the prefix s1 . . . sj of g and by gi,j
the subword si+1 . . . sj of g. Developing b(g) with respect to the cocycle
relation, we obtain

b(g) = b(s1) + π(g1)b(s2) + . . .+ π(gn−1)b(sn).
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Let us put together the terms in the following way

b(g) =
[
b(s1) + π(gm)b(sm+1) + . . .+ π(g(q−1)m)b(s(q−1)m+1)

]
+

[
π(g1)b(s2) + π(gm+1)b(sm+2) + . . .+ π(g(q−1)m+1)b(s(q−1)m+2)

]
+ . . .+

[
π(gm−1)b(sm) + π(g2m−1)b(s2m) + . . .+ π(gqm)b(sqm+1)

]
.

In the above decomposition of b(g), consider each term between [·], e.g., of
the form

(6.1) π(gk)b(sk+1) + . . .+ π(g(q−1)m+k)b(s(q−1)m+k+1)

for 0 6 k 6 m − 1 (we decide that s0 = 1). Note that since S is compact
and π is continuous, there exists a compact subset K of E containing b(s)
for every s ∈ S. Clearly since g = s1 . . . sn is a minimal decomposition of g,
the length of gi,j with respect to S is equal to j−i−1. For 0 6 i < j 6 q−1
we have

dS(gim+k, gjm+k) = |gim+k,jm+k|S = (j − i)m > m.

So by Lemma 6.2, for m = m(q) large enough, the p-power of the norm of
(6.1) is less than

‖b(sk+1)‖pp + ‖b(sm+k+1)‖pp + . . .+ ‖b(s(q−1)m+k+1)‖pp + 1.

The above term is therefore less than 2q. Hence, we have

‖b(g)‖p 6 2mq1/p.

So for q > q0 = (2/ε)p/(p−1), we have

‖b(g)‖p/n 6 2q1−1/p 6 ε.

Now, let n be larger than m(q0)q0. We have ‖b(g)‖p/|g| 6 ε. �

7. Proof of Theorem 2.2

Theorem 2.2 results from Theorem 6.1 and the following result, which is
an immediate generalization of [6, Proposition 3.6]. For the convenience of
the reader, we give its short proof.

Proposition 7.1. — Let G be a group with property (CF) and let π be
a continuous isometric action of G on a Banach space E. Let b a 1-cocycle
in Z1(G, π). Then b belongs to B1(G, π) if and only if b is sublinear.
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Proof. — Assume that b is sublinear.
Let (Fn) be a controlled Følner sequence in G. Define a sequence (vn) ∈

EN by

vn =
1

µ(Fn)

∫
Fn

b(g)dg.

We claim that (vn) defines a sequence of almost fixed points for the affine
action σ defined by σ(g)v = π(g)v + b(g). Indeed, we have

‖σ(s)vn − vn‖ =
∥∥∥∥ 1
µ(Fn)

∫
Fn

σ(s)b(g)dg − 1
µ(Fn)

∫
Fn

b(g)dg
∥∥∥∥

=
∥∥∥∥ 1
µ(Fn)

∫
Fn

b(sg)dg − 1
µ(Fn)

∫
Fn

b(g)dg
∥∥∥∥

=
∥∥∥∥ 1
µ(Fn)

∫
s−1Fn

b(g)dg − 1
µ(Fn)

∫
Fn

b(g)dg
∥∥∥∥

6
1

µ(Fn)

∫
s−1FnMFn

‖b(g)‖dg.

Since Fn ⊂ Sn, we obtain that

‖σ(s)vn − vn‖ 6
C

n
sup

|g|S6n+1

‖b(g)‖

which converges to 0. This proves the non-trivial implication of Proposi-
tion 7.1. �

8. Liouville Dp-Properties: a direct approach.

In this section, we propose a direct proof of Corollary 2.5. Instead of
using Theorem 2.2 and Theorem 5.1, we reformulate the proof, only using
Theorem 6.1 and [26, Theorem 11]. The interest is to provide an explicit ap-
proximation of an element of Dp(G) by a sequence of functions in W 1,p(G)
using a convolution-type argument. Since Liouville Dp-Property is equiva-
lent to the vanishing of Hp

1
(G), we have to show that for every p-Dirichlet

function on G, there exists a sequence of functions (fn) in W 1,p(G) such
that the sequence (‖∇(f − fn)‖p) converges to zero. Let (Fn) be a right
controlled Følner sequence. By a standard regularization argument, we can
construct for every n, a smooth 1-Lipschitz function ϕn such that

• 0 6 ϕn 6 1;
• for every x ∈ Fn, ϕn(x) = 1;
• for every y at distance larger than 2 from Fn, ϕn(y) = 0.
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Denote by F ′n = {x ∈ G : d(x, Fn) 6 2}. As Fn is a controlled Følner
sequence, there exists a constant C <∞ such that

µ(F ′n r Fn) 6 Cµ(F ′n)/n

and

F ′n ⊂ B(1, Cn).

Define

pn =
ϕn∫

G
ϕndµ

.

Note that pn is a probability density satisfying for every x ∈ X,

|∇pn(x)| 6
1

µ(Fn)
.

For every f ∈ Dp(G), write Pnf(x) =
∫
X
f(y)pn(y−1x)dµ(y). As G is

unimodular,

Pnf(x) =
∫
X

f(yx−1)pn(y−1)dµ(y).

We claim that Pnf − f is in W 1,p. For every g ∈ G and every f ∈ Dp, we
have

‖f − ρ(g)f‖p 6 d(1, g)‖∇f‖p.

Recall that the support of pn is included in F ′n which itself is included in
B(1, Cn). Thus, integrating the above inequality, we get

‖f − Pnf‖p 6 Cn‖∇f‖p,

so f − Pnf ∈ Lp(G).
It remains to show that the sequence (‖∇Pnf‖p) converges to zero. We

have

∇Pnf(x) =
∫
G

f(y)∇pn(y−1x)dµ(y).

Since
∫
G
∇pdµ = 0, we get

∇Pnf(x) =
∫
G

(f(y)− f(x−1))∇pn(y−1x)dµ(y)

=
∫
G

(f(yx−1)− f(x−1))∇pn(y−1)dµ(y).
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Hence,

‖∇Pnf‖p 6
∫
G

‖λ(y)f − f‖p|∇pn(y−1)|dµ(y)

6
1

µ(Fn)

∫
F ′nrFn

‖λ(y)f − f‖pdµ(y)

6
µ(F ′n r Fn)

Fn
sup

|g|6Cn
‖b(g)‖p

6
C

n
sup

|g|6Cn
‖b(g)‖p

where b(g) = λ(g)f − f . Note that b ∈ Z1(G,λG,p). Thus, by Theorem 6.1,

‖∇Pnf‖p → 0.

This completes the proof of Corollary 2.5.

9. Non-vanishing of the first reduced Lp-cohomology on a
non-elementary Gromov hyperbolic space.

Let us start with a remark about first Lp-cohomology on a metric mea-
sure space.

Remark 9.1 (Coupling between 1-cycles and 1-cocycles). — A 1-chains
on (X, d, µ) is a functions supported on ∆r = {(x, y) ∈ X2, d(x, y) 6 r} for
some r > 0. The Lp-norm of a (measurable) 1-chain s is the norm(∫

X2
|s(x, y)|pdµ(x)dµ(y)

)1/p

.

A 1-chain s is called a 1-cycle if s(x, y) = s(y, x).
Given f ∈ Dp, we define a 1-cocycle associated to f by c(x, y) = f(x)−

f(y), for every (x, y) ∈ X2. Let s be a 1-cycle in Lq, with 1/p + 1/q = 1.
We can form a coupling between c and s

〈c, s〉 =
∫
X2

c(x, y)s(x, y)dµ(x)dµ(y) =
∫
X2

(f(x)−f(y))s(x, y)dµ(x)dµ(y).

Clearly, if f ∈ Lp, then as s is a cycle, we have 〈c, s〉 = 0. This is again
true for f in the closure of Lp(X) for the norm of Dp(X). Hence, to prove
that a 1-cocycle c is non-trivial in H1

p(X), it is enough to find a 1-cycle
in Lq whose coupling with c is non-zero.

The main result of this section is the following theorem.
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Theorem 9.2. — Let X be a Gromov hyperbolic 1-geodesic metric
measure space with bounded geometry having a bi-Lipschitz embedded
3-regular tree, then for p large enough, it has non-trivial first reduced Lp-
cohomology.

From this theorem, we will deduce

Corollary 9.3. — A homogeneous Riemannian manifold M has non-
zero first reduced Lp-cohomology for some 1 < p < ∞ if and only if it is
non-elementary Gromov hyperbolic.

Proof of Corollary 9.3. — By Theorem 2.6, if M has non-zero H
1

p(M)
for some 1 < p < ∞, then being quasi-isometric to a negatively curved
homogeneous manifold, it is non-elementary Gromov hyperbolic.

Conversely, let M be a Gromov hyperbolic homogeneous manifold. As M
is quasi-isometric to its isometry group G, which is a Lie group with finitely
many components, we can replace M byG, and assume thatG is connected.
If G has exponential growth, then [5, Corollary 1.3] it has a bi-Lipschitz
embedded 3-regular tree T , and hence Theorem 9.2 applies. Otherwise G
has polynomial growth, and we conclude thanks to the following classical
fact. �

Proposition 9.4. — A non-elementary Gromov-hyperbolic connected
Lie group has exponential growth.

Proof. — Let G be a connected Lie group with polynomial growth. By
[13], G is quasi-isometric to a simply connected nilpotent group G, whose
asymptotic cone [20] is homeomorphic to another (graded) simply con-
nected nilpotent Lie group with same dimension. Hence, unless G is quasi-
isometric to R, the asymptotic cone of G has dimension larger or equal than
2. But [12, page 37] the asymptotic cone of a Gromov hyperbolic space is
an R-tree, and therefore has topological dimension 1. �

Proof of Theorem 9.2. — The proof contains ideas that we found in [12,
page 258]. Roughly speaking, we start by considering a non-trivial cycle
defined on a bi-Lipschitz embedded 3-regular subtree T of X. To construct
a 1-cocycle which has non-trivial reduced cohomology, we take a Lipschitz
function F defined on the boundary of X, such that F is non-constant
in restriction to the boundary of the subtree T . We then extend F to a
function defined f on X which defines a 1-cocyle in Dp(X). Coupling this
cocycle with our cycle on T proves its non-triviality in H

1

p(X).
Boundary at infinity of a hyperbolic space. To denote the distance
between to points in X or in its boundary, we will use indifferently the
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notation d(x, y), or the notation of Gromov |x − y|. Let us fix a point
o ∈ X. We will denote |x| = |x− o| = d(x, o).

Consider the Gromov boundary (see [11, Chapter 1.8] or [9]) of X, i.e.,
the set of geodesic rays issued from o up to Hausdorff equivalence.

For ε small enough, there exists [9] a distance | · |ε on ∂∞X, and C <∞
such that

|u− v|ε 6 lim sup
t→∞

e−ε(v(t)|w(t)) 6 C|u− v|ε

for all v, w ∈ ∂∞X, where (·|·) denotes the Gromov product, i.e.,

(x|y) =
1
2
(|x|+ |y| − |x− y|).

Reduction to graphs. A 1-geodesic metric measure space with bounded
geometry is trivially quasi-isometric to a connected graph with bounded
degree (take a maximal 1-separated net, and join its points which are at
distance 1 by an edge). Hence, we can assume that X is the set of vertices
of a graph with bounded degree.

A Lipschitz function on the boundary. By [12, page 221], T has a
cycle which has a non-zero pairing with every non-zero 1-cochain c on T

supported on a single edge e. Hence, to prove that H
1

p(X) 6= 0, it is enough
to find an element c in Dp(X) whose restriction to T is zero everywhere
but on e.

The inclusion of T into X being bi-Lipschitz, it induces a homeomorphic
inclusion of the boundary of T , which is a Cantor set, into the boundary
of X. We therefore identify ∂∞T with its image in ∂∞X. Consider T1 and
T2 the two complementary subtrees of T which are separated by e. This
induces a partition of the boundary ∂∞T into two clopen non-empty subsets
O1 and O2. As O1 and O2 are disjoint compact subsets of ∂∞X, they are
at positive distance from one another. Hence, for δ > 0 small enough, the
δ-neighborhoods V1 and V2 of respectively O1 and O2 in ∂∞X are disjoint.

Now, take a Lipschitz function F on ∂∞X which equals 0 on V1 and 1
on V2.

Extension of F to all of X. Let us first assume that every point in X is
at bounded distance from a geodesic ray issued from o.

Let us define a function f on X: for every x in Xr{o}, we denote element
by ux a geodesic ray issued from o and passing at bounded distance, say C
from x. Define

f(x) = F (ux) ∀x ∈ X r {o}.
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Let us prove that for p large enough, f ∈ Dp(X). Take two elements x and
y in X such that |x− y| 6 1, we have

|ux(t)− uy(t)| 6 |ux(t)− x|+ |x− uy(t)|
6 |ux(t)− x|+ |y − uy(t)|+ |x− y|
6 |ux(t)− x|+ |y − uy(t)|+ 1.

So for large t,

2(ux(t)|uy(t)) = |ux(t)|+ |uy(t)| − |ux(t)− uy(t)|
> |ux(t)|+ |uy(t)| − |ux(t)− x| − |y − uy(t)| − 1

> |x|+ |y| − 2|ux(t)− x| − 2|y − uy(t)| − 1

> |x|+ |y| − 4C − 1

> 2|x| − 4(C + 1).

Let K > 0 be the Lipschitz norm of F , i.e., K = supu 6=v∈∂∞T
|F (u)−F (v)|
|u−v|ε .

We have

|f(x)− f(y)|p = |F (ux)− F (uy)|p

6 Kp|ux − uy|p

6 Kp lim sup
t→∞

e−pε(ux(t)|uy(t))

6 Kpe−pε|x|+2(C+1)p.

On the other hand, as µ(B(o, |x|)) 6 Ceλ|x| for some λ, if pε > λ, then f

is in Dp(X).
Now, let us consider the values of f along T . To fix the ideas, let us

assume that o is a vertex of T . We will now show that up to modifying
T , we can assume that f takes the value 0 on T1, and 1 on T2. Hence the
coupling of the corresponding cocycle c with the cycle of [12, page 221] is
non-zero, which implies that H

1

p(X) 6= 0.
For i = 1, 2, take xi a vertex of Ti. Let exi be the edge whose one

extremity is xi and that separates o and xi. Let Txi
be the connected

component of T r {exi
} contained in Ti.

The point that we need to prove is that if both x1 and x2 are far enough
from o, f equals 0 on Tx1 and 1 on Tx2 . Then, up to replacing T1 and T2

by Tx1 and Tx2 , and the geodesic segment between x1 and x2 by a single
edge (which becomes e), we are done.

Let v be a geodesic ray of T1 emanating from o and passing through some
vertex y of Tx1 . Let z be the corresponding element of ∂∞T ⊂ ∂∞X. Let t
be a geodesic ray in X from o to z. As T is bi-Lipschitz embedded in X, v
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is a quasi-geodesic ray in X. Hence it stays at bounded distance, say less
than C from t. In particular, t passes at distance less than C from y. So
by choosing d(o, y) large enough, |uy − z| can be made arbitrarily small, in
particular 6 δ. Hence, choosing x1 far enough from o in T1, we have that
all uy where y ∈ Tx1 belong to V1. Therefore f(y) = 0. The case i = 2 is
similar.
Reduction to the case when every point in X is at bounded dis-
tance from a geodesic ray issued from o.

In this section, we embed X into a larger graph X̃ satisfying the property
that every vertex is contained in a geodesic ray emanating from o.

Let Y be the graph whose set of vertices is N and such that n and m are
joined by an edge if and only if |n−m| = 1. Consider the graph X̃ obtained
by gluing a copy of Y to every vertex of X. This is done by identifying this
vertex with the vertex 0 of the corresponding copy of Y . Clearly X̃ is a
hyperbolic graph with bounded degree. It contains X as an isometrically
embedded subgraph. In particular, T is bi-Lipschitz embedded into X̃.

Finally, X̃ satisfies that every point in X̃ belongs to a geodesic ray issued
from o.

Applying the above to X̃, we construct an element f̃ in Dp(X̃) that
has a non-trivial coupling with the cycle that we considered on T . As the
support of this cycle is contained in X, the restriction f of f̃ to X also has
a non-trivial coupling with it. Moreover, f belongs to Dp(X), so it defines
a non-trivial cocycle in H

1

p(X). �
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