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THE NASH PROBLEM OF ARCS AND THE
RATIONAL DOUBLE POINTS D,

by Camille PLENAT

ABSTRACT. — This paper deals with the Nash problem, which consists in com-
paring the number of families of arcs on a singular germ of surface U with the
number of essential components of the exceptional divisor in the minimal resolu-
tion of this singularity. We prove their equality in the case of the rational double
points Dy, (n > 4).

RESUME. — Dans cet article, on étudie le probléme des arcs de Nash, qui consiste
a comparer le nombre de composantes irréductibles de ’espace des arcs passant par
une singularité isolée de surface normale avec les courbes exceptionnelles apparais-
sant dans la résolution minimale de cette singularité. On montre que les deux
nombres sont égaux dans le cas des points doubles rationnels Dy, .

1. Introduction

In this paper, k is an algebraically closed field of characteristic 0.

Let (S,0) be a normal surface singularity over k and 7 : (X, E) — (5,0)
be the minimal resolution of (S,0), where X is a smooth surface and E =
7 1(0) is the exceptional set. Let E = J;,c A E;i be the decomposition of E
into its irreducible components, that we will call exceptional divisors.

In order to study such a resolution, J. Nash (around 1968, published as
[14]) looked at the space H of arcs passing through the singular locus 0.
Recall that an arc is a formal parametrized curve, i.e. a k-morphism from
the local ring Og ¢ to the formal series ring k|[¢]].

Nash had shown that H is the union of finitely many famsilies, (which turn
out to be the irreducible components of H viewed as a scheme endowed with
the Zarsiski topology) , and that there exists an injection from the set of
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Math. classification: 14B05, 14J17.



2250 Camille PLENAT

families of arcs to the set of exceptional divisors of the minimal resolution.
The natural question of surjectivity then arose [14].

Later on, M. Lejeune (in [11]) proposed the following decomposition of
the space H : let N; be the set of arcs lifting transversally to E; but
not intersecting any other exceptional divisor E;. M.Lejeune showed that
H = Uz‘e Aﬁi and the set N; is an irreducible algebraic subset of the
space of arcs; therefore the families of arcs are among the N;’s. Moreover,
notice that there are as many N; as divisors E;.Then the Nash problem re-
duces to showing that the N; are the irreducible components, i.e.to proving
card(A)(card(A) — 1) non-inclusions :

PROBLEM 1.1. — Is it true that N; ¢ Nj for all i # j?

This question has found some positive answers : for singularities A,, by
Nash, for minimal surface singularities by A. Reguera [18] (other proofs in
J. Fernandez-Sanchez [5] or C. Plénat [15]), for sandwiched singularities
by M. Lejeune and A. Reguera(cf.[12]), for toric vareties by S. Ishii and
J. Kollar ([8] using the previous work of C. Bouvier and G. Gonzalez-
Sprinberg [2] and [3]), and for a family of non rational surface singularities
by P. Popescu-Pampu and C. Plénat ([17]).

In (8], S. Ishii and J. Kollar also gave a counter example in dimension
greater than or equal to 4.

The singularity D,, is the first “natural” singularity for which the answer
was unknown till now. We present in this paper a proof of the following
theorem:

THEOREM 1.2. — The Nash problem has an affirmative answer for rational
double points D,, (n > 4).

Notation. — We give a detailed proof for the Da,, the proof for Da, 41
will follow easily.

By [15], corollary 3.5, we have the following corollary :

COROLLARY 1.3. — Let (S,0) be a normal surface singularity whose graph
is the same as the graph of D, (but with different weights). Then the
problem also has an affirmative answer for (.5, 0).

The proof of the theorem is divided into two steps. For the first step we use
the following valuative criterion (for a proof see [15]; it is a generalisation
of a result of A. Reguera [18]):

PROPOSITION 1.4. — Let (S,0) be a normal surface singularity. If there
exists an element f in Og o such that ordg, f < ordg, f then N; ¢ E .

ANNALES DE L’INSTITUT FOURIER



NASH PROBLEM OF ARCS FOR D, 2251

This condition allows us to prove more than half the non-inclusions (cf
Problem 1.1).

The second step consists in proving the remaining non-inclusions. For it,
we use the algebraic machinery developed in section 4. The “geometric”
idea is the following;:

Let E; and E; be two divisors such that

ordp, f < ordg, f for all f € O (1)

In other words, N; ¢ N; by the valuative criterion (proposition 1.4).
By contradiction, suppose that we have N; C N;. Let ¢; be a general arc
in N;. Then there exists a sequence of arcs (¢;), in N; converging to ¢;.
The arcs on D,, (embedded in k® = spec k[z,y, z]) are described by three
formal power series

z(t) =Y axtk

y(t) = X bt

2(t) =3 cpth
whose coeflicients are subjected to algebraic constraints; for a general arc of
Ny, the coefficients Qordp, (x)1 bo,.dEk (¥) Cordp, (2) aTe the first non-zero coef-
ficients and must be nonzero. Convergence here means that the coefficients
of (¢;)n converge to the respective coefficients of ¢;, and the algebraic con-
straints are satisfied at each step. The inequality (1), if strict, implies that
the coefficients Qordps, (z),n> bmﬂdEi (y),ns Cordps, (2),n converge to 0. In order to
obtain the contradiction, we show that the constraints imply the vanishing
of at least one of the coefficients Gordp, (x)> bordE]. (y)1 Cordg; (=) of the limit ¢;.
In order to deal with the fact that the scheme H is non noetherian, we use
the following description of H :

DEFINITION 1.5. — An i-jet is a k-morphism Og o — “}f“ﬂ

The schemes H (i) are of finite type. With the natural maps (called trun-
cation map) p; : H — H(i) and p;; : H(i) — H(j) (for j < i) they form a
projective system whose limit is H. Easily one can see that if there exists
j such that p;j(N,) ¢ p;j(Ng) then N, ¢ Ng. It is then enough to work in
a “good” H(j).

The paper is organized as follows : in section 2 we first recall one description
of the singularity D,, we will use and by using the valuative criterion we
develop the first step of the proof. In section 3, we reformulate the “geomet-
ric” idea described above as an algebraic problem. In section 4, we partially
describe the spaces H(k) for a general k and for quasi-homogeneous hy-
persurface singularities. The two last sections are devoted to the proof of
second step.

TOME 58 (2008), FASCICULE 7
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2. Step one
2.1. The rational double points D,

Let (S,0) be the rational double point Ds,,. Embedded in k3, take as equa-
tion the following one : f(x,y,2) = 22 — y?z — 2?"~1 = 0. Its dual graph
of resolution is :

E,

n

- e—eo—@
Eopi Egno Egps  Ej E, E,

Figure 2.1. Dual graph (singularity of type Day,)

Let Ny, ...Na, be the irreducible subsets of H associated to the exceptional
divisors E, ..., Fo,.
As D, is embedded in k3, the arcs are described by three formal power
series :

z(t) = art + agt® + ...

y(t) = byt + bot* + ...
2(t) = e1t + cot? + ..

with f(z(t),y(t), 2(t)) = 0. Let f,,, be the coefficients of t™ in f(z(t), y(t),
z(t)) = 0 for all m, and let I be the ideal they generate.

2.2. Step One

For this first step, we use the criterion (cf. proposition 1.4) with the func-
tions z, y, z, y+iz™ and y —iz" pulled back to X, whose order of vanishing

ANNALES DE L’INSTITUT FOURIER
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at each E; is written on the graphs below :

1
w—l—a O—L
F—— —r—9
1 2 2 2 n—1 2n—2 2 3 2

2 2 n—3 1
(x) )
D—HI—Q D—In—d
>—ar— >——0
n 2n-1 2072 4 3 2 n—1 2n-2  2n-3 3 2 1
(2) (y=ix")

(We compute the orders of vanishing of each function by pulling back it
to the resolution, which is done by a sequence of blowing-ups. We let the
details of the computation to the reader.)

The criterion allows us to define a partial order on the families of arcs :

DEFINITION 2.1. — (Partial order)
We say that E; < Ej; if and only if for any element f € Ogo we have

ordg,(f) < ordg,(f).
We say that E; < Ej if one of the inequality above is strict.

This partial order can be translated by the following scheme :

E2n—1

N

E2n
(The relation E; — E; means E; < Ej; cf.[15]):

DEFINITION 2.2. — We define E; — E5 — ... — Es,_5 to be the "principal
branch" and E9,,_1 — B, — ... — Eo,_9 and Es,, — E,, — ... — E9,_5 to be
the non-principal ones.

Remark. — A general arc ¢ in Nj is described by three formal power
series :

1‘(t) = aOTdEk (g;)tordEk (x) + aordEk (m)+1tordEk (z)+1 T+
Y(t) = bords, ()" Y + bordy, (41t E O 4
(

z t) = COTdEk (z)tOTdEk (=) + CordE;c (z)JrltordElC (2)+1 + ...

TOME 58 (2008), FASCICULE 7
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with f(z(t),y(t),2(t)) = 0.

3. Second step: algebraic reformulation

We can read from the above that the remaining non-inclusions to be shown
are :

® Nop_ 1 & Nop_1—g for 1 <k <l

(] Ngnflfk ¢ Nzn,hNign for 1 < k
As one can notice, two different series of difficulties appear : the first,
that we call "principal branch" is to show that No,_1_x ¢ Nay_1_; for
1<k <1< 2n—2; the second are "the non-principal branches" (they are
of two types but these are totally symmetric).
To solve the two series of non inclusions, we will use the same idea, described
below.
First, in order to deal with finite dimensional varieties, we truncate the
arcs at order 4n — 2.
Let N, and Nj be two families such that N, ¢ Ng . By the previous
section, we have ordg, f < ordg, f for all f in the local ring Og .

2n — 2

<
<n

Notation. —
o Lot No(4n —2) = pap—2(Ny) and Ng(dn — 2) = pap—2(Ng).
e Let P, and Pj be prime ideals such that V(P,) = Ny(4n — 2) and
V(Pg) = Ng(4n — 2).
o Let I; = {al, w0 Qordp, (z)—1 by, ..., bOTdEl (y)—1>Cly -+ Cordp, (z)fl} .
o Let
I; = Inklay, ..., can—2]

n (ala B3] aordEl (z)—1> blv L) bordEl (y)—15C1, ~~~vcordEl(z)—1)

be the first equations verified by an arc in N; (for [ = « or ).
o Let J=FP,N Pg.

Suppose that P, C Ps. In order to have a contradiction, we find elements
in P, not contained in Pg by the following way:

We have L; and I; in P, for each [. Unfortunately, we also have L, and I,
in Pg by hypothesis. Thus those “simple” elements will not lead us to the
contradiction. But Qordp, (z)> bordEl (y)> Cordp, (=) are NOt in P,. It implies that
(I : d*°) = U1, : d"), for d equal to one of the three elements Qords, ()
bordg, (y)> Cords, (=) ( (I4 : d") is the saturation of I, by d" ), is in the prime
ideal P,.

ANNALES DE L’INSTITUT FOURIER
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But the computation of the saturation is not obvious; so to make compu-

. . s . K[a1,...,Can— .
tation easier, we do it in an extension S of %ﬂﬁ;ﬂ. More precisely, we
o

choose a prime ideal @, in S over P—f and get the following commutative

diagram :

Py Pg klai,...,can—2]
= C - C 1 = 4 2
n N

Qa C Qﬁ C S

Then we show that for any prime ideal Qg over % in the above diagram,

one cannot have (I, : d*)S C Qg, which gives the desired contradiction.

Notation. — Our computation of the saturation (c.f sections 5.2 and 6.2)
is the algebraic analogue of sequences of arcs (cf introduction).

We now solve the two series of non-inclusions following the same plan: first
we describe the images of N, and Ng in H(4n — 2) and their associated
ideal. Then we construct the extension to find non trivial elements of P,.
Finally, we show that those elements cannot live in Pz. But let us start
with some algebra.

4. General study of the k-jet scheme H(k)

In this section, after giving general lemmas from commutative algebra, we
will use them to study the space of jets passing through the singularity of
a normal quasi-homogeneous hypersurface.

4.1. The principal lemma

LEMMA 4.1. — Let R =K[Y1, .--Yns T21, cer T2y eovs Thls ooy Thom)-
Let f1, ..., fx be a sequence of elements in the following form :

TOME 58 (2008), FASCICULE 7
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fi= fl(yh 7yn) =49g1-.-9s
fo=a1x21 + ... + AmTom + ha(y1, ..., Yn)

fg = a1T31 —+ ...+ AmT3m + hg(yl, cees Yny 21, ...,l’gm)

Sk =121 + oo+ T + P (Y1, oy Yny T21s oy T(—1)m)

with g1, ..., gs distinct irreducible polynomials and ay, ..., am € K[y1, ..., Yn].
For fixed j (1 <j<s), let S; ={a;,,...,a;,, } C{ai,...,an} be the set of
a; such that a; & (g;).

Let us denote I = (f1,..., fx) -

Suppose S; # 0.

Then there exists a unique minimal prime ideal P; of I such that g; € P;
and a; ¢ P; for all a; € S;.

Let @ be a minimal prime ideal of I different from P4,...,Ps ; then
(a1, ...,am) C Q.

Let g; and g; be two irreducible factors of fi. Then P; # P;. And finally,
we have ht(P;) = k.

DEFINITION 4.2. — We call the prime ideal P; of the lemma the distin-
guished ideal of I, associated to g;.

Proof. — Let j € {1,...,s} and a; € S;. Take z to be

(T21y ey Taly ooy T2y oovy Ty -vs Thorn)
and y = (Y1, ..., Yn). One has
(4.1)
R, N K[Y1, ey Yn, Tat1y ooy Tapy ooy Tom, ...,zrl,...,ka]al N ]k[x,y]al
(Da, (f1s s ), (e

The decomposition into irreducible factors of f; in klz,y] is fi = g1...9s;
then the minimal prime ideals of (f1) in k[z, y],, have the form (g,), where
a; & (gq)- In particular, (g;) is the unique minimal prime ideal P’; of (f1)
containing g;. By (4.1), one has a unique minimal prime ideal P”; of (I,)
containing g;. Let P; be the inverse image of P”; in R, under the bijection
between the prime ideals of R,, and those of R not containing a; . But
(Pj)a, = (9j: f2, -+, fi)a, and the sequence (g, f2, ..., fi) is regular in Ry,
while the length of this sequence is k; then the height of P; is k.

Let aq € S, ag # a;. Let ’PNJ» be the unique minimal prime ideal of I such

ANNALES DE L’INSTITUT FOURIER
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that g; € P; and a, ¢ P;. Then (Pj)alaq = (95, for s [r)ara, = (ﬁj)alaq,

so P; = 75j. The ideal P; satisfies the conclusion of the lemma.

Let Q@ & {P1,..,Ps} be a prime ideal of I. We want to show that
(a1y...,am) C Q. We reason by contradiction : let us suppose that there
exist [ € {1,...,m} such that ¢; ¢ Q. The image of Q,, by (4.1) is a min-
imal prime ideal of (f1); thus it has the form (g;), where a; € (f1). Then
Q = Pj, a contradiction.

It remains to prove that distinguished ideals of I are distinct one from the
other. Let P; and P; be minimal distinguished prime ideals of I associated
to g; and g, respectively. If S; N'S; = 0, then P; # P;. Let a; € S; N S;.
The image of (7;),, and (P;),, by (4.1) are respectively (g;) and (g;), thus
Pi # Pj. O

4.2. Application to the space of k-jets of a quasi-homogeneous
hyper-surface singularity

Let f(z,9,2) = Y. capy@®y?z7 = 0 be the equation of a normal quasi-
homogeneous hypersurface embedded in k? with singularity at 0. Any k-jet
¢(t) passing through the singularity can be written as three polynomials of
degree k, ¢(t) = (z(t),y(t), 2(t)) = (a1t + ...apt®, bit + ..bpt* cit + ...cxth),
with ap = 0 = by = ¢ (because the singularity is at 0). Let f1 =0,.., fx =
0 be the equations of the k-jet scheme H(k) (k > 0) (namely f; is the
coefficient of t* in f(x(t),y(t)z(t))). These coefficients are polynomials in
variables ay, by, ¢, where [, n, m are positive integers.

Let K be the subset of the k-jet scheme defined in H (k) by the ideal

(aty ooy @—1,b1, ey byp—1,¢1,...Cn—1).
Suppose there exists an integer r such that
fré (a1, .c.;ai—1,b1, ey by—1,C1, ...Cn_1).
Take the smallest such . Then K is defined by the ideal
(a1y ey @1—1, 01, ooy =1, €1y o C—1y fry ooy JE)-

Then f, = Zla+mﬁ+m:r Camal“bmﬁcn'y . The polynomial f, being quasi-
homogeneous of degree r, one can write :
L, ofr  m, 0f n_ 0f

fr= g+ b F g

TOME 58 (2008), FASCICULE 7
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Let us look at the monomial 2%y®27. (The coefficient does not play any
role).
Let us write

o(t) = (at' + 3 ait bput™+ D btP et + Y cgt?).
j2i+l p2m+1 a>n+1

Then we have :

(@t + > a;t)™ = aft'™ + aad @D N at) + A(t)

>+ >+

(bnt™ 4+ > bpt?)? = b0 8 4 gD bt 4 B(1)
pzm+1 p=>m+1

(cnt™ + Z cgt?)? = ™ 4y~ D Z cqt? + C(t)
gzn+1 g=2n+1

(with degAy =2 1+ 1, degBy; > m + 1 and degCy = n+ 1, Ay, B1,Cy being
the monomial of lowest degree of A, B, C' respectively).

Therefore
2y’ 2 = af b3 " + aal P ey ptetmAtny Z a;t!
j=l+1
+ Bafc) P tlatmBiny—m Z bpt?
p=m+1
+ vaf b )~ letmbtny—n Z cqt? + R(t)
gzn+1

with degRy > r + 1, where R; is the monomial of lowest degree in R. The
coefficient of ¢"*% is then

~1 —1 —1
a8 gy + Baf b b + yal bl ) e
+ S(al7 vy Qli—1, bma ) bm-‘ri—h Cry ooy Cn+i—1)

We recognize the three partial derivatives of a{b% c;. This holds for each

m-n-

monomial, thus we have

(O (O (9,
frJrz—(aal>al+z+<6bm)bm+z+<60n)cn+z

+ Srti(@ry oy @1gi—15 by oo Dnio1, Gy ooy G 1)
These equations satisfy the hypothesis of Lemma 5. If f,. is irreducible, then
there exists a unique distinguished ideal P, the one which corresponds to
the closure of the set G ={a1 = ... = a1 =0=by = ... =bp_1 =¢1 =
9 F, Ofr Ofr
w=Cnor === [N {GE £ 0} {GE £ 0 n{gE £0)

ANNALES DE L’INSTITUT FOURIER
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PROPOSITION 4.3. — Let us suppose that f, = g1...gs, the factors g; being
irreducible and different from z,y, z,and suppose f, reduced.
Then I = (f,, ..., fr) has exactly s distinguished ideals.

Proof. — By Lemma 5, it suffices to show that each (g;) does not contain
one of the partial derivatives of f,. Let g; be one of the irreducible factor
of f,.. Then
fr = gjh

ofr oh agj

L SRR S £}

8al L aal + 6al

of,  0Oh 0g;

b~ Vb B0
of oh g,

=gj— +h-2L.

dcy, 9i dey, + dcy,
Suppose all three partial derivatives of f, are in (g;). Then

dg; , 0g; , Og;j '
(hc‘?lhab ha C (gy)-

S dg;, dg; 9y, o
But h ¢ (g;) and (g;) is prime, so (8—27?, 8571’ 851) C (gj), which is false
since f, is reduced.
Finally, if f, = g1...9s, (fr, .-, fx) has exactly s distinct distinguished ideals,

then each of them associated to a factor g;. |

5. The principal branch

In this section, we first study N, (4n — 2) and Ng(4n — 2) in H(4n — 2) for
E, and Ej3 in the principal branch. Then we construct concrete elements
and the extension they live in, which will give us the desired contradic-
tion (cf. introduction). Finally we solve the non-inclusions of the principal
branch.

Notation. — Let ux(g) = ordg, g for g € Og,).
Let i = 4n — 2, and R = ]k[al, ceny A4y —2, b17 ceny b4n727 Clyeeny C4n72]-
5.1. The images of the families of arcs in H(4n-2)
Let Nop_1—1 and No,_;_1 be two families of arcs sothat 1 <1 < k < 2n—2

(thus No,_1-1 ¢ Na,_;_1, by the valuative criterion (proposition 1.4)).
Our aim is to show that Nop_j—1 ¢ Nop_p_1.

TOME 58 (2008), FASCICULE 7
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Consider the (4n — 2)-jet scheme H(4n — 2) (here one has po,—g—1(2) =
2n — k and pop—p—1(y) =2n—k —1). Let Kop,_—1(dn —2) = {a1 = by =
e = bop_g—2 =1 = ... = can—g—1 = 0} N H(4n — 2) be the sub-space of
H(4n — 2) defined by the ideal I, _g_1(4n — 2) which is generated by the
following equations :

_ 2 2
f@n—k—1an—2k) = Cop_p, — A2b3, ;4
2
fen—k—1,4n—2k+1) = 2C2n—kCon—k+1 — azby, 1 — 2a2bon_x_1b2n_x

_ 2
feen—k—1,4n—2k+2) = Cop_pr1 T 2C2n—kCon—k12

—Gan—2k+2(Aan—2k+2, Ban—2k42)

fen—k—14n—2k+3) = 2C2n—k+1C2n—k+2 + 2C2n—kC2n—k+3

—Gan—2k+3(Aan—2k+3, Ban—2k+3)

Jen—k—14n+1—k—2) = 2Con—kConti—2 + -

+9anti—k—2(Aanti—k—2, Banti—k—2)

Jfen—k—1,4n-2) = 2€2n—kConyk—2 + .. + gan—2(Adan_2, Bin_2)

in R =kla1, ..., @44n—2,b1..., ban—_2,¢1, ..., Can—2|. (Where Ayg,_opyj = {ao, ...,
ajy1} and Buap—okt; = {bon—k—1,..s ban—k+j—1}, the g; are.polynomials in
variables A; and B;, and f(2,—x—1,i) are the coefficients of ¢* in f(x(t), y(t),
z(t)) = 0 modulo the ideal (ay,by,...ban—k—2,€1, s Can—k—1))-

Image of Nojy_j_1.

We have a1 = b1 = ... = boyy__2 =c¢1 = ... = Con_k_1 = 0, thus the image
of Ngn,kfl is in K2n7k71(4n — 2)

Let Qo k—1(4n — 2) be the defining ideal of Na,__1(4n — 2).

The ideal Qa,_—1(4n — 2) contains all equations defining Na,,__1 in H
whose variables are in R, that is to say the ideal

I2n—k—1(4n - 2) = (ala bla PRERE) buzn,kfl(y)—la Clyeey Cugn,kflkr(z)—h

f(2n7k71,4n72k)7 B3] f(2n7k71,6n7k72))

Moreover, ¢, , -y and by, () are not in Qo, r_1(4n — 2). Thus
Qo —k—1(4n —2) contains the distinguished prime ideal of Is,,_x_1(4n —2),

called Pop,_j—1(4n — 2).

ANNALES DE L’INSTITUT FOURIER
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Let ¢; € V(Pop—g—1(4dn — 2)) — {can—r # 0}; we can lift ¢; to an arc in
Nop—p—1(4n — 2) : we freely choose boy41—3+r—1 and agii4r—1 and we set
1
2¢on—k

Then ¢; € Noy—g—1(4n — 2) and Qo —g—1(4n — 2) = Paoy_g—1(4n — 2).
Finally, as bay—g—1, Con—k & Pan—k—1(4n—2), we get that Pa,_p_1(4n —2)
contains (Igp—r—1(4n —2) : con—1>°) and (Iop—g—1(4n —2) : bap_—1").

Con+4l—24r = (f2n+k - 262n—kc2n+l+r)

Image of Nojp_;_1.

Similarly, one has that N, ;_1(4n — 2) has its generic point on at least
one of the irreducible components of Ky, _r_1(4n — 2), but is not equal in
general to the whole component. Let Qs,—;—1(4n — 2) be its defining ideal.
The ideal Qs,—;—1(4n — 2) contains all equations defining No,,—;—1 in H
whose variables live in Ry, _o, i.e. the ideal

Ipp1-1(4n —2) = (@1,b1, 5 by 1 (y)=15C1y o5 Cpigy 41 (2)—15

f(2n7l71,4n72l)a ) f(2n7l71,6n7172))

Moreover, ¢, , ,(z) and b, , () are not in Qa, ;_1(4n — 2). Thus

Qon—1—1(4n — 2) contains the distinguished prime ideal of I, ;1 (4n — 2),

called Pap—_i—1(4dn — 2).

Let ¢; € V(Pan—i—1(4n — 2)) — {can—1 # 0}; we can lift ¢; to an arc in

Nap—i—1(4n — 2) by elimination.

In conclusion, Qop,—j—1(4n — 2) = Pop_j—1(4n — 2).

In order to show that No,_;_1(4n—2) ¢ No,_r_1(4n—2), we have to find
non trivial elements in Poy,—g—1(4n —2) (they will be in (1o, —x—1(4n—2) :
Con—k™°) and (Jo,—g—1(4n — 2) : bap_k_1°7)), not in Pop,_;_1(4n — 2).

5.2. Looking for non trivial elements :
The ideal Pa,—p—1(4n —2) for 1 < v < 2n—2

First of all, notice that the elements c¢g,_, and bs,_,_1 are not in
Pon—w—1(4n — 2), but they are in the other minimal prime ideals of
Iop—y—1(4n — 2). We deduce that Pay,—p—1(2) contains (Ia,—y—1(4n — 2) :
) = UTon—v—1(4n — 2) : ¢4, ) and the ideal (Iy,_,_1(4n — 2) :
b35 _v_1) = U(Tan—v—1(4n —2) : b5, _, 1) One can construct elements of
Pan—v—1(4n — 2) in the following way:

We work in R =Kklay, ..., Gan—2,01, .., ban—2,C1, ..., Can—2]. Note that ag # 0
on the generic points of all the families of the principal branch; we can then
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consider ag as a unit.
Let az = o and look at the algebraic extension

R R
—
Pon—r—1(4n —2) N Pap1—1(4n —2)  Ip, . (4n—2)"Pon_i_1(4n—2)

[a]a, = S.

In this extension, one can rewrite the equation of the singularity as follows:

22 —ay? — 2™ = (2 — Vay) (2 + Vay) — 2 =0,

In fact we are looking at the families of the principal branch, that is to say
families with a; = 0 and as # 0, so :

x(t) = agt? + azt® + ... = *t* + azt®.... € S[[t]

and
VT = at + ;—StQ + .. € S[[l]] = ot + aot® + ast®...
o
Let ggi—v—u)(o‘)be the coefficient of #/ in (z — \/zy) and ggi_v_l,j)(a)
be the coefficient of #/ in (z + \/zy). The elements 987)177171 j)(a) and
98)17%1 j)(a) are conjugate to each other under the involution o« — —a.
We have :

2 2
f(2n—'u—174n—2v) = Cop—n — a’zbZn—v—l

= (Can'u - ab2n7v71)<c2n7v + ab2n7v71)~

Consider now the prime ideal P over Pa,—p—1(4n — 2) in ﬁM[a]
such that co,,_y — abgy 1 = 0; then cop_y + aboy 1 = 2¢op_s.
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We compute 22 —zy? — 2?71 = (2 — /oy) (2 +/zy) — 22"~ ! for this family

. R .
in Ty o

1
f(2n7v71,4n72v) = (C2n—v - ab2n—v—1)2c2n—v = 20277,—1)922;_”_1’2"_1)) (Oé) eP
1
f(2n—v—1,4n—27)+1) = QCQn—vggQL,v,1’2n7U+1) (a)

€] (2
+ g(anvfl,anv)(a)g(anvfl,anerl)(a) S

Jen—v-1,4n-3) = 202n—vg((ézl,1,,1,2n+1,,3)(a>
+ 91200 (Do 1 a4 (@) o
e 9((;2L—'u—1,2n+v—4) (a)g((;;—v—l,?n—v—}-l)(a) ep
fen—v—1,4n—2) = 202n—ug((;l,ﬂ,1,2n+v,2)(a)

1) (2)
+ g(2n7v7172n7v) (a)g(2n7v71,2n+v72) (a) + .

et 9831—1)—1,271-&-11—3) (O‘)ggzz—v—l,zn—vﬂ)(a) —a" " eP
and thus
202%—119831—1)—1,271—1)) €P
262"—119831—1;—1,271—1)-&-1)(O‘) S
202"*”982171171,2n+v73)(a) eP
202”*1’982171)71,2n+072) (a) —a3" "' € P.
As 2¢y,—y ¢ P, one has 983%7171,].) ePfor2n—v<j<2n+v—3.

We can solve the non-inclusions of the principal branch.

5.3. Resolution of the principal branch

Consider Koy, —1(4n—2) ; let No,_g—1 and Naoj,—;—1 be two families such
that [ < k (then No, 11 ¢ Na,_;_1 from the scheme of partial order).
We show that No, ; 1(4n —2) ¢ Non_x_1(4n — 2), then we will have
Nop1-1 ¢ Nop—p—1.

Suppose that Poy——1(4n — 2) C Pap_i—1(4n — 2).

Let

J = Pgn,k,l(éln — 2) n P2n7171(4n — 2) = Pgn,k,1(4n — 2)
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and consider the algebraic extension S = %[a}az of £ Let P be the prime

ideal over Pa,_k—1(i) in RJIi [cv}a2 such that cg,_p — abo,_r_1 = 0; then
Con—k + @bap_g—1 = 2¢op—r. Let Q be a prime ideal over Pa,—;—1(4n — 2)
such that

’Pgn,k,l(éln - 2) C 7)2“7171(4’17, - 2) C %
N N J/
P C Q - S

If 'Pgn_k_l(éln - 2) - Pgn_l_1(4n - 2), then

(1) _ @D
9(en—k—1,2n+1-2) = 9(2n—i—1,2n+i—-2) € Q

because | < k and thus, as 202717198217[71 2n+172)(0‘) — agnfl € O, we have
a%"fl € Q which gives the desired contradiction.

6. The two non-principal branches

The two branches Egn_l — En — .. = E2n_2 and Egn — En — .. — Egn_g
are symmetric, thus we can restrict ourselves to Fo, — FE,, — ... — Eg,_o.
The only non-inclusions left to be proved are N; ¢ Na, for all [ such that
n<l<2n—2.
Let ’il =2l + 1.

6.1. The images of the families in H(i;)

Let K(’Ll> = {b1 =..= bn_g =Cl = ...=Cp—-1 = 0} n H(’Ll) It is the sub-
space of H (i;) whose defining ideal I(¢;) in R;,=Kkl[a1, ..., a;,, b1..., by, €1, .y €3}
is generated by the following equations :
fon—1 =ia} ™t —bu_y
fgn = CEL — 2a1bn_1bn — a2b2 (2n — l)a?"_Qag

n—1 "

font1 = 2¢nCni1 — Gant1(Azni1, Bang1) — a3 2hany1(Azpir)

for = ¢t + .+ 2¢nco1—n — go1(Agr, Bay) — ai" 22 hyy (Ay)
Jarr1 = 21141 + oo + 2¢nC2—nt1 — Goi41(A241, Bait1)

— a3 hy 1 (Agiy)
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(where A, = {a1,...,ar42-2n} €t By = {by, ..., br41-n}, the g; being certain
polynomials in variables A; and B; ; the h; being polynomials in A; and
the fan4; are the coefficients of t2"*% in f(x(t),y(t), 2(t)) = 0 modulo the
ideal (bl, ...bn_g, Cly ey Cn—l))-

Remark. — Alternatively one could work in H(4n — 2) for all {.

We have to find the ideals defining the closure of the sets Nay, (i) = p;, (Na2n)
and N, (i) = pi,(N).

Let Qo,(4;) be the defining ideal of Na,(4;) and Q;(4;) be the defining ideal
of N;(4;). By the same argument as for the families of the principal branches,
we have Qs (i) = Payn(i;) where Pay(i;) is the distinguished prime ideal
of I, (4;) and

IQn(il) = (ala bla PEREE bugn(y)—lvch cos Cpnp (2) =15 f(2n,2n—1)7 ceey f(2n,2l+n+1))-

We also have that Q;(4;) is the distinguished minimal prime ideal of

(ala bl» PIRRET bl*lvclv - Cly f(l,2l)7 ) f(l,3l+l))'

Moreover we have, as a1, by—1, ..., b1, Cny .oy €1 & Payp(iy), that Pay,(i;) con-
tains the ideals (I(i;) : a1™), (I(%) : ¢p41°°) and (I(4;) : b.°°) where
re{n—1,..,1—1}.

In the same way as for the principal branch, we want to construct elements
of Qo (41), by studying the ideal (I(7;) : a1°°). The extension we find is not
the same as for the principal branch, we need an extension where we are
allowed to divide by a;.

6.2. Looking for non trivial elements

Study of the ideal Qs,(i;).

In what follows, we fix an [ such that n — 1 <1 < m — 1 (we want to show
that Nl(il) ¢ N2n(il))

In this section, we show that each equation f; for 2n —1 < 5 < 2/ is in
the integral closure of (a{)R (for some d € N depending on j). For each b,
and c¢,, we find the greatest d € N such that b, -or ¢,- are in the integral
closure of (af)R (d € N).

Recall the valuative characterization of the integral closure of an ideal (cf.

[4] and [13], theorem 38):

DEFINITION 6.1. — Let R be a normal noetherian domain, b € R and I
an ideal of R.
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The element b is in the integral closure of I if and only if for every positive
valuation p1 over R of rank one, there exists an element x of I such that

p(x) < p(b).
This characterization motivates the following definition :

DEFINITION 6.2. — Let p and q be two integers.
We say that a divides b in a normal ring R (or equivalently that b is in
the integral closure of (a)) if aP divides b? in R.

Notation. —
e in what follows, we will denote "a divides b" by "a/b".

e take J(i;) = Ql(il) N Q2n(il)

Suppose N;(i;) C Nay (i) ; then J(i;) = Qa,(i;). Let R(zl) = ) 16 the

J (i)
normalization of ﬁ(fll)), it is a normal domain.

The system generated by the equations (fan—1, ..., far) in R(i;) is:

. n—1
f2n—1 = za? —bp—1
(6.1)
m 2m—+3—2n
2 2 1 2 1
foms1 = —albm—|—2 C2 e comry1— Z a, Z B2 p,b,
r=n r=2 utv+r=2m—+1
m—1
2 1 4n—2m—3
—ai Z Brm+ bermfr + aln i meJrl(A)
r=n—1
(6.2)
m 2m-+4—2n
2 2 2 2 2
fampz = i+ 3 C2" 0 = S a S B,
r=n r=2 u+v+r=2m-42

m
- ( > Bfm+25r—1b2m+2—r> +a" " gomia(A)
r=n—1

forn—1 < m < I—1 (where Cf and Bg are constants, A € k[ay, ..., agj—2n+3)
and the polynomials g5 are not divisible by ay).

This system is a system of 2(I — n) + 2 equations with 2(I — n) + 3 un-
knowns ai,b,_1...,b;_1,Cp, ...,c;. We want to find positive rational num-
bers Bn_1, .-, Bi—1,Vn, -V € Q so that af’“ divides by and a" divides ¢,
in R(i;).

DEFINITION 6.3. — Let B = sup{a € Q : a$/by, in R(i;)} and ypq1 =
sup{a € Q: a$/cpy1 in R(i))} forn —1 <k <Il—1
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Remark. — A priori, O is in RU{co} and so is 7. Below, we will calculate
lower bounds for By and 7 which will be rational numbers.

We prove the following proposition:

PROPOSITION 6.4. — For all k and r such thatn—1<k<l—-1<2n—-3
andn <r<l<2n—2,onehas By >1and~, >1. Fork=1—1=2n-3,
one has (B > 1 and 41 > 1.

Remark. — (-1 =n—1Dby fap_1 =0.

Proof. — We define the sequences (8x)s and (7yx41)s recursively in k. These
sequences (0k)s and (yx+1)s will be increasing, converging, with (8x)s < Gk,
(Yk+1)s < Yg+1 and with limit greater than or equal to 1.

We will use the following trivial lemma :

LEMMA 6.5. — Let f = g — h be elements of S. If ay divides h and af
divides f, then a{ divides g.

Construction of the sequences.
For k =n — 1, consider :

- n—1
f2n71 =1aq —bp—1
2 2 2m—2
fon = ¢ — 2a1bp_1by, —agbi_; — (2n — 1)ai" “aq

We already have 8,-1 = n — 1. Set (8,-1)s = n — 1 for all s. Moreover,
we have af / fon(=0) and a}/2a1b,_1b, — agb?_; — (2n — 1)ai™ 2az, thus
at/c2, ie. alg/cn :set (yn)s = 5. (for n > 2, we get vy, > 1; forn =2, i.e.
the case Dy, k=1—1,v, > 1).

Let I > £k > n — 1. Suppose we have already constructed for all n — 1 <
m < k — 1 increasing sequences (8,,)s and (vm+1)s which converge to a
limit strictly greater than 1. There exists a positive integer S such that
(Bm)s >1and (Ymq1)s > 1foralln—1<m<k—1.

Rewrite the equations :

— 2m+1 v_A

fomt1 = > Cosalibye,
wptvr+ur=2m-+1

— 2m—+2 v\

fomto2 = > Cosaliby e,

wptvr+ur=2m-+2
where C;iu»\ are constants.
Define (Bk)s = min{% : B = plaw)s + v(By)s + )\(%)S/Cﬁi}fl +
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0 and C25+ £ C2tH |, then (yps)s = min {3 7 = pu(a)s +v(B)s +

N(u)s/C2E2 # 0 and C2t # ComtL L, with (a), = 0 if w # 1,
(ay)s = 1 if not.

We can thus define :

DEFINITION 6.6. — Recursively in s, we define (3,)s = min {% 1 8=
M(aw)sw+y(ﬁv)s/u+/\('VU>su/CzTAJrl 7 0et C;QLTAJFI 7 012%+1} and (Ym+1)s =

min {3 7 = (0o +2(B)s, +A(u)e, JCZS2 # 0 et AT £ Contt |
with s, = s—1ifxz > m , s, = s if not.
For all s < S, we pose (Bk)s =0 and (yx41)s =0

Lemma 8 shows that agﬁ ™)+ divides by, for all s.

The sequences are increasing by construction, thus the limits of (3,,)s and
(Yma1)s for all n—1 < m < k—1 are strictly greater than 1 by construction.
It remains to show that the limits for the sequences (8x)s and (yx+1)s are
greater than or equal to 1.

For notational convenience, we set for m > k, (8)s = 0 and (ym41)s =0
(even for m > 1) and (Bp—1)s=n—1.

We write the equations in the following form:

For m such that n < m < k,

- n—1
f2n71 =1aq - bnfl

(6.3) fon = 2 —2a1b,_1b,, —azb? | — (2n — 1)(1?7172012

m 2m—+3—2n
2 2 1 2 1
f2m+1 = _albm + § Crm+ CrCom—r+1 — § Gy § BUZL+ bubv
r=2

ut+v+r=2m-+1

r=n

m—1

—ay ( Z Bgm+lbrb2m—r> + a%n_Qm_BQQm—Q—l(A)

r=n—1

(6.5)
m 2m—+4—2n
fomio = C2pq + Z C*™2¢ Compor — Z a, ( Z BﬁT*Qbubv>
r=2

ut+v+r=2m-+2

r=n

—n ( Z Bgm+2brb2m+1—r> +a%n_2m_492m+2(14)

r=n—1

forn—1 < k < 1—1 (where Cij and Bg are constants, A € k[ay, ..., agj—2n+3)
and the polynomials g5 are not divisible by ay).
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Then, by definition, we have the following properties:

(ﬁn—l)s + (ﬁn)3_1 +1 2n— 2} .

by (6.3) : wn)s:mm{wn_l)s,

2 T2
(6.6)
by (6.4) :
(ﬂm)s — min { ('Vm)s + (7”;4—1)8—1 — 1’”.7 ('Vn)s + ('72m2—n+1)s—1 - 17
(Bu)s. +;6‘U)s” -1 withu+v+r=2m+1, r=>2,
Sw=s—1if w>m, s, =s, if not, with w = u,v
(ﬂmfl)s + (ﬁm«l»l)sfl (57171)5 + (/62711777.«%1)571 4n —2m — 4 .
2 PR 2 7 2 b
(6.7)
by (6.5) :
_ . ('Ym)s + (’7m+2)s—1 ('Vn)s + (72m+2—n)s—1
(’Ym+1)s = min { 2 3 ey 2

Mwithu—&—vﬁ—r:%n—l—%}l Sw=5—1

if w>m+1, sy =sif not, with w = u,v

1 + (/g'm)e + (ﬂm/+l)‘?7l . 1 + (ﬂnfl)s + (/62m+27n)571 4n —2m — 4}

2 T 2 ’ 2
4n—2m—4

~ 2 ~
:Ym—&-l - hms(’}/m-&-l)sa ﬂm == hms(ﬂm)s One has: Ym+1 > :Ym—&-la ﬂm 2 6111
We compute the minimum of (6.6) and (6.7) for s > S.

The sequences are bounded above by , so they converge. Let

a. Equations (6.6) give :

< (ﬂmfl)s + (ﬁm)sfl -

(6.8) (Bm)s < L (Bm-1)s + (Bm)s — 1

2 2
thus (Bm)s < (Bm-1)s — 1, information we inject in (6.7), thus we get :

(ﬁmfl)s + (ﬁm)sfl +1

LEMMA 6.7. — We have :
(6.10)
(ﬂm)s — min { (’}/rn)s + (7’1;«&»1)571 - 1’”.7 (f}/n)s + (’727n27n+1)571 - 17

)

(ﬂmfl)s + (ﬁm+1)sfl (ﬂnfl)s + (ﬂQ'm,fnJrl)sfl dn —2m — 4}
2 2 ’ 2
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Proof. — We use the inequalities (6.8) and (6.9) with the fact that the
sequences are increasing.

Let 2 < <r <2m+3—2n, (v,v') and (u,v) such that v’ + o' + o' =
2m+1=wu+v+rand u=u";then v >v and:

(5u)su + (/Bv)sv -1 > (ﬂu)su + (51}’)51; -1
2 - 2 '

This allows us to eliminate the terms M for2m+1=u+v+r
and r > 2.
It remains to eliminate terms for » = 2 . One has u +v = 2m — 1 ; we
can suppose that n —1 <u <m—1and 2m —n > v > m (so as not to
consider the same monomial twice). Thus we get thanks to inequalities (6.8)
and (6.9):

(ﬁnfl)s + (ﬁ2mfn)sfl -1 > <7n)s + (’72m7n+1)571 -1
2 - 2

(ﬁm—l)s + (ﬂm)s—l -1 > (’Ym)s + ('Ym-ﬁ-l)s—l -1

2 - 2
O
LEMMA 6.8. — We have (forn <m < k ):
(6.11)
_ . (7m—1)s + (’Ym+1)s—1 (’Yn)s + (72m—n)s—1
(Ym)s —Inm{ 5 Sy 5 ,

1 + (/g'm,fl)s + (Bm)sfl 1 + (/671,71)5 + (52771,7”)371 dn —2m —4
5 - 5 , 5 .
Proof. — As before we have to eliminate terms for r = 2 :
we have u +v = 2m — 2 ; we can suppose n — 1 < u < m — 1 and
2m —n 2 v 2 m— 1 (not to consider the same monomial twice). Thus we
get:

(ﬁmfl)s + (6m+1)571 2 ('ym)s + (’Ym+2)sfl

(ﬁn—l)s + (627n—n+1)s—1 2 ('Yn)s + (72m—n+2)s—1

We have to eliminate (3, )s.
For alln —1 <m <k —1 we have (Bm)s = (Bmt1)s + 1, thus

(ﬁm)s + (ﬁm+1)571 + 1 )

(ﬁm)s > 9
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LEMMA 6.9. — For m = k + 1 we obtain :
(6.12)

(vr)s + (;kwLZ)sfl - (vn)s + ('y;;ﬁq,n)sq . (Br)s,

(Vk+1)s =min {

1 + (ﬁk)a + (ﬁk’Jrl)sfl 1 + (/anl)s + (B2k+17n)sfl dn — 2k — 4}
D) yeeny D) s D) .

Proof. — Same proof as before, except that we cannot eliminate the term

(Br)s- O

b. Show by induction on [ :

(Vm—l)s + ('Ym-l—l)s—l < ('Ym—l—l)s + (7m+l+1)s—1
2 = 2 '

For I =1:
(’ymfl)s + (7m+1)571 < (7m72)s + (’Ym)sfl + (’Ym)sfl + (’7m+2)572
2 h 4
< (’Ym—2)s + (7m+2)s—1 + ('Ym)s
4 2
g (7m72)s + (’7m+2)571 + (’mel)s + ('7m+1)571
4 4
So :
(Ym=1)s + (Ym+1)s—1 < (Ym—2)s + (Ym+2)s—1
4 D 4 '
Letl > 1.

('Ym—l—l)s + (’Ym+l+1)s—1

2
< ('Ym—l—2)s + (’7m+l)s—1 + (’Ym—i—l)s—l + (’Ym+l+2)s—2
= 4
(7m7l72)s + (7m+l+2)sfl (’Verl)s
+
4 2
('Ym—l—Q)s + ('Ym—&-l—&-Q)s—l + ('_Ym—l)s + ('Ym+l)s—1
4 4 '
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The result follows.
In the same way, one can show that:

(ﬂm—l)s + (ﬂm+l)s—1 (ﬂm—l—l)s + (6m+l+1)s—1

<
2 2
(Vm—l)s + ('Ym-l—l—&-l)s—l < ('Ym—l—l)s + ('Ym+l+2)s—1
2 = 2
(5mfl)s + (ﬁm+l+1)371 < (ﬁmflfl)s + (ﬁm+l+2)sfl
2 = 2 '

c. Moreover, we have that:

(')/nq,)s + (’Ym—‘—l)s—l _ 1 (ﬁmfl)s+(2ﬁ’rrl)57171 + (ﬁ7n)s—l+(gm+l)s—271 + 1

<
2 2
< (ﬁm—l)s + (ﬁm-‘rl)s—l + (ﬁm)s
4 2
< (ﬁmfl)s + (ﬁm«#l)sfl + (’Ym)s + (7m+1)571 -1
= 4 4
and
(ﬂmfl)s + (Bm)sfl +1 _ (’Ym—l)s-i-gym)s—1+1 + ('Ym).s—l+(';m+l).e—2+1 -1
2 h 2
< (ﬁ)/m—l)s + ('Ym+1)s—1 + (’Ym)s
4 2
< (fY’m—l)s + ('7’m+1)s—1 + (ﬁ’m—l)s + (BT)’L)S—l + 1
b 4 4 ’

d. We also have for n <m < k:

(Brmn-1)s + (Bm)s—1 + 1 - 4n*2ﬂ21+274 + 4n722m—4 1
2 ~

2
4n —2m — 2
< -
2
and
(’Ym)s + ('Ym+1)571 ~1 _ 4n722m72 T 4n722m74 -1
(6.13) 2 2
4dn —2m — 4
{—.
2
Finally : for m = k + 1, we have :
. s+1 4dn — 2k — 4
(Yk+1)s = min %, Br)sy ——F——
2 2
. S + ]-
= mln{('Bk)Q,(ﬂk)s}
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and for n <m < k

(ﬂm—l)s + (ﬂm)s—l + 1

('Ym)s = B
(ﬁm) _ (7m)s + (%;-&-1)8—1 - 1.

LEMMA 6.10. — We have B > 1

Proof. — Suppose that 3 < 1 (then (veq1)s = (Br)s)-
Taking the limits as s goes to infinity, we obtain the following system of

equations : 5 y
~ _ 5m71 + 5m + 1
Ym = -5
o = ¥ A =1
Y1 = B

Solving the system, we obtain :

= 2—2-k  (2k—2n+2)5
Kok —on+3 2k —2n +3

Then :
Be=2n—2—k>1 fork<2n-—3
Be=2n—2—k=1 for k=2n—3.

Contradiction. O

Then foralln—1<m < kandn <r <k+1,onehas §,, >1and . > 1.
Passing to the limit as s goes to infinity, obtain the following system :

- Bm1+Bnt+1
'Ym——z
o dot T 21
N
Yk+1 = 5
We find : )
~ n —
ﬁk—ikinJrQ,

Bm:(k_m+l)ﬂ~k
2k —2m + 3 ~ 1

ﬁm=&k+1+(k—m+1)ﬁk=fﬂk+§.
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Thus Br > 1 and i1 > 1 for all k£ and [ such that £k <1 —1 < 2n —3 and
for k=1—1=2n—3, one has B; > 1 and yx41 > 1.
Therefore we have
e forl—1<2n—3,foralln —1<k<l—1: 0 >1and ;41 > 1.
eftorl—1=2n-3: 0,121,y >1landforalln—-1<k<l—1
one has G > 1 and vg41 > 1.

Let us fix [ such that n —1 <1< 2n — 2.

Let n — 1 < m <1 — 1. We have shown that for all pairs of integers (p, q)

such that % < ﬂm = p = for all positive valuations p of rank 1, we have :
p(ay) < p(b,)

in 200

J(ir) *
Thus we have :

plaf™) < p(bi)-

for all valuations p of rank one 1.
Indeed, if not, there exists a valuation v such that

v(ay™) > v(bir)

Then there exist two positive integers p and ¢ such that § > land v(al™) >

Ly, ie. v(ai™?) > v(bfrP). Contradiction.

We can define the following finite algebraic extension

. b bi_ .
Note that the fractions —=— 22— . L S S agrein S.
a1 0 P1-1 a1n a ol

6.3. Proof for the non-principal branches

We look at the branch Fs, — E,, — ... — Ea,_o (the proof for the other one
being symmetrical)

The notations are the same as in section 6.2

Truncate at the order i; = 21 + 1.

PROPOSITION 6.11. — For alln <1< 2n — 2, one has N;(i;) ¢ Nau(i;).

J
over Pz, (i) and Q be the prime ideal over P;(i;). (We suppose P C Q).

Proof. — Consider the extension : Rf’f — 5. Let P C S be the prime ideal
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For n < I < 2n — 2, consider fﬁjl in S. We have fﬁ—l“ € P (because
fars1 € Panlin), a1 2542 = for 1 and ay & Pay(ir)). But 251 —p” € Q and
b &€ Q. Contradlctlon

Suppose | = 2n — 2. We still suppose that Pgn(ign 9) C Qan—2(iogn—2). Let
J PQn(iQn 2) n an Q(ign 2) Let CT = W and blr,‘l = % fOI‘
n <r < 2n— 2. Let S be the birational extensmn obtained by addlng the
elements drand b,._1 (n < r < 2n—2) (It is, as we have just shown,
contained in the normalization of the ring M)

Let P and Q be prime ideals over Pay, (ia,—2) and Qa,—a(ia,—2) respectively
in the extension S.

Let /), = aff,ﬂ for 2n — 1 < m < 4n — 3 and h,, = h',, modulo the
ideal Q (to o%btain h,, one sets the coefficients a1, b,_1,...b2,_3,Cn, ...Con_2
be zero in (h],)).

By construction, the equations h,, for 2n — 1 < m < 4n — 3 live in

/ / /! /
A= k[a27b Myt b 2n—3; b2n72ac ny - C2n—2, C2nfl]

(we have replaced V',,_1 by ¢ and we are not considering anymore the equa-
tion f2n,2n—1 = O)

We also have fo,—24n—2 € A. There exists a natural homomorphism ¢
from A to %

Let P be the ideal in % generated by all relations satisfied by ¥',., ¢/, and
Q2,Con_1,bon_2; it contains in particular the ideal generated by
(hm)m:2n,“.,4n73 and f2n,4n72'

Let P” = ker(¢) be the inverse image of P in A. Then we have the following
commutative diagram:

¢U<;%\:U

- S

Qan—2(i2n—2) Q
f1_ Klag,ban_2,con1]/2
kla, ban 3] —- Hegpaamalt o 4
PROPOSITION 6.12. — We have that % is finite over k[ag, bap—2].

Proof. — We already have that % is finite over k[as, bay,_2].

The finiteness of the second arrow fs comes from the following :
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Consider the equations

(f'an—o.m) = (fon—2,m)mod(as, ..., aan—3,b2n—1, s Dan—3, Can, -\ Can—3)

for 2n < m < 4n — 3 in klay,a2,by,...,b2n—2,¢1, ..., Can—1] ; these equa-

: ) bre_ . ..
tions allow us to show that ;T"k and —— are in the normalization of
1 al

klai,a2,b1,....ban—21,€1,....can—1] and that 7, = 2n —k — 1 and By = 2n — k — 2

(f'2n—2,m)m=2n,...,an—3

in the same way as we show that S is an algebraic extension of % (cf.

la1,a2,b1,...,b2n—21,C1,...,Can—1]
(fIQn_Qym/)7n=2n ,,,,, 4n—3
. . . by
obtained by adding to it the elements ¢/, = =t and b1 = e
1 1
forn<r<2n—-2.

We get the following commutative diagram:

3.2.2) . Denote by S’ the algebraic extension of

klai,a2,b1,...,b2n—2,C1,..-,Can—1]

/

((f'2n—2,m)m=2n,...,.an—3,f2n,4n—2) S
klaz2,ban—2,c2n—1] f2 A
(fan,an—2) P”

Then the first horizontal arrow is finite by definition and then so is fo. O

Thus, there exists an ideal M over (az,ba,—2 — 1) in %. This maximal
ideal does not contain hy4,_3 by definition, which implies that P” does not
contain hy,_3 either. This is false by definition of P”. O

7. Comments

The proof developed above works for the singularities Ds,. For the sin-
gularities Doy, 11, the proof is almost the same : first we use the valuative
criterion with the functions z, y, z , z4+iz™ and z—iz™. It gives the following

scheme:

En+ 1

BN

EI-E2------ En—Entl-----E__,

E2n

(where Es,, and Es,, 1 are the two symmetric exceptional curves).

As for Dy, it remains to solve two series of non-inclusions (the principal
branch and the two symmetrical branches). The resolution of the principal
branch works exactly as for Ds,,, because as # 0 for all the families of this
branch. The resolution for the non-principal branches is slightly different:
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the first equation of the arcs corresponding to (for example) Eo,41 is ¢, —

1al

= 0. Thus we still construct an extension where it is allowed “to divide

by a1”, but the roles played by ¢, and b, are exchanged.

The method seems to work for the three rational points left.
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