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THE NASH PROBLEM OF ARCS AND THE
RATIONAL DOUBLE POINTS Dn

by Camille PLÉNAT

Abstract. — This paper deals with the Nash problem, which consists in com-
paring the number of families of arcs on a singular germ of surface U with the
number of essential components of the exceptional divisor in the minimal resolu-
tion of this singularity. We prove their equality in the case of the rational double
points Dn (n > 4).

Résumé. — Dans cet article, on étudie le problème des arcs de Nash, qui consiste
à comparer le nombre de composantes irréductibles de l’espace des arcs passant par
une singularité isolée de surface normale avec les courbes exceptionnelles apparais-
sant dans la résolution minimale de cette singularité. On montre que les deux
nombres sont égaux dans le cas des points doubles rationnels Dn.

1. Introduction

In this paper, k is an algebraically closed field of characteristic 0.
Let (S, 0) be a normal surface singularity over k and π : (X, E) −→ (S, 0)
be the minimal resolution of (S, 0), where X is a smooth surface and E =
π−1(0) is the exceptional set. Let E =

⋃
i∈∆ Ei be the decomposition of E

into its irreducible components, that we will call exceptional divisors.
In order to study such a resolution, J. Nash (around 1968, published as
[14]) looked at the space H of arcs passing through the singular locus 0.
Recall that an arc is a formal parametrized curve, i.e. a k-morphism from
the local ring OS,0 to the formal series ring k[[t]].
Nash had shown that H is the union of finitely many families, (which turn
out to be the irreducible components of H viewed as a scheme endowed with
the Zarsiski topology) , and that there exists an injection from the set of

Keywords: Space of arcs, Nash map, Nash problem, rational double points.
Math. classification: 14B05, 14J17.



2250 Camille PLÉNAT

families of arcs to the set of exceptional divisors of the minimal resolution.
The natural question of surjectivity then arose [14].
Later on, M. Lejeune (in [11]) proposed the following decomposition of
the space H : let Ni be the set of arcs lifting transversally to Ei but
not intersecting any other exceptional divisor Ej . M.Lejeune showed that
H =

⋃
i∈∆ Ni and the set Ni is an irreducible algebraic subset of the

space of arcs; therefore the families of arcs are among the Ni’s. Moreover,
notice that there are as many Ni as divisors Ei.Then the Nash problem re-
duces to showing that the Ni are the irreducible components, i.e.to proving
card(∆)(card(∆)− 1) non-inclusions :

Problem 1.1. — Is it true that Ni 6⊂ Nj for all i 6= j?

This question has found some positive answers : for singularities An by
Nash, for minimal surface singularities by A. Reguera [18] (other proofs in
J. Fernandez-Sanchez [5] or C. Plénat [15]), for sandwiched singularities
by M. Lejeune and A. Reguera(cf.[12]), for toric vareties by S. Ishii and
J. Kollar ([8] using the previous work of C. Bouvier and G. Gonzalez-
Sprinberg [2] and [3]), and for a family of non rational surface singularities
by P. Popescu-Pampu and C. Plénat ([17]).
In [8], S. Ishii and J. Kollar also gave a counter example in dimension
greater than or equal to 4.
The singularity Dn is the first “natural” singularity for which the answer
was unknown till now. We present in this paper a proof of the following
theorem:

Theorem 1.2. — The Nash problem has an affirmative answer for rational
double points Dn (n > 4).

Notation. — We give a detailed proof for the D2n, the proof for D2n+1

will follow easily.

By [15], corollary 3.5, we have the following corollary :

Corollary 1.3. — Let (S, 0) be a normal surface singularity whose graph
is the same as the graph of Dn (but with different weights). Then the
problem also has an affirmative answer for (S, 0).

The proof of the theorem is divided into two steps. For the first step we use
the following valuative criterion (for a proof see [15]; it is a generalisation
of a result of A. Reguera [18]):

Proposition 1.4. — Let (S, 0) be a normal surface singularity. If there
exists an element f in OS,0 such that ordEif < ordEj f then Ni 6⊂ Nj .

ANNALES DE L’INSTITUT FOURIER



NASH PROBLEM OF ARCS FOR Dn 2251

This condition allows us to prove more than half the non-inclusions (cf
Problem 1.1).
The second step consists in proving the remaining non-inclusions. For it,
we use the algebraic machinery developed in section 4. The “geometric”
idea is the following:
Let Ei and Ej be two divisors such that

ordEif 6 ordEj f for all f ∈ O(S,0) (1)

In other words, Ni 6⊂ Nj by the valuative criterion (proposition 1.4).
By contradiction, suppose that we have Nj ⊂ Ni. Let φj be a general arc
in Nj . Then there exists a sequence of arcs (φi)n in Ni converging to φj .
The arcs on Dn (embedded in k3 = spec k[x, y, z]) are described by three
formal power series 

x(t) =
∑

aktk

y(t) =
∑

bktk

z(t) =
∑

cktk

whose coefficients are subjected to algebraic constraints; for a general arc of
Nk, the coefficients aordEk

(x), bordEk
(y), cordEk

(z) are the first non-zero coef-
ficients and must be nonzero. Convergence here means that the coefficients
of (φi)n converge to the respective coefficients of φj , and the algebraic con-
straints are satisfied at each step. The inequality (1), if strict, implies that
the coefficients aordEi

(x),n, bordEi
(y),n, cordEi

(z),n converge to 0. In order to
obtain the contradiction, we show that the constraints imply the vanishing
of at least one of the coefficients aordEj

(x), bordEj
(y), cordEj

(z) of the limit φj .
In order to deal with the fact that the scheme H is non noetherian, we use
the following description of H :

Definition 1.5. — An i-jet is a k-morphism OS,0 → k[[t]]
ti+1 .

The schemes H(i) are of finite type. With the natural maps (called trun-
cation map) ρi : H → H(i) and ρij : H(i) → H(j) (for j < i) they form a
projective system whose limit is H. Easily one can see that if there exists
j such that ρj(Nα) 6⊂ ρj(Nβ) then Nα 6⊂ Nβ . It is then enough to work in
a “good” H(j).
The paper is organized as follows : in section 2 we first recall one description
of the singularity Dn we will use and by using the valuative criterion we
develop the first step of the proof. In section 3, we reformulate the “geomet-
ric” idea described above as an algebraic problem. In section 4, we partially
describe the spaces H(k) for a general k and for quasi-homogeneous hy-
persurface singularities. The two last sections are devoted to the proof of
second step.
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2. Step one

2.1. The rational double points D2n

Let (S, 0) be the rational double point D2n. Embedded in k3, take as equa-
tion the following one : f(x, y, z) = z2 − y2x − x2n−1 = 0. Its dual graph
of resolution is :

E 2n−1 E 2n−2 E 2n−3 E 3 E 2 E 1

E

. . .

2n

Figure 2.1. Dual graph (singularity of type D2n)

Let N1, ...N2n be the irreducible subsets of H associated to the exceptional
divisors E1, ..., E2n.
As D2n is embedded in k3, the arcs are described by three formal power
series :

x(t) = a1t + a2t
2 + ...

y(t) = b1t + b2t
2 + ...

z(t) = c1t + c2t
2 + ...

with f(x(t), y(t), z(t)) = 0. Let fm be the coefficients of tm in f
(
x(t), y(t),

z(t)
)

= 0 for all m, and let I be the ideal they generate.

2.2. Step One

For this first step, we use the criterion (cf. proposition 1.4) with the func-
tions x, y, z, y+ixn and y−ixn pulled back to X, whose order of vanishing

ANNALES DE L’INSTITUT FOURIER
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at each Ei is written on the graphs below :

(x)
1 2 2 2 2 2

(y)
1232n−32n−2n−1

n−1

n

n 2n−1 2n−2 4 3 2

y−ix( n−1)

1232n−32n−2n−1

n

(z)

1

(We compute the orders of vanishing of each function by pulling back it
to the resolution, which is done by a sequence of blowing-ups. We let the
details of the computation to the reader.)
The criterion allows us to define a partial order on the families of arcs :

Definition 2.1. — (Partial order)
We say that Ei 6 Ej if and only if for any element f ∈ OS,0 we have
ordEi

(f) 6 ordEj
(f).

We say that Ei < Ej if one of the inequality above is strict.

This partial order can be translated by the following scheme :

E1−E2−

E2n−1

E2n

En−En+1− E2n−2

(The relation Ei − Ej means Ei < Ej ; cf.[15]):

Definition 2.2. — We define E1 − E2 − ...− E2n−2 to be the "principal
branch" and E2n−1 − En − ... − E2n−2 and E2n − En − ... − E2n−2 to be
the non-principal ones.

Remark. — A general arc φ in Nk is described by three formal power
series :

x(t) = aordEk
(x)t

ordEk
(x) + aordEk

(x)+1t
ordEk

(x)+1 + ...

y(t) = bordEk
(y)t

ordEk
(y) + bordEk

(y)+1t
ordEk

(y)+1 + ...

z(t) = cordEk
(z)t

ordEk
(z) + cordEk

(z)+1t
ordEk

(z)+1 + ...

TOME 58 (2008), FASCICULE 7
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with f(x(t), y(t), z(t)) = 0.

3. Second step: algebraic reformulation

We can read from the above that the remaining non-inclusions to be shown
are :

• N2n−1−k 6⊂ N2n−1−l for 1 6 k < l 6 2n− 2

• N2n−1−k 6⊂ N2n−1, N2n for 1 6 k 6 n

As one can notice, two different series of difficulties appear : the first,
that we call "principal branch" is to show that N2n−1−k 6⊂ N2n−1−l for
1 6 k < l 6 2n− 2 ; the second are "the non-principal branches" (they are
of two types but these are totally symmetric).
To solve the two series of non inclusions, we will use the same idea, described
below.
First, in order to deal with finite dimensional varieties, we truncate the
arcs at order 4n− 2.
Let Nα and Nβ be two families such that Nα 6⊂ Nβ . By the previous
section, we have ordEα

f 6 ordEβ
f for all f in the local ring OS,o.

Notation. —

• Let Nα(4n− 2) = ρ4n−2(Nα) and Nβ(4n− 2) = ρ4n−2(Nβ).
• Let Pα and Pβ be prime ideals such that V (Pα) = Nα(4n− 2) and

V (Pβ) = Nβ(4n− 2).
• Let Ll = {a1, ..., aordEl

(x)−1, b1, ..., bordEl
(y)−1, c1, ..., cordEl

(z)−1} .
• Let
Il = I ∩ k[a1, ..., c4n−2]

∩ (a1, ..., aordEl
(x)−1, b1, ..., bordEl

(y)−1, c1, ..., cordEl
(z)−1)

be the first equations verified by an arc in Nl (for l = α or β).
• Let J = Pα ∩ Pβ .

Suppose that Pα ⊂ Pβ . In order to have a contradiction, we find elements
in Pα not contained in Pβ by the following way:
We have Ll and Il in Pl for each l. Unfortunately, we also have Lα and Iα

in Pβ by hypothesis. Thus those “simple” elements will not lead us to the
contradiction. But aordEl

(x), bordEl
(y), cordEl

(z) are not in Pα. It implies that
(Iα : d∞) =

⋃
(Iα : dr), for d equal to one of the three elements aordEl

(x),
bordEl

(y), cordEl
(z) ( (Iα : dr) is the saturation of Iα by dr ), is in the prime

ideal Pα.

ANNALES DE L’INSTITUT FOURIER
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But the computation of the saturation is not obvious; so to make compu-
tation easier, we do it in an extension S of k[a1,...,c4n−2]

Pα∩Pβ
. More precisely, we

choose a prime ideal Qα in S over Pα

J and get the following commutative
diagram :

Pα

J
⊂ Pβ

J
⊂ k[a1,...,c4n−2]

J

��

∩ ∩

Qα ⊂ Qβ ⊂ S

Then we show that for any prime ideal Qβ over Pβ

J in the above diagram,
one cannot have (Iα : d∞)S ⊂ Qβ , which gives the desired contradiction.

Notation. — Our computation of the saturation (c.f sections 5.2 and 6.2)
is the algebraic analogue of sequences of arcs (cf introduction).

We now solve the two series of non-inclusions following the same plan: first
we describe the images of Nα and Nβ in H(4n − 2) and their associated
ideal. Then we construct the extension to find non trivial elements of Pα.
Finally, we show that those elements cannot live in Pβ . But let us start
with some algebra.

4. General study of the k-jet scheme H(k)

In this section, after giving general lemmas from commutative algebra, we
will use them to study the space of jets passing through the singularity of
a normal quasi-homogeneous hypersurface.

4.1. The principal lemma

Lemma 4.1. — Let R = k[y1, ...yn, x21, ..., x2m, ..., xk1, ..., xkm].
Let f1, ..., fk be a sequence of elements in the following form :

TOME 58 (2008), FASCICULE 7
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f1 = f1(y1, ..., yn) = g1...gs

f2 = a1x21 + ... + amx2m + h2(y1, ..., yn)

f3 = a1x31 + ... + amx3m + h3(y1, ..., yn, x21, ..., x2m)
...

fk = a1xk1 + ... + amxkm + hk(y1, ..., yn, x21, ..., x(k−1)m)

with g1, ..., gs distinct irreducible polynomials and a1, ..., am ∈ k[y1, ..., yn].
For fixed j (1 6 j 6 s), let Sj = {aj1 , ..., ajl(j)} ⊂ {a1, ..., am} be the set of
al such that al 6∈ (gj).
Let us denote I = (f1, ..., fk) .
Suppose Sj 6= ∅.
Then there exists a unique minimal prime ideal Pj of I such that gj ∈ Pj

and al 6∈ Pj for all al ∈ Sj .
Let Q be a minimal prime ideal of I different from P1, ...,Ps ; then
(a1, ..., am) ⊂ Q.
Let gi and gj be two irreducible factors of f1. Then Pi 6= Pj . And finally,
we have ht(Pj) = k.

Definition 4.2. — We call the prime ideal Pj of the lemma the distin-
guished ideal of I, associated to gj .

Proof. — Let j ∈ {1, ..., s} and al ∈ Sj . Take x to be

(x21, ..., x̂2l, ..., x2m, ..., x̂kl, ..., xkm)

and y = (y1, ..., yn). One has

(4.1)
Ral

(I)al

'
k[y1, ..., yn, x21, ..., x2l, ..., x2m, ..., xrl, ..., xkm]al

(f1, ..., fk)al

'
k[x, y]al

(f1)al

.

The decomposition into irreducible factors of f1 in k[x, y] is f1 = g1...gs;
then the minimal prime ideals of (f1) in k[x, y]al

have the form (gq), where
al 6∈ (gq). In particular, (gj) is the unique minimal prime ideal P ′j of (f1)
containing gj . By (4.1), one has a unique minimal prime ideal P ′′j of (Ial

)
containing gj . Let Pj be the inverse image of P ′′j in R, under the bĳection
between the prime ideals of Ral

and those of R not containing al . But
(Pj)al

= (gj , f2, ..., fk)al
and the sequence (gj , f2, ..., fk) is regular in Ral

,
while the length of this sequence is k; then the height of Pj is k.
Let aq ∈ Sj , aq 6= al. Let P̃j be the unique minimal prime ideal of I such

ANNALES DE L’INSTITUT FOURIER
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that gj ∈ P̃j and aq 6∈ P̃j . Then (Pj)alaq
= (gj , f2, ..., fr)alaq = (P̃j)alaq

,
so Pj = P̃j . The ideal Pj satisfies the conclusion of the lemma.

Let Q 6∈ {P1, ...,Ps} be a prime ideal of I. We want to show that
(a1, ..., am) ⊂ Q. We reason by contradiction : let us suppose that there
exist l ∈ {1, ...,m} such that al 6∈ Q. The image of Qal

by (4.1) is a min-
imal prime ideal of (f1); thus it has the form (gj), where al 6∈ (f1). Then
Q = Pj , a contradiction.

It remains to prove that distinguished ideals of I are distinct one from the
other. Let Pi and Pj be minimal distinguished prime ideals of I associated
to gi and gj respectively. If Si ∩ Sj = ∅, then Pi 6= Pj . Let al ∈ Si ∩ Sj .
The image of (Pi)al

and (Pj)al
by (4.1) are respectively (gi) and (gj), thus

Pi 6= Pj . �

4.2. Application to the space of k-jets of a quasi-homogeneous
hyper-surface singularity

Let f(x, y, z) =
∑

cαβγxαyβzγ = 0 be the equation of a normal quasi-
homogeneous hypersurface embedded in k3 with singularity at 0. Any k-jet
φ(t) passing through the singularity can be written as three polynomials of
degree k, φ(t) = (x(t), y(t), z(t)) = (a1t + ...aktk, b1t + ...bktk, c1t + ...cktk),
with a0 = 0 = b0 = c0 (because the singularity is at 0). Let f1 = 0, .., fk =
0 be the equations of the k-jet scheme H(k) (k > 0) (namely fi is the
coefficient of ti in f(x(t), y(t)z(t))). These coefficients are polynomials in
variables al, bm, cn, where l, n,m are positive integers.
Let K be the subset of the k-jet scheme defined in H(k) by the ideal

(a1, ..., al−1, b1, ..., bm−1, c1, ...cn−1).

Suppose there exists an integer r such that

fr 6∈ (a1, ..., al−1, b1, ..., bm−1, c1, ...cn−1).

Take the smallest such r. Then K is defined by the ideal

(a1, ..., al−1, b1, ..., bm−1, c1, ...cn−1, fr, ..., fk).

Then fr =
∑

lα+mβ+nγ=r cαβγal
αbm

βcn
γ . The polynomial fr being quasi-

homogeneous of degree r, one can write :

fr =
l

r
al

∂fr

∂al
+

m

r
bm

∂fr

∂bm
+

n

r
cn

∂fr

∂cn

TOME 58 (2008), FASCICULE 7
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Let us look at the monomial xαyβzγ . (The coefficient does not play any
role).
Let us write

φ(t) = (alt
l +

∑
j>l+1

ajt
j , bmtm +

∑
p>m+1

bpt
p, cntn +

∑
q>n+1

cqt
q).

Then we have :

(alt
l +

∑
j>l+1

ajt
j)α = aα

l tlα + αaα−1
l tl(α−1)

∑
j>l+1

ajt
j + A(t)

(bmtm +
∑

p>m+1

bpt
p)β = bβ

mtmβ + βbβ−1
m tm(β−1)

∑
p>m+1

bpt
p + B(t)

(cntn +
∑

q>n+1

cqt
q)γ = cγ

ntnγ + γcγ−1
n tn(γ−1)

∑
q>n+1

cqt
q + C(t)

(with degA1 > l + 1, degB1 > m + 1 and degC1 > n + 1, A1, B1, C1 being
the monomial of lowest degree of A,B, C respectively).

Therefore

xαyβzγ = aα
l bβ

mcγ
ntr + αaα−1

l bβ
mcγ

ntlα+mβ+nγ−l
∑

j>l+1

ajt
j

+ βaα
l cγ

nbβ−1
m tlα+mβ+nγ−m

∑
p>m+1

bpt
p

+ γaα
l bβ

mcγ−1
n tlα+mβ+nγ−n

∑
q>n+1

cqt
q + R(t)

with degR1 > r + 1, where R1 is the monomial of lowest degree in R. The
coefficient of tr+i is then

αaα−1
l bβ

mcγ
nal+i + βaα

l cγ
nbβ−1

m bm+i + γaα
l bβ

mcγ−1
n cn+i

+ S(al, ..., al+i−1, bm, ..., bm+i−1, cn, ..., cn+i−1)

We recognize the three partial derivatives of aα
l bβ

mcγ
n. This holds for each

monomial, thus we have

fr+i =
(

∂fr

∂al

)
al+i +

(
∂fr

∂bm

)
bm+i +

(
∂fr

∂cn

)
cn+i

+ Sr+i(al, ..., al+i−1, bm, ..., bm+i−1, cn, ..., cn+i−1).

These equations satisfy the hypothesis of Lemma 5. If fr is irreducible, then
there exists a unique distinguished ideal P, the one which corresponds to
the closure of the set G = {a1 = ... = al−1 = 0 = b1 = ... = bm−1 = c1 =
... = cn−1 = f1 = .. = fk} ∩ {∂fr

∂al
6= 0} ∩ { ∂fr

∂bm
6= 0} ∩ { ∂fr

∂cn
6= 0}.

ANNALES DE L’INSTITUT FOURIER
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Proposition 4.3. — Let us suppose that fr = g1...gs, the factors gj being
irreducible and different from x, y, z,and suppose fr reduced.
Then I = (fr, ..., fk) has exactly s distinguished ideals.

Proof. — By Lemma 5, it suffices to show that each (gj) does not contain
one of the partial derivatives of fr. Let gj be one of the irreducible factor
of fr. Then

fr = gjh

∂fr

∂al
= gj

∂h

∂al
+ h

∂gj

∂al

∂fr

∂bm
= gj

∂h

∂bm
+ h

∂gj

∂bm

∂fr

∂cn
= gj

∂h

∂cn
+ h

∂gj

∂cn
.

Suppose all three partial derivatives of fr are in (gj). Then(
h

∂gj

∂al
, h

∂gj

∂bm
, h

∂gj

∂cn

)
⊂ (gj).

But h 6∈ (gj) and (gj) is prime, so
(

∂gj

∂al
,

∂gj

∂bm
,

∂gj

∂cn

)
⊂ (gj), which is false

since fr is reduced.
Finally, if fr = g1...gs, (fr, ..., fk) has exactly s distinct distinguished ideals,
then each of them associated to a factor gi. �

5. The principal branch

In this section, we first study Nα(4n− 2) and Nβ(4n− 2) in H(4n− 2) for
Eα and Eβ in the principal branch. Then we construct concrete elements
and the extension they live in, which will give us the desired contradic-
tion (cf. introduction). Finally we solve the non-inclusions of the principal
branch.

Notation. — Let µk(g) = ordEk
g for g ∈ O(S,0).

Let i = 4n− 2, and R = k[a1, ..., a4n−2, b1, ..., b4n−2, c1, ..., c4n−2].

5.1. The images of the families of arcs in H(4n-2)

Let N2n−k−1 and N2n−l−1 be two families of arcs so that 1 6 l < k 6 2n−2
(thus N2n−k−1 6⊂ N2n−l−1, by the valuative criterion (proposition 1.4)).
Our aim is to show that N2n−l−1 6⊂ N2n−k−1.

TOME 58 (2008), FASCICULE 7
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Consider the (4n − 2)-jet scheme H(4n − 2) (here one has µ2n−k−1(z) =
2n− k and µ2n−k−1(y) = 2n− k − 1). Let K2n−k−1(4n− 2) = {a1 = b1 =
... = b2n−k−2 = c1 = ... = c2n−k−1 = 0} ∩H(4n − 2) be the sub-space of
H(4n− 2) defined by the ideal I2n−k−1(4n− 2) which is generated by the
following equations :

f(2n−k−1,4n−2k) = c2
2n−k − a2b

2
2n−k−1

f(2n−k−1,4n−2k+1) = 2c2n−kc2n−k+1 − a3b
2
2n−k−1 − 2a2b2n−k−1b2n−k

f(2n−k−1,4n−2k+2) = c2
2n−k+1 + 2c2n−kc2n−k+2

−g4n−2k+2(A4n−2k+2, B4n−2k+2)

f(2n−k−1,4n−2k+3) = 2c2n−k+1c2n−k+2 + 2c2n−kc2n−k+3

−g4n−2k+3(A4n−2k+3, B4n−2k+3)
...

f(2n−k−1,4n+l−k−2) = 2c2n−kc2n+l−2 + ...

+g4n+l−k−2(A4n+l−k−2, B4n+l−k−2)
...

f(2n−k−1,4n−2) = 2c2n−kc2n+k−2 + ... + g4n−2(A4n−2, B4n−2)

in R = k[a1, ..., a4n−2, b1..., b4n−2, c1, ..., c4n−2]. (where A4n−2k+j = {a2, ...,

aj+1} and B4n−2k+j = {b2n−k−1, ..., b2n−k+j−1}, the gi are polynomials in
variables Ai and Bi, and f(2n−k−1,i) are the coefficients of ti in f(x(t), y(t),
z(t)) = 0 modulo the ideal (a1, b1, ...b2n−k−2, c1, ..., c2n−k−1)).

Image of N2n−k−1.

We have a1 = b1 = ... = b2n−k−2 = c1 = ... = c2n−k−1 = 0, thus the image
of N2n−k−1 is in K2n−k−1(4n− 2).
Let Q2n−k−1(4n− 2) be the defining ideal of N2n−k−1(4n− 2).
The ideal Q2n−k−1(4n − 2) contains all equations defining N2n−k−1 in H

whose variables are in R, that is to say the ideal

I2n−k−1(4n− 2) = (a1, b1, , ..., bµ2n−k−1(y)−1, c1, ..., cµ2n−k−1k(z)−1,

f(2n−k−1,4n−2k), ..., f(2n−k−1,6n−k−2))

Moreover, cµ2n−k−1(z) and bµ2n−k−1(y) are not in Q2n−k−1(4n − 2). Thus
Q2n−k−1(4n−2) contains the distinguished prime ideal of I2n−k−1(4n−2),
called P2n−k−1(4n− 2).
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Let φi ∈ V (P2n−k−1(4n − 2)) − {c2n−k 6= 0}; we can lift φi to an arc in
N2n−k−1(4n− 2) : we freely choose b2n+l−3+r−1 and ak+l+r−1 and we set

c2n+l−2+r =
1

2c2n−k
(f2n+k − 2c2n−kc2n+l+r)

Then φi ∈ N2n−k−1(4n− 2) and Q2n−k−1(4n− 2) = P2n−k−1(4n− 2).

Finally, as b2n−k−1, c2n−k 6∈ P2n−k−1(4n−2), we get that P2n−k−1(4n−2)
contains (I2n−k−1(4n− 2) : c2n−k

∞) and (I2n−k−1(4n− 2) : b2n−k−1
∞).

Image of N2n−l−1.
Similarly, one has that N2n−l−1(4n − 2) has its generic point on at least
one of the irreducible components of K2n−k−1(4n− 2), but is not equal in
general to the whole component. Let Q2n−l−1(4n− 2) be its defining ideal.
The ideal Q2n−l−1(4n − 2) contains all equations defining N2n−l−1 in H

whose variables live in R4n−2, i.e. the ideal

I2n−l−1(4n− 2) = (a1, b1, , ..., bµ2n−l−1(y)−1, c1, ..., cµ2n−l−1(z)−1,

f(2n−l−1,4n−2l), ..., f(2n−l−1,6n−l−2))

Moreover, cµ2n−l−1(z) and bµ2n−l−1(y) are not in Q2n−l−1(4n − 2). Thus
Q2n−l−1(4n− 2) contains the distinguished prime ideal of I2n−l−1(4n− 2),
called P2n−l−1(4n− 2).
Let φi ∈ V (P2n−l−1(4n − 2)) − {c2n−l 6= 0}; we can lift φi to an arc in
N2n−l−1(4n− 2) by elimination.
In conclusion, Q2n−l−1(4n− 2) = P2n−l−1(4n− 2).

In order to show that N2n−l−1(4n−2) 6⊂ N2n−k−1(4n−2), we have to find
non trivial elements in P2n−k−1(4n− 2) (they will be in (I2n−k−1(4n− 2) :
c2n−k

∞) and (I2n−k−1(4n− 2) : b2n−k−1
∞)), not in P2n−l−1(4n− 2).

5.2. Looking for non trivial elements :
The ideal P2n−v−1(4n− 2) for 1 6 v 6 2n− 2

First of all, notice that the elements c2n−v and b2n−v−1 are not in
P2n−v−1(4n − 2), but they are in the other minimal prime ideals of
I2n−v−1(4n − 2). We deduce that P2n−v−1(i) contains (I2n−v−1(4n − 2) :
c∞2n−v) =

⋃
(I2n−v−1(4n − 2) : cr

2n−v) and the ideal (I2n−v−1(4n − 2) :
b∞2n−v−1) =

⋃
(I2n−v−1(4n − 2) : br

2n−v−1) One can construct elements of
P2n−v−1(4n− 2) in the following way:
We work in R = k[a1, ..., a4n−2, b1, ..., b4n−2, c1, ..., c4n−2]. Note that a2 6= 0
on the generic points of all the families of the principal branch; we can then
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consider a2 as a unit.
Let a2 = α2 and look at the algebraic extension

R

P2n−k−1(4n− 2) ∩ P2n−l−1(4n− 2)
→ R

IP2n−k−1(4n−2)∩P2n−l−1(4n−2)
[α]a2 = S.

In this extension, one can rewrite the equation of the singularity as follows:

z2 − xy2 − x2n−1 = (z −
√

xy)(z +
√

xy)− x2n−1 = 0.

In fact we are looking at the families of the principal branch, that is to say
families with a1 = 0 and a2 6= 0, so :

x(t) = a2t
2 + a3t

3 + ... = α2t2 + a3t
3.... ∈ S[[t]]

and

√
x = αt +

a3

2α
t2 + ... ∈ S[[t]] = αt + α2t

2 + α3t
3...

Let g
(1)
(2n−v−1,j)(α)be the coefficient of tj in (z −

√
xy) and g

(2)
(2n−v−1,j)(α)

be the coefficient of tj in (z +
√

xy). The elements g
(1)
(2n−v−1,j)(α) and

g
(2)
(2n−v−1,j)(α) are conjugate to each other under the involution α → −α.

We have :

f(2n−v−1,4n−2v) = c2
2n−v − a2b

2
2n−v−1

= (c2n−v − αb2n−v−1)(c2n−v + αb2n−v−1).

Consider now the prime ideal P over P2n−v−1(4n− 2) in R
I2n−v−1(4n−2) [α]

such that c2n−v − αb2n−v−1 = 0; then c2n−v + αb2n−v−1 = 2c2n−v.
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We compute z2−xy2−x2n−1 = (z−
√

xy)(z+
√

xy)−x2n−1 for this family
in R

I2n−v−1(4n−2) [α]:

f(2n−v−1,4n−2v) =(c2n−v − αb2n−v−1)2c2n−v =2c2n−vg
(1)
(2n−v−1,2n−v)(α)∈P

f(2n−v−1,4n−2v+1) = 2c2n−vg
(1)
(2n−v−1,2n−v+1)(α)

+ g
(1)
(2n−v−1,2n−v)(α)g(2)

(2n−v−1,2n−v+1)(α) ∈ P
...

f(2n−v−1,4n−3) = 2c2n−vg
(1)
(2n−v−1,2n+v−3)(α)

+ g
(1)
(2n−v−1,2n−v)(α)g(2)

(2n−v−1,2n+v−3)(α) + ...

... + g
(1)
(2n−v−1,2n+v−4)(α)g(2)

(2n−v−1,2n−v+1)(α) ∈ P

f(2n−v−1,4n−2) = 2c2n−vg
(1)
(2n−v−1,2n+v−2)(α)

+ g
(1)
(2n−v−1,2n−v)(α)g(2)

(2n−v−1,2n+v−2)(α) + ...

... + g
(1)
(2n−v−1,2n+v−3)(α)g(2)

(2n−v−1,2n−v+1)(α)− a2n−1
2 ∈ P

and thus
2c2n−vg

(1)
(2n−v−1,2n−v) ∈ P

2c2n−vg
(1)
(2n−v−1,2n−v+1)(α) ∈ P

...
2c2n−vg

(1)
(2n−v−1,2n+v−3)(α) ∈ P

2c2n−vg
(1)
(2n−v−1,2n+v−2)(α)− a2n−1

2 ∈ P.

As 2c2n−v 6∈ P, one has g
(1)
(2n−v−1,j) ∈ P for 2n− v 6 j 6 2n + v − 3.

We can solve the non-inclusions of the principal branch.

5.3. Resolution of the principal branch

Consider K2n−k−1(4n−2) ; let N2n−k−1 and N2n−l−1 be two families such
that l < k (then N2n−k−1 6⊂ N2n−l−1 from the scheme of partial order).
We show that N2n−l−1(4n − 2) 6⊂ N2n−k−1(4n − 2), then we will have
N2n−l−1 6⊂ N2n−k−1.

Suppose that P2n−k−1(4n− 2) ⊂ P2n−l−1(4n− 2).
Let

J = P2n−k−1(4n− 2) ∩ P2n−l−1(4n− 2) = P2n−k−1(4n− 2)
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and consider the algebraic extension S = R
J [α]

a2
of R

J . Let P be the prime

ideal over P2n−k−1(i) in R′
i

J [α]
a2

such that c2n−k − αb2n−k−1 = 0; then
c2n−k + αb2n−k−1 = 2c2n−k. Let Q be a prime ideal over P2n−l−1(4n− 2)
such that

P2n−k−1(4n− 2) ⊂ P2n−l−1(4n− 2) ⊂ R
J

��

∩ ∩

P ⊂ Q ⊂ S

If P2n−k−1(4n− 2) ⊂ P2n−l−1(4n− 2), then

g
(1)
(2n−k−1,2n+l−2) = g

(1)
(2n−l−1,2n+l−2) ∈ Q

because l < k and thus, as 2c2n−lg
(1)
(2n−l−1,2n+l−2)(α)−a2n−1

2 ∈ Q, we have
a2n−1
2 ∈ Q which gives the desired contradiction.

6. The two non-principal branches

The two branches E2n−1 − En − ... − E2n−2 and E2n − En − ... − E2n−2

are symmetric, thus we can restrict ourselves to E2n − En − ... − E2n−2.
The only non-inclusions left to be proved are Nl 6⊂ N2n for all l such that
n 6 l 6 2n− 2.
Let il = 2l + 1.

6.1. The images of the families in H(il)

Let K(il) = {b1 = ... = bn−2 = c1 = ... = cn−1 = 0} ∩H(il). It is the sub-
space of H(il) whose defining ideal I(il) in Ril

=k[a1, ..., ail
, b1..., bil

, c1, ..., cil
]

is generated by the following equations :

f2n−1 = ian−1
1 − bn−1

f2n = c2
n − 2a1bn−1bn − a2b

2
n−1 − (2n− 1)a2n−2

1 a2

f2n+1 = 2cncn+1 − g2n+1(A2n+1, B2n+1)− a2n−3
1 h2n+1(A2n+1)

...

f2l = c2
l + ... + 2cnc2l−n − g2l(A2l, B2l)− a4n−2l−2

1 h2l(A2l)

f2l+1 = 2clcl+1 + ... + 2cnc2l−n+1 − g2l+1(A2l+1, B2l+1)

− a4n−2l−3
1 h2l+1(A2l+1)
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(where Ar = {a1, ..., ar+2−2n} et Br = {bn, ..., br+1−n}, the gi being certain
polynomials in variables Ai and Bi ; the hi being polynomials in Ai and
the f2n+i are the coefficients of t2n+i in f(x(t), y(t), z(t)) = 0 modulo the
ideal (b1, ...bn−2, c1, ..., cn−1)).

Remark. — Alternatively one could work in H(4n− 2) for all l.

We have to find the ideals defining the closure of the sets N2n(il) = ρil
(N2n)

and Nl(il) = ρil
(Nl).

Let Q2n(il) be the defining ideal of N2n(il) and Ql(il) be the defining ideal
of Nl(il). By the same argument as for the families of the principal branches,
we have Q2n(il) = P2n(il) where P2n(il) is the distinguished prime ideal
of I2n(il) and

I2n(il) = (a1, b1, , ..., bµ2n(y)−1, c1, ..., cµ2n(z)−1, f(2n,2n−1), ..., f(2n,2l+n+1)).

We also have that Ql(il) is the distinguished minimal prime ideal of

(a1, b1, , ..., bl−1, c1, ..., cl, f(l,2l), ..., f(l,3l+1)).

Moreover we have, as a1, bn−1, ..., bl−1, cn, ..., cl 6∈ P2n(il), that P2n(il) con-
tains the ideals (I(il) : a1

∞), (I(il) : cr+1
∞) and (I(il) : br

∞) where
r ∈ {n− 1, ..., l − 1}.

In the same way as for the principal branch, we want to construct elements
of Q2n(il), by studying the ideal (I(il) : a1

∞). The extension we find is not
the same as for the principal branch, we need an extension where we are
allowed to divide by a1.

6.2. Looking for non trivial elements

Study of the ideal Q2n(il).
In what follows, we fix an l such that n− 1 6 l 6 m− 1 (we want to show
that Nl(il) 6⊂ N2n(il))
In this section, we show that each equation fj for 2n − 1 6 j 6 2l is in
the integral closure of (ad

1)R (for some d ∈ N depending on j). For each br

and cr, we find the greatest d ∈ N such that br -or cr- are in the integral
closure of (ad

1)R (d ∈ N).
Recall the valuative characterization of the integral closure of an ideal (cf.
[4] and [13], theorem 38):

Definition 6.1. — Let R be a normal noetherian domain, b ∈ R and I

an ideal of R.
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The element b is in the integral closure of I if and only if for every positive
valuation µ over R of rank one, there exists an element x of I such that
µ(x) 6 µ(b).

This characterization motivates the following definition :

Definition 6.2. — Let p and q be two integers.
We say that a

p
q divides b in a normal ring R (or equivalently that b is in

the integral closure of (a
p
q )) if ap divides bq in R.

Notation. —
• in what follows, we will denote "a divides b" by "a/b".
• take J(il) = Ql(il) ∩Q2n(il)

Suppose N l(il) ⊂ N2n(il) ; then J(il) = Q2n(il). Let R̃(il) = R(il)
J(il)

be the

normalization of R(il)
J(il))

; it is a normal domain.
The system generated by the equations (f2n−1, ..., f2l) in R̃(il) is:

f2n−1 = ian−1
1 − bn−1

(6.1)

f2m+1 = −a1b
2
m+

m∑
r=n

C2m+1
r crc2m−r+1−

2m+3−2n∑
r=2

ar

( ∑
u+v+r=2m+1

B2m+1
uv bubv

)

− a1

(
m−1∑

r=n−1

B2m+1
r brb2m−r

)
+ a4n−2m−3

1 g2m+1(A)

(6.2)

f2m+2 = c2
m+1+

m∑
r=n

C2m+2
r crc2m+2−r−

2m+4−2n∑
r=2

ar

( ∑
u+v+r=2m+2

B2m+2
uv bubv

)

− a1

(
m∑

r=n−1

B2m+2
r br−1b2m+2−r

)
+ a4n−2m−4

1 g2m+2(A)

for n−1 6 m 6 l−1 (where Cj
i and Bj

i are constants, A ∈ k[a1, ..., a2l−2n+3]
and the polynomials gs are not divisible by a1).
This system is a system of 2(l − n) + 2 equations with 2(l − n) + 3 un-
knowns a1, bn−1..., bl−1, cn, ..., cl. We want to find positive rational num-
bers βn−1, ..., βl−1, γn, ..., γl ∈ Q so that aβk

1 divides bk and aγr

1 divides cr

in R̃(il).

Definition 6.3. — Let βk = sup{α ∈ Q : aα
1 /bk in R̃(il)} and γk+1 =

sup{α ∈ Q : aα
1 /ck+1 in R̃(il)} for n− 1 6 k 6 l − 1
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Remark. — A priori, βk is in R∪{∞} and so is γk. Below, we will calculate
lower bounds for βk and γk which will be rational numbers.

We prove the following proposition:

Proposition 6.4. — For all k and r such that n− 1 6 k 6 l− 1 < 2n− 3
and n 6 r 6 l < 2n− 2, one has βk > 1 and γr > 1. For k = l− 1 = 2n− 3,
one has βk > 1 and γk+1 > 1.

Remark. — βn−1 = n− 1 by f2n−1 = 0.

Proof. — We define the sequences (βk)s and (γk+1)s recursively in k. These
sequences (βk)s and (γk+1)s will be increasing, converging, with (βk)s 6 βk,
(γk+1)s 6 γk+1 and with limit greater than or equal to 1.

We will use the following trivial lemma :

Lemma 6.5. — Let f = g − h be elements of S. If aα
1 divides h and aα

1

divides f , then aα
1 divides g.

Construction of the sequences.
For k = n− 1, consider :

f2n−1 = ian−1
1 − bn−1

f2n = c2
n − 2a1bn−1bn − a2b

2
n−1 − (2n− 1)a2n−2

1 a2

We already have βn−1 = n − 1. Set (βn−1)s = n − 1 for all s. Moreover,
we have an

1/f2n(= 0) and an
1/2a1bn−1bn − a2b

2
n−1 − (2n− 1)a2n−2

1 a2, thus
an
1/c2

n, i.e. a
n
2
1 /cn : set (γn)s = n

2 . ( for n > 2, we get γn > 1; for n = 2, i.e.
the case D4, k = l − 1, γn > 1).
Let l > k > n − 1. Suppose we have already constructed for all n − 1 6
m 6 k − 1 increasing sequences (βm)s and (γm+1)s which converge to a
limit strictly greater than 1. There exists a positive integer S such that
(βm)S > 1 and (γm+1)S > 1 for all n− 1 6 m 6 k − 1.
Rewrite the equations :

f2m+1 =
∑

wµ+vν+uλ=2m+1

C2m+1
µνλ aµ

wbν
vcλ

u

f2m+2 =
∑

wµ+vν+uλ=2m+2

C2m+2
µνλ aµ

wbν
vcλ

u

where Ci
µνλ are constants.

Define (βk)S = min
{

β−1
2 : β = µ(αw)S + ν(βv)S + λ(γu)S/C2k+1

µνλ 6=
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0 and C2m+1
µνλ 6= C2m+1

120

}
, then (γk+1)S = min

{
γ
2 : γ = µ(αw)S + ν(βv)S +

λ(γu)S/C2k+2
µνλ 6= 0 and C2m+1

µνλ 6= C2m+1
00k+1

}
, with (αw)s = 0 if w 6= 1,

(αw)s = 1 if not.
We can thus define :

Definition 6.6. — Recursively in s, we define (βm)s = min
{

β−1
2 : β =

µ(αw)sw+ν(βv)sv+λ(γu)su/C2m+1
µνλ 6= 0 et C2m+1

µνλ 6= C2m+1
120

}
and (γm+1)s =

min
{

γ
2 : γ = µ(αw)sw +ν(βv)sv +λ(γu)su/C2m+2

µνλ 6= 0 et C2m+1
µνλ 6= C2m+1

00k+1

}
with sx = s− 1 if x > m , sx = s if not.
For all s 6 S, we pose (βk)s = 0 and (γk+1)s = 0

Lemma 8 shows that a
(βm)s

1 divides bm for all s.
The sequences are increasing by construction, thus the limits of (βm)s and
(γm+1)s for all n−1 6 m 6 k−1 are strictly greater than 1 by construction.
It remains to show that the limits for the sequences (βk)s and (γk+1)s are
greater than or equal to 1.
For notational convenience, we set for m > k, (βm)s = 0 and (γm+1)s = 0
(even for m > l) and (βn−1)s = n− 1 .
We write the equations in the following form:
For m such that n 6 m 6 k,

f2n−1 = ian−1
1 − bn−1

(6.3) f2n = c2
n − 2a1bn−1bn − a2b

2
n−1 − (2n− 1)a2n−2

1 a2

(6.4)

f2m+1 = −a1b
2
m +

m∑
r=n

C2m+1
r crc2m−r+1 −

2m+3−2n∑
r=2

ar

( ∑
u+v+r=2m+1

B2m+1
uv bubv

)

− a1

(
m−1∑

r=n−1

B2m+1
r brb2m−r

)
+ a4n−2m−3

1 g2m+1(A)

f2m+2 = c2
m+1 +

m∑
r=n

C2m+2
r crc2m+2−r −

2m+4−2n∑
r=2

ar

( ∑
u+v+r=2m+2

B2m+2
uv bubv

)

− a1

(
m∑

r=n−1

B2m+2
r brb2m+1−r

)
+ a4n−2m−4

1 g2m+2(A)

(6.5)

for n−1 6 k 6 l−1 ( where Cj
i and Bj

i are constants, A ∈ k[a1, ..., a2l−2n+3]
and the polynomials gs are not divisible by a1).
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Then, by definition, we have the following properties:

by (6.3) : (γn)s = min

{
(βn−1)s,

(βn−1)s + (βn)s−1 + 1
2

,
2n− 2

2

}
;

(6.6)
by (6.4) :

(βm)s = min
{

(γm)s + (γm+1)s−1 − 1
2

, ...,
(γn)s + (γ2m−n+1)s−1 − 1

2
,

(βu)su
+ (βv)sv

− 1
2

with u + v + r = 2m + 1 , r > 2,

sw = s− 1 if w > m, sw = s, if not, with w = u, v

(βm−1)s + (βm+1)s−1

2
, ...,

(βn−1)s + (β2m−n+1)s−1

2
,
4n− 2m− 4

2

}
;

(6.7)
by (6.5) :

(γm+1)s = min
{

(γm)s + (γm+2)s−1

2
, ...,

(γn)s + (γ2m+2−n)s−1

2
(βu)su + (βv)sv

2
with u + v + r = 2m + 2r > 2, sw = s− 1

if w > m + 1, sw = s if not, with w = u, v

1 + (βm)s + (βm+1)s−1

2
, ...,

1 + (βn−1)s + (β2m+2−n)s−1

2
,
4n− 2m− 4

2

}
The sequences are bounded above by 4n−2m−4

2 , so they converge. Let
γ̃m+1 = lims(γm+1)s, β̃m = lims(βm)s. One has: γm+1 > γ̃m+1, βm > β̃m.
We compute the minimum of (6.6) and (6.7) for s > S.

a. Equations (6.6) give :

(βm)s 6
(βm−1)s + (βm)s−1 − 1

2
6

(βm−1)s + (βm)s − 1
2

(6.8)

thus (βm)s 6 (βm−1)s − 1, information we inject in (6.7), thus we get :

(γm)s 6
(βm−1)s + (βm)s−1 + 1

2
6 (βm−1)s.(6.9)

Lemma 6.7. — We have :
(6.10)

(βm)s = min
{

(γm)s + (γm+1)s−1 − 1
2

, ...,
(γn)s + (γ2m−n+1)s−1 − 1

2
,

(βm−1)s + (βm+1)s−1

2
, ...,

(βn−1)s + (β2m−n+1)s−1

2
,
4n− 2m− 4

2

}
;
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Proof. — We use the inequalities (6.8) and (6.9) with the fact that the
sequences are increasing.
Let 2 6 r′ < r 6 2m + 3 − 2n, (u′, v′) and (u, v) such that u′ + v′ + r′ =
2m + 1 = u + v + r and u = u′ ; then v′ > v and :

(βu)su
+ (βv)sv

− 1
2

>
(βu)su + (βv′)sv

− 1
2

.

This allows us to eliminate the terms (βu)su+(βv)sv−1
2 for 2m+1 = u+v+r

and r > 2.
It remains to eliminate terms for r = 2 . One has u + v = 2m − 1 ; we
can suppose that n − 1 6 u 6 m − 1 and 2m − n > v > m (so as not to
consider the same monomial twice). Thus we get thanks to inequalities (6.8)
and (6.9):

(βn−1)s + (β2m−n)s−1 − 1
2

>
(γn)s + (γ2m−n+1)s−1 − 1

2
...

(βm−1)s + (βm)s−1 − 1
2

>
(γm)s + (γm+1)s−1 − 1

2
�

Lemma 6.8. — We have (for n 6 m 6 k ):
(6.11)

(γm)s = min
{

(γm−1)s + (γm+1)s−1

2
, ...,

(γn)s + (γ2m−n)s−1

2
,

1 + (βm−1)s + (βm)s−1

2
, ...,

1 + (βn−1)s + (β2m−n)s−1

2
,
4n− 2m− 4

2

}
.

Proof. — As before we have to eliminate terms for r = 2 :
we have u + v = 2m − 2 ; we can suppose n − 1 6 u 6 m − 1 and
2m− n > v > m− 1 (not to consider the same monomial twice). Thus we
get:

(βm−1)s + (βm+1)s−1 > (γm)s + (γm+2)s−1

...
(βn−1)s + (β2m−n+1)s−1 > (γn)s + (γ2m−n+2)s−1

We have to eliminate (βm)s.
For all n− 1 6 m 6 k − 1 we have (βm)s > (βm+1)s + 1, thus

(βm)s >
(βm)s + (βm+1)s−1 + 1

2
.

�
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Lemma 6.9. — For m = k + 1 we obtain :
(6.12)

(γk+1)s =min
{

(γk)s + (γk+2)s−1

2
, ...,

(γn)s + (γ2k+2−n)s−1

2
, (βk)s,

1 + (βk)s + (βk+1)s−1

2
, ...,

1 + (βn−1)s + (β2k+1−n)s−1

2
,
4n− 2k − 4

2

}
.

Proof. — Same proof as before, except that we cannot eliminate the term
(βk)s. �

b. Show by induction on l :

(γm−l)s + (γm+l)s−1

2
6

(γm−l−1)s + (γm+l+1)s−1

2
.

For l = 1:

(γm−1)s + (γm+1)s−1

2
6

(γm−2)s + (γm)s−1 + (γm)s−1 + (γm+2)s−2

4

6
(γm−2)s + (γm+2)s−1

4
+

(γm)s

2

6
(γm−2)s + (γm+2)s−1

4
+

(γm−1)s + (γm+1)s−1

4

So :

(γm−1)s + (γm+1)s−1

4
6

(γm−2)s + (γm+2)s−1

4
.

Let l > 1.

(γm−l−1)s + (γm+l+1)s−1

2

6
(γm−l−2)s + (γm+l)s−1 + (γm+l)s−1 + (γm+l+2)s−2

4
(γm−l−2)s + (γm+l+2)s−1

4
+

(γm+l)s

2
(γm−l−2)s + (γm+l+2)s−1

4
+

(γm−l)s + (γm+l)s−1

4
.

TOME 58 (2008), FASCICULE 7



2272 Camille PLÉNAT

The result follows.
In the same way, one can show that:

(βm−l)s + (βm+l)s−1

2
6

(βm−l−1)s + (βm+l+1)s−1

2
(γm−l)s + (γm+l+1)s−1

2
6

(γm−l−1)s + (γm+l+2)s−1

2
(βm−l)s + (βm+l+1)s−1

2
6

(βm−l−1)s + (βm+l+2)s−1

2
.

c. Moreover, we have that:

(γm)s + (γm+1)s−1 − 1
2

6
(βm−1)s+(βm)s−1−1

2 + (βm)s−1+(βm+1)s−2−1
2 + 1

2

6
(βm−1)s + (βm+1)s−1

4
+

(βm)s

2

6
(βm−1)s + (βm+1)s−1

4
+

(γm)s + (γm+1)s−1 − 1
4

and

(βm−1)s + (βm)s−1 + 1
2

6
(γm−1)s+(γm)s−1+1

2 + (γm)s−1+(γm+1)s−2+1
2 − 1

2

6
(γm−1)s + (γm+1)s−1

4
+

(γm)s

2

6
(γm−1)s + (γm+1)s−1

4
+

(βm−1)s + (βm)s−1 + 1
4

.

d. We also have for n 6 m 6 k:

(βm−1)s + (βm)s−1 + 1
2

6
4n−2m+2−4

2 + 4n−2m−4
2 + 1

2

6
4n− 2m− 2

2
and

(γm)s + (γm+1)s−1 − 1
2

6
4n−2m−2

2 + 4n−2m−4
2 − 1

2

6
4n− 2m− 4

2
.

(6.13)

Finally : for m = k + 1, we have :

(γk+1)s = min
{

(βk)s + 1
2

, (βk)s,
4n− 2k − 4

2

}
= min

{
(βk)s + 1

2
, (βk)s

}
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and for n 6 m 6 k

(γm)s =
(βm−1)s + (βm)s−1 + 1

2

(βm)s =
(γm)s + (γm+1)s−1 − 1

2
.

Lemma 6.10. — We have β̃k > 1

Proof. — Suppose that β̃k < 1 (then (γk+1)s = (βk)s).
Taking the limits as s goes to infinity, we obtain the following system of
equations :

γ̃m =
β̃m−1 + β̃m + 1

2

β̃m =
γ̃m + γ̃m+1 − 1

2
γ̃k+1 = β̃k.

Solving the system, we obtain :

β̃k =
2n− 2− k

2k − 2n + 3
+

(2k − 2n + 2)β̃k

2k − 2n + 3
.

Then :

β̃k = 2n− 2− k > 1 for k < 2n− 3

β̃k = 2n− 2− k = 1 for k = 2n− 3.

Contradiction. �

Then for all n− 1 6 m 6 k and n 6 r 6 k +1, one has βm > 1 and γr > 1.
Passing to the limit as s goes to infinity, obtain the following system :

γ̃m =
β̃m−1 + β̃m + 1

2

β̃m =
γ̃m + γ̃m+1 − 1

2

γ̃k+1 =
β̃k + 1

2
.

We find :
β̃k =

n− 1
k − n + 2

;

β̃m = (k −m + 1)β̃k

γ̃m = γ̃k+1 + (k −m + 1)β̃k =
2k − 2m + 3

2
β̃k +

1
2
.

�
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Thus βk > 1 and γk+1 > 1 for all k and l such that k 6 l− 1 < 2n− 3 and
for k = l − 1 = 2n− 3, one has βk > 1 and γk+1 > 1.
Therefore we have

• for l − 1 < 2n− 3, for all n− 1 6 k 6 l − 1 : βk > 1 and γk+1 > 1.
• For l − 1 = 2n − 3: βl−1 > 1, γl > 1 and for all n − 1 6 k < l − 1

one has βk > 1 and γk+1 > 1.

Let us fix l such that n− 1 6 l 6 2n− 2.
Let n − 1 6 m 6 l − 1. We have shown that for all pairs of integers (p, q)
such that p

q < β̃m = pm

qm
, for all positive valuations µ of rank 1, we have :

µ(ap
1) 6 µ(bq

m)

in R′(il)
J(il)

.
Thus we have :

µ(apm

1 ) 6 µ(bqm
m ).

for all valuations µ of rank one 1.
Indeed, if not, there exists a valuation ν such that

ν(apm

1 ) > ν(bqm
m )

Then there exist two positive integers p and q such that p
q > 1 and ν(apm

1 ) >
p
q ν(bqm

m ), i.e. ν(apmq
1 ) > ν(bqmp

m ). Contradiction.
We can define the following finite algebraic extension

R(il)
J(il))

→ R(il)
J(il))

= S.

Note that the fractions bn−1
a1n−1 , bn

a1β̃n
, ..., bl−1

a1
β̃l−1

, cn

a1γ̃n , ..., cl

a1
γ̃l

are in S.

6.3. Proof for the non-principal branches

We look at the branch E2n −En − ...−E2n−2 (the proof for the other one
being symmetrical)
The notations are the same as in section 6.2
Truncate at the order il = 2l + 1.

Proposition 6.11. — For all n 6 l 6 2n− 2 , one has N l(il) 6⊂ N2n(il).

Proof. — Consider the extension : Ril

J(il)
→ S. Let P ⊂ S be the prime ideal

over P2n(il) and Q be the prime ideal over Pl(il). (We suppose P ⊂ Q).
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For n 6 l < 2n − 2, consider f2l+1
a1

in S. We have f2l+1
a1

∈ P (because
f2l+1 ∈ P2n(il), a1

f2l+1
a1

= f2l+1 and a1 6∈ P2n(il)). But f2l+1
a1

− bl
2 ∈ Q and

bl 6∈ Q . Contradiction.
Suppose l = 2n− 2. We still suppose that P2n(i2n−2) ⊂ Q2n−2(i2n−2). Let
J = P2n(i2n−2) ∩ Q2n−2(i2n−2). Let c′r = cr

a2n−r−1
1

and b′r1 = br−1

a2n−r−2
1

for
n 6 r 6 2n− 2. Let S be the birational extension obtained by adding the
elements c′r and b′r−1 (n 6 r 6 2n − 2) (It is, as we have just shown,
contained in the normalization of the ring R(i2n−2)

J ).
Let P andQ be prime ideals over P2n(i2n−2) andQ2n−2(i2n−2) respectively
in the extension S.
Let h′m = f2n,m

a4n−2−m
1

for 2n − 1 6 m 6 4n − 3 and hm = h′m modulo the
ideal Q (to obtain hm one sets the coefficients a1, bn−1, ...b2n−3, cn, ...c2n−2

be zero in (h′m)).
By construction, the equations hm for 2n− 1 6 m 6 4n− 3 live in

A = k[a2, b
′
n, ..., b′2n−3, b2n−2, c

′
n, ..., c′2n−2, c2n−1]

(we have replaced b′n−1 by i and we are not considering anymore the equa-
tion f2n,2n−1 = 0).
We also have f2n−2,4n−2 ∈ A. There exists a natural homomorphism φ

from A to S
Q .

Let P be the ideal in S
Q generated by all relations satisfied by b′r, c′r and

a2, c2n−1, b2n−2; it contains in particular the ideal generated by
(hm)m=2n,...,4n−3 and f2n,4n−2.
Let P” = ker(φ) be the inverse image of P in A. Then we have the following
commutative diagram:

R
J

//

��

S

��
R

Q2n−2(i2n−2)
// S
Q

k[a2, b2n−2]
f1 // k[a2,b2n−2,c2n−1]

(f2n,4n−2)

OO

f2 // A
P”

OO

Proposition 6.12. — We have that A
P” is finite over k[a2, b2n−2].

Proof. — We already have that k[a2,b2n−2,c2n−1]
(f2n,4n−2)

is finite over k[a2, b2n−2].
The finiteness of the second arrow f2 comes from the following :
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Consider the equations

(f ′2n−2,m) = (f2n−2,m)mod(a3, ..., a4n−3, b2n−1, ..., b4n−3, c2n, ..., c4n−3)

for 2n 6 m 6 4n − 3 in k[a1, a2, b1, ..., b2n−2, c1, ..., c2n−1] ; these equa-
tions allow us to show that ck

a
γk
1

and bk−1

a
βk−1
1

are in the normalization of
k[a1,a2,b1,...,b2n−21,c1,...,c2n−1]

(f ′2n−2,m)m=2n,...,4n−3
and that γk = 2n− k − 1 and βk = 2n− k − 2

in the same way as we show that S is an algebraic extension of R
J (cf.

3.2.2) . Denote by S′ the algebraic extension of k[a1,a2,b1,...,b2n−21,c1,...,c2n−1]
(f ′2n−2,m)m=2n,...,4n−3

obtained by adding to it the elements c′r = cr

a2n−r−1
1

and b′r−1 = br−1

a2n−r−2
1

for n 6 r 6 2n− 2.
We get the following commutative diagram:

k[a1,a2,b1,...,b2n−2,c1,...,c2n−1]
((f ′2n−2,m)m=2n,...,4n−3,f2n,4n−2)

//

��

S′

��
k[a2,b2n−2,c2n−1]

(f2n,4n−2)

f2 // A
P”

Then the first horizontal arrow is finite by definition and then so is f2. �

Thus, there exists an ideal M over (a2, b2n−2 − 1) in A
P” . This maximal

ideal does not contain h4n−3 by definition, which implies that P” does not
contain h4n−3 either. This is false by definition of P”. �

7. Comments

The proof developed above works for the singularities D2n. For the sin-
gularities D2n+1, the proof is almost the same : first we use the valuative
criterion with the functions x, y, z , z+ixn and z−ixn. It gives the following
scheme:

E1−E2−

E2n

En−En+1− En−1

En+1

(where E2n and E2n+1 are the two symmetric exceptional curves).
As for D2n it remains to solve two series of non-inclusions (the principal
branch and the two symmetrical branches). The resolution of the principal
branch works exactly as for D2n, because a2 6= 0 for all the families of this
branch. The resolution for the non-principal branches is slightly different:
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the first equation of the arcs corresponding to (for example) E2n+1 is cn−
ian

1 = 0. Thus we still construct an extension where it is allowed “to divide
by a1”, but the roles played by cr and bm are exchanged.

The method seems to work for the three rational points left.

BIBLIOGRAPHY

[1] M. Artin, “On isolated rational singularities of surfaces”, Amer. J. Math. 88 (1966),
p. 129-136.

[2] C. Bouvier, “Diviseurs essentiels, composantes essentielles des variétés toriques
singulières”, Duke Math. J. 91 (1998), p. 609-620.

[3] C. Bouvier & G. Gonzales-Sprinberg, “Système générateur minimal, diviseurs
essentiels et G-désingularisations de varitétés toriques”, Tohoku Math. J. 47 (1995),
p. 125-149.

[4] D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry, Grad-
uate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.

[5] J. Fernandez-Sanchez, “Equivalence of the Nash conjecture for primitive and
sandwiched singularities”, Proc. Amer. Math. Soc. 133 (2005), p. 677-679.

[6] S. Ishii, “Arcs, valuations and the Nash map”, arXiv: math.AG/0410526.
[7] ——— , “The local Nash problem on arc families of singularities”, arXiv:

math.AG/0507530.
[8] S. Ishii & J. Kollár, “The Nash problem on arc families of singularities”, Duke

Math. J. 120, 3 (2003), p. 601-620.
[9] M. Lejeune–Jalabert, “Arcs analytiques et résolution minimale des singularités

des surfaces quasi-homogènes”, in Séminaire sur les Singularités des Surfaces, Lec-
ture Notes in Math., vol. 777, Springer-Verlag, 1980, p. 303-336.

[10] ——— , “Désingularisation explicite des surfaces quasi-homogènes dans C3”, Nova
Acta Leopoldina NF 52, Nr 240 (1981), p. 139-160.

[11] ——— , “Courbes tracées sur un germe d’hypersurface”, Amer. J. Math. 112
(1990), p. 525-568.

[12] M. Lejeune–Jalabert & A. Reguera, “Arcs and wedges on sandwiched surface
singularities”, Amer. J. Math. 121 (1999), p. 1191-1213.

[13] H. Matsumura, Commutative ring theory. Translated from the Japanese by M.
Reid, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University
Press, Cambridge, 1986.

[14] J. F. J. Nash, “Arc structure of singularities”, A celebration of John F. Nash, Jr.
Duke Math. J. 81, 1 (1995), p. 31-38.

[15] C. Plénat, “A propos du problème des arcs de Nash”, Annales de l’Institut Fourier
55 (2005), no. 3, p. 805-823.

[16] ——— , “Résolution du problème des arcs de Nash pour les points doubles rationnels
Dn (n > 4).”, Note C.R.A.S, Série I 340 (2005), p. 747-750.

[17] C. Plénat & P. Popescu-Pampu, “A class of non-rational surface singularities for
which the Nash map is bĳective”, Bulletin de la SMF 134 (2006), no. 3, p. 383-394.

[18] A. Reguera, “Families of arcs on rational surface singularities”, Manuscripta Math
88, 3 (1995), p. 321-333.

[19] ——— , “Image of the Nash map in terms of wedges”, C. R. Acad. Sci. Paris, Ser.
I 338 (2004), p. 385-390.

TOME 58 (2008), FASCICULE 7



2278 Camille PLÉNAT

Manuscrit reçu le 13 septembre 2007,
accepté le 11 janvier 2008.

Camille PLÉNAT
Université de Provence
LATP UMR 6632
Centre de Mathématiques et Informatique
39 rue Joliot-Curie
13453 Marseille cedex 13 (France)
plenat@cmi.univ-mrs.fr

ANNALES DE L’INSTITUT FOURIER

mailto:plenat@cmi.univ-mrs.fr

	 1.Introduction
	 2.Step one
	 2.1.The rational double points D2n
	 2.2.Step One

	 3.Second step: algebraic reformulation
	 4.General study of the k-jet scheme H(k)
	 4.1.The principal lemma
	 4.2.Application to the space of k-jets of a quasi-homogeneous hyper-surface singularity

	 5.The principal branch
	 5.1.The images of the families of arcs in H(4n-2)
	 5.2.Looking for non trivial elements : The ideal P2n-v-1(4n-2) for 1 v 2n-2
	 5.3.Resolution of the principal branch

	 6.The two non-principal branches
	 6.1.The images of the families in H(il)
	 6.2.Looking for non trivial elements
	 6.3.Proof for the non-principal branches

	 7.Comments
	Bibliography

