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DIFFERENTIAL EQUATIONS ASSOCIATED TO
FAMILIES OF ALGEBRAIC CYCLES

by Pedro Luis DEL ANGEL & Stefan MÜLLER-STACH

Dedicated to Sevin Recillas

Abstract. — We develop a theory of differential equations associated to fam-
ilies of algebraic cycles in higher Chow groups (i.e., motivic cohomology groups).
This formalism is related to inhomogenous Picard–Fuchs type differential equa-
tions. For a families of K3 surfaces the corresponding non–linear ODE turns out
to be similar to Chazy’s equation.

Résumé. — Nous développons une théorie d’équations associées aux familles
de cycles algébriques dans des groupes de Chow supérieurs. Ce formalisme est lié
au type inhomogène d’équations de Picard-Fuchs. Pour les familles de surfaces K3
l’équation différentielle ordinaire non-linéaire est semblable à l’équation de Chazy.

1. Introduction

Around 1900 R. Fuchs [9] discovered a connection between non–linear
second order ODE of type Painlevé VI [16] and integrals of holomorphic
forms over non–closed paths on the Legendre family of elliptic curves. Dur-
ing the whole 20th century the Painlevé VI equation has played a promi-
nent role in mathematics and physics, see [20]. About 100 years later,
Y.I. Manin [13] found a framework in which inhomogenous Picard–Fuchs
µ–equations and non–linear equations of type Painlevé VI can be connected
to mathematical physics and the theory of integrable systems. Inspired by
his work and the earlier work of Griffiths [10] and Stiller [19] about differen-
tial equations satisfied by normal functions, the authors [7] have looked at
inhomogenous equations in the case of the higher Chow group CH2(X, 1)
of K3 surfaces.

Keywords: Higher Chow group, Picard-Fuchs operator, normal function, differential
equation.
Math. classification: 14C25, 19E20.
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In this paper we study differential equations arising from families of
algebraic cycles in higher Chow groups CHp(Y, n) of projective manifolds
Y with 2p − n − 1 = dim(Y ) = d. Our goal is to develop a theory of
differential equations associated to each family Z/B of cycles in higher
Chow groups over a quasi–projective base variety B. In [7] we suggested
to use any Picard–Fuchs operator D of the local system underlying the
smooth family

f : X −→ B

and the new invariants are given by the assignment

Z/B 7→ g(t) := DνZ/B(ω),

where νZ/B is the normal function associated to the family Z/B and ω a
relative smooth d–form. In particular the function g(t) depends on ω and
the choice of Picard–Fuchs operator D. This construction can be used in
the following way: If we want to prove that a family of cycles is non–trivial,
i.e., its Abel–Jacobi image is non–zero modulo torsion then it is sufficient
to show that g(t) = DνZ/B(ω) is not zero for some choice of ω [7].

In section 3 we discuss the differential equations satisfied by admissible
normal functions using Picard–Fuchs operators. This gives us the possibility
to investigate the relation between the field of definition of Z and the
coefficients of g in section 4. We restrict ourselves to the case of varieties
with trivial canonical bundle, where the choice of ω is unique up to an
invertible function on the base. However this restriction is not necessary, in
the general case we will obtain a vector valued invariant. We prove under
these assumptions:

Theorem 1.1. — If, under these assumptions, Z and ωX/B are defined
over an algebraically closed field K ⊃ Q, then D and g(t) have coefficients
in K and g(t) is an algebraic function of t.

The differential equation

DνZ/B(ω) = g(t)

for νZ/B thus contains in general some interesting information about the
cycle Z, provided that the monodromy and the cycle under consideration is
non–trivial. In particular if the set of singularities (i.e., poles and algebraic
branch points) of g are fixed then there is only a countable set of possibilities
for the coefficients.

In section 5 we recall the case of dimension 1, where this inhomoge-
nous equation is related to the Painlevé VI equation, a second order ODE
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having the Painlevé property, i.e., no movable branch points and essential
singularities. In dimension 2 the inhomogenous equation is of the form

D
∫ b(λ(t))

a(λ(t))

dx

∫ d(x,λ(t))

c(x,λ(t))

F (x, y, λ(t))dy = g(t),

with algebraic functions a, b, c, d. The resulting non–linear ODE is – after
some substitutions – of the form

λ′′′(t) = A(λ) + B(λ)λ′λ′′ + C(λ)(λ′)3.

This equation is a variant of Chazy’s equation [6, page 319], a third order
ODE with the Painlevé property.

In the study of isomonodromic deformations such PDE also arise, see [4].
In future work we will come back to the Painlevé property in our setup.

2. Cycle class maps from higher Chow groups
to Deligne cohomology

Higher Chow groups [2] can be defined using the algebraic n–cube

�n = (P1
F \ {1})n.

The n–cube has 2n codimension one faces, defined by xi = 0 and xi = ∞,
for 1 6 i 6 n, and the boundary maps are given by

∂ =
n∑

i=1

(−1)i−1(∂0
i − ∂∞i ),

where ∂0
i and ∂∞i denote the restriction maps to the faces xi = 0 and

xi = ∞. Then Zp
c (X, n) is defined to be the quotient of the group of

admissible cycles in X ×�n by the group of degenerate cycles, see [2]. We
use the notation CHp(X, n) for the n–homology of the complex Zp

c (X, ·).
There are cycle class maps

cp,n : CHp(X, n) −→ H2p−n
D (X, Z(p))

constructed by Bloch in [3] using Deligne cohomology [5] with supports
and a spectral sequence construction. They can be realized explicitly by
Abel–Jacobi type integrals if X is a complex, projective manifold [11]. If
we restrict to cycles homologous to zero, then we obtain Abel–Jacobi type
maps

cp,n : CHp(X, n)hom −→ Jp,n(X) =
H2p−n−1(X, C)

F p + H2p−n−1(X, Z)
,

TOME 58 (2008), FASCICULE 6
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where Jp,n(X) are generalized intermediate Jacobians [11]. These are com-
plex manifolds and vary holomorphically in families like Griffiths’ interme-
diate Jacobians [5].

3. Differential Equations associated to families of
algebraic cycles

In this section we study differential equations arising from families of
algebraic cycles. Assume that we are in the following setup:

Let f : X → B a smooth, projective family of manifolds with trivial
canonical bundle (e.g., Calabi–Yau) of relative dimension d = 2p − n − 1
over a smooth, quasi–projective curve B with compactification B. Assume
that f is defined over an algebraically closed field K ⊆ C.

We fix a base point o ∈ B and a local parameter t around o with t ∈
K(B), the function field of B, so that dt is a basis of Ω1

B,o and ∂
∂t the

corresponding vector field. Let H be the local system associated to the
primitive part of Rdf∗C. Its stalks consist of cohomology groups Hd

pr(Xt, C)
for t ∈ B. We assume that H has an irreducible monodromy representation
with unipotent local behaviour around each point at infinity. Denote by
H the holomorphic vector bundle with sheaf of sections H = H ⊗ OB

and Gauß–Manin connection ∇. The Hodge pairing is denoted by 〈−,−〉 :
H ⊗ H → OB . Together with the Hodge filtration F • this data defines a
polarized VHS on B.

We choose a non–zero holomorphic section ω ∈ H0(B,F dH) and denote
by

DPF =
dm

dtm
+ am−1(t)

dm−1

dtm−1
+ · · ·+ a0(t)

the Picard–Fuchs operator corresponding to H in the local basis ω, ∇tω,
..., ∇m

t ω with rational functions ai(t).
Assume furthermore that we have a cycle Z ∈ CHp(X, n) such that

each restriction Zt := Z|Xt ∈ CHp
hom(Xt, n) is a well–defined cycle, in

other words we have a single–valued family of algebraic cycles over B. This
implies that we have a well–defined normal function

ν ∈ H0(B,J p,n), ν(t) := cp,n(Zt),

i.e., a holomorphic cross section of the bundle J p,n of generalized interme-
diate Jacobians. Locally on B near the point o in the analytic topology we
may choose a lifting ν̃ of ν as a holomorphic cross section of H/F p or of H
using identical notation.

ANNALES DE L’INSTITUT FOURIER
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Any cycle Zt ∈ CHp
hom(Xt, n) defines a extension of two pure Hodge

structures [11]

0 → Hd
pr(Xt) → Et → Z(−p) → 0.

For each t the extension class of this sequence in the category of mixed
Hodge structures is the Abel–Jacobi map of Zt in Jp,n(Xt) [11]. For varying
t, Et defines a local system E over B which is an extension of H by a trivial
local system of rank one. E = E⊗OB carries a holomorphic flat connection
∇̃ extending ∇ and a filtration F • by subbundles extending the one on H.
Let Ê be the Deligne extension [8] of E to B̄. For technical reasons we will
assume that ν is admissible, i.e., the extension of MHS above is admissible
in the sense of M. Saito [17]. This means in particular (see loc. cit.):

• The Hodge filtration F • on E extends to the Deligne extension Ê
with locally free graded quotients,

• The relative monodromy weight filtration extends.

We will use the first property in an essential way, which implies that ν has
moderate growth at infinity as we will see in the proof. The admissibility
condition is always satisfied in the geometric case when n = 0 by Steenbrink
and Zucker [18, sect. 3]. In general for n > 1 it is not well–understood.
However extendable normal functions in the sense of M. Saito are admissible
by [17, Prop.2.4].

Since Et is an extension by a pure Hodge structure Z(−p) of type (p, p),
we have

E/F p = H/F p.

After further lifting, we can view ν̃ by abuse of notation as a multivalued
holomorphic section of either E or H. In each case it is well–defined modulo
F p only. It is not a flat section for ∇ unless the cycle has trivial Abel–Jacobi
invariant.

Definition 3.1. — The truncated normal function ν̄ is defined as ν̄ :=
〈ν̃, ω〉.

Formulas for ν̄ are given in [11] using so–called membrane integrals. Note
that ν̄ does not depend on the lifting ν̃ if p > 1, since the holomorphic d–
form ω has only non–zero Hodge pairing with (0, d)–classes which are never
contained in F p.

Theorem 3.2. — Let ν be an admissible higher normal function as
above. Then ν̄ is a multivalued function on B. Furthermore we haveDPFν̄ =

TOME 58 (2008), FASCICULE 6
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g(t) for some single–valued holomorphic function g(t) on B. The Picard–
Fuchs equation for ν̄ is homogenous:(

d

dt
− g′(t)

g(t)

)
· DPFν̄ = 0.

In particular, the holomorphic function g(t) extends to a rational function
on B.

Proof. — First we show that ν̃ can be chosen flat when considered as a
section of (E , ∇̃). We use Carlson’s extension theory of Hodge structures
which in our case says that the extension class of the sequence

0 → Hd
pr(Xt) → Et → Z(−p) → 0

in the category MHS is given (up to a sign) by an integral lifting sZ of
1 ∈ Z(−p) [11]. The Abel–Jacobi invariant is then obtained by projecting
sZ into

Jp,n(Xt) =
Hd

pr(Xt, C)
F p + Hd

pr(Xt, Z)
=

Et(C)
F p + Et(Z)

.

We use that ν̃ is defined as a current of integration defined in [11]. In the
classical situation, i.e., n = 0 it is given by the current α 7→

∫
Γt

α, which
is dual to a relative homology class of Γt in Hd(Xt, |Zt|, Z). More formally,
one has the long exact sequence

H2p−1(Xt \ |Zt|, Z) → H2p
|Zt|(Xt, Z) → H2p(Xt, Z).

Since Zt is homologous to zero, its fundamental class in H2p
|Zt|(Xt, Z) can

be non–uniquely lifted to a class sZ in H2p−1(Xt \ |Zt|, Z). sZ is unique
up to elements in H2p−1(Xt, Z) which however vanish in the intermediate
Jacobian and represents therefore ν̃ up to the choices in F p +H2p−1(Xt, Z)
by Carlson’s theory. This proves the assertion, since integral classes are
always flat.

In the case n > 1 the argument is similar. The support |Zt| is a subset of
X×�n. The mixed Hodge structure associated to Et is a subquotient of the
relative cohomology group H2p−1(Ut, ∂Ut), where Ut := X ×�n \ |Zt| and
∂Ut := Ut∩∂�n. One has then an exact sequence with integral coefficients
[11, (6.1)]

0 → Hd(Xt) → H2p−1(Ut, ∂Ut) → ker(β) → H2p−n(Xt),

where β is the map

β : H2p
|Zt|(Xt ×�n)◦ → H2p

∂|Zt|(Xt × ∂�n)◦.

ANNALES DE L’INSTITUT FOURIER
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The symbol ◦ stands for the kernel of the map forgetting supports. For any
[Zt] ∈ ker(β) we obtain an extension

0 → Hd
pr(Xt) → Et → Z(−p) → 0

as a subquotient. As in the case n = 0 we conclude that we can lift the
fundamental class [Zt] to an integral class sZ which coincides with ν̃ up to
the choices in F p + Hd(Xt, Z). Flatness follows again from integrality.

Now, since ν̃ becomes flat as a section of (E , ∇̃), this then implies that
ν̄ is a multi–valued solution of the homogenous Picard–Fuchs equation
associated to (E , ∇̃) [12, Prop 8.1.4]. Since ν̄ satisfies the inhomogenous
Picard–Fuchs equation DPF = g(t), it is a solution of(

d

dt
− g′(t)

g(t)

)
· DPFν̄ = 0.

Therefore this equation must be the homogenous Picard–Fuchs equation
associated to (E , ∇̃). Since E is of algebraic origin and admissible, we deduce
in addition that g(t) is a rational function of t as in the proof of [19,
Prop. 3.18]. �

Remark 3.3. — The same trick also shows that any admissible normal
function in our setup is a G–function in the sense of Siegel and Andre, see
[1].

4. Applications to algebraic cycles

Let f : X → B be a smooth, projective family of projective manifolds
with trivial canonical bundle (e.g., Calabi–Yau) of dimension d = 2p−n−1
over a smooth, quasi–projective curve B with projective compactification
B. As in the previous section we are given a single–valued family of cycles
Zt ∈ CHp(Xt, n) inducing a well–defined normal function

ν ∈ H0(B,J p,n), ν(t) := cp,n(Zt).

We also use the same notations for the irreducible local system H of prim-
itive cohomology and assume that its has unipotent local monodromies at
infinity. Let DPF be a Picard–Fuchs operator for this family after a choice
of ω ∈ H0(B,F dH).

Assume in addition that f : X → B and the cycle Z are defined over Q
or – more generally – over any algebraically closed extension field K ⊇ Q.
Such a situation can for example be achieved by spreading out a cycle on
a generic fiber Xη over the field obtained by the compositum of its field

TOME 58 (2008), FASCICULE 6
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of definition and the function field of η. In other words all transcendental
elements in the equations of Xη and Z occur in the coordinates of B. Then
there is a canonical choice of a relative holomorphic d–form ω defined over
Q. In our case, where B is a curve, such a situation is only possible if the
transcendance degree of K over Q is 6 1.

The following theorem leads us to expect that normal functions of cycles
defined over K with a fixed set of critical points (i.e., poles) form at most
a countable set.

Theorem 4.1. — The rational function g has all its coefficients in K

under these assumption.

Proof. — Since Z and X are defined over K, the cohomology class of Z in
F pH2p−n

dR (X) and the extension data of VMHS in the proof of Theorem 3.2
are defined over K. Hence the Gauß–Manin connection and the Picard–
Fuchs operator have coefficients in K as well. Theorem 3.2 implies that g

is a rational function with coefficients in K. �

Remark 4.2. — Our proof can be generalized to a higher dimensional
base variety B. Then the occurring Picard–Fuchs systems will define in
general a non–principal ideal of partial differential operators. We may then
assume that the transcendance degree of K is as large as dim(B). As above
we can only expect single–valuedness and unipotency after a finite base–
change. Therefore ν will in general be an algebraic function over B. Manin’s
example in [13] already involves a square root. Finally we want to remark
that the normal functions are not necessarily uniquely determined by these
differential equations since there may be a non–trivial monodromy invariant
part of the cohomology.

5. Examples

In this section we give examples in dimensions 1 and 2 and relate them
to classical non–linear ODE. For dimension 1, consider a section

t 7→ (X(t), Y (t))

of the Legendre family, written as

y2 = x(x− 1)(x− t), t ∈ P1 \ {0, 1,∞}

in affine coordinates. The corresponding inhomogenous Picard–Fuchs dif-
ferential equation can be written as

D
∫ X(t)

∞

dx

y
= g(t)

ANNALES DE L’INSTITUT FOURIER
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for a rational or algebraic function g(t), where

D = t(1− t)
d2

dt2
+ (1− 2t)

d

dt
− 1

4
.

Richard Fuchs [9] looked at a 4–parameter set of such equations of the form

t(1− t)D
∫ X(t)

∞

dx

y
= Y (t)

[
α + β

t

X(t)2
+ γ

(t− 1)
(X(t)− 1)2

+(δ − 1
2
)

t(t− 1)
(X(t)− t)2

]
with α, β, γ, δ ∈ C. Furthermore every solution of this equation is also a
solution of the non–linear equation Painlevé VI and vice versa:

PV I :
d2X

dt2
=

1
2

(
1
X

+
1

X − 1
+

1
X − t

) (
dX

dt

)2

−
(

1
t

+
1

t− 1
+

1
X − t

)
dX

dt

+
X(X − 1)(X − t)

t2(t− 1)2

[
α+β

t

X2
+γ

t− 1
(X − 1)2

+ δ
t(t− 1)
(X − t)2

]
.

This last equation PV I has the Painlevé property, i.e., the absence of
movable essential singularities and branch points in the set of solutions.

For dimension 2 this correspondence can be generalized: Consider a fam-
ily of K3–surfaces Xt over B = P1 where the general fiber has Picard
number 19. Such families were considered in [15, sect. 6.2.1] and [7]. In this
case the Picard–Fuchs operator has order 3 and we assume that the cycles
consist of two irreducible components. In example [15, sect. 6.2.1] the com-
ponents are a line and an elliptic curve. The truncated normal function ν̄

can then always be written as an integral

ν̄(t) =
∫ b(λ(t))

a(λ(t))

dx

∫ d(x,λ(t))

c(x,λ(t))

F (x, y, λ(t))dy,

where a, b, c, d are algebraic functions of two variables. Here F (x, y, λ(t))
dxdy is the local expression for a chosen family of relative holomorphic 2–
forms. Assuming λ(t) is locally biholomorphic we can write F as a function
of λ(t) instead of t. Using the same substitution for all coefficient functions
of the Picard–Fuchs operator, which is of order 3 here, we get a non–linear
third order ODE of the form

λ′′′(t) = A(λ) + B(λ)λ′λ′′ + C(λ)(λ′)3,

which is similar to Chazy’s equation [6, page 319]. Non–linear ODE/PDE
having the Painlevé property like Chazy’s equation are related to the work
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of Hitchin and Boalch [4], where non–linear PDE occur in the theory of
isomonodromic deformations.

Examples in dimension 3 related to string theory were worked out by
Morrison and Walcher [14].

Acknowledgement: We thank S. Bloch, H. Esnault, M. Green, Ph. Grif-
fiths, Y.I. Manin, Jan Nagel, D. van Straten and J. Walcher for several
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