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SOME ADDITIVE APPLICATIONS
OF THE ISOPERIMETRIC APPROACH

by Yahya O. HAMIDOUNE

ABSTRACT. — Let G be a group and let X be a finite subset. The isoperimetric
method investigates the objective function [(XB) \ X|, defined on the subsets X
with |X| > k and |G \ (XB)| > k, where X B is the product of X by B.

In this paper we present all the basic facts about the isoperimetric method. We
improve some of our previous results and obtain generalizations and short proofs
for several known results. We also give some new applications.

Some of the results obtained here will be used in coming papers to improve
Kempermann structure Theory.

RESUME. — Soient G un groupe et X un sous-ensemble fini de G. La méthode
isopérimétrique étudie la fonction objective |(X B) \ X|, définie sur les parties X
telles que | X| > k et |G\ (X B)| > k, o X B est le produit de X par B. Les inégalités
additives découlent de la structure des ensembles ou cette fonction atteint sa valeur
minimale.

Nous présentons dans ce mémoire les bases de cette méthode et certaines de ses
applications. Nous obtenons quelques nouveaux résultats et des courtes preuves de
résultats connus.

Certains des résultats obtenus dans ce travail seront appliqués dans un futur
mémoire afin d’améliorer les théorémes de structure de Kempermann.

1. Introduction

The starting point of set product estimation is the inequality |AB| >
min(|G|, |A| +|B| — 1), where A, B are nonempty subsets of a group with a
prime order, proved by Cauchy [4] and rediscovered by Davenport [6]. Some
of the generalizations of this result are due to Chowla [5], Shepherdson [52],
Mann [37] and Kemperman [33].

Kneser’s generalization of the Cauchy-Davenport Theorem is a basic tool
in Additive Number Theory:

Keywords: Addition theorem, Cayley graph, inverse additive theory.
Math. classification: 05C25,20D60,11B75,05C40.



2008 Yahya O. HAMIDOUNE

THEOREM 1.1 (Kneser [35]). — Let G be an abelian group and let
A, B C G be finite nonempty subsets such that AB is aperiodic. Then
AB| > |Al + |B| - 1.

In [35] Kneser gives hints for the proof of his theorem. A continuous
generalization of this result is proved by Kneser in [36]. Other proofs of
Kneser’s Theorem may be found in [38, 40, 54]. Among the numerous ap-
plications of Kneser’s Theorem, we mention a result of Dixmier on the
Frobenius problem [10]. Several attempts were made to generalize Kneser’s
Theorem to non-abelian groups. The first result in this direction is due to
Diderrich:

THEOREM 1.2 (Diderrich [8]). — Let G be a group and let A, B C G be
finite subsets such that AB is not the union of left cosets. Assume moreover
that the elements of B commute. Then |AB| > |A| + |B| — 1.

It was observed in [19] that this generalization is equivalent to Kneser’s
Theorem, cf. Corollary 6.5. More investigations and some examples, show-
ing that the natural extension to the non-abelian case fails to hold, can be
found in Olson [45].

The critical pair Theory is the description of the subsets A, B with
|AB| = |A|+|B| —1. Vosper’s Theorem [56, 55] states that in a group with
a prime order |[AB| = |A|+|B|—1 < |G| —2 holds if and only if A and B are
progressions with the same ratio, where min(|A|, |B|) > 2. Other proofs of
Vosper’s Theorem may be found in [38, 40, 54]. More recently the authors
of [26] obtained a description of sets A, B with |AB| = |A|+ |B| < |G| — 4,
if |G| is a prime.

The last result was applied to sum-free sets in [46], and to show the
existence rainbow solutions of linear equations in [31].

Kemperman’s critical pair Theory [34] provides a generalization of Vos-
per’s Theorem to general abelian groups.

In the non-abelian case only few results were known until recent years.
These results are due to Kemperman [33], Olson [43, 44, 45] and Brailowski-
Freiman [3].

The results described above were proved using the transformations in-
troduced by Cauchy [4], Davenport [6], Dyson [11] and Kemperman [33].

The basic properties of the first three transformations are given in the
books [38, 40, 54].

More recently Kérolyi [32] used group extensions and the Feit-Thompson
Theorem to obtain a generalization of Vosper’s Theorem to the non-abelian
case.
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THE ISOPERIMETRIC APPROACH 2009

The exponential sums method in Additive Number Theory gives some
sharp estimates for |AB] in the abelian case if |A|, |B| are relatively small.
The reader may find applications of this method in the text books [40, 54]
and the papers of Deshouillers-Freiman [7] and Green-Ruzsa [13].

Another method in Additive Number Theory based on Nonstandard
Analysis was introduced by Jin. An example of the application of this
method may be found in [30].

In this paper we are concerned with the isoperimetric method introduced
by the author in [15, 18, 20, 22]. Let us present briefly some special cases
of this method:

Let I' = (V, E) be a finite reflexive relation and consider the objective
function X — |I'(X) \ X|, defined on the subsets X with |X| > k and
[V\T(X)| = k. The minimal value of this objective function is the kth—
connectivity and a k—atom is a set with minimal cardinality where the
objective function achieves its minimal value. The main result proved in
[20] implies that distinct k—atoms of T' intersect in at most k — 1 elements
or that distinct k-atoms of I'"! intersect in at most k — 1 elements. This
result, which generalizes some previous results of the author [15, 18, 22],
has several applications in Additive Number Theory as we shall see in the
present paper.

The strong connectivity, usually defined in Graph theory as the min-
imum cardinality of a cutset, coincides with our first connectivity. The
kth—connectivity was introduced in [20] in connection with some additive
problems.

Let B be a subset of a finite abelian group G with 1 € B and B # G.
As showed in [18], the main result proved in [15] implies that the objective
function X +— |(XB)\ X|, defined on the nonempty subsets X with X B #
G, attains its minimal value on a subgroup. If |G| is a prime this value
is necessarily |B| — 1. The Cauchy-Davenport Theorem follows obviously
from this fact.

In this paper we shall present basic facts about the isoperimetric method.
We shall improve some of our previous results and obtain generalizations
and short proofs for several known results. We also give some new applica-
tions.

The reader may find some applications of the isoperimetric method in
Serra’s survey [50]. Also, Balandraud [2] developed an isoperimetric ap-
proach to Kneser’s Theorem.

The paper’s organization is the following:
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In Section 2, we present the terminology. In Section 3, we introduce the
concepts of kth—connectivity, k—fragment and k—atom and prove some el-
ementary properties of the k—fragments. In Section 4, we give some basic
properties of the intersection of fragments. The main result of this section
is Theorem 4.2 which gives conditions implying that the intersection of two
k—fragments is a k—fragment. This theorem generalizes results contained in
[15, 17, 18, 22, 20]. In Section 5, we obtain the structure of 1-atoms and
give few applications. Most of the results of this section were proved in
[18, 22]. We prove them since they are needed in several parts of this paper
in order to make the present work self-contained. In Section 6, we investi-
gate the inequality |AB| > |A| + |B|/2 and its critical pairs. In Section 7,
Proposition 7.2 gives the value of k5 for a set with a small cardinality. As
an application we generalize the result of Kérolyi [32] mentioned above. In
Section 8, we determine the structure of the 2—atoms in the abelian case
if k2(S) < |S|. This result extends to the infinite case a previous result of
the author [23]. The proof given here is much easier than our first proof.
In Section 9, we give an upper bound for the size of a 2-atom. As an ap-
plication we generalize to the infinite case a result proved in the finite case
by Arad and Muzychuk [1]. In Section 10, we present a new basic tool: the
strong isoperimetric property. This property will be used in a coming paper
[24] to deduce Kemperman critical pair Theory from this property of the
2-atoms.

In the Appendix, we give a simple isoperimetric proof of Menger’s The-
orem in order to make the present work self-contained.

2. Terminology and preliminaries
2.1. Groups

Let G be a group and let S be a subset of G. The subgroup generated
by S will be denoted by (S). Let A, B be subsets of G. The Minkowski
product is defined as

AB={zy : v € Aand y € B}.

Let H be a subgroup. Recall that a left H—coset is a set of the aH for
some a € G. The family {aH;a € G} induces a partition of G. The trace
of this partition on a subset A will be called a left H—decomposition of A.

Therefore a partition A = (J;.; A; is a left H-decomposition if and only

if A; is a nonempty intersection of some left H—coset with A for every i € I.
A right H-decomposition is defined similarly.

ANNALES DE L’INSTITUT FOURIER
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Let X be a subset of a group G. We write

I(X)={reG: Xe=X}and T'(X) = {x € G:xX =X}
Notice that
(2.1) X = XII"(X) = II'(X) X.
We use the following well known fact:

LEMMA 2.1 ([38], Theorem 1). — Let G be a finite group and let A, B
be subsets such that |A| + |B| > |G|. Then AB = G.

2.2. Graphs

Let V be a set and let E C V x V. The relation " = (V, E) will be called
a graph. The elements of V' will be called points or vertices. The elements
of E will be called arcs or edges.

The diagonal of V' is by definition Ay = {(z,z) : « € V}. The graph
I' is said to be reflexive if Ay C E. The reverse of I' is by definition
't =(V,E~Y), where E=' = {(z,y) : (y,2) € E}.

Let a € V and let A C V. The image of a is by definition

I'(a) ={z: (a,z) € E}.
The image of A is by definition
I'(A) = | I'(x).
z€A

The wvalency of x is by definition dr(z) = |['(x)|. We shall say that T is
locally finite if dr(z) is finite for all . We put §(I') = min{dr(z);z € V'}.
The graph I" will be called regular with valency r if the elements of V' have
the same valency r.

Let I' = (V, E) be a graph. For X C V, the boundary of X is by definition

Ar(X) =I(X)\ X.

When the context is clear the reference to I' will be omitted. In this case
we write
e 0_(X)= F_I(X) \ X,
e Xt =V \(XUI(X)),
e XV =V\ (XUF_l(X)).

TOME 58 (2008), FASCICULE 6
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Most of the time we shall work with reflexive graphs. In this case we
have I'(X) = X UT(X).

Notice that there is no arc connecting X to X*, since any arc starting
in X must end in X U 9(X). The reader should always have in mind this
obvious fact.

Let I' = (V, E) be a reflexive graph. We shall say that a subset X induces
a k-separation if k < min(|X],|X*|) < oco. We shall say that I is k—
separable if there is a subset X which induces a k—separation.

Observe that for every k, I' is k—separable if V' is infinite.

Notice that X induces a k-separation of I" if and only if X* induces a
k-separation of I'"!. In particular I' is k-separable if and only if ™! is
k-separable.

A subset X such that I'(X') C X is called a sink of the graph I". A subset
X such that I'"}(X) C X is called a source of the graph I

A set T of the form O(F), where F' # () and F* # () is called a cutset.
Notice that the deletion of T' destroys all the arcs connecting F' to F*.

Intuitively speaking I' is k—separable if there is a cutset (namely 9(X))
whose deletion creates a sink X of size > k and a source (namely X*) of
size > k.

2.3. Cayley graphs

Let ' = (V,E), ® = (W, F) be two graphs. A map f : V — W will
be called a homomorphism if (f(z), f(y)) € F for all z,y € V such that
(z,y) € E.

The graph I'" will be called point-transitive if for all x,y € V, there is
an automorphism f such that y = f(x). Clearly a point-transitive graph is
regular.

Let G be a group and let a € G. The permutation v, :  +— ax of G
will be called left- translation. Let S be a subset of G. The graph (G, E),
where E = {(z,y) : 'y € S} is called a Cayley graph. It will be denoted
by Cay(G, S).

Let I' = Cay(G, S) and let F C G. Clearly I'(F') = F'S. In the case of a
Cayley graph, we shall write X instead of X*. More precisely we put

X9 =aG\(X89).

The following facts are easily seen:
o (Cay(G,S))~" = Cay(G,571);

ANNALES DE L’INSTITUT FOURIER
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e For every a € G, 7, is an automorphism of Cay(G,S), and hence
Cay(@G, S) is point-transitive.

3. The isoperimetric method revisited

In this section, we introduce the concepts of kth—connectivity, k—fragment
and k—atom. We also prove some elementary properties of these objects.

Let ' = (V, E) be a locally finite k—separable reflexive graph. The kth—
connectivity of T’ (called kth—isoperimetric number in [20]) is defined as

(31) k(D) =min{|d(X)| : oo > |X|>kand |V \T(X)| > k}.

A finite subset X of V such that |X| >k, [V\T'(X)| > k and |0(X)| =
ki (T) is called a k—fragment of T'. A k—fragment with minimum cardinality
is called a k—atom. The cardinality of a k—atom of I will be denoted by

These notions, which generalize some concepts in [15, 17, 18, 22], were
introduced in [20].

For non k—separable graphs, the notions of connectivity, fragments and
atoms were not defined. In order to formulate logically correct statements
without assuming k—separability, we shall now extend the above notions to
non k—separable graphs by convention:

Let T' = (V, E) be a non k—separable graph with |V| > 2k — 1. Then T
is necessarily finite. We put in this case xx(T') = |V| — 2k + 1. In this case,
any set with cardinality k will be called a k—fragment and a k—-atom.

A k—fragment of I'~! will be called a negative k—fragment. We use the
following notations, where the reference to I could be implicit:

o a_(l) =ay(l™),
o k(1) =re(T1).

LeEMMA 3.1. — Let I' = (V, E) be a locally finite reflexive graph such
that |V| > 2k — 1. Then ki (T") is the maximal integer j such that for every
finite subset X C V with |X| > k,

(3.2) ID(X)| > min (|V| —k+1,|X] +j).

Formulae (3.2) is an immediate consequence of the definitions. We shall
call (3.2) the isoperimetric inequality. The reader may use the conclusion
of this lemma as a definition of £ (T").

Remark 3.2. — For any locally finite reflexive graph I' = (V, E) with
V]| > 1, we have k1 (T') < 6(T) — 1.

TOME 58 (2008), FASCICULE 6
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LEMMA 3.3. — Let I' = (V, E) be a reflexive finite graph with |V| >
2k — 1. Then

(33) R — K_k.

Proof. — As observed above, I is k-separable if and only if I'~! is k-
separable. So (3.3) holds by convention if I is non k-separable. Suppose
now that I is k—separable, and let X be a k—fragment of I'. We have clearly
0_(X*) C 9(X). Therefore

(1) > 10(X)] > [0_(X2)] > ks
The reverse inequality follows by applying this one to I' ™. O

LEMMA 3.4. — Let T' = (V, E) be a locally finite k—separable reflexive
graph. Let X be a k—fragment. Then

o_(X*) = aX),
(XM = X.

In particular X* is a negative k—fragment, if V is finite.

Proof. — We have clearly 0_(X*) C 9(X).

We must have 9_(X*) = 9(X), since otherwise there is y € I(X) \
O_(X*). It follows that |9(X U {y})| < |0(X)| — 1, contradicting the defi-
nition of k. This proves (3.4).

We have I71(X*) = X*U0_(X*) = X*UJ(X) = V\ X. This implies
obviously (3.5).

Assume now that V is finite. We have by Lemma 3.3, |0_(X*)| =
|(9(X)‘ = R = K_—f-

This proves that X* is a negative k—fragment. (]

We conclude this section by introducing two important notions:

Let I' = (V, E) be a reflexive graph. We shall say that T" is a Cauchy
graph if T if k1 = 6 — 1. We shall say that I' is a Vosper graph if T is
non—2-separable or kg > 6.

Clearly T is a Vosper graph if and only if for every X C V with | X| > 2,

IT(X)| > min (V| - 1,[|X]| +9).

ANNALES DE L’INSTITUT FOURIER
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4. The intersection of fragments

The main result of this section is Theorem 4.2 which gives conditions
implying that the intersection of two k—fragments is a k—fragment. Theo-
rem 4.2 implies that two distinct k—atoms intersect in at most k—1 elements
if ap < a_[.

LEMMA 4.1 ([22]). — Let I = (V, E) be a locally finite reflexive graph.
Let X,Y be finite nonempty subsets. Then

(4.1) DX UY)|+[0(X NY)| < [0(X)] + [0(Y)].
Proof. — Observe that
TXUY)|

ITX)UI(Y)]

= [PX)[+[FY)[ = [P(X) N T (Y]

P+ [TY)] = [F(X NY).

The result follows now by subtracting the equation |[X UY| = |X|+|Y|—
X NY]|. ]

The following result is proved in [22] in the special case k2 = k1. Indeed
the paper [22] was concerned only with Vosper graphs. The concept of
was introduced two years later in [20].

N

THEOREM 4.2 ([22]). — Let I' = (V, E) be a reflexive locally finite k—
separable graph. Let X,Y be two fragments of I such that | X NY| > k
and | X|— | X NY|+ k< |V

Then X NY and X UY are k—fragments of T

Proof. — Put ki, = k(). By the definition of ki, we have |9(X NY)| >

k. Hence we have by (4.1), ki + |0(X UY)| < 2ky. It follows that [I'(X U
V)= XUY|+|0(XUY)| <|V|—E.

By (4.1),
26 S JO(XUY) |+ DX UY)| = |XNY| < |0(X)|+ |0(Y)]| = 2k
It follows that X NY and X UY are k—fragments of I'. g

The next consequence of Theorem 4.2 will be a main tool in this paper.

THEOREM 4.3 ([20]). — Let I' = (V, E) be a reflexive locally finite k—
separable graph. Also assume that either V is infinite or ay < a_g.

Let A be a k—atom and let F be a k-fragment such that |[AN F| > k.
Then A C F.

In particular two distinct k-atoms intersect in at most k — 1 elements.

TOME 58 (2008), FASCICULE 6
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Proof. — Let A’ be a negative atom. We shall show that |[F'*] > |A].
This holds clearly if V' is infinite. Suppose that |V] is finite. We have now
|F*| = |A4’| > |A|, by Lemma 3.4. By Theorem 4.2, AN F is a k—{ragment.
By the minimality of |A|, we must have AN F = A. |

We shall prove a result concerning the intersection of a fragment with the
dual of a negative fragment (a possibly infinite set). In the finite case this
result follows by Theorem 4.2. We used above the submodularity of |0(X)]
to prove the intersection property of fragments as done in [22]. Here we
shall use a intuitive language used in [20]. The two methods are basically
the same.

THEOREM 4.4. — Let I' = (V| E) be a reflexive locally finite graph such
that |V| = 2k—1. Let X be a k—fragment and let Y be a negative k-fragment
such that |Y| > |X| and | X NY Y| > k. Then X NY" is a k—fragment. In
particular X C Y if X is a k—atom.

Proof. — The result is obvious if I" is non k—separable since a k—fragment
is a k—subset in this case. So we may assume that I" is k-separable.

L n [y oMY |
X ||Run| Ri2 | Ris
O(X) | Ro1 | Ra2 | Ras
X* || R31 | Rsa | Ras

By the definition of a k—fragment we have

ki = 0(X)| = [Ra1| + [Roz| + | Ras].
The following inclusion follows by an easy verification:
8(X N YY) C Ri9 U Ros U Roq.

We have clearly [V\T(XNY"Y)| > |[V\T'(X)| > k. By the definition we
have [9(X NY )| > k. It follows that

|Ro1| + |Raz2| + |Ras| = k&
< (X nY")|
< |Riz] + |Raz| + |Roal.
Therefore
(4.2) |Riz| > |Ras|.

ANNALES DE L’INSTITUT FOURIER
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Now
|X* NY| = |Rss] [Y| = [Ras| — |Ru3]
| X| — |Ri2| — |Ru3]

|Ri1| = k.

Vol

By the definition of x_j we have
0~ (X NY)| > k_g.
It follows that
|Ri2| + [Ro2| + |R32| = kg
< 0 - (Xt nY))
< |Raa| + |Ras| + [Razl.

Therefore |Ri2| < |Ras|- By (4.2) we have |Rya| = |Ras.
It follows that the inequality x; < |O(X NY )|, used in the proof of
(4.2), is an equality and hence X N Y is a k-fragment of T. O

One may define a cofinite k—fragment as a subset X with |X| > k,
|0(X)| = ki, and oo > [V'\ X| > k. This notion allows give a common proof
for Theorems 4.2 and 4.4. This approach was used in [22] in a special case
and can be adapted very easily to the general case.

5. Estimation of the size of a set product

Most of the results in this section are proved in [18, 22]. We prove them
here since they are needed in several parts of this paper in order to make
the present work self-contained.

Let G be a group and let S be a subset of G with 1 € S. We put

o ap(5) = ar(Cay((5), 9));
o 1k (S5) = rr(Cay((5),9)).

We shall say that a subset S is k—separable if Cay((S), S) is k—separable.
By a fragment of S we shall mean a fragment of Cay((S),.5).

We shall say that a subset S is a Cauchy subset (resp. Vosper subset)
if Cay((S),.S) is a Cauchy graph (resp. Vosper graph). We shall consider
only generating subset containing 1 in order to avoid degenerate situations
where x5 = 0. Notice that ki (Cay(G, S)) = 0, if S generates a finite proper
subgroup. However x4 (S) > 0if [(S)| > 2k — 1. This easy fact was observed
in [20].

Let us prove a lemma:

TOME 58 (2008), FASCICULE 6
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LEMMA 5.1. — Let S be a generating subset of a group G with 1 € S.
Let H be a k-atom of S with 1 € H. Assume that either G is infinite or
ap < a—g. IfTI"(H)| > k then H is a subgroup.

Proof. — Put Q = II"(H) and take a € H. Since HQ = H, we have
using the assumption 1 € H, a@Q C aH N H. By Theorem 4.3, aH = H.
Then H? = H and hence H is a subgroup. O

The intersection property implies the following description of 1-atoms,
obtained in [18] in the finite case. The general case was given later in [22].

PROPOSITION 5.2 ([18, 22]). — Let S be a finite generating subset of a
group G with 1 € S. Let H be a 1-atom of S with 1 € H. Assume that
either G is infinite or vy < a—1. Then H is a subgroup generated by SN H.

Proof. — Let a € H. The set aH is a 1-atom, since any left-translation
is an automorphism of the Cayley graph. Since |(aH)NH| > 1, we have by
Theorem 4.3, aH = H. Then H is a subgroup.

Let Hy = (H N S). We have clearly HypS N H C Hy. Therefore 9(Hy) C
HoS\ H C HS\ H. It follows that Hy is a 1-fragment and hence Hy =
H. O

COROLLARY 5.3 ([18, 22]). — Let S be a generating subset of a group
G with1 € S. Let H be a 1-atom such that 1 € H.

If G is infinite or oy < a_1, then H is a subgroup.

In particular there is a finite subgroup L # G such that k; = min(|LS|—
1L, SL| — |L]).

Proof. — Let K be a negative l-atom with 1 € K. Assume that either
G is infinite or |H| < |K|. By Proposition 5.2, H is a subgroup. By the
definition of a 1-atom we have k; = |HS| — |H]|.

Assume now |H| > |K| and that |G| is finite. By Proposition 5.2, K is a
subgroup. By Lemma 3.3 and the definition of a negative 1-atom, we have
k1 =r_1=|KS Y~ |K|=|SK|—|K| O

The next lemma could be useful when S generates a proper subgroup:
LEMMA 5.4. — Let G be group and let A, S be finite nonempty sub-

sets of G with 1 € S. Put K = (S) and let A = |J;.; Ai be a left K-
decomposition of A. Put W = {i : |A;S| < |K|}. Then
AS| ~ 4]

r1(S)

Proof. — Put k1 = k1(5). For each i take a; € AL

(5.1) W] <
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By the isoperimetric inequality, we have |4;S| = |a;A;S| = |4;| + K1 for
all ¢ € W. Then

[AS| = ) |48
i€l
> > A+ D (Al + k1) = Al + W]k
i€EN\W iew
O
6. A universal bound for x;
[S|

We give in this section a characterization of the sets S with 1 (S5) = 5.

PROPOSITION 6.1 ([17, 22]). — Let S be a finite generating subset of a
group G with1 € S. Let H be a 1-atom and let K be a negative 1-atom
such that 1 € HN K. Then

(6.1) /ﬁ(S) =

Moreover k1(S) = @ holds if and only if one of the following holds:

e |H| < |K]| or G is infinite, and there is a u such that S = HU Hu;
e G is finite and |H| > | K| and there is a u such that S = K UuK.

Proof. — Assume first that |H| < |K| or that G is infinite. By Corol-
lary 5.3, H is a subgroup. We have x1(S) = |HS| — |H| > @ > %,
observing that |[HS| > 2|H| since S is a generating subset with 1 € S.
Suppose now that k1(S) = |2ﬂ We see that |[HS| = 2|H|, and hence there
is a w such that S = H U Hu.

Assume now that |H| > |K| and that G is finite. By Corollary 5.3, K is a
subgroup. By Lemma 3.3, we have k1 = k_1 = |[KS™|— |K| > % > %,
observing that |SK| > 2|K| since S is a generating subset with 1 € S.
Suppose now that x1(S) = % We see that |[SK| = 2, and hence there is a
u such that § = K UukK. O

Notice that the bound x4 (T") > @ holds for all point-transitive reflexive
graphs. This was proved in [17] in the finite case. The general case is given
in [22].

Zémor constructed in [57] a Cayley graph with ay > a_;. The above
result suggests more constructions of this type:
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Example 6.2. — Consider a finite group G of odd order and consider
a non normal subgroup H and an element u such that uH # Hu. Put
S = HUHu. By Proposition 6.1, H is a 1-atom of S. Let @ be a negative 1-
atom. @ can not be a subgroup since otherwise |QS™!| = 2|Q| = x1 = 2|H|,
which is impossible.

COROLLARY 6.3 (Olson [43, 44]). — Let A, B be finite nonempty subsets
of a group G and put K = (BB~1). Then

_ i+ 1)|B
(6.2) BI| > min<|K|,M>,and
2
B
(6.3) |AB| > min<|AK|,|A|—|—%).

Proof. — It is enough to prove Formulae (6.3).

Take b € B~! and put S = Bb. Since BB~! = §S71 C (S) and S =
Bb C BB~! we have K = (S).

Take a left K—decomposition A = J,.; A;. Suppose now that AB #
AK. Then there is an s such that |A;B| < |K|. Take a u € A;!. By the
isoperimetric inequality and by (6.1), |[AsB| = [ud B| = |A4s| + @. Then

B
4B = Y1481 > Y (Al + 148 > |4+ 2]
i€l i€I\{s}

O

Formulae (6.2) is proved by Olson in [43] as main tool in his proof
that a subset of a finite group G with cardinality > 3\/@ contains some
nonempty subset {a1,---,ar} with aj---ax = 1, a result conjectured by
Erdds and Heilbronn [12]. Olson’s last result improves results by Erdds-
Heilbronn [12] and Szemerédi [53].

Formulae (6.3) is proved by Olson in [44]. Notice that the bound k1 (I") >
@ for all point-transitive reflexive graphs proved independently by the
author in [17] implies easily Olson’s result. Our isoperimetric proof looks
much easier than the proof of Olson [44].

Applications of this formulae to o—finite groups are given by the authors
of [25] and by Hegyvary [29]. This result has the following easy consequence

proved independently by Rgdseth [48] and the author [16]:

COROLLARY 6.4 ([16, 48]). — Let S be generating subset of a finite
group G with 1 € S. Put |G| =n and |S| = k. Then

2n

SLlFl-1 = q.
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Proof. — Put j = LQT"J — 1 and suppose that S7 # G. By Lemma 2.1,
|S771| +18| < n. By (6.3), we have |S| > [S*~!| + &, for all i < j — 1. By
iterating we have

i ‘ k.
ST 2181+ (- D)5 = J

2?” —2, a contradiction.

O

Corollary 6.4 was proved independently by Redseth [48] and the author
[16]. Actually a more general result dealing with graphs having a transitive
group of automorphisms is also proved in [16]. An application of Corollary
6.4 to the Frobenius problem is given by Rgdseth [48]. Also this corollary
is used in [47, 41, 42] in the investigation of finitely generated profinite

k
5
Therefore n > \S|—|—j§. Hence (j+2)k < 2nand j <

groups.
Lemma 5.4 has the following consequence:

COROLLARY 6.5 ([19]). — Diderrich Theorem 1.2 is equivalent to Kne-
ser’s Theorem 1.1.

Proof. — Diderrich Theorem implies clearly Kneser’s Theorem. Suppose
now that any two elements of B commute and let K be the subgroup
generated by B. Observe that K is abelian.

Without loss of generality we may assume that 1 € B. Take a left K—
decomposition A = | J;; A;. By Proposition 6.1 and Lemma 5.4, there is
a j € I such that A;B = A;K for all i # j. Since II"(A;B) C K, we must
have [II"(A4;B)| = 1. Take a € A;.

Since K is abelian we have by Kneser’s Theorem 1.1, |4;B|=|a"'A;B| >
|Aj| + |B| — 1. Therefore [AB| = 3_,c; [AiB| = }_;cp g5y [Ail +[4;B] >
|A| +|B| — 1. O

7. Some structural properties of the 2—atoms

In this section we obtain some results dealing with non necessarily abelian
groups. Proposition 7.2 gives the value of k5 for sets with a small cardinality.
We shall define the defect of S as

1(S) = a(S) — |5].

The following lemma gives bound on the cardinality of a 2—atom. This
bound allows to give some proofs by induction.
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LEMMA 7.1 ([20]). — Let S be a finite generating subset of a group G
with 1 € S and |S| > 3. Also assume that either G is infinite or ag < a_s.
Let H be a 2-atom with 1 € H and |I'(H)| = 1. Then |H| < |S| — 1.

Proof. — Assume that |H| > |S|. Then |H| > 3. For each z € H, there
is an a, € H such that a; 'z € S\ {1}, since otherwise d(H \ {z}) C d(H),
and H \ {z} would be a 2-fragment, a contradiction. By the pigeonhole

principle there are z,y € H with  # y and a;'z = a;'y. It follows
that ay,y € aya, ~1H. Therefore by Theorem 4.3, H = aya; 1H and hence
ITI'(H)| > 2, a contradiction. O

Put p(G) = min{|H| : H is a subgroup with |H| > 2}.

The reader may define left and right progressions, cf. [22]. But these
notions coincide if the progression contains 1. We shall mean by an r—
progression a subset of the form {r7, ... rF+i}.

PROPOSITION 7.2. — Let S be a generating subset of a group G with
1€ S and |S| < p(G). Then

(i) S is a Cauchy subset,
(i) if ko(S) =S| — 1, then S is a progression.

Proof. — By Corollary 5.3, there is a finite subgroup N with x1(S) =
min(|]SN|,|NS|) — |N| > |N|. We must have |[N| = 1, since otherwise
k1(S) = |N| = p(G) > |S|, a contradiction. Therefore £1(S) = min(|N.S|,
|SN|) —1 =S| — 1, and hence (i) holds.

We shall now prove that aq(S) = 2 if k2(S5) = | | — 1, by induction on
|S|. Take a 2-atom H of S and a 2-atom K of S~! with 1 € H N K.

Case 1. |H| < |K] or G is infinite.

We have |TI!(H)| = 1, since otherwise, we would have |S| — 1 = k3(5) =
TY(H)HS| — 0N (H)H| > [IT'(H)| > p(G), a contradiction.

Put L = (H~1). We have clearly L = (H).

By Lemma 7.1, |H| < |S| —1 < p(G) — 2. By (i), H™! is a Cauchy
subset. Let S = (J;c; Si be a right L-decomposition of A. Put W = {i :
|HS;| < |L|}. By Lemma 5.4, [W| < 1. Then |I| = 1, since otherwise
|HS| > p(G) + |H| > |H| + |S| — 1, a contradiction. Hence L = G. Now we
have ro(H™Y) < |STTH7Y — |S7Y < |H| - 1.

By the induction hypothesis there is a u such that 1+|H| = [{1,u}H 1| =
2|H| — |[H N Hu™!|. Since 1 € H, we have H C (u). It follows that
|HNuH|=|H|— 1. Since |TI'(H)| = 1, we have by Theorem 4.3, |H| = 2.

Put H = {1,r}. Tt follows since |S| < p(G) < [{r)| that S is an r—
progression.
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Case 2. |H| > |K| and G is finite. By Lemma 3.3, we have ko(S) =
k—2(S). The proof follows as in Case 1. O

COROLLARY 7.3. — Let G be a group and let A, B be subsets of G such
that |Al,|B| > 2,1 € AN B and |B| < p(G).
Assume that |AB| = |A| + |B| — 1 < |K| — 1, where K = (B).
e If|A| + |B| = |K| then there is an a such that A~'a = K \ B;
o If |A| 4+ |B| < |K| — 1 then there is an r such that B and A are
r—progressions.

Proof. — By Proposition 7.2, k1(B) = |B|— 1. Take a left K-decomposi-
tion A= A U---UA;. By Lemma 5.4, |{i: |4;B| # |K|}| < 1. We have
|[K|—12>|AB| > (j — 1)|K|, and hence j = 1.

Assume first |A| +|B| = | K|. By the isoperimetric inequality |A| 4 |B| —
1 > |AB| > |A|+|B] -1 = |K| — 1. Take {a} = K \ AB. We have
A~'a C K\ B. Since these two sets have the same cardinality we must
have A~'a = K \ B.

Assume now |A| + |B| < |K| — 1.

Then B is 2-separable and k2(B) < |B| — 1 < p(G). By Proposition 7.2,
B is a r—progression, for some r. Now r generates K, and hence K is a
cyclic group. It follows that |X{1,r}| > |X| + 1 for every subset X C K
with X{1,r} # K. Moreover equality holds only if X is an r—progression.
Now |AB| = |A{1,7}¥|, where k = |B| — 1. The above observation shows
that |A{1,r}| = |A| + 1, and hence A is an r—progression. O

Corollary 7.3 implies a result due to Brailowski-Freiman [3] since p(G) =
oo for a torsion free group. Corollary 7.3 implies the validity of Karolyi’s
Theorem 4 [32] for infinite groups. In the finite case Kdarolyi’s condition
|A| + |B| < p(G) is relaxed in Corollary 7.3 to the weaker one |B| <
p(G) and |A| + |B| < |(B)| — 1. Notice that Corollary 7.3 implies Vosper’s
Theorem.

8. 2—-atoms in abelian groups

In this section we determine the structure of the 2—atoms in the abelian
case if p < 0. This result extends to the infinite case a previous result [23].
The proof given here is much easier than our first proof.

LEMMA 8.1. — Let S be a finite subset of an abelian group G with
1 € S. Then ki (S) = k_k(S) and ar(S) = a_i(9S).
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Proof. — This follows since the map “z — z~!” is an isomorphism from
Cay(G, S) onto its reverse Cay(G, S™!), in the abelian case. O

LEMMA 8.2. — Let S be a finite generating subset of an abelian group
G with 1 € S and u(S) < 0. Let H be a 2—atom of S with 1 € H. Also
assume that |H| # 2 and that H is not a subgroup. Then

o |H| < kao(H).
e If H generates G then |H| = 3.

Proof. — By Lemma 5.1, H is aperiodic. By Lemma 8.1 and Theo-
rem 4.3, for every a € H \ {1}, we have

(8.1) laH N H| = 1.

Let K be a 2—atom of H with 1 € K. Put K = {1,a1, - ,ar—1}. Assume
first that |K| > |H|. By Lemma 7.1, K is periodic. Hence K is a subgroup
by Lemma 5.1 and hence |ko(H) = |KH| — | K| > | K| > |H]|.

Assume now that |K| < |H]|.

We have using (8.1)

r2(H) + |K| > [KH]

= |{]~7a17"' uakfl}Hl
2|H|+|a1H\H|+~~~+ak_1H\(HUa1HU~-- ,ak_QH)
k(k—1
(8.2) 2|H|+|H|—1+---|H\—k+1:k\H|—(T)

and hence ko (H) > k|H| - *20 K| Tf k = 2, then xo(H) > 2|H| —1 -
|K| > |H|. If k> 3, then o(H) > (k — 1)|H| — *&1 > 95| -3 > |H|.

Assume now that H generates G. The inequality |HS| < |H| + |S| <
|G| — 2 implies that xo(H) < |H|. Then we have since |K| < |H| and by
(8.2), |H| + K| > k[H| — "1,

Case 1. k < |H| — 1. Then (k — 1)(k + 1) < (k — 1)|H| < k + 2EL
and hence |H| =k+1=3.

Case 2. k = |H|. Then (k—2)k§w,and hence |H|=k=3. O

The next result describes the 2—-atoms if p(S) < 0.

THEOREM 8.3 ([21, 23]). — Let S be a finite generating 2—separable
subset of an abelian group G with 1 € S and p(S) < 0. Also assume that

|S| # |G| —6 if u(S) = 0. Let 1 € M be a 2—atom which is not a subgroup.
Then |M| = 2.

Proof. — We shall write o(y) = |(y)|, for any y € G. Put L = (H)
and t = u(S). Let H denotes a translate of M with the form {1,a,b}
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maximizing o(a~1b). Clearly H is not a subgroup. We have x2(S) > |S| -1,
by Lemma 8.1 and Proposition 5.2, since in this case a 2-atom is a 1-atom.
Therefore

-1<t<0.
Suppose to the contrary that |H| > 3.

Case 1. L = G. By Lemma 8.2, |[H| = 3 and k2(H) > |H|. Then
|[HS| > |S| + |H|, and hence ¢ = 0. Consider the case |S| > |G| — 6.
Then |HS| < |G| — |H| — (|G| — 5) < 2. Tt follows by Lemma 3.4 that H*
is a negative 2-fragment with |[H°| = 2 and hence —H?® is a 2-atom, a
contradiction. So we have |S| < |G| — 7.

Put U = {a"1,b71}. Put N = (H2S) \ HS. By the definition of kq,
we have |HS| + |N| > min(|G| — 1,|HS| + 3) = |HS| + 3. Notice that
rH~! is a negative 2-atom. Take z € N, then (xH ') N (HS) # 0. Since
(xH™') ¢ (X®), we have by Theorem 4.4, (tH~1)N(X*®) = {x}. Therefore
(NU) Cc (HS)\ S. Since |(HS) \ S| = 3, we have NU = (HS) \ S and
IN| = 3. It follows also that ab"'N = N. In particular o(ab™!) = 3.
Since {1,a71,ba"1}, {1,b7a,ab™!} are translates of M, we must have
max(o(a),o(b)) < 3. It follows that |G| < 9, contradicting the relation
3< |8 < |G| —6.

Case 2. L # G. By Lemma 8.2, ko(H) > |H|. This implies obviously
that k1 (H) = |H| — 1.

Put L = (H) and take an L-decomposition S = S; U---U S;. Without
loss of generality we may assume 1 € Sy and [HSi| < --- < |HS,|. Put
W ={i:|HS;| <|L|}.

By Lemma 5.4, |W| < |iﬂ;[|)s‘ < 17— < 2. Then we must have |[HS;| =
|L], for all ¢ > 2. We must have

LS =G,

|H]|

since otherwise

[S] —1 < k2(S)

N

|LS| = [L]
(U = DIL = [HS| - [HS:] < |S] =3,

a contradiction. In particular
(8.3) S=(G\L)US.

Using (8.3) we see that any 2— fragment of S containing 1 is a 2-fragment
of Sy. In particular H is a 2-atom of S;.
We have |S1| # |L| — 6, otherwise we have by (8.3), |S| = |G| — 6.
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We have also |S1| > 2, since otherwise
[HS| = (j = DIL|+ [H] = [S] = [S1] +3 = |S] + 2,
a contradiction. Now we apply Case 1 to get a contradiction. g

The above result was proved for k2 = |S|—1 in [21], and for finite groups
in [23]. In the case where |G| is a prime, a proof of Theorem 8.3 using the
Davenport’s transform was obtained by the authors of [26]. In [51], Serra
and Zémor proved that a 2—atom of S has size = 2, if |G| is a prime and
S| < (*7#27151) " A short proof of the last result was given by the authors
of [28]. A generalization of this result to arbitrary finite abelian groups was
obtained by the authors of [27] when u(S) < 4.

An example given by Serra and Zémor in [51] shows that in the prime
case the 2-atom may have size = 3 if 4 =0 and |S| = |G| — 6.

9. An upper bound for the size of a 2—atom

In this section we prove more results on the intersection of fragments
that we shall need in the next section.

LEMMA 9.1. — Let T' = (V, E) be a locally finite k—separable reflexive
graph. Let X andY be k—fragments. Then X C Y if and only if Y* C X*.

Proof. — Assume first that X C Y. Then
X' =V\I(X)>V\I(Y)=Y".
Assume now that Y'Y € X . Then
X=V\I"''(X)cV\T™}(Y") =Y.
U

LEMMA 9.2. — Let I' = (V, E) be a reflexive locally finite k—separable
graph with k > 2. Let A, F be k—fragments such that |A| < |F*| and
|[ANF| >k —1. Then

(9.1) [Ano(F)| < |0(A)NF*,
9.2) ID(A)NT(F)| < |ANF| + ry and
(93) |FA\AA‘ < |A\F|+I€k—,‘€k,1.
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Proof.
L0 [ F o] F*]
A || Ri1 | Ria | Ri3
O(A) || Ro1 | Rao | Ros
A* | R31 | R3o | Rss
Suppose that (9.1) is false. Then
|R12| > |R23|.

It follows that

|F* N A*|

Now we have

>

|F*| — |Ras| — | Rys|
|A| — |Ri2| — | Rus|
Rus| >k — 1.

|Rs2| + |Raz| + |Ras| >

and hence |Ra3| > |Ra1] a contradiction proving (9.1). Now we have

[D(A) N ()|

N

This proves (9.2).

|ANF|+ |Ri2| + [Ra1| + [Ras
|AQF‘ + |R23| + |R21‘ + |R22
|AQF‘ + Kk

Since |ANF| > k — 1, we have

|Ri2| + |Ro2| + |Ra1| =

It follows that

|Ra3| < |Riz] + Kk — Ki—1-

Hence

[F5\ A%

N

This proves (9.3).
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Kk—1

Kl — (K — Kg—1)

|Ra1| + |Roz| + |Raz| — (kg — kk—1)-

| R13| + |Ras|
|Ris| + |Ri2| + ki — Ki—1
|A\F| +l‘ik — Rkg—1-

O(AUF)| >
|Ri2| + [R22| + | Ra2l,
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We shall now investigate the number of 2-atoms containing a given ele-
ment and obtain an upper bound for the size of a 2—-atom.

We obtain some applications including a generalization to the infinite
case a result proved in the finite case by Arad and Muzychuk [1].

The smallest number j (possibly null) such that every element x € V
belongs to j pairwise distinct k—atoms will be denoted by wy(I"). We shall
write wg (I™1) = w_x(T). We also write wy (S) = wi(Cay((S), S)). The next
result is a basic tool in the investigation of the 2-atoms structure. The case
ko = k1 of this result is proved in [22]. Also the finite case of this result is
proved in [23].

THEOREM 9.3. — Let I' = (V, E) be a reflexive locally finite graph. Let
H be a 2—atom and let K be a negative 2—atom with |K| > |H| > 3. Also
assume that V' is infinite or g < a—_o. Then one of the following holds:

(i) min(we,w_9) < 2.
(i) |H|] < 3+ max(ke — &, kg —I_).

Proof. — Suppose contrary to (i) that ws > 3 and w_s > 3. We have
a1 = a_1 = 1, since otherwise a 2—atom containing z is a 1-atom contain-
ing « and it is unique by Theorem 4.3, contradicting min(ws,w_2) > 3.

Take v € V and choose two distinct 2—-atoms M;, M> such that v €
M; N Ms. By Theorem 4.3, we have M; N My = {v}.

We have M{* ¢ M4, by Lemma 9.1.

Take w € My* \ M4, and take three pairwise distinct negative 2-atoms
Ly, Ly, Lz such that w € L1 N Ly N L.

Assume first that for some 7 # j we have L; U L; C M7".

By Theorem 4.4, |L; N M3'| < 1, for every i.

Then we have using (9.3), the fact that k; = § — 1 and the intersection
property of atoms

|H‘+/€2—5 = ‘H|—|—KZ2—/€1—1
‘Ml\M2|+/€2—I$1

> (MM \ M3) N (L U L)
= |L; ULj| —|(Li U Lj) N Mg |
> |LiUL;| -2

9\K| -3 > 2|H| -3,

and hence (ii) holds.
We can now assume without loss of generality that

Li,Ly ¢ M7-.
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By Lemma 9.1, we have M; ¢ L for 1 < ¢ < 2. By Theorem 4.4,
|M1 N (Lif U L;)| < 2. Then |M1 N Fil(Ll) N Fil(L2)| = |M1| — 2.

Now I'=1(Ly) NT=Y(Ls) > (F~Y(L1) NT~Y(Ls) N My) UT~!(w). Notice
that T=1(w) N My = 0.

Then we have by (9.2

S_+|H| -2 T~ (w)| + [MyNT (L) NnT (L)

)
<
< PTHL) NTTH(Ly))
< 1+ ko9

Therefore |[H| <34+ k-9 —d_. O

Let us apply this result in the symmetric case.

COROLLARY 9.4. — Let S be a finite generating subset of a group G
with 1 € S and S = S™!. Let H be a 2-atom of S such that 1 € H. If
|H| > ko — |S| + 4, then |II'(H)| > 2.

Proof. — Since S = S~!, H is also a negative 2-atom. Also ko = K_g.
Take a 3-subset {a1,as, a3} contained in H.

By Theorem 9.3, wy < 2. Hence two of the 2-atoms a; ' H, a5 "H, a3 ' H
must be equal and hence |II'(H)| > 2. O

Let G be group and let S be a finite subset with 1 € S. One may have
a1 > a_1 [57]. We may even have k1 > k_1 if G is infinite. We have seen
that kp = k_; and that o, = a_j if G is abelian since the Cayley graph
defined by S is isomorphic to its reverse. We shall define subsets having
this property:

The set S is said to be normal if xSz~ = S, for every z € G.

It would be too restrictive to deal only with normal subsets, since the
isopermetric results are valid for translate copies of some set. We consider
the following more general notion:

We shall say that S is semi-normal if there is @ € G such that for
xSz~ ! = Sa"'zax~?, for every x € G.

In this case we have

z(Sa Nzt = Sa wartza" e = Sat.
In particular Sa~! is normal. On the other side it is an easy exercise to see

that Xa is semi-normal if X is normal.

LEMMA 9.5. — Let S be a finite generating semi-normal subset of a
group G with 1 € S. Then the map Y + a~'Y ~'a is a bijection from the
set of k—fragments of S onto the set of k—fragments of S~!. In particular
Kk = K_g, 0 = a_p and w, = w—Fk.
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Proof. — By the definition of a semi-normal subset we have XS =
Sa~!Xa, for every subset a. Let X be a subset with min(] X|, |G| —|X S~}
> k. Then | XS7Y —|X| = [SX7Y — |X| = |aXta™1S| — | X| > ki(S). Tt
follows that ki < K_p.

Similarly for every subset Y with min(|Y], |G| —|Y'S|) > k. Then |Y S| —
Y| = |Sa=1Ya| — [Y| = |Y"taS™Y — |Y| = k_i(S). It follows also that
the map Y — a~'Y ~la is a bijection from the set of k—fragments of .S onto
the set of k—fragments of S~1. Therefore oy, = ov_j, and wy, = w_. O

The next result extends to the infinite case Arad-Muzychuk Theorem 3.1
of [1]. Our terminologies differ slightly.

COROLLARY 9.6. — Let S be a finite generating semi-normal subset
of a group G with 1 € S. Let H be a 2-atom of S such that 1 € H. If
|H| = k2 — |S| + 4, then H is subgroup of G and [G : Ng(H)] < 2.

Proof. — By Lemma 9.5, s = a_o, kg = k_o and wy = w_5. By Theo-
rem 9.3, wy < 2.

Take a 3-subset {a,as, a3} contained in H. Then two of the 2-atoms
ay H,ay ' H,a3"H must be equal and hence 2 < [II'(H)| = |TI"(H~1Y)).
By Lemma 9.5, H~! is a negative 2-atom. By Lemma 5.1, H~! is a sub-
group. Therefore H is a subgroup and zS = Sa~'za. Clearly [xHx 15| =
|ltHSa"'r~la] = |HS|. Therefore sHx~! is a 2-atom for every z. If
xHx~! = H, for every z then Ng(H) = G. Suppose that there is a such
that aHa~ ! # H.

We have [G : Ng(H)] < 2, since for every z € G, we have sHz~! = H
or tHx™' = aH, otherwise wy > 3, a contradiction. O

10. The strong isoperimetric property

In this section, we prove the strong ioperimetric property which allows
to use the structure of atoms to calculate all the fragments in some impor-
tant cases. The strong isoperimetric methodology will be used in a coming
papers [24, 14] to extend Kemperman'’s critical pair Theory using Theo-
rem 8.3.

We shall use a mi-max result proved by Menger [39] for symmetric graphs
and generalized to arbitrary graphs by Dirac [9]. The Dirac-Menger Theo-
rem is now a basic tool in Additive number Theory [40, 54]. In particular it
was used by Ruzsa [49] to give a simple proof of the Pluiinnecke inequalities.
We need it to prove the strong isoperimetric property. In the Appendix, we
give a simple isoperimetric proof of this result.
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Let I' = (V, E) be graph and let a,b € V. A path from a to b is a sequence
of arcs o = {(x1,y1), ", (Tk,yx)} with z; = y;4q for all 1 < i < k-1,
21 =a and yr = b. We put V(o) = {z1, -, 2k, yr}. Two paths o, 7 from
a to b will be said to be openly disjoint if V(o) NV (7) C {a,b}.

Let x,y be elements of V. We shall say that x is k—connected to y in T’
if [0(A)| = k, for every subset A with x € A and y ¢ AUT(A).

THEOREM 10.1 (Dirac-Menger). — Let I' = (V, E) be a finite reflexive
graph Let k be a nonnegative integer. Let x,y € V such that x is k—
connected y, and (x,y) ¢ E. Then there are k openly disjoint paths from
T toy.

One may formulate Menger’s Theorem for non reflexive graphs. Such a
formulation follows easily from the reflexive case.
We need the following consequence of Menger’s Theorem.

COROLLARY 10.2. — Let I" be a locally finite reflexive graph and let
k be a nonnegative integer with k < k1. Let X a finite subset of V such
that min(|V| — |X|,|X|) > k. Then there are pairwise distinct elements
x1,T2,- -,z € X and pairwise distinct elements y1,y2, - ,yr ¢ X such
that

(xlayl)v T (xkayk) €FE.

Proof. — By the definition of k1, we have |0(Y)| > min(|V|— Y], k1) >
k, for every Y C V. Let ® = (I'(X), E’) be the restriction of T' to T'(X)
(observe that X C T'(X)). Choose two elements a,b ¢ V. Let ¥ be the
reflexive graph obtained by connecting a to X U {a} and 9(X) U {b} to
b. We shall show that a is k-connected to b in W. Take a € T such
that b ¢ U(T). Then clearly T C X U {a}. Assume first ' = {a}. Then
|U(T)| —|T| = | X U{a}| —1 > k. Assume now T'N X # (). We have
U(T) =X U{a} UT(T N X). Therefore

U(T)| > 1+ |X|+|DTNX)\X| > 1+ |X|+ (TN X|+ k(D) = |X]) > k.

By Menger’s Theorem there are Py, --- , P. openly disjoint paths from a
to b. Choose z; as the last point of the path P; belonging to X and let y;
the successor of z; on the path P;. This choice satisfies the requirements of
the proposition. O

We call the property given in Corollary 10.2 the strong isoperimetric

property.
We shall use this property in the special case:
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ProproSITION 10.3. — Let G be an abelian group and let S be a finite
subset of G with 1 € S. Let H be a subgroup of G which is a 2—fragment
of S. Let S = SgU---US, and X = X; U---U X; be H-decompositions.
Also assume that |G| — (t + 1)|H| > u|H|. Then there are pairwise distinct
elements ni,na, - ,n, € [0,t] and elements y1,ya, -,y € S\ H such
that

(X U (Xpy1) U U(Xpyr)| =t +1+u.

Proof. — Let ¢ denotes the canonical morphism from G onto G/H. Let
us show that x1(¢(5)) > u.
Let Y C G/H be such that Y + ¢(S) # G. By the definition we

o7 Y)+ 8] = [0 (V)] + Ra(S)
= o7 (V) +ulH]|.

Therefore |Y + ¢(S)| > |Y| + .
The result follows now by applying Corollary 10.2 to ¢(X) and ¢(S). O

Proposition 10.3 follows easily by Hall marriage Lemma if X = S.

11. Appendix: An isoperimetric proof
of Menger’s Theorem

We present here an isoperimetric proof of Menger’s Theorem. Let E C
V xV and let T' = (V, E) be a reflexive graph. Let z,y be elements of V.
The graph T will be called (x,y)-k—critical if x is k-connected to y in T,
and if this property is destroyed by the deletion of every arc (u,v) with
u % v.

A subset A with x € A and y ¢ T'(A) and |0(A4)| = k will be called a
k—part with respect to (z,y,T).

The reference to (x,y) will be omitted.

LEMMA 11.1. — Assume that T' = (V, E) is k—critical and let (u,v) € E
be an arc with u # v. Then I" has k-part F with w € F and v € O(F).

Proof. — Consider the graph ¥ = (V, E \ {(u,v)}). There is an F' with
x € F and y ¢ U(F) such that |0g(F)| < k. This forces that u € F and
that v € O(F), since otherwise dy (F') = O (F).

Since dg (F)U{v} D Or(F), we have |Or(F)| < k. We must have |0r(F)| =
k, since u is k—connected to v in I'. This shows that F' is a k-part. ]
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LEMMA 11.2. — Let F be a k—part with respect to (z,y,T'). Then F*
is a k—part a with respect to (y,x,T~!). Moreover 0_(F*) = 9(F).
In particular y is k—connected to x in 'Y, if x is k—connected to y in T.

Proof. — We have clearly 0_(F*) C (F). Put C = 9(F) \ _(F*).
Since y ¢ T'(FUC), we have k < |9(FUC)| < |0-(F*)| < |O(F)| =k. O

The above lemma is a local version of the isoperimetric duality given in
Lemma 3.4.

LEMMA 11.3. — Assume that I' = (V, E) is k—critical and that T'(x) N
I'~1(y) = 0. There is a k—part F of I such that min(|F|,|F*|) > 2.

Proof. — Take a path [z,a,b, - ,¢,y] of minimal length from z to y.
By Lemma 11.1, there is a k-part F, with @ € F and b € 9(F). We
have {z,a} C F. We have |F*| > 2 since otherwise F* = {y}. Hence
by Lemma 11.2, b € 9(F) = 0~ ({y}). Therefore b € T'(z) NT1(y), a
contradiction. g

Let = be an element of V and let T = {y1,- - , yx} be a subset of V'\ {v}.
A family of k—openly disjoint paths Py, -- , Py, where P; is a path from z
to y; will be called an (x, T)—fan.

Proof of Theorem 10.1. — The proof is by induction, the result being
obvious for [V| small. Assume first that there z € I'(z) NT~!(y). Consider
the restriction ¥ of T to V'\ {z}. Clearly z is (k — 1)—connected to y in V.
By the induction hypothesis there are (k — 1)-openly disjoint paths from
x to y in U. We adjoin the path [z, z,y] to these paths and we are done.
So we may assume that I'(z) N T71(y) = 0.

By Lemma 11.3 there is a part F' with min(|F|, |F*|) > 2. Consider the
reflexive graph © = (V/, E’) obtained by contracting F'* to a single vertex
yo. We have V! = (V \ F*) U {yo}. Since |V’| < |V|, by the induction
hypothesis there are k openly disjoint paths form z yo yg. By deleting
yo we obtain an (x,d(F))—fan. Similarly by contracting F' and applying
induction, we form a (O(F), y)-fan.

By composing these two fans, we form k openly disjoint paths from x
to y. O
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