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WEAK MIXING AND EIGENVALUES
FOR ARNOUX-RAUZY SEQUENCES

by Julien CASSAIGNE,
Sébastien FERENCZI & Ali MESSAOUDI (*)

Abstract. — We define by simple conditions two wide subclasses of the so-
called Arnoux-Rauzy systems; the elements of the first one share the property
of (measure-theoretic) weak mixing, thus we generalize and improve a counter-
example to the conjecture that these systems are codings of rotations; those of the
second one have eigenvalues, which was known hitherto only for a very small set
of examples.

Résumé. — Nous définissons par des condition simples deux larges sous-classes
des systèmes dits d’Arnoux-Rauzy ; les membres de la première possèdent la pro-
priété de mélange faible (mesurable), ce qui généralise et améliore un contre-
exemple à la conjecture que tous ces systèmes sont des codages de rotations ; ceux
de la seconde ont des valeurs propres, ce qui n’était connu jusqu’ici que pour un
ensemble très restreint d’exemples.

A classical result of Coven, Hedlund and Morse [14], [11] characterizes
the Sturmian systems, defined as the symbolic systems whose complexity
function (the number of words of length n in the language of the system)
is n + 1, as natural codings of irrational rotations of the torus T1: the
Sturmian sequences are codings of the orbits of a rotation by a partition of
a fundamental domain such that on each atom the rotation is a translation
by a constant. This interaction between word combinatorics and dynamical
systems is particularly interesting as one of the possible proofs uses an
arithmetic tool, the Euclid algorithm of continued fraction approximation.
Thus there have been many attempts at generalizing it to rotations on
a torus of higher dimension, especially in view of the difficult problem of
simultaneous approximation of several numbers, see [4] for a general survey.
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The first attempt, in dimension 2, led to the definition of the Arnoux-
Rauzy systems, whose complexity is 2n + 1 and which satisfy an extra
combinatorial condition [3]. One of these systems, the Tribonacci system,
is indeed a natural coding of a rotation of T2 ([16], see also [1]), and this
gives a good (the best possible in some sense [8]) simultaneous approxima-
tion for a pair of algebraic numbers. Every Arnoux-Rauzy system defines
an algorithm of simultaneous approximation for some pair of numbers, and
was conjectured to be also a natural coding of a rotation of T2; this con-
jecture was disproved in [7], by exhibiting an Arnoux-Rauzy system whose
language is unbalanced, see Corollary 5 below. This example is quite elab-
orate, and leaves many open questions, which are asked at the end of [7];
first, we do not know up to which point the conjecture fails: the system con-
sidered there could still have some weaker properties than being a natural
coding: equipped with its unique invariant probability measure, it could still
be measure-theoretically isomorphic to a rotation of T2 or at least admit a
rotation of T2 as a measure-theoretic factor. Then, we would like to know
for which systems the conjecture holds, at least partially: up to now, only
Arnoux-Rauzy systems whose generating rules are periodic (see Definition
1 below) are known to satisfy it [2], and no other Arnoux-Rauzy sytems are
known to admit rotations of T2 or T1 as continuous or measure-theoretic
factors (equivalently, to have continuous or measurable eigenvalues, see
Definition 3 below).

In the present paper, we widen considerably the class of Arnoux-Rauzy
systems for which the rotation factors can be described. First, in the nega-
tive direction, we prove a stronger result than [7] for a much larger class of
systems, by proving that any Arnoux-Rauzy system for which the inverses
of some of the partial quotients (defined in Definition 1 below and linked
to the approximation algorithm) form a convergent series is (measure-
theoretically) weakly mixing, see Definition 3 below. As a consequence,
all these systems (which include the example in [7]) have an unbalanced
language and do not satisfy any of the weaker properties mentioned above.
Then, in the positive direction, we give some sufficient conditions for the
system to have two continuous rotation factors: they correspond to a slow
growth of some of the partial quotients; these examples are in general
non-periodic and thus completely new, as is an example where the par-
tial quotients are 2n− 1 and we could find one continuous rotation factor;
this means that our conditions are not far from optimal. It is interesting
to note that our conditions in both directions involve the same restricted
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families of partial quotients, while the partial quotients outside these fam-
ilies seem to play no part in the question of weak mixing (though of course
they contribute in the exact determination of the eigenvalues). The proofs
use first some standard arguments of ergodic theory, related to finite rank
systems (which we have tried to keep as short as possible) to give necessary
conditions and sufficient conditions for a number to be an eigenvalue, in
terms of the quality of its approximation by the Arnoux-Rauzy algorithm;
then we make precise estimates to check when these conditions are fulfilled.

1. Arnoux-Rauzy systems

We take here as a definition of Arnoux-Rauzy systems their constructive
characterization, derived in [3] from the original definition.

Definition 1. — An Arnoux-Rauzy system is a symbolic system on
{1, 2, 3} defined by three families of words Ak, Bk, Ck, build recursively
from A0 = 1, B0 = 2, C0 = 3, by using a sequence of combinatorial rules
a, b, c, such that each one of the three rules is used infinitely many times,
where

. by rule a, Ak+1 = Ak, Bk+1 = BkAk, Ck+1 = CkAk;

. by rule b, Ak+1 = AkBk, Bk+1 = Bk, Ck+1 = CkBk;

. by rule c, Ak+1 = AkCk, Bk+1 = BkCk, Ck+1 = Ck.

The system (X, T ) is the one-sided shift on sequences (xn, n ∈ N) such
that for each 0 6 s 6 t there exists k such that xs · · ·xt is a subword
of Ak. Equipped with the product topology on {1, 2, 3}N, it is minimal [3]
and uniquely ergodic (by Boshernitzan’s result [5] using the fact that the
complexity is 2n + 1) with a unique invariant probability measure µ. We
shall consider both the topological system (X, T ) and the measure-theoretic
system (X, T, µ).

Definition 2. — If the sequence of rules a, b, c is r1 iterated k1 times,. . . ,
rn iterated kn times,. . . , with rn+1 6= rn and kn > 1, the kn are called the
partial quotients of the system.

We denote by (ni, i > 1) the sequence of indices n > 1 such that
rn 6= rn+2. Since each rule a, b, c occurs infinitely often, this sequence is
infinite.

Note that each choice of a sequence of kn > 1, n > 1, and an infinite
sequence of ni, determines an Arnoux-Rauzy system, which is unique up
to a renaming of letters.

TOME 58 (2008), FASCICULE 6
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We can then define our system in another way, which corresponds to a
multiplicative form of the approximation algorithm.

Proposition 1. — Let an Arnoux-Rauzy system (X, T, µ) be defined
as in Definition 1, and kn be its partial quotients.

Then (X, T ) is the one-sided shift on sequences (xn, n ∈ N) such that for
each 0 6 s 6 t there exists n such that xs . . . xt is a subword of Hn, where
the three words Hn, Gn, Jn are built from H0, G0, J0 (chosen such that
{H0, G0, J0} = {1, 2, 3}) by two families of rules:

. if n + 1 = ni for some i,

Hn+1 = GnHkn+1
n , Gn+1 = JnHkn+1

n , Jn+1 = Hn;

we say that the (n + 1)-th rule is of type 1;
. otherwise,

Hn+1 = GnHkn+1
n , Gn+1 = Hn, Jn+1 = JnHkn+1

n ;

we say that the (n + 1)-th rule is of type 2.

And rules of type 1 are used infinitely many times.

Proof. — Let p = k1+· · ·+kn. We denote by Hn the word Ap if rn+1 = a

(in the notations of Definition 1), the word Bp if rn+1 = b, the word Cp

if rn+1 = c. We denote by Gn the word Ap if rn+2 = a, the word Bp if
rn+2 = b, the word Cp if rn+2 = c. Recall that rn+1 6= rn+2. Finally, Jn is
chosen so that {Hn, Gn, Jn} = {Ap, Bp, Cp}.

Suppose for example that rn+1 = a and rn+2 = b. Then we have
Hn = Ap, Gn = Bp, and Jn = Cp. As rn+1 = a, for p′ = p + kn+1 we
get by applying kn+1 times rule a: Ap′ = Ap = Hn, Bp′ = BpA

kn+1
p =

GnH
kn+1
n , and Cp′ = CpA

kn+1
p = JnH

kn+1
n . As rn+2 = b, we know that

Hn+1 = Bp′ = GnH
kn+1
n .

If n + 1 = ni for some i, then rn+3 = c, and we have Gn+1 = Cp′ =
JnH

kn+1
n and Jn+1 = Ap′ = Hn. Otherwise, rn+3 = rn+1 = a, and we have

Gn+1 = Ap′ = Hn and Jn+1 = Cp′ = JnH
kn+1
n . We check that our formulas

are satisfied; other cases are similar.
Since the sequence (ni) is infinite, rules of type 1 are used infinitely many

times. �

We recall:

Definition 3. — If (X, T, µ) is a finite measure-preserving dynamical
system, a real number 0 6 θ < 1 is a measurable eigenvalue of (X, T, µ)
(denoted additively) if there exists a non-constant f in L1(X, R/Z) such
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that f ◦ T = f + θ (in L1(X, R/Z)); f is then an eigenfunction for the
eigenvalue θ.

As constants are not eigenfunctions, θ = 0 is not an eigenvalue if T is
ergodic.

If (X, T ) is a topological dynamical system, a real number 0 6 θ < 1
is a continuous eigenvalue of (X, T ) if f ◦ T = f + θ for a non-constant
continuous eigenfunction f .

(X, T, µ) is weakly mixing if it has no measurable eigenvalue.

An equivalent way to express it, which is less straightforward but more
relevant to the conjecture mentioned in the introduction above, is that the
system has θ as a measurable (resp continuous) eigenvalue if and only if it
admits the rotation of angle θ as a measurable (resp continuous) factor.

We can now state our results:

Theorem 2. — Let (X, T, µ) be an Arnoux-Rauzy system, kn and ni

as in Definition 2; we assume that
(W1) kni+2 is unbounded,

(W2)
+∞∑
i=1

1/kni+1 < +∞,

(W3)
+∞∑
i=1

1/kni
< +∞.

Then (X, T, µ) is weakly mixing.

Theorem 3. — Let (X, T, µ) be an Arnoux-Rauzy system, kn and ni

as in Definition 2. If there exists ε > 0 and J > 0 such that for all j > J

j∑
i=1

1
1 + kni+1

> (12 + ε) ln j,

then (X, T ) has two rationally independent continuous eigenvalues, θ1 and θ2;
all the measurable eigenvalues of (X, T, µ) are continuous, and of the form
a + bθ1 + cθ2 for integers a, b, c.

Theorem 4. — Let (X, T ) be an Arnoux-Rauzy system and kn its par-
tial quotients; if kn = 2n− 1, n > 1 and all rules are of type 1, then (X, T )
has at least one continuous eigenvalue.

The sufficient conditions in Theorem 3 could be slightly improved, in par-
ticular if we know other partial quotients; but at least when the rules are
all of type 1, Theorem 2, Theorem 3 and Theorem 4 seem close enough to
suggest some kind of optimality. The example in Theorem 4 is particularly
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intriguing, as it is possible there might be a second measurable eigenvalue
but no continuous one, see remark at the end.

As a consequence of Theorem 2, we get

Corollary 5. — An Arnoux-Rauzy system satisfying (W1), (W2) and
(W3) is not a natural coding of any rotation of Tk for any k; it is not
measure-theoretically isomorphic to any rotation of Tk for any k; it does not
admit any rotation of Tk for any k as a measure-theoretic factor. Also the
language of X is unbalanced: for each positive integer N there exist words
U and V of equal length, occurring in sequences of X, and i ∈ {1, 2, 3} such
that the numbers of occurrences of i in U and V differ by at least N .

Proof. — The first three assertions are straightforward consequences of
weak mixing. The last one comes from the fact that if the language of X

is balanced, then each cylinder [i] is a bounded remainder set (see [7]) and
such a set cannot exist if there are no eigenvalues [15]. �

Another consequence of this result is to produce new examples of weakly
mixing k-interval exchange transformations, see for example [13] for def-
initions and a discussion of the problem; every Arnoux-Rauzy system is
a natural coding of such a transformation for k = 7 (or k = 6 on the
circle) [3], while Arnoux-Rauzy systems with the kn going to infinity fast
enough are measure-theoretically isomorphic to 4-interval exchange trans-
formations [13]. Thus every Arnoux-Rauzy system satisfying (W1), (W2)
and (W3) gives a weakly mixing 7-interval exchange transformation, and
every Arnoux-Rauzy system used in [13] gives a weakly mixing 4-interval
exchange transformation.

The class of Arnoux-Rauzy systems is still rich in open questions, such
as a complete characterization of those which have measurable eigenvalues,
or have continuous eigenvalues, or are measure-theoretically isomorphic to
a rotation of T2, or are a natural coding of a rotation of T2.

2. Finite rank and spectral properties

We begin now to prove our theorems; before going any further, we give
estimates on the lengths of the words, that will be used several times in
the sequel:

Corollary 6. — We denote by hn, gn, jn the lengths of Hn, Gn, Jn.

ANNALES DE L’INSTITUT FOURIER
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. By a rule of type 1,

hn+1 = kn+1hn + gn, gn+1 = kn+1hn + jn, jn+1 = hn.

. By a rule of type 2,

hn+1 = kn+1hn + gn, gn+1 = hn, jn+1 = kn+1hn + jn.

The above Corollary follows immediately from Proposition 1. We shall
need also

Lemma 7. — For all n > 0 gn 6 2hn, and jn 6 2hn.

Proof. — Let t1,n 6 t2,n 6 t3,n be the three lengths (hn, gn, jn) after
ordering. We shall prove that t2,n 6 hn 6 t3,n 6 t1,n + t2,n, for all n > 0.

The formulas in Corollary 6 imply that hn is never the smallest of the
three lengths, hence hn = t2,n or hn = t3,n.

We prove by induction that t3,n 6 t1,n + t2,n: (t1,0, t2,0, t3,0) = (1, 1, 1)
by Definition 1. Then, either t3,n+1 = kn+1t3,n + t2,n, t2,n+1 = kn+1t3,n +
t1,n, t1,n+1 = t3,n and t2,n+1 + t1,n+1 − t3,n+1 = t1,n + t3,n − t2,n > 0,
or t3,n+1 = kn+1t2,n + t3,n, t2,n+1 = kn+1t2,n + t1,n, t1,n+1 = t2,n and
t1,n+1 + t2,n+1 − t3,n+1 = t1,n + t2,n − t3,n > 0.

The two desired inequalities follow immediately. �

Lemma 8. — (i) For any integers m > 0, n > 0,

hm+n > Fmhn

where Fm is the m-th Fibonacci number given by F0 = F1 = 1, Fm+1 =
Fm−1 + Fm.

(ii) If we define Ψ =
∑+∞

i=0 1/Fi, then Ψ 6 1 +
∑+∞

r=0 φ−r = φ + 2 if
φ = 1

2 (1 +
√

5 ) is the golden ratio number.

Proof. — With any type of rules, we have hn+1 > hn+hn−1, and part (i)
comes from iterating this estimate. Part (ii) is immediate as Fi > φi−1. �

Now we translate the combinatorial definitions into a (well-known but
not written completely anywhere) description of Arnoux-Rauzy systems as
systems generated by Rokhlin towers: we recall that a (Rokhlin) tower of
basis F is a collection of disjoint levels F , TF, . . . , Th−1F .

In an Arnoux-Rauzy system, we build three canonical families of Rokhlin
towers; for this, we need the following by-product of the proofs in [3].

Proposition 9. — Let Ak, Bk, Ck be the words built from A0 = A0,
B0 = B0, C0 = C0, by the reverse recursion rules (in rule a, replace BkAk

by AkBk, CkAk by AkCk and so on); for each k there exists a word Vk such

TOME 58 (2008), FASCICULE 6
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that Ak, Bk, Ck are the three return words of Vk, where U is a return word
of V if UV occurs in sequences of X and contains exactly two occurrences
of V , one as a prefix and one as a suffix.

Proof. — We use the notations of [3] (in the course of this proof only);
then our Ak, Bk, Ck are the names of the three n-segments in some graph
of words Γn (for an n depending on k) such that there is a burst for n.
The Ak, Bk, Ck are the new names of these segments if we replace the
upper labels of the edges by their lower labels (p. 201). The definition of
the graphs and n-segments on p. 203 implies that these new names are the
three return words of the bispecial word Gn = Dn. And the reasoning of
p. 208 applied to the names with lower labels shows that they are built
with the reverse recursion rules. �

As a consequence, Hn, Gn, and Jn, built by the reverse rules (Hkn+1
n Gn

instead of GnH
kn+1
n , H

kn+1
n Jn instead of JnH

kn+1
n and so on) are the three

return words of Wn = Vk1+···+kn
(though this will not be used later, we

can check that the words Wn can be constructed inductively as follows: W0

is the empty word, and for all n > 0, Wn+1 = WnH
kn+1
n ). Note that Hn,

resp. Gn, Jn, has length hn, resp. gn, jn.
Now, for each n, X is the disjoint union of the towers

Rh,n =
hn−1⋃
i=0

T iUh,n, Rg,n =
gn−1⋃
i=0

T iUg,n, Rj,n =
jn−1⋃
i=0

T iUj,n,

where Uh,n = [HnWn], Ug,n = [GnWn], Uj,n = [JnWn], and we recall that
for any word V = v0 · · · vr−1 the cylinder [V ] is the subset of X made of
sequences with xi = vi, 0 6 i 6 r − 1. Indeed, for fixed n, a given infinite
sequence x in the system admits a unique decomposition Y0Y1 · · · where Yi

is either Hn, Gn, or Jn for i > 0 and Y0 is a nonempty suffix of Hn,
Gn, or Jn, and the choice of one of the three possibilities for Y0 and the
position of x0 in Y0 give the atom of the partition containing x; note that
these atoms are the cylinders for all the possible words of a given fixed
length m, i.e. the vertices of Γm in [3] when there is a burst, except for the
word Gm = Dm which is cut into the three pieces Uh,n, Ug,n, Uj,n.

The recursion formulas giving the words translate into a construction
of the towers by cutting and stacking [12]; in particular, the level T jUh,n

is a subset of the level T iUh,n−1 if j = `hn−1 + i, with 0 6 ` 6 kn − 1
and 0 6 i 6 hn−1 − 1, and of the level T iUg,n−1 if j = knhn−1 + i, with
0 6 i 6 gn−1 − 1; and similarly, depending on the type of the recursion
rules, for the other towers.

ANNALES DE L’INSTITUT FOURIER
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Because the cylinders generate the topology of X, and the measure is de-
fined on Borelian sets, every function in L1(X) is the limit of a sequence of
functions fn such that fn is constant on every level T iUh,n, 0 6 i 6 hn − 1,
T iUg,n, 0 6 i 6 gn − 1, and T iUj,n, 0 6 i 6 jn − 1. This means that the
Arnoux-Rauzy systems are systems of rank at most three, see [12] for a
survey.

We give now two conditions for a number to be an eigenvalue of an
Arnoux-Rauzy system: a necessary condition to be a measurable eigenvalue
and a sufficient condition to be a continuous eigenvalue. These criteria are
new, and specific to Arnoux-Rauzy systems, but not surprising as similar
conditions apply for some related classes of systems, the rank one systems
[9] and the linearly recurrent systems [10] [6]; these two propositions con-
stitute the only part of the present paper which does use ergodic theory,
albeit in a very elementary way.

Proposition 10. — If θ is a measurable eigenvalue for an Arnoux-
Rauzy system, as described above, then kn+1‖hnθ‖ → 0 when n → +∞,
where ‖ . ‖ denotes the distance to the nearest integer.

Proof. — We prove first that, for all n > 0, µ(Rh,n) > 1
3 · Indeed, the

recursion rules and the cutting and stacking construction allow us to deduce
the measures of the towers at stage n from the measures of the towers at
stage n+1; namely, if the (n+1)-th rule (under the multiplicative form) is
of type 1, the set Rh,n =

⋃hn−1
i=0 T iUh,n is made of kn+1hn levels of Rh,n+1,

kn+1hn levels of Rg,n+1, and all jn+1 levels of Rj,n+1. Hence

µ(Rh,n) = kn+1hnµ(Uh,n+1) + kn+1hnµ(Ug,n+1) + jn+1µ(Uj,n+1)

=
kn+1hn

kn+1hn + gn
µ(Rh,n+1) +

kn+1hn

kn+1hn + jn
µ(Rg,n+1) + µ(Rj,n+1);

because of Lemma 7 we have

µ(Rh,n) >
kn+1

kn+1 + 2
(
µ(Rh,n+1) + µ(Rg,n+1)

)
+ µ(Rj,n+1) >

1
3

,

as kn+1 > 1 and X is the disjoint union of all the levels at stage n + 1.
Similarly, if the (n + 1)-th rule is of type 2,

µ(Rh,n) = kn+1hnµ(Uh,n+1) + kn+1hnµ(Uj,n+1) + gn+1µ(Ug,n+1)

and we get the same estimate.

We can now prove the proposition: let f be an eigenfunction for the
eigenvalue θ; for each ε > 0 there exists N(ε) such that for all n > N(ε)
there exists fn, which satisfies

∫
‖f − fn‖dµ < ε and is constant on each

TOME 58 (2008), FASCICULE 6
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level T iUh,m, 0 6 i 6 hm − 1, T iUg,m, 0 6 i 6 gm − 1, T iUj,m, 0 6 i 6
jm − 1, for m = n− 2 and hence also for m = n− 1 and m = n. We shall
now prove that kn‖θhn−1‖ < 104ε for all n > N(ε).

Case 1: kn > 2. — Let j be any integer with 0 6 j 6 [ 12 (kn + 1)]. Let τn

be the set
⋃[ 12 kn]hn−1−1

i=0 T iUh,n; by construction, for any point x in τn,
T jhn−1x is in the tower Rh,n, and in the same level of the tower Rh,n−1 as x.
Thus for µ-almost every x ∈ τn, fn(T jhn−1x) = fn(x) while f(T jhn−1x) =
θjhn−1 + f(x); we have∫

τn

‖fn ◦ T jhn−1 − jθhn−1 − fn‖dµ =
∫

τn

‖jθhn−1‖dµ = ‖jθhn−1‖µ(τn),∫
τn

‖fn ◦ T jhn−1 − jθhn−1 − fn‖dµ 6
∫

τn

‖fn ◦ T jhn−1 − f ◦ T jhn−1‖dµ

+
∫

τn

‖fn − f‖dµ < 2ε.

As µ(Rh,n) > 1
3 , we have

µ(τn) >
[ 12kn]hn−1

3(knhn−1 + gn−1)
>

kn − 1
6(kn + 2)

·

So µ(τn) > 1
25 . Thus the above estimates imply ‖jθhn−1‖ < 50ε, for

n > N(ε) and any integer 0 6 j 6 [ 12 (kn + 1)]. Thus, for n > N(ε),
‖jθhn−1‖ < 100ε for any integer 0 6 j 6 kn.

Let ε < 1
400 , and suppose ‖knθhn−1‖ 6= kn‖θhn−1‖: let i be the small-

est 0 6 j 6 kn such that ‖jθhn−1‖ 6= j‖θhn−1‖, then one has i > 2
and ‖(i− 1)θhn−1‖ = (i − 1)‖θhn−1‖, thus i‖θhn−1‖ = (i − 1)‖θhn−1‖ +
‖θhn−1‖ = ‖(i − 1)θhn−1‖ + ‖θhn−1‖ < 200ε < 1

2 thus ‖iθhn−1‖ =
‖(i‖θhn−1‖)‖ = i‖θhn−1‖, contradiction. Thus we get kn‖θhn−1‖ < 100ε

for n > N(ε).

Case 2: kn = 1 and either kn−1 = 1 or the (n − 1)-th rule is of type 1.
Hence gn−1 > kn−1hn−2. Let τn be the set

⋃kn−1hn−2−1
i=0 T iUh,n; by con-

struction of the towers, for any point x in τn, Thn−1x is in the tower Rh,n,
and in the same level of the tower Rh,n−2 as x. We have

µ(τn) >
kn−1hn−2

3hn
=

kn−1hn−2

3(hn−1 + gn−1)

>
kn−1hn−2

9hn−1
=

kn−1hn−2

9(kn−1hn−2 + gn−2)
>

1
27
·

As fn is constant on the levels at stage n− 2, the same estimates as above
give ‖θhn−1‖ < 54ε for n > N(ε).
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Case 3: kn = 1, kn−1 > 2 and the (n− 1)-th rule is of type 2. — Hence
gn−1 = hn−2 and hn = hn−1 +hn−2. By using the reasoning of Case 1 with
τn−1 =

⋃[ 12 kn−1]hn−2−1
i=0 T iUh,n−1 we get ‖θhn−2‖ < 50ε. By using either

(if kn+1 > 2) the reasoning of Case 1 with τn+1 =
⋃[ 12 kn+1]hn−1

i=0 T iUh,n+1

or (if kn+1 = 1) the reasoning of Case 2 with τn+1 =
⋃hn−1

i=0 T iUh,n+1, we
get that ‖θhn‖ < 54ε. Hence ‖θhn−1‖ < 104ε for n > N(ε). �

Proposition 11. — If for an Arnoux-Rauzy system, as described above,
for some 0 < θ < 1,

∑+∞
n=0 kn+1‖hnθ‖ < +∞, then θ is a continuous eigen-

value of (X, T ).

Proof. — We build a function fn by fn(x) = iθ for any x in T iUh,n,
0 6 i 6 hn − 1, T iUg,n, 0 6 i 6 gn − 1, T iUj,m, 0 6 i 6 jn − 1. Then by
construction supx∈X ‖fn+1(x) − fn(x)‖ = maxkn+1

j=1 ‖jhnθ‖ 6 kn+1‖hnθ‖,
and the hypothesis ensures that the fn converge uniformly to a function
f ; thus f is continuous, and for every x and n large enough we have
fn(Tx) = fn(x) + θ (except for the three points which are on top of all
towers, corresponding to the three left extensions of the infinite word be-
ginning by Hn for all n); thus f(Tx) = f(x)+ θ (on these three points also
as ‖hnθ‖, ‖gnθ‖ and ‖jnθ‖ tend to 0). �

3. Convergents and determinants

We are now going to translate Propositions 10 and 11 in arithmetic
terms, before particularizing to special subclasses later. These propositions
tell us that the eigenvalues depend on properties of ‖hnθ‖, hence on the
quality of the approximation of θ in 1/hn; thus we shall have to study
the convergents h′n/hn, and the recursion formulas imply that we have to
control two other families of convergents, g′n/gn and j′n/jn; we shall see
then that the quality of the approximation depends on the determinant
dn = hng′n − h′ngn, which generalizes the pn+1qn − pnqn+1 of the Euclid
algorithm; but instead of having a simple value like the latter, our dn is
given by a recursion formula involving two other determinants, en and fn;
and a good estimate of the quantity that we need to know, kn+1‖hnθ‖,
is given by |dn|/hn.

Definition 4. — Given integers d0, e0, f0, we define sequences (dn),
(en), (fn), n > 0, by

. when the (n + 1)-th rule is of type 1,

dn+1 = −kn+1dn + kn+1en + fn, en+1 = −dn, fn+1 = −en,
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. when the (n + 1)-th rule is of type 2,

dn+1 = −dn, en+1 = −kn+1dn + kn+1en + fn, fn+1 = en.

Lemma 12. — If (X, T, µ) is an Arnoux-Rauzy system as described
above, and has an eigenvalue θ, there exists a choice of d0, e0, f0, such
that dn 6= 0 for infinitely many n and limn→+∞ dn/hn = 0.

Proof. — Let θ be an eigenvalue; we apply Proposition 10 to get that
kn+1‖hnθ‖ → 0.

If θ = p/q for integers p and q, this implies that ‖hnθ‖ = 0 ultimately,
thus q divides hn for all n > N ; then the recursion formulas imply that q

divides also gn for n > N , thence jn for n > N when the n + 1-st rule is of
type 1, thence every jn for n > N , by backward induction from the next
rule of type 1 (we know there exists one); thus q divides every hn, gn, jn

for n > N , thus also every hn, gn, jn for n > 0, hence q = 1, θ = 0 and
this has been excluded. Hence we may assume that θ is irrational.

Then there exists a sequence of integers h′n such that kn+1|hnθ−h′n| → 0.
We show now that, provided θ is as well approximated as Proposition 10
requires, h′n has to follow the same recursion rules as hn, involving two new
families g′n and j′n:

As hn+1 6 (kn+1 + 2)hn we get hn+1|θ − h′n/hn| → 0 thus

θ = lim
n→+∞

h′n
hn

and
∣∣∣∣h′n+1

hn+1
− h′n

hn

∣∣∣∣ =
εn

hn+1

with εn → 0 when n → +∞.
We define now, for all n > 0, g′n by g′n = h′n+1 − kn+1h

′
n and dn by

dn = hng′n − h′ngn; then we have

h′n+1

hn+1
− h′n

hn
=

dn

hnhn+1

and this implies |dn| = εnhn and |g′n − (h′n/hn)gn| = εn.
If the (n + 1)-th rule is of type 2, then gn+1 = hn; and

|g′n+1 − h′n| = |gn+1
h′n+1

hn+1
± εn+1 − h′n| = |gn+1

h′n
hn

± εn+1 ±
gn+1

hn+1
εn − h′n|

= | ± εn+1 ±
εngn+1

hn+1
| 6 εn+1 + 2εn

thus g′n+1 = h′n if n is large enough. This implies dn+1 = −dn.

We define then j′n by j′n = g′n+1 − kn+1h
′
n when the (n + 1)-th rule is of

type 1; this defines j′n for infinitely many n, and then we define the j′n when
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the (n + 1)-th rule is of type 2, inductively from the next rule of type 1 by
j′n = j′n+1 − kn+1h

′
n.

We want to estimate zn = j′n − (h′n/hn)jn. If the (n + 1)-th rule is of
type 1, then jn = gn+1 − kn+1hn and j′n = g′n+1 − kn+1h

′
n thus

|zn| = |g′n+1 −
h′n
hn

gn+1| =
∣∣∣g′n+1 −

h′n+1

hn+1
gn+1 + gn+1

(h′n+1

hn+1
− h′n

hn

)∣∣∣
6 εn+1 + εn

gn+1

hn+1
6 εn+1 + 2εn.

Otherwise jn = jn+1 − kn+1hn and j′n = j′n+1 − kn+1h
′
n, thus

zn = j′n+1 −
h′n
hn

jn+1 = zn+1 + jn+1

(h′n+1

hn+1
− h′n

hn

)
= zn+1 +

jn+1dn

hnhn+1
·

Suppose now that the (p+1)-th rule is of type 2 for n 6 p 6 n+r−1 while
the (n + r + 1)-th rule is of type 1. Then zp = zp+1 + jp+1dp/(hphp+1) for
n 6 p 6 n + r− 1; but for these p, because the rules are of type 2, we have
shown that dp+1 = −dp. Hence

|zn| − |zn+r| 6
n+r−1∑

p=n

jp+1|dp|
hphp+1

6
n+r−1∑

p=n

|dp|
hp

=
|dn|
hn

n+r−1∑
p=n

hn

hp
·

By Lemma 8
∑n+r−1

p=n hn/hp 6
∑r−1

i=0 1/Fi 6 Ψ, thus

|zn| 6 |zn+r|+ Ψ
|dn|
hn

6 εn+1+r + εn+r + Ψεn.

And now, if jn+1 = hn, then

|j′n+1 − h′n| = |jn+1
h′n+1

hn+1
+ zn+1 − h′n| = |hn

h′n+1

hn+1
+ zn+1 − h′n|

= | dn

hn+1
+ zn+1| 6 |zn+1|+ εn

thus j′n+1 = h′n if n is large enough.
Thus indeed for n > N0 the quantities h′n, g′n, j′n follow the same recur-

sion rules as the hn, gn, jn; we can now show that the dn defined above
follow the recursion rules in Definition 4:

If for n > N0 we define en = hnj′n − h′njn and fn = gnj′n − g′njn, the
recursion formulas on the hn, gn, jn, h′n, g′n, j′n imply that for n > N0, dn,
en, fn are given by the formulas in Definition 4. For n < N0, we can fix in
a unique way the values of en, fn, and modify in a unique way the values
of dn, such that this holds for all n > 0, and all dn, en, fn are integers.

And if dn = 0 ultimately then h′n/hn is constant ultimately and θ is
rational, which has been excluded.
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As we have seen that |dn| = εnhn, the lemma is proved. �

Lemma 13. — If (X, T, µ) is an Arnoux-Rauzy system as described
above, and there exists a choice of integers h′0, g′0, j′0 such that, if

d0 = h0g
′
0 − h′0g0, e0 = h0j

′
0 − h′0j0, f0 = g0j

′
0 − g′0j0

and the dn are defined as in Definition 4,

(3.1)
+∞∑
n=0

|dn|
hn

< +∞;

then, if we define h′n, g′n, j′n by replacing h, g, j by h′, g′, j′ in Corol-
lary 6, θ = limn→+∞ h′n/hn is either an integer or a continuous eigenvalue
of (X, T ).

Proof. — As in the proof of Lemma 12, we have

h′p+1

hp+1
−

h′p
hp

=
dp

hphp+1
·

Thus (3.1) ensures that θ exists and θ = h′n/hn +
∑+∞

p=n dp/hphp+1, thus

kn+1‖hnθ‖ 6 kn+1hn

∣∣∣ +∞∑
p=n

dp

hphp+1

∣∣∣ 6
+∞∑
p=n

hn+1

hp+1

|dp|
hp

6
+∞∑
p=n

1
Fp−n

|dp|
hp

,

the last estimate using Lemma 8. Thus if we compute
∑N

n=0 kn+1‖hnθ‖ it
involves terms |dn|/hn multiplied by at most

∑n
p=0 1/Fp. Thus

+∞∑
n=0

kn+1‖hnθ‖ 6 Ψ
+∞∑
n=0

|dn|
hn

and we apply Proposition 11. �

4. Weak mixing

Proof of Theorem 2. — We assume that (X, T, µ) has an eigenvalue
θ and start from the conclusion of Lemma 12; what we need to prove is
that |dn|/hn is not small enough.

We introduce the auxiliary quantity un = max(|dn|, |en|), and trans-
late our hypotheses into estimates on un: according to the type of the
(n− 1)-th and n-th rules, we have either dn − en−2 = kn(en−1 − dn−1),
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or dn + en−2 = kn(en−1 − dn−1), or en − en−2 = kn(en−1 − dn−1), or
en + en−2 = kn(en−1 − dn−1). This implies

un + un−2

kn
> |en−1 − dn−1| > un−1 −min

(
|dn−1|, |en−1|

)
(W4)

> un−1 − un−2,

where the last inequality comes from the fact that |dn−2| is either |dn−1|
or |en−1|, so in any case un−2 > |dn−2| > min(|dn−1|, |en−1|).

Let n be in ]ni−1 + 1, ni + 1]; if n 6 ni, dn−1 = ±dni−1 while if n =
ni + 1, en−1 = ±dni−1 , thus in both cases min(|dn−1|, |en−1|) 6 uni−1 and
|en−1−dn−1| > un−1−uni−1 , thus (un + un−2)/kn > un−1−uni−1 . We fix
some a and write un−1 − una = un−1 − uni−1 +

∑i−1
j=a+1(unj − unj−1) thus

(W5) un−1 − una−1 6
un + un−2

kn
+

i−1∑
j=a+1

unj−1 + unj+1

knj+1
·

We now use (W4) and (W5) to show that un cannot be small compared
to hn (we shall see at the end that it implies the same for |dn|). We have
first to eliminate two possibilities:

. If un is bounded by M ; then by (W4) |en−1 − dn−1| 6 2M/kn. Using
(W1), (W2) and (W3), we choose an i such that kni

, kni+1 and kni+2

are all greater than 2M + 1 and put n = ni + 1. Then en−2 − dn−2 =
en−1 − dn−1 = en − dn = 0, while the (n − 1)-th rule is of type 1. Hence
dn−2 = en−2 = −dn−1 = −en−1 = dn = en; but also dn−1 = −fn−1 and,
because of the type 1, en−2 = −fn−1; thus en−2 = dn−1 = en−1 = 0 and
this is enough to imply dn = 0 ultimately, which is excluded.

. If un > un+1 for infinitely many n, but un is unbounded. Let E be
the set of n such that un = maxi6n+1 ui; E is infinite as there are infin-
itely many m such that um = maxi6m ui, then the first n > m such that
un > un+1 exists because of the hypothesis, and n is in E. un is unbounded
on E (otherwise un would be bounded on all n), and for n − 1 ∈ E (W5)
implies un−1 − una−1 6 2un−1/kn +

∑i−1
j=a+1 2un−1/knj+1. Thus, by (W2)

for a given ε we can choose a such that un−1 − una−1 6 εun−1 for all
n > na, thus un−1 6 una−1/(1− ε) and is bounded for n − 1 ∈ E, which
has been excluded.

Hence now we know that, for all n large enough, un+1 > un. Then we
can improve our estimates: for n large enough (W5) implies

un−1 − una−1 6
un

kn
+

un−1

kn
+

i−1∑
j=a+1

2un−1

knj+1
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and by (W2) we may choose a such that
∑+∞

j=a+1
2

knj+1
6 1

4 ; hence we get

(W6) un > un−1

(
1
2kn − 1

)
.

To prove that un is not small compared to hn, we first re-write the
recursion rules showing that they involve the quantities en−dn and fn+dn;
then we build a sequence xn such that |en − dn| > xnhn and |fn + dn| >
xnhn, and show that xn is bounded from below and yields a lower bound
for un/hn.

Thus we look again at the recursion rules.
If the (n + 1)-th rule is of type 1, we have:

. un+1 = |dn+1|,

. en+1 − dn+1 = −kn+1(en − dn)− (dn + fn),

. fn+1 + dn+1 = kn+1(en − dn)− en + fn.
If the (n + 1)-th rule is of type 2, then

. un+1 = |en+1|,

. |dn+1| 6 un < un+1,

. en+1 − dn+1 = kn+1(en − dn) + (dn + fn),

. fn+1 + dn+1 = en − dn.
Let us prove that, if n is large enough and the (n+1)-th rule is of type 2,

en − dn and en+1 − dn+1 have the same sign. Indeed,

• if the n-th rule is of type 1, kn and kn+1 are large by (W2), and,
using (W6), we get that |dn+fn| 6 un+un−1 6 kn+1(un−un−1) 6
kn+1|en − dn|, which proves our assertion;

• if the n-th rule is of type 2, en+1 − dn+1 = (kn+1 − 1)(en − dn) +
en + en−1, and both en − dn and en + en−1 have the same sign as
en, which proves our assertion.

We are now ready to define the auxiliary sequence xn:

1) If the n-th and (n + 1)-the rule are of type 2; then fn + dn =
en−1 − dn−1 and en − dn have the same sign; thus |en+1 − dn+1| =
kn+1|en − dn|+ |fn + dn|, while hn+1 = kn+1hn + gn, and |fn+1 +
dn+1| = |en−dn| while gn+1 = hn; this allows us to take xn+1 = xn.

2) If the n-th rule is of type 1 and the (n+1)-th rule is of type 2, then
|en+1 − dn+1| > kn+1|en − dn| − |fn + dn|; as kn is large by (W2),
(W6) implies −|fn +dn| > −un−un−1 > |en−1−dn−1|−2|en−dn|,
thus |en+1 − dn+1| > kn+1|en − dn|+ |en−1 − dn−1| − 2|en − dn|; as
we have hn+1 = kn+1hn + gn 6 kn+1hn + hn−1 + 2hn, if we take
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xn+1 = xn(1 − 4/kn+1), we satisfy the estimate on |en+1 − dn+1|,
while the estimate on |fn+1 + dn+1| is satisfied as in case 1).

3) If the n-th rule is of type 2 and the (n + 1)-th rule is of type 1.
3a) If the (n − 1)-th rule is of type 1, one has |fn+1 + dn+1| >

kn+1|en−dn|−|fn|−|en|, and the same estimate on −un−un−1

as in case 2) (kn being large), implies −|fn| − |en| > −un −
un−1 > |en−1 − dn−1| − 2|en − dn|.

3b) If the (n − 1)-th rule is of type 2, one has |fn+1 + dn+1| >
kn+1|en − dn| − |en − en−1|, and |en − en−1| = |en| − |en−1| 6
|en| − |dn−1| = |en| − |dn| 6 |en − dn|.

Thus in both subcases

|fn+1 + dn+1| > kn+1|en − dn|+ |en−1 − dn−1| − 2|en − dn|.

As we have gn+1 = kn+1hn + jn 6 kn+1hn + hn−1 + 2hn, if we take
xn+1 = xn(1 − 4/kn+1), we satisfy the estimate on |fn+1 + dn+1|,
while the estimate on |en+1 − dn+1| is satisfied as in case 1).

4) If the n-th and (n + 1)-the rule are of type 1; then, if we take
xn+1 = xn(1− 4/kn+1), we satisfy the estimate on |fn+1 + dn+1| as
in case 3a) and the estimate on |en+1 − dn+1| as in case 2).

Thus, using (W2) and (W3), we get that xn > c, and |en − dn| > chn

for all n. And for infinitely many n, because of rules of type 1, un = |dn|
while |en| 6 un−1, hence because of (W6) we have |dn| > 1

3chn and we
have contradicted the conclusion of Lemma 12. �

5. Eigenvalues

Proof of Theorem 3. — Let (h′0, g
′
0, j

′
0) be any choice of integers; we shall

show that (3.1) is satisfied; we build h′n, g′n, j′n, dn, en, fn as in Lemma 13.
We want to show that |dn| is small compared to hn; for this, we build two

sequences wn and `n, such that wn gives an upper bound for |dn|, with an
easier recursion formula than for dn, and then 1/`n gives an upper bound
for wn/hn.

We define wn by w−1 = |f0|, w0 = max{|d0|, |e0|, |d0 − e0|}, wn+1 =
kn+1wn + wn−1. Then we have

wn > max
{
|dn|, |en|, |dn − en|

}
.
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Indeed

max
{
|dn+1|, |en+1|, |dn+1 − en+1|}

= max
{
|kn+1(dn − en)− fn|, |dn|, |(kn+1 − 1)(dn − en)− en − fn|

}
,

and |kn+1(dn − en)− fn| 6 kn+1wn + wn−1 because |f0| = w−1 and |fn| =
|en−1| 6 wn−1 if n > 0, while for the same reason |(kn+1 − 1)(dn − en) −
en − fn| 6 (kn+1 − 1)wn + wn + wn−1. Thus in particular wn > |dn|.

In the forthcoming construction of `n, the rules of type 1 will be the ones
which make 1/`n small. But there will be a technical problem if if there is
no rule of type 2 for n large enough; that is why in that case we select an
infinite sequence S such that:

. two consecutive elements of S differ at least by 2,

. for n ∈ S the n-th rule is of type 1 but we do not have simultane-
ously kn > 2 and kn+1 = 1,

. for some J ′ and all j > J ′,
∑

16i6j,ni 6∈S 1/(1 + kni+1) > (12 +
1
2ε) ln j.

For n ∈ S we say that the n-th rule is a downgraded rule of type 1.
We can now build `n such that hn > `nwn.
We start from some 0 < `0 6 h0/w0, 0 < `1 6 h1/w1. Then:

1) If the n-th rule is of type 2, then hn+1 = kn+1hn + hn−1 and

hn+1

wn+1
>

kn+1`nwn + `n−1wn−1

kn+1wn + wn−1
;

as wn > wn−1, this is an average between `n and `n−1 which is
closer to `n, hence we can take

`n+1 = min
(
`n, 1

2 (`n + `n−1)
)
.

2) If the n-th rule is a downgraded rule of type 1, then hn+1 >
kn+1hn +hn−1 and the estimate in case 1) gives still a lower bound;
we take

`n+1 = min
(
`n, 1

2 (`n + `n−1)
)
.
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3) If the n-th rule is of type 1 and kn > 2; then hn+1 > kn+1hn +
knhn−1 and

hn+1

wn+1
>

kn+1`nwn + kn`n−1wn−1

kn+1wn + wn−1

>
kn+1`nwn + ln−1wn−1

kn+1wn + wn−1
+

(kn − 1)`n−1wn−1

kn+1wn + wn−1

> min(`n,
`n + `n−1

2
) + (kn − 1)`n−1

wn−1

(kn+1 + 1)wn

> min(`n,
`n + `n−1

2
) + (kn − 1)`n−1

1
(kn + 1)(kn+1 + 1)

(as wn 6 (kn +1)wn−1). Thus, if the n-th rule is a non-downgraded
rule of type 1 and kn > 2, we take

`n+1 = min
(
`n, 1

2 (`n + `n−1)
)

+
`n−1

3(kn+1 + 1)
·

4) If the n-th rule is of type 1, kn = 1 and the (n − 1)-th rule is of
type 2; then hn+1 = kn+1hn + gn = kn+1hn + hn−1 + jn−1, jn−1 =
kn−1hn−2 + jn−2, hn−1 = kn−1hn−2 + gn−2 6 (kn−1 +2)hn−2, thus
jn−1 > kn−1hn−2 > (kn−1/(kn−1 + 2))hn−1 > 1

3hn−1; hence

hn+1

wn+1
>

kn+1`nwn + 4
3`n−1wn−1

kn+1wn + wn−1

>
kn+1`nwn + `n−1wn−1

kn+1wn + wn−1
+

1
3

`n−1wn−1

kn+1wn + wn−1

,

and wn 6 2wn−1. Thus, if the n-th rule is a non-downgraded rule
of type 1, kn = 1 and the (n− 1)-th rule is of type 2, we take

`n+1 = min
(
`n, 1

2 (`n + `n−1)
)

+
`n−1

6(kn+1 + 1)
·

5) If the n-th rule is of type 1, the (n − 1)-th rule is of type 1 and
kn = kn−1 = 1; then hn+1 = kn+1hn + gn = kn+1hn + hn−1 + jn−1,
jn−1 = hn−2, hn−1 = hn−2 + gn−2 6 3hn−2, thus again jn−1 >
1
3hn−1 and we have the same estimate as in case 4). Thus, if the
n-th rule is a non-downgraded rule of type 1, the (n−1)-th rule is of
type 1 and kn = kn−1 = 1, we take `n+1 = min(`n, 1

2 (`n + `n−1)) +
`n−1/(6(kn+1 + 1)).

6) If the n-th and (n− 1)-th rules are of type 1 and kn = 1, kn−1 > 2;
then we take `n+1 = min(`n, 1

2 (`n + `n−1)) but the estimates of
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case 3) are valid for the step before, hence

`n = min
(
`n−1,

1
2 (`n−2 + `n−1)

)
+

`n−2

3(kn + 1)

> min
(
`n−1,

1
2 (`n−2 + `n−1)

)
+

`n−2

6(kn + 1)
+

`n−2

6(kn + 1)

`n > min
(
`n−1,

1
2 (`n−2 + `n−1)

)
+

`n−2

6(kn + 1)
+

`n−1

6(kn+1 + 1)
·

It remains now to show that `n is large enough.
If we have found L such that `m−1 > L, `m > L, and if the n-th rule

is of type 2 or a downgraded rule of type 1 for m > n > p, then we
get `p > L, `p+1 > L.

If we have found L such that `m−1 > L, `m > L, and if the n-th rule is
a non-downgraded rule of type 1 for m 6 n 6 m + p − 1, then we get by
induction on 1 6 q 6 p that:

. `m+q > L +
L

12(1 + km+1)
+ · · ·+ L

12(1 + km+q−1)
+

L

12(1 + km+q)

if q > 2, km+q−1 = 1, km+q−2 > 2;

. `m+q > L +
L

12(1 + km+1)
+ · · ·+ L

12(1 + km+q−1)
+

L

3(1 + km+q)

> L +
L

12(1 + km+1)
+ · · ·+ L

6(1 + km+q)
+

L

6(1 + km+q+1)
if km+q = 1, km+q−1 > 2;

. `m+q > L +
L

12(1 + km+1)
+ · · ·+ L

12(1 + km+q−1)
+

L

6(1 + km+q)

in all other cases.
At the end

min(`m+p, `m+p+1) > L +
L

12(1 + km+1)
+ · · ·+ L

12(1 + km+p)
·

Hence, if the n-th rule is a non-downgraded rule of type 1 for mi 6 n 6
mi + pi − 1, i = 1, 2, . . . , 1 < m1, 1 6 pi, mi + pi − 1 < mi+1, we have

`mi+p > `′mi+p

= min(`0, `1)
i−1∏
j=1

(
1 +

1
12(1 + kmj+1)

+ · · ·+ 1
12(1 + kmj+pj )

)
(
1 +

1
12(1 + kmi+1)

+ · · ·+ 1
12(1 + kmi+p)

)
.
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Thus, for the sequence `′n which will yield upper bounds for `n, we have

ln `′mi+p > r +
i−1∑
j=1

pi∑
r=0

1
12(1 + kmj+r)

+
p∑

r=0

1
12(1 + kmi+r)

for a constant r.
The mi + p, i > 1, 1 6 p 6 pi are just the nj + 1, j > 1 except if the

nj-th rule is a downgraded rule of type 1; in this last case, nj + 1 is an
mi + pi + 1 and we have proved that `nj+1 > `′mi+pi

. And we have

ln `′nj+1 > r +
∑

16i6j,i 6∈S

1
12(1 + kni+1)

> r +
(
1 +

ε

24

)
ln j

for j > J ′. Thus we get
∑+∞

j=1 1/`′nj+1 < +∞.

We use now our estimates to conclude.
If ultimately there is no rule of type 2, then all the n are ni; for isolated

ones, n is in S, and for these |dn+1|/hn+1 6 1/`n+1 6 1/`′n; hence
+∞∑
n=1

|dn|
hn

6 2
+∞∑
j=1

1
`′nj+1

< +∞.

If there are infinitely many rules of type 2, then S is empty. If the
(m + 1)-th, (m+2)-th, . . . , (m+p)-th rules are of type 2, and the m-th and
(m + p + 1)-th rules are of type 1, then: for all 1 6 r 6 p, |dm+r| = |dm|
and hm+r > Frhm; |dm+r|/hm+r 6 1/Fr−1 × 1/`m+1 for 1 6 r 6 p and
|dm+p+1|/hm+p+1 6 1/`m+1. Hence

+∞∑
n=1

|dn|
hn

6 (Ψ + 1)
+∞∑
j=1

1
`′nj+1

< +∞.

Hence in every case we can apply Lemma 13: each choice of (h′0, g
′
0, j

′
0)

gives a θ = lim h′n/hn, which is either an integer or a continuous eigenvalue;
let (h′0(i), g

′
0(i), j

′
0(i)), i = 0, 1, 2, be the vectors (1, 1, 1), (1, 0, 0), (0, 1, 0);

for (h′0, g
′
0, j

′
0) = (h′0(i), g

′
0(i), j

′
0(i)), the corresponding h′n(i)/hn(i) con-

verge to real numbers θ0 = 1, θ1 and θ2. A rational relation
∑2

i=0 aiθi = 0
can be written with ai integers; because of our estimates on the approx-
imation, we get that |

∑2
i=0 aih

′
n(i)| < 1 for n large enough, thus for n

large enough
∑2

i=0 aih
′
n(i) = 0; and this gives a rational relation between

the vectors (h′0(i), g
′
0(i), j

′
0(i)) which is excluded. Hence θ1 and θ2 are not

integers and are continuous eigenvalues of (X, T ).
And, by the proof of Lemma 12, any measurable eigenvalue θ is a limit

of h′n/hn where, for n > q, the h′n and auxiliary quantities g′n and j′n are
given by the rules in Lemma 13; we can extend these rules backwards in
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a unique way to n = 0, and (h′0, g
′
0, j

′
0) is an integer and can be written

as a(1, 1, 1) + b(1, 0, 0) + c(0, 1, 0), hence θ has the required expression and
thus is a continuous eigenvalue. �

Proof of Theorem 4. — Let (h′0, g
′
0, j

′
0) = (1, 0, 1); we check that d0 = −1,

d1 = 2, d2 = −3, and prove by induction that dn = (−1)n+1(n + 1); we
have hn > Πn

p=1(2n − 1), hence we can apply Lemma 13; and θ, the limit
of h′n/hn, is not an integer as it is between h′1/h1 = 1

2 and h′2/h2 = 5
8 . �

In this last context, for the directions (h′0, g
′
0, j

′
0) out of the space gener-

ated by (1, 0, 1) and (1, 1, 1) we can prove that dn/hn grows like 1
n , right in

the gap between our necessary and sufficient conditions; the results in [6],
though they do not apply in this case, suggest the possibility that there
might be a second measurable eigenvalue but no other continuous one.
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