i

S %
2oy ANNALES

DE

L INSTITUT FOURIER

Ben GREEN & Terence TAO

Quadratic uniformity of the Mobius function
Tome 58, n° 6 (2008), p. 1863-1935.

<http://aif.cedram.org/item?id=AIF_2008__58_6_1863_0>

© Association des Annales de 1’institut Fourier, 2008, tous droits
réserves.

L’acces aux articles de la revue « Annales de I’institut Fourier »
(http://aif.cedram.org/), implique 1’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que I’utilisation a fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/


http://aif.cedram.org/item?id=AIF_2008__58_6_1863_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

Ann. Inst. Fourier, Grenoble
58, 6 (2008) 1863-1935

QUADRATIC UNIFORMITY OF THE MOBIUS
FUNCTION

by Ben GREEN & Terence TAO (*)

ABSTRACT. — We prove the “Mobius and Nilsequences Conjecture” for nilsys-
tems of step 1 and 2. This paper forms a part of our program to generalise the
Hardy-Littlewood method so as to handle systems of linear equations in primes.

RESUME. — On établit la conjecture « Mobius et Nilsuites» pour les nilsystémes
de rang 1 et 2. Ce papier est une partie de notre programme, dont le but est une
généralisation de la méthode de Hardy-Littlewood en vue d’étudier les systémes
d’équations linéaires dans les nombres premiers.

1. Introduction

The Mébius function p: N — {—1,0,41}, defined by

(—=1)F, if n. = pyps...py for distinct primes pq, ..., pr
u(n) =<0, if n is not squarefree
1, ifn=1

plays a fundamental role in analytic number theory, especially with regard
to the distribution of primes. A well-known metaprinciple holds that pu
fluctuates so “randomly” that it is asymptotically orthogonal to any “low
complexity” bounded sequence f : N — C. We do not have a formal defi-
nition of “low complexity”, but the examples of this section should convey
the general flavour. Functions which arise from geometry and algebra, such
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as characters n — e(na), are certainly of low complexity, whereas func-
tions which depend on the prime factorization of n, such as p itself, the
von Mangoldt function A, and certain divisor sums arising in sieve theory,
are not.

In our first example, and throughout the paper, we will use the following
notation. We write [N] := {1,..., N} to denote the integers from 1 to
N, and E,caf(n) = |—i| > nea f(n) to denote the average of a function
f:+A— C on a non-empty finite set A. We also use X < Y or X = O(Y)
to denote the claim that | X| < CY for some absolute constant C' > 0.

Example 1 (u is strongly orthogonal to the constant function). — We
have
(1.1) Enevip(n) < e”cVIsN

for all N > 1 and some absolute constant ¢ > 0.

Remark. — This is essentially equivalent to the prime number theorem
with the classical error term of Hadamard and de la Vallée Poussin.

In the next example, and throughout the paper, we use X <4 Y or
X = 04(Y) to denote the claim that | X| < C4Y for some constant C'4 > 0
depending on A.

Example 2 (u is strongly orthogonal to Dirichlet characters). — For any
A > 0 we have

(1.2) Encin(n)x(n) <a ¢'/2log™ N
for all N and all Dirichlet characters x to modulus gq.

Remark. — See for instance [15, Corollary 5.29]. This may be used to
prove the Siegel-Walfisz theorem concerning the distribution of primes in
arithmetic progressions.

The form of the bound in (1.2) may appear strange at first sight. A key
point to appreciate is that the implied constant C = Cj4 is ineffective,
due to the possible existence of Landau-Siegel zeros. The book [7] may be
consulted for further information. It is useful to have a name for bounds of
this kind.

DEFINITION 1.1 (Strong asymptotic orthogonality). — If f : N — C
and g : N — C are two sequences on the natural numbers N = {1,2,3,...},
we say that f and g are strongly asymptotically orthogonal if we have the
estimate

E,cinf(n)g(n) <4 log™* N
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for all N > 1 and all A > 0. We allow the implied constant C'y to be
ineffective, in that we may have no explicit bounds on C'4 other than that
it is finite.

Thus Example 2 shows that p is strongly asymptotically orthogonal to
all Dirichlet characters, and some Fourier analysis then shows that it is in
fact strongly asymptotically orthogonal to any periodic sequence. In fact,
more is true, as we shall see in the next example. Here, and throughout the
paper, we use e() to denote the standard character e(z) := exp(2miz).

Example 3 (u is strongly orthogonal to linear phases). — For any a €
R/Z and for any A > 0, we have

(1.3) Encinu(n)e(—an) <a log=* N,
uniformly in o € R/Z.

This bound is due to Davenport [6] and can be deduced from (1.2) by an
application of Vinogradov’s version of the Hardy-Littlewood major/minor
arc decomposition of R/Z. See, for example, [15, Theorem 13.10]. For ped-
agogical reasons, and because we need this result for later sections, we give
the derivation in §5. Davenport’s result may be used on its own to obtain a
number of self-correlation estimates on p. For instance, by combining (1.3)
with elementary Fourier analysis (the circle method) we easily obtain the
estimates

(1.4) Eq aepvyi(@)p(@ + d)p(x + 2d) <4 log™* N
and
(1.5)  Eypynoeni(@)p(m + hi)p(z + ho)p(z + by + ha) <4 log™ ™ N.

Similar expressions in which p is replaced by A, the von Mangoldt function,
may be analysed using (1.3) as a key ingredient. The answers have a more
complicated form involving a main term which is a product of local factors
or singular series. See [15, §13] and [10] for different approaches to this").

A full discussion of results such as (1.4), (1.5) and the corresponding
results for A is given in [10]. For comparison with that paper, we remark

(1) While the von Mangoldt function A is more directly related to the primes, the M&bius
function p is somewhat easier to handle analytically, being bounded by 1 and not en-
countering the “local” irregularities in small residue classes that A faces; in particular,
the “major arc” terms will have a significantly simpler form. Also, the Vaughan identity
for p is slightly cleaner than that for A (see Lemma 4.1). Thus in this series of papers we
have adopted a “Mobius first” philosophy, in which we obtain estimates on the Mdbius
function p using “hard” analytic tools, and then use “softer” techniques to transfer the
bounds on u to the bounds on A.
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that the two systems of linear forms in (1.4) and (1.5), namely (z,z +
d,x+2d) and (x,xz+hy,x+ ha, x+ hy + hs), both have complexity equal to
one. This notion of complexity 1 essentially marks the limit of the classical
Hardy-Littlewood circle method. The main goal of this paper is to provide
some of the technical machinery needed to address the case of complexity 2.

We can reformulate (1.3) in a manner which may appear strange at first,
but is well suited to generalisations, as we shall soon see. If X is any metric
space, define a Lipschitz function® on X to be any function f : X — C
whose (inhomogeneous) Lipschitz norm

f(z) = f(y)]
fllLip == sup |f(z)|+ sup ——F——F+
1/ l|Lip xEXI ()] S i)
is finite.
Example 4 (p is strongly orthogonal to 1-step nilsequences). — Sup-

pose that G is a connected, simply-connected abelian Lie group (written
multiplicatively) with a smooth metric d, and that T is a closed subgroup
of G which is cocompact. Then G/T is called a 1-step nilmanifold; it is a
torus. Let F': G/T' — C be a Lipschitz function, and let T, : G/T' — G/T
denote the action of g on G/T'. Then we have the estimate

(1.6) Enepni(n)F(Tyx) <aar | Flluplog™* N
for all N > 1, uniformly in g € G and = € G/T".

The sequence n — F' (T;x) is called a 1-step milsequence. If we specialise
to the circle nilflow case

then G/T is isomorphic to the unit circle R/Z, and if we identify a real
number a with the group element (), then T, : R/Z — R/Z is just the
shift # — = + a (mod 1). Using the standard character e : R/Z — C as
the Lipschitz function F', one then sees that (1.3) is a special case of (1.6).
In fact, the two examples are more-or-less equivalent, as we shall see in §6
where (1.6) will be established.

(2) The Lipschitz class is a convenient regularity class for us to use; it is smooth
enough that one approximate uniformly and quantitatively by trigonometric series (see
Lemma A.9), yet rough enough that one can easily extend a function in this class from a
small domain to a larger domain (see Lemma A.8). Also, the Lipschitz class is meaning-
ful in both discrete and continuous settings. Of course, the results of this paper also hold
in smoother classes such as C*°, and qualitative versions of these results (with decay
factors such as log~4 N replaced by o(1)) hold for rougher classes such as the continuous
class C9, or even piecewise continuous classes, by standard limiting arguments.
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The main aim of this paper is to generalise (1.6) to cover 2-step nilse-
quences. In the companion paper [10] to this paper, we shall show how
such estimates can be used to prove various “complexity 2” estimates for
the Mobius and von Mangoldt functions.

Before stating our main result, we give the definition of s-step nilse-
quences in general, followed by some examples.

DEFINITION 1.2 (Nilmanifolds and nilsequences). — Let G be a con-
nected, simply connected, Lie group. We define the central series Gg 2
G1 2 Gy 2 ... by defining Gy = Gy = G, and G411 = [G,G;] for
i > 2, where the commutator group [G,G;] is the group generated by
{ghg™'h=':g € G,h € G;}. We say that G is s-step nilpotent if G4, 1 = 1.
Let T' C G be a discrete, cocompact subgroup. Then the quotient G/T" is
called an s-step nilmanifold. If g € G then g acts on G/T" by left multi-
plication, x — gx. By a (basic) s-step nilsequence, we mean a sequence of
the form (F(T, - x))nen, where x € G/I' is a point, F' : G/T' — C is a
continuous function and Ty : G/T' — G/T is left multiplication by g. We
say that the nilsequence is bounded if |F| takes values in [—1,1]. We may
(arbitrarily) endow G/I' with a smooth Riemannian metric dgp. If the
function F is Lipschitz with respect to this metric, we shall refer to the

nilsequence (F(T - ¥))nen as Lipschitz.

Remark. — In this paper we will usually suppress explicit mention of
the metric dg/p. Whenever an estimate is said to depend on a nilmanifold
G/T, it should be assumed that it also depends on the choice of metric.
See [10] for a more detailed discussion.

Clearly every 1-step nilsequence is a 2-step nilsequence. The next sim-
plest example of nilsequences are quadratic phases.

Example 5 (The Heisenberg nilflow, I). — Consider the example(®)
G:z((l)Hf%); F::((l)%%).
001 001

Then G/T is a 2-step nilmanifold. Apart from a set of zero measure, G/T
may be identified with the fundamental domain

lxy
= 2 ) :—=1/2 <1 2}
F={(gt) <<

(3) For more detail on the Heisenberg nilflow, Appendix B may be consulted. One can
also generate quadratic phase sequences such as e(n?6) using the slightly simpler skew
shift nilflow (see e.g. [11, Example 12.3]), but we shall refrain from doing so here as the
underlying Lie group is disconnected and thus does not quite fall within the framework
of Definition 1.2.

TOME 58 (2008), FASCICULE 6
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using the easily-verified fact that

la 1 {z} {y—=z[z]}
(8(1)?%)E<0 1 {z} ) (mod T).

00 1
Here, {x} refers to the fractional part of x lying in the interval (—1/2,1/2]
and [z] := z — {x}. Writing
[1-6-6
o=(417)

where 6 € R, one may check that

—nd} {n?0
g" = (é{ PO }> (mod T').
0 0 1

Thus we see how functions with “quadratic” behaviour arise from 2-step
nilsequences. The rather natural function e(n?6) does not quite arise as a
Lipschitz nilsequence on the 3 x 3 Heisenberg group, since the function

1

(331) = ew
on F does not extend to a continuous function on G/I'. The situation
may be remedied by splitting e(n?6) as the sum of (say) 10 functions

x({nf})e(n?6) where x is a Lipschitz cutoff supported on an interval of
width 1/5. Each of the 100 functions

(é : i) = x(@)x' (2)e(y)

does extend to a Lipschitz function on G/T'. By taking products one may
realize e(n20) as a Lipschitz nilsequence on the 2-step nilmanifold (G/T")1°°.

In view of the previous example and our general intent in this paper, it
is natural to ask for the estimate

(1.7) Epeinip(n)e(—an® — fn —7) <alog™ " N,

with an implied constant independent of «, 3 and . We will prove such
an estimate in §7. Like (1.3), this bound is a fairly standard application
of Vinogradov’s version of the Hardy-Littlewood method, though some-
what more complicated due to the need to estimate quadratic exponential
sums rather than just linear exponential sums. The proof of it has much
in common with techniques pioneered by Hua [14] and Vinogradov [23] in
connection with the Goldbach-Waring problem. It should be thought of as
a warm up for the main business of the paper.

As we have already mentioned, in §6 we shall see that orthogonality
to linear phases is more-or-less equivalent to orthogonality to 1-step nilse-
quences. However, orthogonality to quadratic phases is significantly weaker

ANNALES DE L’INSTITUT FOURIER
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than orthogonality to 2-step nilsequences. This is because there are exam-
ples of 2-step nilsequences which do not look much like quadratic phases.

Example 6 (The Heisenberg flow, II). — We repeat the analysis of the
previous example, but with a less restrictive choice of g. Take

lapg
92:(017).
001

A simple induction confirms that
o ((1) = 'Z) _ ((1) erané y+nﬁ+§n(n+1)a>
001 o 0 g

When reduced to lie in the fundamental domain F, one can end up with
functions taking the form [najny (and related forms). These functions are
known as generalised quadratics, and they capture the spirit of 2-step nilse-
quences much more completely than genuine quadratic functions do. By
repeating the tricks mentioned in the previous example one may actually
approximate e(—[nv/2]nv/3) (say) outside of sets of arbitrarily small den-
sity as a Lipschitz nilsequence on some product of several copies of the
Heisenberg example.

The previous two examples give some idea of what a 2-step nilsequence
looks like. Our main result in this paper is that the Md&bius function is
strongly asymptotically orthogonal to all such functions. This estimate is
the case s = 2 of the M&bius and Nilsequences Conjecture MN(s): see [10,
§6] for further discussion.

MAIN THEOREM (MN(2) conjecture). — Suppose that G/T' is a 2-step
nilmanifold, and that F : G/T — C is a Lipschitz function. Then for every
A > 0 we have the estimate

(1.8) Ene[N],u(n)F(Tg"x) <4,6/T ||F||Lip logiA N
uniformly in g € G and x € G/T.

Remark. — We conjecture that MN(s) holds for arbitrary s, that is to
say there is an analogue of the Main Theorem for s-step nilmanifolds for any
s > 1. The fact that the bound (1.8) is uniform in z is unsurprising (since
G/T is compact), as is the uniformity among all F with fixed Lipschitz
norm (thanks to the Arzela-Ascoli theorem). The uniformity in g is less
trivial, and is quite important for applications.

We shall prove the Main Theorem as a consequence of a similar result,
Theorem 2.2 below, in which the notion of a 2-step nilsequence is replaced
by a more technical type of sequence (a 1-step nilsequence twisted by a

TOME 58 (2008), FASCICULE 6
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locally quadratic phase) that is more tractable for analysis. The proof of
Theorem 2.2 is by far the most difficult portion of the paper and will
occupy §3— §12. In comparison, the deduction of the Main Theorem from
Theorem 2.2 is more standard and is performed in §2 and Appendix B.

The estimate (1.7), as well as estimates for generalised quadratic phases
such as

Enerni(n)e(—[nv2]ny/3) = o(1),
are consequences of our main theorem.
Remark. — The main result of this paper can then be combined with

the Gowers Inverse Theorem from [11] to obtain a number of new correla-
tion estimates for the Mdbius function, such as

By dgevip(@)p(z + d)p(z + 2d)p(x + 3d) = on—oo(1)

and

B iy ko hse N (@) p(w + ha) (@ + ho)p(z + hg)p(w + hy + ha)
,u(LE + hl + hg)ﬂ(ﬂj + h2 + hg),u(z + hl + hg + hg) = 0N—>oo(1)

(compare with (1.4), (1.5)). It can also be used (with some additional effort)
to establish an asymptotic for expressions such as

as N — oo, thus enabling one to count the quadruples of number of primes
p1 < p2 < p3 < ps < N in arithmetic progression up to a fixed level N. We
defer all of these applications to the companion paper [10].

2. A technical reduction

In this section we present a technical counterpart of the Main Theorem,
namely Theorem 2.2 below, in which the 2-step nilsequence is replaced by
a more analytically tractable object, namely a 1-step nilsequence twisted
by a locally quadratic phase. We then discuss how this result implies the
Main Theorem. The proof of Theorem 2.2 will then occupy the rest of the
paper (except for the Appendices). We first need some notation.

DEFINITION 2.1 (Locally polynomial phases). — Let S C Z be a set of
integers, and let d > 0. A phase function ¢ : S — R/Z is said to be locally

ANNALES DE L’INSTITUT FOURIER
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degree d on S if whenever n, hy,...,hqy1 are such that the 2471 quantities

n+erhy + ...+ €qr1har, € € {0,1} lie in the set S, we have

(21) Z (—1)51+"‘+6d+1¢(n + €1h1 + ...+ €d+1hd+1) =0.
ec{0,1}d+1

We refer to phases of local degree 1 as locally linear, phases of local degree
2 as locally quadratic, and so forth.

Examples. — Constant phases have local degree 0, while linear phases
¢(n) := an for a € R have local degree 1. If a, 3,7 are real numbers,
then the phase ¢(n) := an? + fn + v (mod 1) is globally quadratic (i.e.
quadratic on all of Z). The phase ¢(n) := {an}{fn}y (mod 1) is not glob-
ally quadratic, but it is locally quadratic on the Bohr set S := {n € Z :
{an}|,|{fn}| < 0.1}, which is a set of positive density in Z. The phase
¢(n) := {an}y (mod 1) is locally linear on the same set.

THEOREM 2.2 (u is strongly orthogonal to local quadratics). — Let G/T
be a 1-step nilmanifold, let F : G/T' — C be a Lipschitz function, and let
g € G and x € G/T be arbitrary. Let ¢ : By — R/Z be a phase which is
locally quadratic on the Bohr set™® By := {n € [N]: F(Tjz) # 0}. Then
we have

E,epnyu(n)F(Tra)e(—¢(n)) <a/roa | FlLiplog™ N.
The proof of Theorem 2.2 is rather lengthy. Let us assume it for now
and deduce the Main Theorem. The main proposition in achieving this
deduction is

PROPOSITION 2.3 (2-step nilsequences as averages of twisted 1-step nil-
sequences). — Let G/I" be a 2-step nilmanifold and let 0 < € < 1/2. Let
F : G/T — C be a Lipschitz function with ||F|lLip, < 1, and let g € G
and x € G/T be arbitrary. Then there exists a 1-step nilmanifold G /f
depending only on G/T" and a decomposition

where

e [ is a finite index set;

e For each i € I the w; are complex numbers with E;cr|w;| <
E*Oc/r(l);

o F;: é/f — C is Lipschitz with norm Ogr(1);

(4) This definition of a Bohr set is not quite identical to other Bohr sets in the literature,
for instance in [11], but it is very closely related; see the proof of Lemma 11.4.
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® g € é;

o z; € G/T;

e ¢, : B; — R/Z is a phase function which is locally quadratic on the
generalised Bohr set B; := {n € [N]: F;(Tj ;) # 0}.

We have a proof of a generalisation of this proposition to k-step nilse-
quences (they are averages of twisted (k — 1)-step nilsequences). This pro-
ceeds using some rather algebraic considerations involving “Kost-Kra cube
groups” associated to the nilmanifold G/T.

In this paper we present a more computational approach involving so
called Mal’cev bases [5, 16]. This approach is completely explicit when

the group G is a product of Heisenberg groups (é H§ %). The reader will

find remarks in [10] explaining that, in the theory of linear systems of
complexity 2 (such as four-term APs) only examples of this type need be
considered.

The use of bases may seem overly explicit to some, but it should be
noted that Mal’cev bases are in fact required to prove certain foundational
topological properties of nilmanifolds. Those results are needed for the
approach, just alluded to, that is taken in [10, Appendix EJ.

The proof of Proposition 2.3 may be found in Appendix B. Assuming it
and Theorem 2.2, we can now derive the Main Theorem as follows.

Proof of the Main Theorem assuming Theorem 2.2 and Proposition 2.3.
Let G/T', F, A be as in the Main Theorem. By renormalising we may
assume that || f||rip < 1. We apply Proposition 2.3 with ¢ := log™* N and
obtain a decomposition (2.2). Taking inner products with p, we obtain

Enenu(n) F(Trx) < Bier|wi|Epepnvyp(n) Fi (T xi)e(—¢i(n)) + log™ N.
Applying Theorem 2.2, we conclude that
Eie]‘wi‘ long/ N + long N

E,enp(n)F(Tyz) <

A,G)T
for any A’. But Eic;|w;| < (log™ N)9e/r(D) 5o the claim follows by taking
A’ suitably large. O
Remark. — Conversely it is also possible to deduce Theorem 2.2 from

the Main Theorem by obtaining a suitable converse to Proposition 2.3 (cf.
the proof of [11, Theorem 12.8]), but we will not do so here.

3. Orthogonality to periodic functions

We now begin the proof of Theorem 2.2, which is the heart of this paper.
(The other major component of the paper is the proof of Proposition 2.3 in

ANNALES DE L’INSTITUT FOURIER
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Appendix B. This can mostly be read independently of the part of the paper
concerned with Theorem 2.2, though it will utilise the harmonic analysis
tools collected in Appendix A.)

Our strategy in proving Theorem 2.2 shall be to establish the strong as-
ymptotic orthogonality of the M&bius function to increasingly large classes
of sequences, starting with very simple ones and then moving on to “higher
degree” sequences. Let us begin with some generalities on how one can
go about proving that p is orthogonal to some function F'. There are es-
sentially two complementary methods for doing this. The first, which will
feature prominently in this section, is appropriate when F' is multiplica-
tive, for example FF = 1 or F' = x, where x is some Dirichlet character
to the modulus g. Then one may relate E, c[nju(n)F(n) via Perron’s For-
mula to zeros of L-functions such as ((s) and L(s, x) in the critical strip,
the orthogonality coming from the non-existence of zeros close to s = 1.
Siegel’s theorem, concerning a possible zero near s = 1 when x is real, is
of particular importance. It implies the bound (1.2), which we recall now:

ProOPOSITION 3.1. — For any A > 0 we have
(3.1) Enepvin(n)x(n) <a ¢"/*log™" N
for all Dirichlet characters x to modulus q.

Remark. — For the proof, see [15, Prop. 5.29]. As noted in [15, p. 124]
there are difficulties involved in applying the standard Perron’s formula
approach to E, cnjp(n)x(n) directly, and it is rather easier to first obtain
bounds on E,¢;njA(n)x(n). Note that the bound is only non-trivial when
the period ¢ is very small (e.g. O(logA N)) compared to N. If one assumed
GRH then one could improve the logarithmic decay here to a polynomial
decay, which would of course lead to improvements in the other bounds in
this paper.

As we will see later in this section, the need to consider zeros of L-
functions also appears when dealing with functions F' which are not quite
multiplicative. For example, they must play a role in the case F(n) =
e(an/q), since any Dirichlet character to modulus ¢ is a linear combination
of a few such functions F.

At the other end of the spectrum one has functions F which are far from
multiplicative, such as F(n) = e(ny/2). For these functions a completely
different method, due originally to Vinogradov, may be brought to bear.
The sum E, ¢ nju(n)F(n) is decomposed into so-called Type I and Type IT
sums, which can be estimated without having to understand the oscillation
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of p. Provided F is not close to being multiplicative, those sums can often be
shown to be small by (effective) harmonic analysis methods. We will discuss
this method, in a modern and very neat incarnation due to Vaughan, in §4.

We now begin the proof of Theorem 2.2 by establishing the asymptotic
orthogonality of the Mobius function to periodic sequences, which can be
viewed in some sense as “O-step nilsequences”, and which will be needed
to handle the “major arc” case when moving on to linear phases. More
precisely, we show

PROPOSITION 3.2 (Mobius is orthogonal to periodic sequences). — Let
f: N — C be a sequence bounded in magnitude by 1 which is periodic of
some period q > 1. Then we have

E,evp(n)f(n) <a qlog_A N

for all A > 0, where the implied constant is ineffective.

Proof. — We first establish the estimate under the additional assumption
that f(n) vanishes whenever (n,q) # 1. Then f can be viewed as a function
on the multiplicative group (Z/qZ)*, and thus has a Fourier expansion

Fn) =" f)x(n), where f(x) :=Enez/qzyx f(n)x(n),

with x ranging over all the characters on (Z/qZ)*. Applying Proposi-
tion 3.1 and the triangle inequality, we conclude

Enemp(n) f(n) <a ¢ log™* N(D1F ().
X
But from Cauchy-Schwarz and Plancherel we have

S 17001 < 0@ 2 (S IF0E) " = 002 Eniasazy < Fm)2)2

= 0(¢(q)'?),

where ¢(q) := |(Z/qZ)*| is the Euler totient function. Since ¢(q) < g, the
claim follows.

Now we consider the general case, in which (n, ¢) is not necessarily equal
to 1 on the support of f. Observe that if p(n) is non-zero, then n is square-
free, and we can split n = dm, where d = (n, q) is square-free (so p?(d) = 1)
and m is coprime to g. Furthermore we have p(n) = pu(d)p(m). We thus
obtain the decomposition

(32) Encpu)fi=5 3 #ld) X pm) @,

d|g;p2(d)=1 1<m<N/d
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The sequence m +— f(dm)1(y q=1 is periodic of period ¢/d and vanishes
whenever (m, q/d) # 1, hence by the preceding arguments

— Nqg. _
Z p(m) f(dm)1(p,q=1 <a = log™* N.
1<m<N/d

Thus from (3.2) we have

J— _ 1 _
Enevip(n)f(n) <a qlog™* N 7 <alog AN,
dlq

concluding the proof of Proposition 3.2. O

4. Vaughan’s identity

In this section we discuss Vinogradov’s method for proving that the
Mobius function p is orthogonal to a function F': N — C. As we remarked
in §3, this involves a decomposition of E,c[nju(n)F(n) into Type I and
Type II sums. The first argument of this type was due to Vinogradov (who
worked with the von Mangoldt function A instead of p). We will use a
particularly simple identity due to Vaughan [22] to effect our decomposition
into Type I and II sums. See [15, Chapter 13] for a nice discussion of this
and related identities.

Let us begin with a few preliminary remarks on our strategy for dealing
with Vinogradov’s method throughout the paper. The normal method for
proving Davenport’s estimate (1.3) would be to divide all o € R/Z into two
classes: the major arcs, where « &~ a/q for some reasonably small ¢, and the
minor arcs, consisting of all other «. If « lies in a major arc then one would
use Proposition 3.2 to estimate E,¢c;yju(n)e(an). If, by contrast, a lies in
a minor arc then one would establish that Type I and II sums involving
f(n) = e(an) are small (see below for an explanation of what this means).
Vaughan [21, Chapter 3] may be consulted for details.

We will adopt what we call an “inverse” strategy. In §5 we will provide
a proof of Davenport’s estimate. There we will assume that either a Type
I or a Type II sum involving f(n) = e(an) is large, and then deduce that «
lies in a major arc. The distinction between our argument and the standard
one may seem rather unimportant, and indeed the two proofs are logically
equivalent. However when it comes to dealing with more complicated func-
tions f, such as locally quadratic phases which arise from the consideration
of 2-step nilsequences, the inverse strategy is very helpful. There it is much
less obvious what one should mean by a “major arc”, and even once the
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definition is made it is not obvious how to handle it in the context of Type
I and II sums.

In light of Lemma A.7, it suffices to establish decay estimates for
En<ngonp(n)f(n). The next lemma gives Vaughan’s decomposition of
sums of this kind.

LEMMA 4.1 (Vaughan’s identity). — Let U,V, N be positive integers
with UV < N, and f : N — C be a sequence. Then we have

(4.1) En<ngenp(n)f(n) = —Tr+Tn
where Ty is the Type I expression
1 _
(4.2) Tri= Sooaa Y fldw)
1<d<UV  N/d<w<2N/d

in which
e Y o),
be=d:b<U,c<V

and Ty is the Type 11 expression

(4.3) Ty = % 3 > 11(w)ba f (dw)

V<d<2N/U max(U,N/d)<w<2N/d

in which
by = Z u(c).
cld:e>V
Remark. — One of the key points in the analysis of Type I sums is

that the precise form of the coefficients a4 is almost completely irrelevant:
we will apply the Cauchy-Schwarz inequality, and so only the mean square
size of these coefficients will concern us. The same is true in the analysis
of Type II sums. In this case it is the coefficients p(w) and by which get
removed by the Cauchy-Schwarz inequality.

There is considerable flexibility in the choice of the parameters U and V.
We will take U = V = N'/3 in our applications.

Proof. — We follow [15, §13.4-5]. Observe that for any positive integer
n we have

b,c:be|n

We split the range of the sum over b, ¢ into four ranges: (i) b < U, ¢ < V;
(i) b>U, c<V; (i) b< U, ¢ >V and (iv) b > U, ¢ > V. Denoting
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the associated sums X1,..., 3y, it is easy to check that 3o = X3 = —%;.
It follows that

pn) =-S1+Ss=— > pbp)+ > pbulo).
b<U; eV b>U; >V
be|n beln

Multiplying by f(n) and summing over N < n < 2N, we have Vaughan’s
identity:

Encn<oni(n)f(n) = —Encn<an Y p(b)p(e)f(n)

b<U; o<V
be|n
+En<n<on Z p(b)p(e) f(n)
b>U; e>V
= —Ti+Tq. beln

It is an easy matter to confirm that T| may be written in the form (4.2),
after making the substitution d = bc and n = dw. One may also check that
Ti; may be written in the form (4.3) after making the substitution w = b
and n = dw. |

Vaughan’s identity tells us that if Ex<,<onp(n)f(n) is large then ei-
ther Ty or Ty is large. The next proposition shows how this information
is processed, by using the Cauchy-Schwarz inequality to eliminate the pa-
rameters aq, b, and p(w), leaving behind estimates which only involve the
explicit function f.

PROPOSITION 4.2 (Inverse theorem for En<p<onp(n)f(n)). — Let U,
V', N be positive integers with UV < N, and let f : N — C be a function
with ||f|lcc = O(1) such that

|En <n<anp(n)f(n)] =6
for some 6 > 0. Then one of the following statements holds:

e (Type I sum is large): There exists an integer 1 < D < UV such
that

(4.4) IEn/d<w<anyaf (dw)] > dlog 2 N
for > 62Dlog™° N integers d such that D < d < 2D.

e (Type II sum is large): There exist integers D, W with V/2 < D <
4AN/U and N/4 < DW < 4N, such that

(4.5)  |Ep<da<2pBEw <ww <ow f(dw) f(d'w) f(dw') f(d'w")|
> 6 log M N.
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Remark. — The estimate (4.4) may be viewed as an assertion that f
behaves periodically, while (4.5) is an assertion that f behaves multiplica-
tively. The numerical exponents could probably be improved slightly here,
but we will not need such refinements here (especially since our bounds
will eventually become ineffective anyway).

Proof. — We may of course take N to be large. Applying Lemma 4.1,
we see that either | Tr| > /2 or | Tir| > §/2.

Suppose first that the Type I expression is large, that is to say | T1| = /2
where Ty is given by (4.2). Using the crude bound |ag| < 7(d), where
7(d) := > pq 1 is the divisor function, we have

T(d
Z %|EN/d<w<2N/df(dw)| > 0.
1<d<UV
By Cauchy-Schwarz inequality this implies that

2(a)\ 2
Z :l|EN/d<w<2N/df(dw>|2>>62( Z Tc(l )) '

1<d<UV 1<d<UV

Invoking the divisor moment estimate (C.1), it follows that

1 2 _
E pl |EN/d<w<2N/df(d’w)‘ > 6%log™* N.
1<d<UV

Dividing the region 1 < d < UV into dyadic blocks D < d < 2D (allowing
for some slight overlap) and applying the pigeonhole principle we obtain

2 _
Z |EN/d<w<an/af (dw)]” > §°Dlog™® N
D<d<2D

for some D, 1 < D < UV. Since the summand is bounded by O(1), a simple
averaging argument confirms that ‘EN/d<w<2N/df(dw)’ > (510g75/2 N for
at least > 672D log™® N values of d, which is what we wanted to prove.

Now suppose instead that the Type IT expression is large, that is | Trr | >
d/2. Using the evident bound |b4| < 7(d), we conclude

S| Y lusvs(w)f(dw)| > Na.

V<d<2N/U N/d<w<2N/d

Applying Cauchy-Schwarz and the divisor moment estimate (C.1) once
again, we conclude that

Z d‘ Z 1w>Uu(w)f(dw)‘2 > N25%1log™* N.

V<d<2N/U N/d<w<2N/d
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By dyadic decomposition, we thus can find integers D, W with V/2 < D <
4N/U and N/4 < DW < 4N such that

Z ‘ Z 17, (w)p(w) f(dw)

D<d<2D W<w<2W

where I, is the discrete interval {w > U : N/d < w < 2N/d}. Applying
Lemma A.2 to remove the cutoff 17,(w), we obtain

3 ] 3 ,u(w)f(dw)e(aw)r>>N5210g_7N.

D<d<2D W<w<2W

2 N2 5
‘ > 3(52 logf" ZV7

for some « € R/Z. Expanding the left-hand side as

Y. DL 0w w)f(dw) fldw),
W <w,w' <2W D<d<2D
where we use (b)() to denote a bounded function whose exact form we do
not care about (see Appendix A), the required inequality (4.5) follows from
the Cauchy-Schwarz inequality in the form of Lemma A.10. O

5. Orthogonality to linear phase functions

As a first application of Proposition 4.2, let us recall the standard proof
of Davenport’s estimate (1.3). We do this partly for expository reasons, to
illustrate the “inverse” approach to dealing with Type I and IT sums, and
also because we will need (1.3) to treat the “major arc” case of quadratic
phases in later sections. As we shall see, the linear case is particularly
easy, because the exponential sums can be easily computed (using (A.1)).
Here and in the rest of the paper we will be using some standard tools
from harmonic analysis, together with the notations ||z|r,/z and ||z||g/z,q,
which we summarise in Appendix A.

We begin with a partial result, which is weaker than (1.3) in that it only
resolves the theorem for the “minor arc” values of «, but has the advantage
of being completely effective, as it does not require any information on
Siegel zeroes.

PRrROPOSITION 5.1 (Correlation with a linear phase implies major arc).
Let a € R, let A > 0, and let N be a large integer such that

(5.1) |En<n<enp(n)e(—an)| > log™ N.
Then there exists D, 1 < D < N?/3, such that

D
(5.2) #{1 <d<2D: |lad|g/z < 5 logA+14 N} > Dlog~44-14 .
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Proof. — We apply Proposition 4.2 with U = V = N'/3 and conclude
one of the following statements:

* (Type I sum is large): There exists D, 1 < D < N*/?, such that
En/d<w<an/ae(adw)| > log 4> N

for > Dlog_QA_5 N values of D < d < 2D.

e (Type II sum is large): There exist integers D, W with N/3 <«
D < N?/3 and N/8 < DW < 8N such that

|ED<d,d/<2DEW<w7w/<2We(adw — ad'w — adw’ + ad’w')|

> log 44~ 14 .
Suppose first that the Type I sum is large. Applying (A.1) we conclude
that there are > Dlog_zA_5 N values of d, D < d < 2D, for which

D
||Oéd||]R/Z < N logiAis/Q N.

This implies (5.2) with some room to spare.
Now suppose instead that the Type II sum is large. By the pigeonhole

principle we can find d’, w’ such that
Ep<i<2pEw<w<awe(adw — ad'w — adw’ + ad'w’)| > log AN

and hence by the triangle inequality

ED<d<2D|Ew<w<2We(a(d — d’)w)‘ > log74A714 N.
Applying (A.1) we obtain
Ep<di<op HliIl(ly = ; ) > log 471N,
Nla(d = d)llrz

and thus after a simple averaging argument we establish
D
#{D <d<2D: |lad - ad|g/z < 5 log"**t N} > Dlog~ 44~ N,
Substituting di=d—d , we conclude
= ~ D
#{_2D <d < 2D |[lad|r/z < N 10g4A+14 N} > Dlog74‘4*14 N.

Since D > N'/3, we can easily remove the degenerate contribution when

d = 0. The claim (5.2) then follows by symmetry. a
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The next task is to understand exactly what the condition (5.2) implies.
It is clear that it is some sort of “major arc” condition, as it forces «
to lie close to a rational number with reasonably small denominator. A
nailve inspection of (5.2) would lead one to guess that this denominator is
of size D or so; however it turns out that one can reduce the size of the
denominator substantially, to be a power of log V. Indeed, we have

COROLLARY 5.2 (Correlation with a linear phase implies major arc, II).
Let o € R, let A > 0 and let N be a large integer such that (5.1) holds.

Then
log?8(A+4)
lallg/z,1610g34+0 v < - N

The implied constant is effective.

Proof. — We apply Proposition 5.1 to obtain D, 1 < D < N?/3_ obeying
(5.2). If D < 1og® @+ N then the claim follows directly from (5.2). If in-
stead D > log® ™+ N, we may apply Lemma A.4(il) with I = {1,...,2D},
0 < % 10g4(A+4) N, and 9 > log74(A+4) N to obtain the claim. O

When « is major arc, i.e. when ||a||r/z ¢ is small, we may proceed using
Proposition 3.1.

PROPOSITION 5.3 (Major arc phases are orthogonal to Mobius). — Let
N be a large integer, let a be a real number, and let QQ, K > 1 be such that
llollr/z,o < K/N. Then we have

|Encnconp(n)e(—an)| <4 QY2 KY?1og™* N
for any A > 0 (the implied constant is ineffective).

Proof. — Let 1 < M < N be a parameter to be chosen later. Then by
partitioning the interval {N < n < 2N} into intervals of length M, plus a
remainder, we conclude that

Z“ ‘+O(N)

By hypothesis, we have integers a and 1 < ¢ < @ such that |0¢ — %’ < %
We thus have

En<ncanp(n)e(—an)| < |7
|I|=M; IC[N 2N]

KM
e(—an) = e(—an/q)e(~(a—a/q)n) = e(~an/g)e(~(a—a/qns)+O( =)
for any n,n; € I. Discarding the constant phase e(—(a — a/q)ny), we
conclude

KM
Encn n)e(—an)| < —an/q)|+0
Excncavulme(-an)| < MICWN]’MZ” Jo)|+0(=7).
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Applying Proposition 3.2 (replacing A by 2A) we have
1 agN . o
’M Zu(n)e(—an/q) <agr log™*" N.

Combining these estimates and making the optimal choice
M =¢'?K~Y2Nlog N,
we obtain the claim. O

Combining Corollary 5.2 with Proposition 5.3 (and selecting the param-
eters A appropriately) we conclude the unconditional estimate

’EN<n<2N,u(n)e(—an)| <alog™N,
uniformly in @ € R/Z and for any A > 0. Here the implied constant is
ineffective. Davenport’s estimate (1.3) then follows from Lemma A.7 (with

© = 1), observing that the additional linear phase created by that lemma
can be easily absorbed.

6. Orthogonality to linear objects

Our aim in this section is to prove that the Mobius function p is orthog-
onal to various functions f : Z — C of “linear” type. We begin by proving
(1.6), which asserts that u is orthogonal to 1-step nilsequences. Then, in
Proposition 6.3,we confirm that p is orthogonal to a certain type of locally
linear phase function. This proposition is needed for our later analysis of
2-step nilsequences (indeed, it essentially forms the “major arc” part of
that analysis; see §12).

Proof of (1.6). — Let us begin by recalling what it is we are trying to
prove. We have an abelian Lie group G and a cocompact discrete subgroup
I < G. Let F: G/T' — C be any Lipschitz function. Then we wish to show
that

(6.1) E,cpnp(n)F(gne) <agr ||Fluplog™* N

uniformly in g € G and € G/T'. Now G/T is isomorphic to the product of
a torus and a finite abelian group, and hence to some subgroup of a torus
(R/Z)¢. By Lemma A.8, we may assume that F' is defined on all of this
torus. Let 0 < € < 1 be arbitrary. By renormalising, we may also assume
that ||F||Lip = 1. By Lemma A.9, we may write

J
F(z) = che(mj -x) + Oq(e'/?)
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(say), where ¢; = O(1) and J = Oy4(e~%). Writing g = (a1,...,qq), we
have
J
F(g"z) = Z cije(m; - x)e(n(almﬁl) +o 4 admgd))) + 0g(e'/?).
j=1
Multiplying by p and taking the expectation over n < N, the contribution
of each of the J terms here is O 4(log™* N) for any A > 0, thanks to (1.3).

We therefore have
]EnG[N]N(n)W <Aa,d g*dlog—A N+ 51/2.

Optimising this in € and recalling that A > 0 was arbitrary, we obtain the
claim. g

Our other goal in this section is to establish, in Proposition 6.3, orthog-
onality of u to phase functions which are almost linear on Bohr sets.

DEFINITION 6.1 (Bohr sets). — Let N > 1. Let G/T be a 1-step nil-
manifold (i.e. a compact abelian Lie group). Then G/T' can be embed-
ded as a closed subgroup of a finite-dimensional torus (R/Z)%, and we let
der(z,y) == ||lzy~ | g/r be the metric on G/T induced from such an em-
bedding (chosen arbitrarily), where we give the torus the metric induced
by the I* norm (A.3). For any g € G and any n € Z, we define the “norm”
Inllg = Inllg,~ for all n € Z by the formula

Il = llg" leym + | 1|
nilg *= 119 llg/T NI
and then define the Bohr sets B,(ng, p) C Z for any ng € Z and p > 0 as

By(ng,p):={n€Z:||n—ngly < p}.
Thus we have Bg(ng, p) = ng + Bg4(0, p).

Remarks. — These Bohr sets are closely related to the sets By appear-
ing in Theorem 2.2, and also to more “traditional” Bohr sets in the litera-
ture; see the proof of Lemma 11.4 below. We observe the sub-homogeneity
property |[nm|ly < |n|||m|ly for all n,m € Z, with equality |nm]|, =
In|[[m||, holding whenever [n|||m|; < c for some constant cg,r > 0. We
shall use these facts frequently in the sequel without further comment.

Some other easy properties of Bohr sets are contained in the following
lemma.

LEMMA 6.2 (Bohr set estimates). — Let N > 1, let G/T' be a 1-step
nilmanifold, and let g € G. Let 0 < p < 1/2.

(a) (Lower bound): We have |By(0, p)| >/ p~9¢/r(UN.
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(b) (Doubling property): We have |B,(0,2p)| <a/r |By(0, p)|.
(c¢) (Divisibility): For any integer d > 1 we have

[(n € By(0,) : din}| /e 2| By(0.0)]

Proof. — To obtain (a), we cover G/T' by Og,r(p~9¢/r()) balls B of
radius p/4, and also cover {1,..., N} into intervals I of length pN/4. By
the pigeonhole principle we can find an interval I and a ball B such that
S:={n:nel:g"c B} has cardinality >¢/r p~CPc/r(M N The claim
then follows from the triangle inequality. Indeed if n,ng € S then |(n —
no)/N| < p/2 and ||g" " [|q/r < p/2, and thus S —ng C By(0,p). It
follows that [By(0, p)| > |S].

The proof of (b) is very similar. We cover the ball with centre 0 and radius
2p in G/T" by Og,r(1) balls B of radius p/4, and the interval {1,...,pN}
by O(1) intervals I of length pN/4. By the pigeonhole principle, there is
an interval I and a ball B such that the set S := {n € B4(0,2p) :n € I:
g" € B} has cardinality >¢q/r |By(0,2p)|. Note, however, that if n,ng € S
then [(n —ng)/N| < p/2 and [|g" ™" ||g/r < p/2, and so S —ng C By(0, p).
It follows that |By(0, p)| > |S].

Finally, we establish (c¢). By the pigeonhole principle there is some residue
class X, := {z € Z : * = b (mod d)} for which |B4(0,p/2) N Xp| >
d~'By(0,p/2)|. Note, however, that if n,ng € B,(0, p/2) N X} then d|(n —
ng) and n —ng € By(0, p). The result now follows from (b). O

As we have remarked, the next result will form the “major arc” part
of our analysis of 2-step nilsequences. It may appear a little technical at
this point, but has been designed to cover everything we need in the later
application.

PROPOSITION 6.3 (Orthogonality to almost linear phases on Bohr sets).
Let N € N be large, let G/T" be a 1-step nilmanifold, let g € G, let p € (0,1)
and let Bgy(no,p) be some Bohr set contained in {N + 1,...,2N}. Let
¢ 1 Z — R* be a non-negative function supported on Bgy(ng,p) which
obeys the Lipschitz estimate

(6.2) [¥(n) = Pp(m)] < In —mllg

for all n,m € Z. Let q € [1,N/100] be an integer, let € € (0,1), and let
¢ : Z — R/Z be a phase obeying the approximate linearity estimate

(6.3) [¢(z + h1 + h2) = ¢(z + h1) — ¢(x + he) + (2)|[r/z < €
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whenever x, x + hi,x + ho, z + h1 + he € By(ng, 10p) and g|h1, he. Then for
any k € (0, p] we have

|En <n<anp(n)(n)e(—¢(n))| <a,c/r ke Wgdlog™ 4 N
+ (e + R)En<ncan|t(n)|
for all A > 0 (the constant is ineffective).
Proof. — We can divide the interval {N + 1,...,2N} into ¢ residue

classes Xi,..., X, modulo ¢q. By the triangle inequality it suffices to show
that

|En<n<anp(n)1x, (n)(n)e(—(n))|
<acr k9 logm N + (e + K)Encncan[¥(n)|1x, (n)

for all 5, 1 <s<q.

Fix s. Without loss of generality we may assume that X, N Bg(no, p)
is non-empty, thus we may choose n, € X, N By(ng,p). We work in the
group Z/pZ where p € [10N,20N] is some prime, abusing notation by
regarding functions on [N,2N] as functions on Z/pZ in an obvious way.
Let f : Z/pZ — C be the function f(z) := ¢ (z)e(—¢(z)), and similarly let
i : Z/pZ — C be the function p(z) := p(x)ly<zgon. Then our task is to
show

(64) Epez/pzfi(x)lx,(n)f(x) <agmrr ¢ log 4 N
+ (e + R)EN<ncan [ (n)[1x, ().
Now let F : Z/pZ — C be the function defined by
F(h) = 1q\hlBg(0,H)(h)e(¢(ns + h’))

Observe that if x € X;NBy(no, p) and hq, he € By(0, k) with g|hq, he, then
from three applications of (6.3) we have (since x < p)

¢(x + h1) — ¢(x) — d(ns + h1) + ¢(ns) = Ogryz(e)

O(x + h2) — ¢(z) — d(ns + h2) + ¢(ns) = Ogryz(c)

(x + h1 + ha) — d(z + h1) — ¢(z + h2) + ¢(x) = Og/z(e),

where we use Og/z(¢) to denote a quantity whose || - [|g/z norm is O(e).
Summing these three bounds yields

¢(x) = ¢(x + hy + ha) — ¢(ns + hy) — d(ns + ha) + 2¢(ns) + Orz(e),

which of course implies that

e(=¢(z)) = e(=¢(x+h1+ha))e(d(ns+h1))e(d(ns+ha))e(—2¢(ns)) +O0(e).

and
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From (6.2), the Lipschitz assumption on 1, we know that ¢ (x+ hy + ho) =
¥(z) + O(k) for hi, he € B4(0, k). Hence we conclude that

f(x) = f(@ + ha + ho) F(h1) F(ha)e(=26(ns)) + O(e + k)
for all x € Z/pZ and hy,ha € By(0, k) with g|hy, ha. Since |f(z)| < ¥(x)
point-wise, we may sum over X and deduce that
Eoez/pzi(@)1x, (z)f ()
= Ep, hoeB, (0,x)qlhy ho Baez/pzi(®) f(x + h1 + ha)
x F'(h1)F(h2)e(2¢(ns)) + O((e + £)En<n<an|¥(n)|1x, (n)).

To prove (6.4), then, it suffices to show that

En, hoe By (0,5)5q1h1 ho Baezpzit(x) f (2 + by + ha) F(h1) F(h2)
<a,q)T qznfc log_A N.

From Lemma 6.2(a) and (c) we have
1
#{h € By(0,5) : alh} > “pr©,
and so it is enough to prove that

Ehy b wenypnfi(@) f(@ + hi + ha) F(h1)F(hs) <4 log™* N.

To demonstrate this we use the Fourier transform® on Z/pZ, noting in
particular the identity

By hoezpzlil@) F(z+ by + ha) F(h)F(ha) = Y (&) f(—€)F(€).
¢€z/p

Since f and F are bounded, we see from Plancherel’s formula that | f(—¢)| =
O(1) and > ¢cz 0z |[F(¢)]? = O(1). Also, from (1.3) we have (§) <a
log_A N for any &. The claim follows. O

Remark. — What we have in effect done here is approximate
p(n)e(—¢(n)) by something akin to a dual function coming from the Gow-
ers U?-norm. By the general theory of this norm we know that any bounded
function which is orthogonal to all linear exponentials (cf. (1.3)) is orthog-
onal to all such dual functions. The Fourier argument at the end of the
proof of Proposition 6.3 is basically the standard proof of this fact. See [11]
for further discussion.

5) If g : Z/pZ — Cis afunction, and if § € Z/pZ, we write §(§) := Epcz/pz9(z)e(—z€/p).
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Remark. — The results of this section may be used to show that p is or-
thogonal to various other types of function, which need not be Lipschitz or
even continuous, but which are still somehow “approximately linear” in n.
Examples of such functions include the bracket-linear phases e(f1|a1n] +
<o+ Bglagn]). We omit the details.

7. Orthogonality to quadratic phases

In this section our aim is to prove the estimate (1.7). Strictly speaking,
this section is unnecessary, since (1.7) does not represent the heart of the
Main Theorem in the same way that (1.3) forms the substance of (1.6).
See the introduction for some remarks on this point.

This section is included for two pedagogical reasons. First of all the argu-
ment does have some features in common with the (far more complicated)
analysis of later sections, and thus introduces the main ideas of those sec-
tions in a simplified setting. Secondly, it represents a good opportunity to
introduce some notation for inequalities which will be very helpful for the
rest of the paper.

The definition of asymptotic orthogonality involves establishing that
X <4 log7@ N, for various quantities X and for all A > 0, and it is
convenient to have a notation specific to this kind of situation. In each ar-
gument that follows, the value of A will be arbitrary, but fixed throughout
the argument. When we write X $Y or Y £ X, we mean that

(7.1) |X| < CaY logt At N

for some constant C' which does not depend on A, and some constant C'4
which can depend (possibly in an ineffective manner) on A. The constants
C and C4 can be different in different instances of this notation. In all
our arguments the exponent C' can be chosen effectively, but it may not
be possible to give an explicit value of C'4 due to the possibility of Siegel
ZEros.

In some cases, statements of the form X < Y will appear as both hy-
potheses and conclusions of a proposition. In such cases it is understood
that the implied constants in the conclusions are dependent on the im-
plied constants in the hypotheses. Somewhat more subtly, in the course of
an argument we may divide into several cases using this notation (e.g. we
may divide into two cases X Y and X £ Y). Once again, the implied
constants in the conclusion of this argument will depend on the implied
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constants used to create the division of cases. When necessary we shall
draw attention to these dependence-of-constants issues(®) .

Our argument here shall broadly follow that used to prove (1.3) in §5.
We begin with the analogue of Proposition 5.1.

ProposITION 7.1 (Correlation with quadratic phase implies major arc).
Let o, 3,y be real numbers, A > 0, and let N be a large integer such
that
(7.2) |En<n<anp(n)e(—an® — Bn — )| > log~ " N.

Then there exists D, 1 < D < N?/3, an integer q < 1 and a 6 € R such
that

D2
(7.3) #{d € (D,2D] : |lgad® — O|lp/z < ekl z D.
Furthermore if D < NY/3 we can take 6 = 0.

Proof. — We can discard the constant phase e(—v). As before, we apply
Proposition 4.2 with U = V = N'/3 and conclude one of the following
statements:

e (Type I sum is large): There exists D, 1 < D < N?/3 such that
‘EN/d<w<2N/de(ad2w2 + 6dw)‘ =1

for £ D values of d € (D, 2D].

e (Type II sum is large): There exist integers D, W with N3 <«
D < N?/3 and N/4 < DW < 4N, such that

|Ep<d.a<2DEw <w,w <owe(dp(dw) — ¢(d'w) — ¢(dw’)
+o(dw)| 21
where ¢(n) := an? + Gn.

Suppose first that the Type I sum is large. Applying Lemma A.11, we
can find an integer ¢ < 1 such that ||gd*«||g/z £ D?/N? for Z D values of
D < d < 2D, which implies (7.3) (with 8 = 0).

Now suppose instead that the Type II sum is large. By the pigeonhole
principle, we can find d’,w’ such that

Ep<i<2pBw <w<owe(dp(dw) — ¢(d'w) — ¢(dw’) + ¢(d'w'))| 2 1

(6) One can of course rewrite all the arguments in this paper replacing every appearance
of X £ Y or Y 2 X by suitably explicit long-hand forms (7.1), although some of
the constants may be ineffective. However we have found that this tended to clutter
the estimates with distracting numerical constants, and so we have chosen instead to
suppress all of these constants.
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and hence

[Ew <w<awe(@(dw) — d(d'w) — ¢(dw') + ¢(d'w'))| Z 1
for £ D values of d. Now the phase ¢(dw) — ¢(d'w) — ¢(dw') + ¢(d'w’)
is quadratic in w with a leading coefficient of a(d? — (d’)?). We may thus

apply Lemma A.11 and conclude that there exists ¢ < 1 such that
2

(4 ol - (@Plyz S 2

Pigeonholing in ¢, we conclude there exists a single value of ¢ such that
(7.4) follows for 2, D values of d € (D,2D]. Setting 6 := qa(d')?, the claim
follows. ]

By using Lemma A.4, we can now conclude the analogue of Corollary 5.2.

ProrosITION 7.2 (Correlation with quadratic phase implies major
arc, II). — Let «, 3, be real numbers, A > 0, and let N be a large integer

such that (7.2) holds. Then we have

lallr/z.q £ N2

for some @ S 1.

Proof. — We apply Proposition 7.1 to obtain D, 1 < D < N?/3, and
q S 1 obeying (7.3). If" D < 1 then certainly D < N'/3, and so we may
take @ = 0. There then exists d € (D, 2D] such that

2

D _
lgad?||r/z & N2 =N

and the claim follows on replacing ¢ by qd2.

Now let us suppose that D £ 1. We will not be able to apply Lemma A.12
as it is not sufficiently “amplified” for our use here. Instead, we use the
triangle inequality and (7.3) to obtain

D2
#{d.d € (D,2D) - Jao(d® ~ (&))l/z S 1 } & D

The diagonal case d = d’ is negligible since D £ 1, i.e.

D?
(15)  #{d.d € (D.2D]:d#d" |go(d — (@) S o } 2 D2
Writing d? — (d')? = dyds, where dy := d—d' and dy := d+d’, we conclude
jz 0

D?
#{dl,dQ 01 < |d1|, |d2‘ < 4D : ||qad1d2||R/Z ~ N2

(") This is an instance of the subtlety of the < notation. By this we mean that D <

Ca logC(A‘H)N, where C' is chosen so that if D > Cyu logc(A'H) N then the later
estimate (7.5) holds true.
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By reflection symmetry we may take dy, da to be positive. In particular, for
Z D values of d; in [1,4D], we have

D?
N RD:
Applying Lemma A.4 (ii) we thus conclude that for each such d;, there
exists gq, < 1 such that

#{dz € [1,4D] : |lgadida|lr/z

D
lqadiqa, |lr/z Nz
Applying the pigeonhole principle, we can thus find ¢’ < 1 such that
D
#{1 <dy <4D: ||gadyq )z S N2} > D.

Applying Lemma A 4 (ii) again, we conclude that there exists ¢ 5 1 such
that

1
lgaq"q |lr/z S N
Since ¢¢'q” < 1, the claim follows. O

On the other hand, we have the quadratic analogue of Proposition 5.3:

PROPOSITION 7.3 (Major arc quadratic phases are orthogonal to
Mobius). — Let N be a large integer, let «, 3,v € R/Z, and let Q, K > 1
be such that ||a|lg/z,o < K/N?. Then we have

Ex<n<anp(n)e(—an? — fn —v) <a QV3KY? log~ 4 N
for any A’ > 0 (the implied constant is ineffective).

Proof. — Let 1 < M < N be a parameter to be chosen later. We can set
~ = 0. Arguing as in the proof of Proposition 5.3, we have

|En<n<anp(n)e(—an® — fn)|

M
< ‘ win an2 —pBn)| + —.
7]= MIC[N an) M Z ) N

By hypothesis, we have an integer a and 1 < ¢ < @ such that |a— %\ < %
We thus have

elan®) = e(an? /g)e((e — a/g)n?)
= e(an? /g)e(2(a — a/q)(n — np))e(o — afg)nd) + O( T

= e(an®/q)e(2(a — a/q)n)(b)(a, a/q, n1) + O(KJ\]T\g )
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for any n,n; € I, where we use the (b)() notation from Appendix A. Dis-
carding the constant phase (b)(«, a/q,ny), and absorbing the linear phase
e(2(a — a/q)n) into the e(fn) factor we conclude

En<n<anp(n)e(—an® — Bn)
1 KM? M
< sup ‘— p(n)e(—an?/q — f'n)| + ——— + —.
\I|l=M;IC[N2N);8 cr! M nze; N2 N

The function e(an?/q) is periodic of period ¢, and can thus be decomposed
as a Fourier series e(an?/q) = Y210 epe(bn/q) where the coefficients ¢, are
Gauss sums and can be computed explicitly. From Plancherel’s theorem and
the Cauchy-Schwarz inequality we have S>7-0 |ey| = O(¢"/?) (cf. the proof
of Proposition 3.2). Applying (1.3) (with A replaced by 2A”) we conclude
that

S pn)e(—an?/q — B'n) <ar Ng'/?log >4 N,

nel
and hence
N / KM? M
Enx<n<onpp(n)e(—an? — fn —7) <ar M,ql/2 log 24 N + e + R
If we set M := K‘1/3q1/6Nlog7A/ N we obtain the claim. O

Propositions 7.2 and 7.3 together imply (1.7), though the < notation does
take some unravelling. Suppose for a contradiction that (7.2) holds. Then
Proposition 7.2 implies that [a|r/z,o < K/N?, where we may take K =
Q = Cy logC(AH) N for some absolute C. Proposition 7.3 now implies,
taking A" = C(A + 1), that

En<n<anp(n)e(—an® — fn — ) < log= /3 N

We may clearly assume that C' > 3, and so this does contradict our as-
sumption that (7.2) holds, at least if N > Ny(A) is sufficiently large. To
conclude the proof of (1.7), one simply applies Lemma A.7 with ¢ = 1.

Remark. — It is straightforward to iterate the above argument, as is
done in the standard theory of Weyl exponential sums, to obtain a generali-
sation of (1.7) in which an?+fn -+ is replaced by an arbitrary polynomial.
We will, however, not pursue this generalisation here.

8. Locally quadratic phase functions, I: a technical
reduction

We now begin the (onerous) task of proving Theorem 2.2. Let us begin
by recalling the statement:
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THEOREM 2.2 (u is strongly orthogonal to local quadratics). — Let G/T
be a 1-step nilmanifold, let F' : G/T' — C be a Lipschitz function, and let
g € G and x € G/T be arbitrary. Let ¢ : By — R/Z be a phase which is
locally quadratic on the Bohr set By := {n € [N]: F(Tjx) # 0}. Then we
have

Enenpu(n) F(Tya)e(=¢(n)) <gr,a ||F|luiplog™ N.

Our objective in this (rather technical) section is to reduce this to a
similar result which has certain important technical advantages. The most
critical of these is that ¢ can be extended to a function which is quadratic
somewhat beyond the domain By = Supp,, F(¢"x). This refined formula-
tion reads as follows.

PROPOSITION 8.1 (u is strongly orthogonal to extendible local quadra-
tics). — Let g € G, v € G/T, ng € Z, and let py € (0,107°) be a small
radius. Suppose that B, (ng,100pg) is contained in {n € Z: N < n < 2N},
and suppose that ¢ : Z — R/Z is a function which is locally quadratic
when restricted to By(ng,100p). Let ¢ : Z — RT be a function supported
on By(ng, po) which obeys the Lipschitz property

(8.1) [(n) —(m)| < ||n — m||y for all n,m € Z.
Then we have
(8.2) |En <n<anp(n)(n)e(—¢(n))| <a,c/r log™* N.

Proof that Proposition 8.1 implies Theorem 2.2. — By renormalising,
we may assume that || F||rip < 1.

The essential idea is that a “ball” (say By) can be covered by balls
Bgy(no,€) of a much smaller radius. Most of these will have the property
that Bg(no, 100¢) is still contained in By, and hence that ¢ is still quadratic
on By (ng, 100¢).

We turn to the details. First of all, an application of Lemma A.7 implies
that it suffices to establish the estimate

(8.3) En<n<ani(n)p(n/N)F(Tya)e(=¢(n)) <acrlog " N,
where ¢ : R — R is the function

6(t— L) if I

p(t)=9 1, ¢ 8

(any similar function would work). The phase e(an) which featured in that
lemma has been absorbed into the quadratic phase e(—¢(n)).
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We now replace F' by a “smooth-thresholded” function F, as constructed
in Lemma A.13. Let pg € (0,107°) be a parameter to be chosen later,
and set § := 10%py in Lemma A.13. This provides a Lipschitz function
F : G/T — R satisfying properties (i), (i) and (iii) of that lemma. In
particular from Lemma A.13 (iii) we see that

(84) Encncanp(n)e(n/N)F(T]x)
= Excncani(n)p(n/N)F(T;x) + O(po).

Now take a partition of unity 1 =) xo on G/T, where

(1) Each x, is supported on a ball of diameter at most pg/2;

(2) Each x, is bounded in magnitude by 1 and satisfies ||xa||Lip < /r
po

(3) The number of x, is O(p, G/F(l)).

We leave the construction of such a partition to the reader: modelling G/T
by a torus, one may be quite explicit. This partition of unity induces a

decomposition
F=Y R
[e3

where F,, := Fx,. Note that since both F' and x, are bounded we have,
using Lemma A.13 (i), that

(8.5) [ FallLip < [|FllLip + IXallLip <a/r p -

We may also effect a Lipschitz decomposition
p=> s
8

of ¢ into O(py ') Lipschitz functions ¢g with Lipschitz constant O(py*),
each supported on an interval of diameter py/2. Write

Ya,8(n) = Fo (T w)ps(n/N).
Noting that

p(n/N)F Z Va,p
it follows from (8.4) and the triangle 1nequahty that

(8.6) Encncanu(n)e(n/N)F(T)x)

—Og/r(1)

<g/r Po SUP!EN<n<2NM(n)¢a,B(“)6(—¢(”))| + po-

a7
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Suppose that n,n’ € Supp(¢a,3). Then @g(n/N),¢s(n’/N) # 0, which
means that [n—n'|/N < po/2. Furthermore F,, (T ), Fa(Tg”/x) = 0, mean-
ing that Hg"_”/Hg/p < po/2. Tt follows that ||[n — n’||; < po, and so the
support of 1, 3 is contained in some ball By(no, po).

We are, of course, going to apply Proposition 8.1. It is therefore necessary
to confirm that ¢ is defined on By(ng,100p0), and also to say something
concerning the Lipschitz constant of 1, 3.

Starting with the first task, suppose that Supp(v«,3) C Bg(no, po) and
that 1 g(n1) # 0 for some ny € By(ng, po) (we may clearly ignore those
a, 8 for which 9,3 = 0). Then ¢g(n/N) # 0 and so, due to the choice
of ¢, we have 7/6 < ni/N < 11/6. It follows that if n € Bgy(ng, 100p0)
then |[n — n1|/N < 101py and thus, since pg is so small, that N < n <
2N. We also have that F, (g™ x) # 0, which implies that F(g™z) # 0.
Now if n € By(no,100pg) then dg/r(g9"x, 9" x) < 101pg. It follows from
Lemma A.13 and our choice of § that F(¢"x) # 0. We have shown that
By(no,100p0) € By, and hence ¢ is indeed defined on the desired set.

We now examine the Lipschitz constant of ¢, g, with the || - ||, metric
on Z. We have, recalling (8.5), that

In —

/
(s () — s < g P <
and
|Folg™®) = Falg™ )| < pg M lg™ ™ ey < oo tln =1l
Since both Fi, and ¢g are bounded, the Lipschitz constant of 1, g is

Ocr(py )
We are now in a position to apply (a renormalised version of) Proposi-
tion 8.1. We deduce that

En<n<anp(n)ta,s(n)e(—¢(n)) <a py'log™" N

uniformly in a, 8. Thus, from (8.6), we see that

-0 1 _
Encnconi(n)p(n/N)F(g"x) <ar py ¢ P log™ N + po.

Setting pg := long/zC N, and recalling that A can be arbitrary, we do
indeed conclude Theorem 2.2. O

It will be convenient later on (in the proof of Lemma 11.4) to add some
further technical assumptions to the hypotheses of Proposition 8.1. We may
assume that v is real. Next, recall that G /T’ was embedded isometrically in
a torus (R/Z)%; we may in fact simply replace G/T" by that torus (R/Z)?
(using Lemma A.8) since this does not affect anything. It will be convenient
to work in Z/pZ where p is some prime between 10M N and 20M N. We
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can approximate the group element g by the nearest p'" root of unity g
in G/T, thus [|g7'g|lc/r < 1/N and gP € T'. Observe that the || - ||, and
II- ||»gv norms are comparable, thanks to the factor of || in the definition of
these norms. Thus we may, after making some trivial adjustments to the
constants such as 100 in the proof of Proposition 8.1, replace g by g, that
is we may assume that ¢ is a p'" root of unity.

9. Locally quadratic phase functions, II: Explicit
quadratic and quartic behaviour

We now begin the proof of Proposition 8.1. We are going to show that
if (8.2) is false then the phase ¢ is somehow “major arc”. Ultimately we
will relate it to the type of phases in Proposition 6.3 which, in view of
the main result of that proposition, will lead to a contradiction. We have
already seen several instances where a hypothesis that the Mobius function
u correlates with some phase implies that the phase is “major arc”: Propo-
sitions 5.1, 5.2, 7.1 and 7.2 are examples of this. In those cases the phase
involved, being either linear or quadratic, was of a simple algebraic kind,
but the phases that interest us now are not so explicitly given. The two
technical lemmas in this section show that these phases do, nevertheless,
enjoy some algebraic structure.

Suppose, for the remainder of the section, that ¢ : By(ng, 100py) — R/Z
is a locally quadratic phase. If ||h1||g, ||h2|lg < 30po then we define

¢"(h1, ha) := ¢(no + h1 + ha) — ¢(no + h1) — d(no + ha) + ¢(no).

This expression is clearly symmetric in hq, ho. Since ¢ is locally quadratic
on the Bohr set B,(ng, 100py), we conclude the “Taylor expansion”

(9.1)  ¢"(h1,h2) = ¢(n+ hy + ha) — ¢(n + h1) — ¢(n + ha) + é(n)

whenever n € By(ng,40po). By telescoping the right-hand side, we conclude
the local bilinearity properties

¢"(h1 + hy, ha) = ¢" (ha, ha) + ¢" (b7, ho);
¢"(h1, ha + hy) = ¢"(ha, he) + ¢ (hy, hi)
swhenever [, Whallgs 174l RSl < 1500

As another corollary of Lemma 9.1, we see that ¢ behaves like a genuine
quadratic function on certain short arithmetic progressions:

(9.2)
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COROLLARY 9.1 (Explicit quadratic structure). — If n € By(ng,20p),
L €Z and h € By(0,20p0/L), then there exist «, 5 € R/Z (depending on
n and h) such that

$(n+ hi) = (1 = 1)¢"(h,h) + ol + 3
foralll, 1 <Il<L.
Proof. — From (9.1) we obtain the recurrence
o(n+h(l+2)) = 2¢(n+ h(l + 1)) + ¢(n + hl) = ¢" (h, h)

forall I, 1 <1 < L — 2. The claim follows. O

This corollary is strong enough for us to understand the behaviour of the
Type I sums which will appear when, in subsequent sections, we analyse

Epevip(n)i(n)e(—o(n))

using Proposition 4.2. The corresponding Type II sums are more difficult.
The basic issue here is to understand the algebraic structure of the expres-
sion Y (dw)e(¢p(dw)), as a function of d and w. Since ¢ is already quadratic,
the phase ¢(dw) here is quartic (think of it as being like d?w?). We would
like some analogue of Corollary 9.1 that makes this quartic structure mani-
fest, for instance we would like ¢((d+sl)(w—+tm)) to exhibit some explicitly
quartic behaviour in [ and m, under suitable hypotheses on d, s, [, w, t,m of
course. This turns out to be a little tricky, because of the cross terms tdm
and slw present in the expression (d+ sl)(w+tm). By introducing suitably
many constraints (which will be available to us after later arguments) and
taking enough differences of the phase, we can eliminate these cross terms
and obtain the sought-after quartic structure.

LEmMMA 9.2 (Explicit quartic structure). — Let d,w;s,t and L, M be
integers such that

(9.3) LM |lst]l, < po
and let P : 7 X Z — Z be the quadratic polynomial
P(l,m) := (d + sl)(w + tm).

Suppose that the integers lg, 11,12, mg, m1, mo are such that |l;|,|m;| < L,
and furthermore that all sixteen of the values

(9.4) P(lo +irly +dgly, jima + jama), 1,2, 1,2 € {0,1},
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lie in By(ng, po). Then we have

(9.5) Z (—1) =t t 2 (P (ly + irly + iala, mo + jimy + jama))

1 indhjac {01
i1,82,51,52€{0,1} = 211Z2m1m2¢”(st, St).

Remark. — This lemma is a generalisation of the observation that if
#(n) = an® + bn + ¢ is a quadratic, and one differentiates ¢(P(l,m)) twice
in the [ variable and twice in the m variable, one gets 2 x ¢ X st x st,
where ¢” = 2a is the double derivative of ¢. It is key here that we have the
sixteen constraints (9.4): this gives us sufficient instances where (9.1) and
(9.2) may be applied. Later arguments (involving many applications of the
Cauchy-Schwarz inequality) will put us in a situation where we have such
a multiplicity of constraints at our disposal.

Proof. — By replacing d,w by d+lys and w + mot we may assume that
lo = mg = 0. Let 1,15, m1, my be as in the hypothesis of the lemma, that
is to say |l;], |mi| < L and the sixteen constraints (9.4) are satisfied. From
the identities

dw = P(0,0)
swl; = P(l1,0) — P(0,0), swls = P(l3,0) — P(0,0)
tdm; = P(0,my) — P(0,0), tdmg = P(0,msz) — P(0,0),
we see that
(9.6) dw € By(ng,po) and swly, swly, tdmq,tdmse € By(0,2p0).
Now fix i1,i2 € {0,1} and consider the sum
(9.7)  @(P(irh +ialz,m1 +m2)) — ¢(P(irly + dalz, m1))
— ¢(P(irly + i2la, m2)) + ¢(P(i1l1 + i2l2,0)).

We can rewrite this as
(9.8) ¢(n+h1 + ha) — d(n+ h1) — ¢(n + ha) + ¢(n)

where n 1= w(d + i18l; + i28l2), h1 := (d + i18ly + i2sle)tmy and he :=
(d+i18l1+iasly)tms. From (9.3) and (9.6) we see that n € By(ng, 5p0), and
that hq, he € By(0,4pg). Thus all four of n,n+ hi,n+ha,n+ hy + hg lie in
By (no,13pg) and (9.1) is applicable, which means we can rewrite (9.8) as

@ ((d +iy8ly +igsla)tmy, (d + iysly + igsly)tms).
Applying (9.2) and (9.6), (9.3), we can expand this as
(97) =X+4Y +i2Z + 2i1i211m112m2q’>”(3t, St)
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where X, Y, Z are quantities which depend on ¢, d, s, t,11, m1, l2, mo but are
independent of i1,45. If one then takes an alternating sum of this identity
over the four possible choices of i1,i2 € {0,1} to eliminate the X,Y,Z
terms, one obtains (9.5). O

10. Quadratic bias implies major arc

With the above preliminaries out of the way, we now begin the proof of
Proposition 8.1 in earnest. In this section we shall establish the main step
of this proof, namely that a quadratic bias necessarily implies a “major
arc” condition on ¢. We persist in our use of the notations X < Y and
X R 'Y, which were introduced in §7. Recall (cf. (7.1)) that X Y means
that

X < CuY logfAth v

for some constant C' which does not depend on A. That constant is, from
now on, allowed to depend on the underlying 2-step nilmanifold G/T" (in
actuality, it will depend on the dimension of that nilmanifold). The constant
C'4 is of course also allowed to depend on G/T". Recall also from Appendix A
the notation
lellryz,q = sup llqallr/z-
q<Q

The main result of this section is as follows.

ProprosITION 10.1. — Let the notation and assumptions be as in the
previous section. Suppose that

(10.1) [En<n<eni(n)d(n)e(—¢(n))| >log™* N.

Then there exist Xo S 1, D < 4N?/3 and Q < 1 with the following
property: for any X with Xo < X < N'/19 there exists a set D C [1, D],
|D| Z D/X'/2, such that if d € D and w € Z satisfies ||dw||, < 1/X then

16" (dw, dw)||r/z,0 < X >

Remark. — The conclusion here is an assertion that ¢”(h,h) is ma-
jor arc for many values of h. We shall recast this conclusion into a more
tractable form in the next section (in particular it is necessary to show that
as d,w range over the values allowed in the conclusion of the proposition,
h = dw takes on many different values).
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Proof. — Since 1 is Lipschitz and supported on B(ng, pg), we have
l¥]lcc < po, and so we conclude from (10.1) that

(10.2) po 2 1.

In practice, this will make it fairly easy to verify hypotheses such as |||y <
po which occur in the lemmas of the previous section.

We now apply Proposition 4.2 with f(n) := ¥(n)e(¢p(n)) and U =V =
N'/3 to conclude one of the following statements must be true:

e (Type I sum is large): There exists an integer 1 < D < N2/3 guch
that

(10.3) BN/ d<wsanyat(dw)e((dw))| Z 1
for £ D integers d such that D < d < 2D.

e (Type IT sum is large): There exists integers D, W with %N1/3 <
D < 4N?/? and N/4 < DW < 4N, such that

(104)  |Ep<d,a<2pEw<w,w<ewt(dw)y(dw)(dw’ )y (d'w’)
x e(¢(dw) — ¢(d'w) — p(dw') + ¢(d'w’))| Z 1.

We can thus assume that either (10.3) or (10.4) holds, and see what this
implies about ¢. We handle the two cases separately.

Large Type I sums. — Let us consider the (substantially simpler) Type
I case when (10.3) holds for many values of D. The bulk of the argument
is contained inside the following lemma.

LEMMA 10.2 (Large Type I sum implies major arc). — Let d, D < d <
2D, be such that (10.3) holds, that is to say

|En/a<wsan/at(dw)e(d(dw))| Z 1.

Assume that N is large depending on A. Then there exist Q $ 1 ande Z 1
such that

l¢" (dt, dt)|lr/z,q < L2
whenever L > 1 and t € Z is such that ||dt||, < /L.

Proof. — The idea is to analyse the quantity in (10.3) locally on short
progressions of common difference ¢ and length L. Since v is supported on
(N, 2N], we have

N
> vldwe(é(dw))| 2 -
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From the averaging identity
> fw) =Y Eiccnf(w+1l),
valid for any compactly supported function f : Z — C, we conclude

N
> Ercicrw(duw + d)e(o(dw + dth))| 2 5

Since 1) is supported on (N, 2N] and
|dtl| < LN|dtl/N| < LN||dt||y < eN,

we see that in this sum we still have the constraint |dw| = O(N), and
whence w = O(N/D). Thus by the pigeonhole principle we can find w such
that

|E1<icrib(dw + dtl)e(p(dw + dtl))| Z 1.
By (8.1) we have

P(dw + dtl) = P (dw) + O(l|dt]|g) = ¥ (dw) + O(e)
and hence (if € £ 1 is chosen suitably small)

Since 1(dw) is bounded and independent of [, it can be discarded and this
becomes

|E1<5<L€(¢(dw + dtl)| ; 1.
We apply Corollary 9.1 with n := dw and h := dt. We may assume, in
view of (10.2), that ¢ < 20py which means that h € By(0,20p0/L). Since
n € Supp(¢y) € By(no, po), Corollary 9.1 does indeed apply and we may
infer the existence of a, 3 € R/Z such that

|Ei<icre(31(1—1)¢"(dt, dt) + ol + B)| Z 1.

Now if L > logC(AJrl) N, for sufficiently large C, then Lemma A.11 applies
and we may indeed conclude that [¢”(dt,dt)|r/z,o < L. If L is not

this large then (because so much may be hidden inside the < symbol) the
conclusion is trivial anyway. O

The deduction of Proposition 10.1 in the Type I case is almost immediate.
Indeed from the preceding lemma we see that for £ D values of d € [D,2D)
we have

19" (dt,dt) /2 S L™°

whenever t € Z is such that ||dt||; < /L. Now simply let D be the set of
such d, set L := X/e, and require that Xy < 1 be large enough that L > 1
whenever X > X.
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Large Type II sums. — We move on now to the much more compli-
cated Type II case where (10.4) holds. That is to say, we work under the
assumption that

Ep<d,a<2DBEw <w,w <ew ¥ (dw)y(d'w)(dw )i (d w")
x e(¢(dw) — ¢(d'w) — d(dw') + p(d'w"))| Z 1
where 2N1/3 < D <4N?3 and 1N < DW < 4N.

LeEMMA 10.3 (Type II sum implies major arc). — Let $N/3 < D <
4N?/3 be such that +N < DW < 4N and (10.4) holds. Assume that N is
large depending on A. Then there exist Q 5 1 and € g 1 with the property
that

|¢" (st, st)|lr/z.0 S 1/L*M?

whenever s,t € Z and L, M € Z* are such that L|s| < eD, M|t| < eW,
L,M > 1/e and ||st||, < e2/LM.

Proof. — It will be convenient to use the b(z1,...,zx) notation intro-
duced in Appendix A. Thus for instance we can write (10.4) as

!ED<d,d'<2DEW<w,w/<2W¢(dw)e(¢(dw))b(d» w’)b(d’,w)b(d’,w’)| =L
By the pigeonhole principle, we can thus find d’, w’ such that
|Ep<icapEw <w<ow(dw)e(¢(dw))b(d, w’)b(d', w)b(d',w')| Z 1
which upon relabeling the bounded functions b becomes simply
[XI 21
where X is the quantity
X = Epca<copEw<w<ow P (dw)e(d(dw))b(d)b(w).

Now we argue somewhat as in the proof of Lemma 10.2, averaging d and
w over arithmetic progressions. For any 1 <! < L and 1 < m < M we can
make the change of variables d — d + sl, w — w + tm to obtain

X = Ep_sica<op—siBw —tm<w<ow —tm¥((d + sl)(w + tm))
x e(@((d+ sl)(w+tm)))b(d + sl)b(w + tm).

From our assumption that L|s| < eD and M|t| < eW we infer that

X = ED<d<2D]Ew<wggw’l/J((d + sl)(w + tm))e(¢((d + sl)(w + tm)))
x b(d + sl)b(w + tm) + O(e).
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Averaging over [ and m gives
X = Epci<opEw <cw<owEi<i<t Eicm<m((d + sl)(w + tm))
x e(p((d+ sl)(w +tm)))b(d + sl)b(w + tm) 4+ O(e).
If ¢ 2 1 is sufficiently small, the assumption that X Z 1 implies that

|Ep<a<enBw <w<ewBi<i<cc Ercmeart((d + sl)(w + tm))
x e(p((d+ sl)(w+tm)))b(d + sl)b(w + tm)’ 2z 1.

Hence by the pigeonhole principle there exist d, w such that
[Er<icrEicmenr((d + sl)(w + tm))e(¢((d + sl)(w + tm)))
x b(d + sl)b(w + tm)| Z 1.

~
~

Fix such d, w. By relabeling the b’s, we can write b(d+sl)b(w+tm) simply
as b(l)b(m). We also set

P(l,m) := (d+ sl)(w + tm).

We have, then, that

(S £t m)b(yb(m)| 2 Lut
Lm

where
(10.5) f(l,m) = o(P(l,m)))e(o(P(l,m)) li<i<rlicm<nm-
Using Lemma A.10 to eliminate the b(I)b(m) factors, we conclude

> f@m)f,m) fm)f(,m')| 2 LM

’ ’
Ll mm

We write | = lg, I = lg + 11, m = mg, m' = mg + m; to obtain

‘ > D F(lo,mo;h,ml)’ 2 L*M?

l1,m1 lo,mo

where

F(lo,mo; 11, m1) := f(lo,m0)f(lo,mo +ma) f(lo +11,mo)
x f(lo +l1,mo + ma).

ANNALES DE L’INSTITUT FOURIER



QUADRATIC UNIFORMITY OF MOBIUS 1903

Applying Lemma A.10 again, this time in the |y and mg variables, we see
that

(10.6) ‘Z > F(lo,mo; b, ma)F(lo, mg; b, ma)F(ly, mos 11, ma)

! ’
ly,m1 lo,mo,ly,m{

x F(ly,my;li,my)| Z L* M3,

Writing If, = lp + la, m{, = mo + ma, this becomes
33/3
E G(loJlJz,mo,mbmz)‘ = L°M
lo,l1,l2,m0,m1,m2

where

G(lo, 11,1z, mo, m1,ma) := F(lo, mo; 11, m1)F(lo, mo + ma; 1y, my)

x F(lg,mo + ma;l1, mq)
x F(lo + ma,mo + ma;ly,mq)
- H CHtititiz f(ly +d1ly + dala, mo
(41,42,51,J2)€{0,1}*
+ jima + jama)
and C : z — Z is the conjugation operator. Observe that the support of the

sum in (10.6) is still contained in the region |l;| < L, |m;| < M. By the
pigeonhole principle, we can find [y and mg such that

(10.7) ‘ Z H Ci1+i2+j1+j2f
li,l2,m1,ma (i1,i2,51,52)€{0,1}*
X (lo + 411y + i2ls, Mg + j1my —|—j2m2)‘ i L2M?2.
Let us now expand the product using (10.5); this creates a very long
product involving sixteen phases (coming from the terms e(¢(P(I,m)))
in the definition of f) and fourty-eight cutoffs (coming from the terms

Y(P(l,m))li<i<rligmsgnm)- The sixteen phases e(¢(P(1,m))) combine to
form a single phase

6( Z (_1)i1+i2+j1+j2¢(P(l0 + 101 + igla, mo + j1mg + ]ng)))
i1,42,51,52€{0,1}

The presence of the fourty-eight cutoffs is just what we need to apply
Lemma 9.2, which allows us write the phase in (10.7) as

e(2llymymad” (st, st)).
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Note that the condition (9.3) required by that lemma is a consequence of
the condition [|st||, < €2/LM we are working under here, provided that e
is chosen sufficiently small; indeed recall from (10.2) that pg £ 1.

The fourty-eight cutoffs have now served their purpose of explicitly quar-
tilinearising the phase, and we shall now set about obliterating them with
further applications of the Cauchy-Schwarz inequality. To do this, we ob-
serve by inspection that fourty-seven of these cutoffs depend on at most
three of the variables [y, I, m1, ma, with the lone exception being ¥(P(ly +
l1+13, mg+mq+ms)). Also, let us recall once more that the cutoffs restrict

l1,12 to have magnitude at most L, and m1, mo to have magnitude at most
M. We thus have

(10.8) ‘ Z e(2l1lamymad” (st, st))

[t1]s|l2|<Lima|,|me|<M

x (P(lo + 1y + Iz, mo + my +my))
x b(lz,m1, m2)b(ly,m1, m2)b(l1,la, ma)b(l1,l2,m1)| Z L*M?.

We would like to eliminate all the b() factors using Lemma A.10, but we
need to deal with the exceptional cutoff ¢ (P(lg+11+12, mo+mi+ms)) first.
First observe that if v were a multiplicative function then the quadratic
nature of P would ensure that ¢(P(lgp + I3 + l2,mo + m1 + m2)) would
factor into the product of expressions, each of which only depends on at
most three (in fact, at most two) of the l1,l2, m1, ma. Of course, ¢ is not
multiplicative, but thanks to (8.1) we can write ¥(n) = ¥(¢",n/N) for
N < n < 2N, where ¥ : G/T" x (R/Z) — R is Lipschitz on the orbit
{(¢™,n/N) : N < n < 2N} and hence, by Lemma A.8, is the restriction
of a Lipschitz function on all of G/T' x (R/Z). Let § Z 1 be a parameter
to be chosen later. Using Lemma A.9, we can approximate ¥ uniformly
to accuracy O(6) on (N,2N] by a linear combination of at most O(§~¢)
characters on G/T x (R/Z), each of which has the form (x,0) — x(z)e(k0)
where y € (G/T)* and k € Z. The coefficients in this linear combination
are all O(1). Thus we can estimate the left-hand side of (10.8) by

o6 sup
X€E(G/T)"
kez

e(2l1lamymag” (st, st))

[L1],]l2|<L
[mal,|ma|<M

x y(gFtorhtlemaotmitma)ye(kP(ly 4 1y + Iy, mo + my + m2))

x b(lz, mi, ma)b(l1, m1, ma)b(l1,la, ma)b(l1,l2, m1)

) + O(SL2M?).
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Choosing § Z 1 suitably small, we thus conclude that there exist x and k
such that the inner sum is Z 6 L2M? Z L?M?2. By the quadratic nature of
P we may absorb the terms y(gF(othtlzmotmitma)y and e(kP(ly + 1y +
l2,mo+my +mg)) into the four unspecified bounded functions b(), thereby
obtaining

Z e(2l1lamymag” (st, st))

[t1]s|l2|SLmal,mz|<M
X b(lg,ml,mg)b(ll,ml,mg)b(ll, lg, mg)b(ll,lg,ml)‘ g LZMQ.

Applying Lemma A.10 to eliminate the b() factors, we deduce

> e(2(ly = 11)(l2 = 15)(my —m)(mg —my)
[11], 1241, 102], 15 |<L
[mal,|mf],Ime|,|m5| <M % gb"(st,st))‘ > LAMA

By the pigeonhole principle, we can thus find 1},l5 = O(L) and
m},mbh = O(M) such that

ST e — Bl — 1) (my — mh)(mz — my)e" (st, st))| 2 LEME,
[La],)l2|<L
[ma],|mz|<M

Summing in mso using (A.1), we obtain
. 1 _
S min(l, 20— lg) () (st st ) 2 L2
[ta]s)i2| <L [ma |<M

Shifting l1, I, mq by 11, 15, m] respectively, and doubling m; to absorb the
factor of two this creates, we thus have

1
Z Z min(l, - ) Z L*M.
| Tr<er imiean M||liloma¢” (st, st)|lr/z

It follows that

1

Qv

1
min{ 1,
( MHlele(bH(St,St)”R/Z)

for 2, LM triples (l1,l2,m1), which means that

1
[l1lam1 ¢ (st, st)|lr/z < i

for those triples. In particular, we have X, L? pairs (I1,l2) for which this
inequality holds for g M values of my = O(M). If M > logCt A+ v
for some sufficiently large Cy then we may apply Lemma A.4 (ii) with
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parameters §; S 1/M, d2 Z 1 and |I| ~ M to conclude that for each such
pair (I1,l2), there exists ¢ < 1 such that

1
(10.9) l1l2q¢” (st, st)|lr/z < ek

This condition on M may be met by choosing ¢ £ 1 sufficiently small,
since one of the hypotheses of the lemma was that M > 1/e. Applying the
pigeonhole principle to (10.9), we can now locate a single ¢ 5 1 such that
the above bound holds for Z, L? pairs (I1, l2).

Taking ¢ sufficiently small we may assume that L, M > logCQ(AH) N for
suitable Cy and apply Lemma A.4 to Iy instead of m;. The parameters in
that lemma are now &; ~ 1/M?, §; ~ 1 and |I| ~ L, and we conclude the
existence of ¢’ < 1 such that

1
l / 2 t. st Si
H 14 q¢ (S’S)HR/ZNLM2

for Z L values of l;. Applying Lemma A.4 one last time, now with §; ~
1/LM? 65 ~ 1 and |I| ~ L, we find a ¢” < 1 such that
1
lld"qd'q¢" (st, st)|lr/z < YEIVER
Since ¢"¢'q" < 1, the proof of Lemma 10.3 is complete. O

It remains to use this lemma to complete the proof of Proposition 10.1
in the Type II case. We take D to be simply the whole interval [D/2X /2,
D/X 1 2]. There is a very important subtlety here: this set of integers can
only be guaranteed to have size Z D/X'/? if we assume that D/X'/2 > 1.
Note, however, that in the Type II case this is so since we are working
under that assumption that D > N/3 and X < N'/19. This is not just a
technical artefact of our approach — it is simply not possible to bound a
general bilinear form, such as the Type II sum

T = Z Z adbwf(dw)

dr~D w~W
when one of the ranges d ~ D or w ~ W is too short, as the weights a4, b,
could conspire to give no cancellation.

Suppose, then, that d € D and that w € 7Z satisfies the condition
of Proposition 10.1, namely that |dw|, < 1/X. In Lemma 10.3 take
L =M :=eX'2/10 and s := d, t := w. If Xy S 1 is sufficiently large
and X > X, then certainly the two conditions L, M > 1/e are satisfied.
Furthermore we have
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and

eX!/2 |dw| - eX!'/2 N|dwl|g _eN

10 ld| = 10 |d| T 5D
and finally ||st||; < €?/LM by the definition of L and M. All the conditions
of Lemma 10.3 are thus satisfied, and we may infer that

H(b”(dw, dw)”R/Z,Q é X2

eWw,

for some @ 1, as required.

O

We may now forget about Type I and II sums, and work with the conclu-
sion of Proposition 10.1 instead. In the next section we will use divisor
moment estimates to cast this conclusion in a more tractible form.

11. Massaging the major arc condition

In the last two sections we showed that if ¢)(n)e(—¢p(n)) correlates with
Mbobius (specifically if (10.1) holds true) then ¢ must exhibit some kind
of “major arc” behaviour. Indeed we proved Proposition 10.1, which we
urge the reader to recall now. Our first task in this section is to cast the
conclusion of that proposition in a more useable form. Through this section,
we assume that ¢ : By(no,100p9) — R/Z is a phase for which (10.1), and
hence the conclusion of Proposition 10.1, holds true.

ProprosITION 11.1. — Let ¢ be as above, and suppose that the param-
eter p, satisfies
(11.1) N~¢< py < pplog= @14+ N

for some ¢ > 0 and some Cy which is sufficiently large depending on G/T
(in reality p; will be much larger than N~¢, so the lower bound here is
hardly relevant). Then

(11.2) ||¢”(nan)H]R/Z,Q < i
for 2 pi’/2|Bg(O,p1)\ values of n € B,y(0, p1), where Q 5 1.
Remarks. — Note that since pf/ % is so much bigger than p?, the con-

clusion is in the spirit of the hypotheses of Lemmas such as A.12, where a
quadratic whose fractional part was “close to zero unexpectedly often” was
shown to be major arc. We will, in fact, apply exactly that lemma later in
this section. The fact that we can arrange the exponents 3/2 and 2 in this
way is ultimately due to the lower bound |D| Z D/X'/? in Proposition 10.1;
|D| 2 D/X would not suffice.
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Proof. — Set X := 1/p; in Proposition 10.1; we may certainly suppose
that C is so large that this is permissible. We find D < N?/3 and a set
D C {1,...,D} of cardinality |D| Z, D/X'/? such that

" (dw, dw)|lr/z,q 5 PT
whenever d € D and w € Z are such that dw € B,(0, p1). Thus, if we define
the sets
Q:=By(0,01)NZ"; Qq:={neN:dn}
for each integer d > 1, it will suffice (noting that By(0, po) is symmetric
about the origin) to prove the estimate
3/2

(11.3) U 24| 2 7100

deD
Observing from Lemma 6.2 that

Q| > p§' N and |Qq4] > —\Q| for all d € D,

where C' depends only on G/T', it follows by taking x := 1/2C' in Lemma C.2
of Appendix C that

1/29,~C
’U Qd‘>> |D|2\Q|p log™"2 N.
deD

Since |D| £ D/X'/?, the result follows immediately. O

As we remarked, the conclusion of Proposition 11.1 has the form “¢” (n,n)
is surprisingly close to an integer very often” on a small Bohr set By (0, p1).
The next step is to amplify this to obtain ¢”(h,h) major arc for a signif-
icantly larger set of h (working on By(0, po) rather than B, (0, p1)). More
precisely, we now establish a more pleasant characterisation of major arc:

LEMMA 11.2 (Major arcs have small second derivative). — Let ¢ be as
above. Then there exists (1 < 1 such that

||¢”(hvh>”R/Z,Q1 é ||hH3
for all h € By(0, po).

Proof. — The idea is to make the quadratic structure of ¢” so explicit
that we can apply Lemma A.12.

We will choose p; := log702(‘4+1) N, where C5 > (] is some constant
to be specified later. In particular if C is large enough then the conditions
of Proposition 11.1 are satisfied, and we can find as a result some set
S C By(0, p1) such that

(11.4) 1S 2 0% 1B, (0, p1)]
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and

(11.5) 19" (n. 1) lr/z,0 = P7
for all n € S. Note that the implied constants in the g and g notations
here do not depend on Cs. Note also that for reasons like this one must
exercise extreme caution with these notations.

Select some C3 > Cy. If ||h]|y > longS(AH) N then the lemma holds
vacuously, and so we assume henceforth that ||k < log~ @A+ N Now
from (11.4) and Lemma 6.2(b) we have

EnEBg (O,2p1)]—8(n + m) i p?/Z

for all m € By(0, p1). Applying this to m = hl for all l € {1,..., L}, where

L:= Lﬁj, and then averaging in L, we conclude
g

Enep, 0200 B1<icrls(n+hl) Z py/”,

and thus by the pigeonhole principle we can find n € By(0,2p1) such that

Ei<icrls(n+hl) 2 p}/°

In particular, we have
9" (n+ hl,n + hl)|g/z.q S PT

for 2 pf/zL values of [ € {1,...,L}. Applying the pigeonhole principle
again, we can thus find a single ¢ 5 1 such that

llg¢" (n + hl,n+ hl)|lr/z < P}

for Z p‘rf/QL values of [ € {1,...,L}. Now from Corollary 9.1 (and (10.2))
we can write

q¢"(n+ hl,n+hl) = qi*¢" (h,h) + al + 8

for some quantities «, 6 € R/Z which depend on ¢, ¢, n, h but are indepen-
dent of [. Thus

ql®¢" (h,h) + ol + Bllrz < 7

for 2 p‘;'/ZL values of [ € {1,...,L}. Now Lemma A.12 applies to exactly
this kind of situation. In that lemma we take d; ~ p? and 5y ~ pi’/2
and note that the requisite conditions §; < 185 and L > 2585, 12 are
handsomely satisfied if Cy,C5 are chosen judiciously. The conclusion is

that

)

||Q¢H(ha h)HR/Z727435279 < 214152_28[/72,

Setting Q1 = 27%36;° < 1 and noting that L 2 ||h||;!, the conclusion
g 2 = ~ g

follows. O
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In the next lemma, we bootstrap Lemma 11.2 to a depolarized version
of itself.

LeEMMA 11.3 (Major arcs have small second derivative, IT). — Let ¢ be
as above. Then there exist Q2 < 1 and ps Z 1 such that py < po and

16" (h, ) v /2,2 = IRllglIA Il
for all h, i’ € B,(0, p2).

Proof. — Let ps = logfc“(A“) N, for some large Cy to be chosen later.
By symmetry we may assume ||A'||; < ||h|ly. Let L > 1 be the least integer
such that L||h'||; > ||h|lg. For any I € {1,...,L}, we use (9.2) and the
hypotheses h, b’ € B,(0, p2) to conclude

416" (h, W) = ¢" (h+ 1N b4 1h') — ¢"(h — I, h — II).
Applying Lemma 11.2 and the triangle inequality, we infer

419" (b, W) |rjz.00 < I
and hence

116" (b, ') |r 2,00, < P12

for all I € {1,...,L}. Let C5 be a further constant to be specified later.
IfL< log_c"’(AH) N then we can set [ = 1 and the argument is finished.
Suppose, then, that L > log_cs(AH) N. By the pigeonhole principle, we
can find ¢ < @1 < 1 such that

lg1” (h, 1) ez = I

for 2 L values of I € {1,...,L}. We are now in a position to apply
Lemma A.4(ii) with 6; ~ ||h]|2 and 6, ~ 1. If Cy is large enough then
we certainly have d; < 02, whilst Cs may be chosen so that L > 2/63. In
those circumstances the lemma is applicable and we deduce that

lag" (hy W) lryz < 1Rl /L < [IAllg |1 4-
This concludes the proof. O

The above lemma says that for any pair h,h’ each having small | - ||
norms, the second derivative ¢ (h, h’) is close to a rational number a/q for
some small q. However, this ¢ can currently depend on h, h’. Fortunately,
it is possible to “clear denominators” and make ¢ independent of h,h’,
by taking advantage of a certain “finite dimensionality” of the Bohr set
By(0, p2). More precisely, we have
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LEMMA 11.4 (Major arcs have small second derivative, IIT). — Let ¢
be as above. Then there exists ps £ 1 and an integer ¢ < 1 such that

lag” (h, M) IRz < IRllg IR Il
for all h, i’ € B,(0, ps).

Proof. — We shall use some standard results from the geometry of num-
bers to obtain a “basis” for the Bohr set By(0, p2). These result are dis-
cussed in several places: see, for example, [2, 11] and [20, Ch. 3]. Recall
at this point the discussion at the end of §8, where we remarked that
g € (R/Z)? can be taken to be an p*® root of unity, where p € [LON, 20N]
is the prime we have associated to N for those arguments where it is con-
venient to work in a cyclic group. This is such an argument. We identify
By(0, p2), which is certainly contained in {1,..., N'}, with a subset of Z/pZ.

Write
_ (& €a
o= (88
in (R/Z)?, where &,...,&q € Z/pZ. Let S C 7Z/pZ be the set of frequencies
S={1&,.... &}

In the notation of [11], the Bohr set B, (0, p2) is then comparable to a
“traditional” Bohr set

B(S,p) :={z € Z/pZ : || /pllr/z < p}
in the sense that
(11.6) B(S, 5502) € By(0,p2) € B(S,2p2).

Applying [11, Corollary 10.5], and redefining d := d + 1, we can then find
a proper(® generalised arithmetic progression

P={lvy+...+lqvg: |l;| < L; for all 1 < j < d}
for some Ly,...,Lq > 1 and vy,...,vq € Z/pZ, such that
B!](O?cPQ) ngBg(O,pg)

for some ¢ = ¢(d) > 0. In fact by applying that result to By(0, +p2) (and
redefining P and the L; slightly) we may insist on the slightly stronger
inclusions

(11'7) Bg<ov %CPQ) - P1/4 cprPcC BQ(OMO?)

®) By proper we mean that all the sums ljv1 + ...+ lgvg are distinct.
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where Py is defined for any 6 € (0,1] by
Py = {llvl +...+lqug || <OL; forall 1 < j < d}.

We will prove the lemma with ps := 1cps. Let us note from (11.7) that

P2 1

[vjlly < 7= <
J Q\LJ \LJ

for each j, 1 < j < d. Thus by Lemma 11.3 we may find for each j,j’,
1<4,5' <d,aqgjjy $1such that

1
LJ L]/ ’
If we let ¢ be the least common multiple of all the g; ;-, then we still have
g3 1and

4,50 8" (vj,v) IRz S

1
(v, v S
lad" (v, v )llr/z = L;L;

for all 7,7, 1 < 7,7 < d. Note that at this point the implied constants in

the < notation have become heavily dependent on d. By bilinearity (9.2)
it follows that

(11.8) llag” (h, W)llryz < IRIlplIR || P
for all h,h' € P, where the norm || - ||p on P is defined by
I ~ sup 1l
101 + ...+ lgvgllp := sup I
1<g<sd Hy

We claim that [|h||p < ||h|ly for all h € By(0, p3). In view of (11.8), this
will suffice to prove the lemma.

We may assume that h # 0 since the claim is trivial otherwise. Observe
that h € Py /5. Let M > 1 be the smallest positive integer such that Mh ¢
Py 45 since Mh = (M —1)h+h, we see that Mh € Py /5. Thus |[Mh||p < 1/2,
which implies that ||h||p < 1/2M (here we use the hypothesis that P is
proper, which implies that the co-ordinates ly,...,l; of Mh are M times
the co-ordinates of /). On the other hand, since Mh & P, 4, we have Mh ¢
By (0, p3), which implies M ||h||, > ps and hence that ||h||, > ps/M Z 1/M.
Combining these estimates we obtain the claim, and hence the lemma. O

12. Handling the major arcs

Let us summarise the current state of affairs. In our effort to prove Propo-
sition 8.1, we assumed that its conclusion (8.2) was false. After a long and
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complicated analysis, we deduced from this assumption that the phase ¢ is
major arc, in the sense that we have an estimate

lag” (h, M) lrsz = IRllg IR Il

whenever h, b’ € By(0, ps), for some ¢ < 1 and some p3 Z 1. This was, of
course, the content of Lemma 11.4. To close the argument, we relate major
arc phases of this type to those appearing in Proposition 6.3. This is not
hard (though a little technical), and leads quickly to a contradiction (of
the assumption that (8.2) was false).

Let g be as above. By bilinearity (9.2) again, we see that

16" (h, W) l[rsz = IRllg 12l

for all h,h’ € B,4(0, p3) such that g|h,h'. Let ¢ < p3, € Z 1, be a small
number to be chosen later. Applying (9.1), we conclude the approximate
linearity relationship

(12.1)  ||¢(n+hy + ha) — d(n+h1) — d(n+ ha) + ¢(n)|[r/z S > < €

whenever n € Bgy(ng,2po), whenever hi,ha € By(0,20¢) are such that
q|h1, he, and provided that ¢ is small enough.

Now due to the finite dimensionality of the space (R/Z)? x R from which
the metric |[n —m||, is naturally descended (cf. the remarks following Defi-
nition 6.1) we may cover B, (ng, po) with O(e~¢) Bohr sets By (nq,¢) such
that each point is contained in O(1) of these Bohr sets. This induces a
corresponding partition of 1 into O(¢~¢) functions 1, each of which is
supported on a Bohr set By(nq, €) and still obeys the Lipschitz bound (8.1).

Now observe that if n,n + hy,n + ha,n + h1 + hy € Bg(na, 10¢), and if
q|h1, ho then (12.1) holds. Thus we may apply Proposition 6.3 (with p = ¢)
to conclude that for any x < €, and for some A’ to be chosen later, we have

[Ex<n<anp(n)ba(n)e(~o(m)] <ar n™¢*log™* N+(e+m)En <ncan[al-
Summing in «, using the bounded overlap of the Bohr sets and the fact
that |||l < po < 1, we conclude

(12.2) }EN<”<2Np(n)1/)(n)e(f¢(n))| <L (€I€)7Cq3 log_A, N + ¢+ k.
At this point we set® k =e = log_c(A+1) N for some C' > 1 which is so

large that (12.1) holds. Recalling that ¢ < 1, we see that A’ may be chosen
so that the right-hand side of (12.2) is < log™* N.

9 we kept the parameters € and k separate in Proposition 6.3 for pedagogical reasons,
to make the dependencies clear.
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We have, at long last, contradicted the supposition that (8.2) is false. This
implies Proposition 8.1. By the analysis of §8, Theorem 2.2 is also true, and
thus, by the deduction immediately after the statement of Theorem 2.2, so
is the Main Theorem.

Appendix A. Some harmonic analysis tools

In this appendix we collect some simple harmonic analysis tools which
are used frequently in the paper. We begin by introducing some norms on
the unit circle R/Z, which can be lifted up to the real line R.

DEFINITION A.1 (Circle norms). — If o is an element of the real line
R or the circle R/7Z, we use ||c||g/z to denote the distance from « to the
nearest integer (if av is real) or to zero (if «v is on the circle R/Z). If @ > 1
is an integer, we use ||a|r/z,q to denote the quantity

lollr/z,q = 1<1n£Q lgl|r)z-

The quantity ||a||r/z is subadditive, thus ||a+ 8|lr/z < |lollr/z+8|lr/z-
We caution however that the quantity ||e||r/z,q (which is large when o lies
in a “minor arc”, and small when « lies in a “major arc”) is not subadditive.

Define a discrete interval to be any set of the form {n € Z : a < n < b}
for some a, b. By summing the geometric series, we observe the elementary
exponential sum estimate

(A1) ‘Z e(an) ‘ 4m1n(|[| 7)

= lellr/z
for any discrete interval I C Z and any a € R/Z (or any € R). One
consequence of this is the following Pdlya-Vinogradov type completion of
sums lemma, which allows one to estimate a partial sum by a completed

sum at the cost of a logarithm and an exponential phase.

LEMMA A.2 (Completion of sums). — Let I C Z be a discrete interval,
and f : Z — C be a function. Then we have

sup’Zf ‘<<log1+|[| sup ‘Zf ‘

a€R/Z

where the supremum on the left ranges over discrete sub-intervals of I.
More generally, if I' C Z is another discrete interval, and K : 7. x 7. — C
is a function, then we have

Z ‘Z 1Jm(n)K(n,m)‘2 < log?(1+ |I]) sup Z ‘ZK n,m)e(an)

‘2
mel' nel a€R/Z o1 e
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where for each m € I', J,, C 7Z is an arbitrary discrete interval.

Proof. — We may assume [ is non-empty. By translation we may take
I={1,...,L} for some L > 1, which we then identify with Z/LZ. If J is
any interval in Z/LZ, we can use Fourier expansion in Z/LZ to write

S tm= 3 Lm)fm)

neJ n€L/LL
= > L© Y emg/L)fn)
£€Z/LZ nez/LZ

where
T;(f) = Enez/pzls(n)e(—ng/L).
Applying (A.1), we have

1

@) < min(l, per—).

Thus by the triangle inequality, we have

S smi<a 3 min(l )| X et/niso)

neJ ¢€Z/LZ nez/L7Z
1
< Z min(l,i) sup Ze(na)f(n)‘
§€Z/LL LHg/L”R/Z a€R/Z' 77

< log(1+ L) sup ) e(na)
aER/Z Z

which gives the first inequality. Using similar arguments, as well as the
triangle inequality in 12, we have

(S [S v wrtm]) -

mel’ nel

o\ 1/2
<<<Z< 2 min Lllf/LIIR/z ‘Z (ne/L)K ’“”)D)

mel’ ¢€n/NZ

1/2
< ¥ mm( L|§/2|R/Z)<Z’Ze(nf/L)K(Mm)‘Q)

EEL/NZ mel’ nel
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< log(1+ L) sup (Z)Ze(af)[((n,m)r)lm.

a€R/Z mel nel
O
In a similar spirit, we now recall the well-known Erdés-Turdn inequality:
PrROPOSITION A.3 (Erdés-Turdn inequality). — Let (u;)l, be a se-

quence in R/7Z, and define the discrepancy A(«, 3) for any —% <a<f< %
by the formula

Ala,B) =#{le{1,....,L} :w € [o, 0]} — (B — ) L.

Then for any positive integer () we have

L <
A Bl < 5+ Z ]Zequl\
q=1 =1

Proof. — See for instance [17]. The constant 3 is unimportant for us, and
could be improved slightly. a

An important application of this inequality for us (which we will use
extremely frequently) will be the following observation, which says that if
a linear sequence «l stays close to an integer for many [ in an interval I,
then a must be “major arc”, in the sense that ||a||r/z,q is small for some
small Q.

LEMMA A.4 (Recurrent linear functions are major arc). — Let I C Z
be a discrete interval, let o € R/Z, and suppose that the set

£= {l el: ||al||R/Z < (51}

has cardinality at least ds|I| for some 0 < §1,02 < 1 with 61 < %(52.
(i) If [I| > 1/62, then ||o||r/z,8/s, < 2°%/05|1].
(ii) If |I| > 2/63, then lallr)z,16/62 < 2154, /63|1].

Proof. — Write I = {M +1,..., M+ L}, and let (u;)%, be the sequence
uy = a(M+I) (mod 1). Then the lower bound on £ implies the discrepancy
estimate

A(=81,61) = (6, — 261)L > L6, L.

Let us now prove (i). Applying Proposition A.3 we conclude

L &1
%52L<§+3Z ’Zequl’
q=1 =1
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for any Q. Taking @ =: [4/02], this implies that there is ¢ < 8/, such

that
L
‘Z e(quq) ‘ > 275521
=1

Applying (A.1), the result follows.

We now use a standard “amplification” argument, exploiting the small-
ness of d; compared to d2, to bootstrap (i) to the stronger estimate (ii).
We may assume that d; < d5/16 since the result follows immediately from
(i) otherwise. Let 1 < m < L be an integer to be chosen later; then by the
pigeonhole principle and the lower bound on |£|, there exists some b such
that the set

={b+1,....;0+m}ng
has cardinality at least dom/2. We fix b, and note that if z € m& + £,
that is to say if x = ml + 1’ with [ € £ and I' € £, then ||az||g/z < 2md;.
Furthermore we have |mg£ + £,| > 63mL/2, and also m£ + £, is a subset
of the interval

I'={mM+1)+b+1,...,mM+L)+b+m},

which has cardinality at most mL. We can apply (i) with I, d1, d2 replaced
by I, 2mdy, and 83 /2, provided that m < §5/168; and mL > 2/53. It being
sensible to take m essentially as large as possible, set m := |83 /166, |. The
result follows quickly. a

Next, we record a version of summation by parts. Define the total vari-
ation ||¢||Tv of a sequence ¢ : Z — C to be the quantity

[¥llTv —suplw N+ [(n+1) = p(n),
nez

and more generally define the total variation modulo ¢ for any g > 1 to be
the quantity

||¢||TVq—Sup\¢ I+ [(n+q) = ¢(n).

neEZ

LEMMA A.5 (Summation by parts). — If f, ¢ : Z — C and I is an

interval, then
> sy < HwIITvsup’Zf )|

nel

More generally, for any q > 1 we have

> )| <alvlrvae _swp |37 F0) s od o

nel ClLa€Z/ql’ o g
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Proof. — Write I = {u,...,v}, and denote by S, := Y7_ f(j) the
partial sums of f. Recalling the summation by parts formula

> fn)w(n) = ) + ZS Y(n+ 1)),

nel
the first inequality follows immediately. The second bound follows by split-
ting I into ¢ residue classes modulo ¢ and applying a rescaled version of
the first identity to each component. O

COROLLARY A.6 (Completion of sums, II). — Let I C Z be a discrete
interval, and f : Z — C and ¢ : Z — C be functions. Then we have

> () () < log(1+ |Dlwlrv sup |3 flnje(an)]
nel neI
and more generally for any q > 1
>~ vl () < alog(t + TDlWlrve sup |5 f(n)e(an)]
nel €R/Z e
Proof. — The first part is immediate from Lemmas A.2 and A.5. To
obtain the second bound, we begin with an invocation of the second bound
in Lemma A.5. It is now sufficient to prove that

sSup ‘Z f(n)lnza (mod q)‘ < sup Z f(n)e(an)‘
JCI,a€Z/ql’ =5 a€R/ZY o

To see this, expand 1,,=4 (mod ¢) @s a Fourier series

lnza  (mod q) :é Z e((a_n)€>7

EEL/qL q
and apply Lemma A.2 and the triangle inequality. |
As a consequence of this Corollary, we can obtain the following conve-
nient lemma, which allows us to replace the range 1 < n < N by a smooth
cutoff to the interval N < n < 2N, at the expense of adding an arbi-
trary linear phase to the function (which in our applications will be totally
harmless).

LEMMA A.7. — Let f : N — C be a sequence bounded by O(1). Let
¢ : R — R be a Lipschitz non-negative function of Lipschitz norm O(1)
which is at least 1 on [4/3,5/3]. Suppose that we know that
S)f(m)e(an) <4 log™* N
forall A>0, N > 1, and o € R/Z. Then we have

Eenf(n) <aplog™* N

En<n<ong(
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forall A>0and N > 1.

Proof. — For large N we can write

n

]E4N/3<n<5N/3f(n) <op ‘EN<n<2N<P (N) f(n)g(n) ’

where
1, n
g(n) = Lun/s<n<sn/3® (N)'
Since ¢! is Lipschitz on [4/3,5/3], we have ||g|][Tv <, 1, and hence by
Corollary A.6 and hypothesis
(A.2)

n .
Ein/z<ngsnyzf(n) <, sup |EN<n<2N90(N)f(n)e(a”)| <alog ™ N.
a€R/Z
Now we may decompose the interval {1,..., N} into O(log N) intervals of
type 4M/3 < n < 5M/3 together with O(log N) extra points. Combining
(A.2) with the bound f = O(1), we obtain the lemma. O

Another harmonic analysis tool we will need often is to approximate
Lipschitz functions by exponentials. We first recall a well-known extension
lemma:

LeEmMMA A.8 (Lipschitz extension). — If'Y is a non-empty subset of a
metric space X = (X,d), and f : Y — R is a Lipschitz function then
there exists a Lipschitz extension foxy : X — R of f from Y to X with
| fext|lLip = || f|lLip- Similarly, if f : Y — C is Lipschitz then there exists an
extension fex : X — C with || fext||Lip < 2||f]lLip-

Proof. — If f is real-valued one can for instance define
Jext(z) == min(inf{f(y) + Md(z,y) :y € Y}, su};zf(y)),
ye

where M := || f||Lip. The complex case then follows by splitting f into real
and imaginary parts. ]

LEMMA A.9 (Fourier approximation of Lipschitz functions). — Let
(R/Z)? be the standard d-dimensional torus, with metric induced by the
[°° norm

(A.3) (1, za)ll®yzya == sup ||zjllr/z.
1<y<d

SV

Let Y be a subset of (R/Z)?, and let f : Y — C be a Lipschitz function
bounded in magnitude by 1. Then for any N > 1 there exist J = O4(N?),
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c1,...,c; =0(1), and my,...,my € Z such that
J
i log N
=" cje(m; - @) +Od(|‘f||Lp7g)
- N
Jj=1
for all x € Y. Furthermore, the values of my,...,my depend on L, d, N

but are otherwise independent of f orY.

Proof. — By Lemma A.8 we may take Y = (R/Z)9. Let oy : (R/Z)4
RT be the Fejér kernel

. H isinz(ﬂ'ij)
o N sin®(rx;)

Note that

for all m € Z%. We have

fron(x Zf*UN Zf m)e(m - x)

which, since ||f]lc = O(1), has the form ijl cje(m; - ) where J =
O4(N?%) and ¢; = O(1). To conclude the proof of the lemma, then, it
suffices to show that || f — f * on|lcc = Oua(|| fllLip log N/N). To this end,
note that

£@) = Frow@l =| [ (@)~ fw)onlz ) di]
R/2)4
and hence by the change of variables z := x — y it will suffice to show that
/ HZH(]R/Z)dO'N(Z) dz = O4(log N/N).
(R/Z)4

Since oy has total mass one, the portion of the integral on the region
[2[l(r/z)2 < N~' is acceptable. Now, for each integer n > 0, consider
the portion of the integral on the annular region 2"N ™ < ||z|(g/zys <
2" I N~1 We have

Ji Il /zpeon(2) de]
”ZH(]R/Z)dN2nN71

< 2"N~! lon (t)] dt
Ht”(m/x)d>>2nN71

1 sin®(7 Nt
<yt [ Lsin*(nNG)
[ty llgyz>2" N—1 N sin (7Tt1)
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<4 on Nt # dt,
lt1llr/z>27 N1 Nlltln]%g/z
1
<4 N
Summing this over n = 0,1,..., N we obtain the claim. O

We shall adopt the following convenient notation from [11]: we use
b(z1,...,2z) to denote any function of the variables x1,...,z; which is
bounded by O(1); the exact value of b() may vary from line to line, just
as with the O() notation. We use this notation to denote functions whose
exact value is not of interest to us, invariably because they are destined
to be annihilated in the course of a Cauchy-Schwarz argument such as the
following.

LEMMA A.10 (Cauchy-Schwarz inequality). — Let X,Y be finite non-
empty sets, and let f: X x Y — C be a function. Then

——1/2
|]Ez€XEy€Yb(x)f(x7y)‘ < |]Ez€XEy,y’€Yf(x7y)f(x7yl)’ /
and
|Ex€XEy€Yb(x)b(y)f(za y)}
- 1/4
< [EawexEyyey f(2,9) F o) F@ m) F o)
Similarly, if K : X* — C is a function, then

‘E$1,$2,w3,14€Xb(w27 .’173, .')34)b(.’1}1, fL'3, $4)b($1; m27 $4)b($17 :L'27 .’173)

X K(:vl,x27:r3,x4)|

o 1/16
< ’]Efbl,o,xl,l ,,,,, T4,0,74,1€X H cnre MK(xl,il PRI C54,1'4)
i1,42,i3,i4€{0,1}
where C : z — Z is the conjugation operator.
Remark. — These estimates are part of the theory of the Gowers uni-

formity norms || f||y« and || K||ga; see for instance [10, 9, 13, 12, 11, 19].
Proof. — From the triangle inequality and Cauchy-Schwarz we have

’EzeXEerb(x)f(xa y)‘ < ]EzeX|Eerf(33v y)’ < (EmeX‘Eerf(% y)|2) 12

and the first claim follows. The second claim follows by two iterations of
the first, and the third follows from four iterations of the first. O

Now, we develop some quadratic analogues to the linear phase estimates
given above. We begin with a quadratic counterpart to (A.1). We do not
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pretend that the exponents here are even remotely optimal; we have opted
for a statement which is conveniently derived from our earlier lemmas.

LEMMA A.11 (Weyl’s inequality). — Let o, 3,7 € R and let § € (0,1).
Let I C Z be a discrete interval such that |I| > 2'6/5¢ and

|Eicre(al® + BL+7)| = 6.

Then we have
243

Ha||R/Z,2125—4 < m~

Proof. — By translating I we may take I = {1,..., L} for some L. Squar-
ing the expression gives a double sum over variables I’,[; setting I’ = [ + h,
we find that

min(L—h,L)

| Z > e2ahl+ah®+ 5h)| > 6L

h=—L |=max(1—h,1)
Summing the inner geometric series using (A.1) we see that
L 1

in (L, ————) > §2L?/2
2 min (L g ) 2 P

and therefore that
Zmln L ————) > §°L?/8.
"20h|rz

It follows that there are at least 62L/16 values of h € {1,..., L} such that
[2ch||r/z < 16/62L. The claim then follows from Lemma A 4(ii). O

One can now repeat the proof of Lemma A.4(i), using Lemma A.11 in
place of (A.1), to conclude

LEMMA A.12 (Recurrent quadratics are non-diophantine). — Let I C Z
be a discrete interval, let «, 3,7 be real numbers, and suppose that the set

{tel: ol +Bl+7llr/z <61}

has cardinality at least do|I| for some 0 < 1,02 < 1 with d; < iég. If
1] > 2586512, then we have

||CV||R/Z,2435;9 < 214152_28|I|72

The final tool we assemble in this appendix is a technical lemma used
in §8. This allows us to approximate a Lipschitz function F' by a “soft-
thresholded” function F.
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LEMMA A.13 (Soft-thresholding a Lipschitz function). — Let F : X —
[—1, 1] be any Lipschitz function on a metric space (X, d), and let § > 0 be
a parameter. Then there is a Lipschitz function F:X— [—1, 1] satisfying
the following properties:

(1) [[FllLip < I1F[|uip;
(2) If x € Supp(F) and d(z,2") < ¢ then x’ € Supp(F);
(3) |1F = Flloo < 0[IF|Lip-

Proof. — We will set
F(z) := max(|F(z)| — \,0)sgn(F(z))

for an appropriate value of A > 0 which we shall shortly specify. Let us first
prove that any such function satisfies (i). Since |F'| is pointwise bounded
by |F|, it suffices to show that if z, 2’ € X then

|F(a) = F(a')| < |F(x) = F(a')].

But this follows because the function = +— max(|z| — A, 0) sgn(x) is easily
seen to be a contraction. This proves (i).

Now set A := §|| F||Lip- Statement (iii) is then obvious. To prove (ii), note
that if 2 € Supp(F) then |F(x)| > A. Thus if d(z,2’) < § then

(A4)  [F@)] 2 |F(@)| = [F(z) = Fa)| = |F(2)| = 0| FllLp > 0.

Appendix B. Nilsequences and locally polynomial phases

The purpose of this appendix if to give the proof of Proposition 2.3, the
statement of which we recall now.

PROPOSITION 2.3 (2-step nilsequences are averages of twisted 1-step
nilsequences). — Let G/T be a 2-step nilmanifold and let 0 < ¢ < 1/2.
Let F : G/T — C be a bounded Lipschitz function with ||F||Lip < 1, and
let g € G and x € G/T' be arbitrary. Then there exists a 1-step nilmanifold
é/f depending only on G/T" and a decomposition

F(Tgz) = Eicrwi Fi(Tg,xi)e(—¢i(n)) + O(e)
where

e [ is a finite index set;

e For each ¢ € I the w; are complex numbers with E;cs|lw;| <
E—Oc/r(l)’-
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F;: é/f — C is bounded O¢/r(1)-Lipschitz;

gi € G

zi € G/T;

¢; : B; — R/Z is a phase function which is locally quadratic on the
generalised Bohr set B; := {n € [N]: Fi(Tj.z;) # 0}.

As we remarked in §2, we are going to give a rather hands-on calcula-
tional approach to this theorem, using Mal’cev bases and the Heisenberg
nilmanifold as an illustrative example. The reader interested in a compre-
hensive discussion of Mal’cev bases may consult the book [5].

Let G be a connected, simply connected, 2-step nilpotent Lie group.
Thus G is a Lie group, and the central series Go = G1 = G, G5 := [G, G4],
G3 := |G, G2] terminates at the third step, so that G35 = {e}. Let I" be a
discrete, cocompact subgroup of G.

The Heisenberg example. — To motivate our arguments, let us first
prove the above Proposition in the model case of the Heisenberg nilmanifold
G/T, with

1(121 xr3
*{(0 1:1:2)2331,()’]2,1’3GR}
1

and .
I:={ ((0) (1)1 Wii) :my,mg,m3 € Z}.
Clearly G; = G and
Goi=[G.Gi] = {(§10) st e R}

and G3 := [G,Gs] = {I}.
Let us distinguish elements

(338) e = (339) e = (380)

e = ey = ez = .

! 001/2 001/ 001
t
3

To these are associated the one-parameter subgroups (e}):cr:
140 100 10 tg

etf = (0 1 0),632: <Oltz),e§3: (01 0).
001 00 1 00 1

Note that -
t1 to ts 1 t3+t1t2)
ertes’e: 01 ¢t .
172 (0 o 1

The collection {ej, e, e3} is an example of a Mal’cev basis for G which re-
spects I', the key feature to note being that I' is precisely the set
{e"e5"?e5™ : my1, ma, m3 € Z}.

For Mal’cev coordinates to be of any use, we need to know how the
group operation in G interacts with them. It is easy to explore this for the

Heisenberg nilmanifold. Every element z = ej'ef’es’ € G may be written
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in Mal’cev coordinates as (t1,t2,t3)T,;. It is a simple matter to check that
multiplication in G is given by the rule

(B.1) (t1,ta,t3)my * (U1, u2, us)ry = (t1 + w1, t2 + ug, t3 + uz — tour) -
A trivial induction confirms that if g = (o, a2, ag), then
(B.2) g" = (nag, nag, nag — %n(n — Dayag)ry,,

an expression which provides the first indication that 2-step nilmanifolds
are somehow associated with “quadratic” types of behaviour.

To coordinatize the nilmanifold G/T', we pick a fundamental domain for
the action of I on G. A very natural one is

F = {(z1, 22, 23)1), —% < T1,T2,%3 < %}

If = (1,22, 23)T, € G, then we write 7, for the unique element of T’
such that v, € F. We have

Yz = <—[l‘1], _[$2]7 —[1‘3 - [xl}x2]>TII7

where [u] = u — {u} denotes the nearest integer function (fractional parts

are taken to have values in (—3,1)). Defining

T(2) = Ty,

we therefore have

m(x) = {21}, {2}, {as — [z1]wa )y
For any element - we have that 2 and 7(x) are equivalent under the action
of I" on G.

We may now analyse the map T, : G/T' — G/T". Recall that if ¢ : G —
G/T is the canonical projection then the transformation T, : G/T' — G/T’
is defined via the rule T,(¢(x)) = (gx). Persisting with the notation
g = (a1, ag, ag)r,, and using coordinates on the fundamental domain F to
represent G/T', we have

(B.3)

T3 (0) = 7(¢"0)

= <{n041}a {naz}, {nas — %n(n —1ajas — [”011]”042}>Tn

1

= (nai,nag, nag — 3n(n — agas — [naglnaz)r,  (mod 1).

This provides the first indication that nilmanifolds encode behaviour some-
what more general than simply quadratic; here we have “generalised” qua-
dratic behaviour typified by the appearance of the “bracket quadratic”
[nag]nas. We have now assembled everything we need to prove Proposi-
tion 2.3 for the Heisenberg nilmanifold.
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Proof of Proposition 2.3 for the Heisenberg nilmanifold. — Let F/(T,'z)
be a nilsequence on G/T'. For the sake of exposition we take z = 0 so
that (B.3) applies. Let 7 : G — G/G2 be the canonical projection and, by
abuse of notation, write 7 : G/T" — G /I'G5 for the induced projection. Now
G/T'G5 is a 1-step nilmanifold, being the quotient of G/G5 by I'/T' N Ga,
and we may identify it with (R/Z)? via the coordinatization

7r(<t17t27t3>T11) = (t17t2)~

Observe that (7(73'0))nen = (T::‘(Q)O)neN is an orbit on G/T'G2, generated
by the rotation Tr(g) : (t1,t2) — (t1 4 a1,t2 + o) on the torus. Let

d
1=> ",
=1

d = O(1), be a Lipschitz partition of unity on (R/Z)? with the property
that for each [ there are z1, 2 such that

1

Supp(ii) = [r1,21 + ] x [o2, 22 + 70

Then we have
d
F(T0) =Y (T2 ,,0)F (T0).
=1

We will look at each constituent nilsequence ’(/JZ(T;L( g)O)F (T30), and write
it in terms of local quadratics on 1-step Bohr sets defined on G/T'G>.

Fix [, 1 < [ < d together with the associated x; and x5. Now the set
U:={z € GT:n(x) € [x1,51 + 5] X [x2, 2 + 75]} is diffeomorphic to
the direct product

1
[331,31‘1 + Tlf)] X [l‘g,ajg + E] X R/Z,
which itself is diffeomorphic to a subset of (R/Z)3. Write 3 : U — R/Z
for projection onto the third coordinate. Write S for the set of all n € N
such that 7,0 € U. Note that S is a 1-step Bohr set, since

S={n: Vi(Try)0) # 0}.

LeEmMA B.1 (Local quadratic behaviour). — Suppose that n, hy, he and
hs are such that all eight of the points n + e hy + esho + €3hs, €1,€2,€3 €
{0,1}, lie in S. Then the w3-coordinates are subject to the quadratic con-
straint

Z (_1)61+€2+€3ﬂ.3(T;L+€1h1+62h2+€3h30) —0.
€1,€2,e3€{0,1}
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Proof. — Recall (B.3). Writing
filn) :=nas — %n(n — Dajas — [nagnas,
we are to show that
Z (71)61+62+63f1 (n + €1h1 + €2h2 + €3h3) =0
€1,€2,e3€{0,1}

whenever the n + e1hy + eshs + €3hg are all in S. We may write f; as the
sum of a quadratic polynomial and f2(n) := {nay }nas. It suffices, then, to
verify the result for this function f; instead. To do this, we note that the
obvious relations

{(Elhl + exho +63h3)0¢1} = {(n+€1h1 +€esho +63h3)a1} — {nal} (mod 1)

are actually equalities in R, and not just in R/Z, by virtue of the constraint
that all quantities {(n+e1h1+exho+e3hs)ay } lie in the interval [xq, :vl—i—l—lo}.
Furthermore we have such relations as

{hiar} + {hean} = {(h1 + h2)au }.
By employing these together with a few simple manipulations, the lemma
follows. 0

To introduce locally quadratic exponentials, we use Lemma A.9 to ap-
proximate F' = F(u1, uz, u3), considered as a function on U C (R/Z)3, by a
sum of exponentials. For any e we may pick J = O(e~log®(1/e)) together
with complex numbers c1,...,c; = O(1) and frequencies my,...,my € Z3
so that

F(uy,uz,u3) ZCJ u) + O(e)

for all u = (’LL17’LL2,U3) € U. Using (B.3) we obtain the formula
F(T,0) Z cie( ;1){na1} + m§-2){na2} + mf’)ﬂ'g (T30)) + O(e).

Each function e(mj ){nog} + m§2){naz}) is a Lipschitz nilsequence on
G /TG4, that is to say it can be written in the form fk(T:(g)O). Thus we
can write

J
i (n(T0))F(T70) Z 0)e(m ) m3(T0)) + OCe).
By Lemma B.1, each of the constituents here is a local quadratic on a 1-

step Bohr set. This concludes the proof of Proposition 2.3 in the special
case of the Heisenberg nilmanifold. a
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The general case. — The above arguments can be can be extended to
more general nilpotent groups. To do so, we need to involve the Lie algebra
g associated to G together with the exponential map

exp:g— G.

For the Heisenberg nilmanifold g may be identified with the Lie algebra of
strictly upper triangular 3 x 3 matrices over R with 0’s on the diagonal,

that is to say
Ou1 us
g:{(o 0 uz) ZU1,U2,U3€R}.
00 0

The exponential map is given by matrix exponentiation, so exp(X) = e*,

which in practice means that if

then

Wth the notation of Lie algebras and the exponential map it is possible
to define, for a connected, simply-connected, nilpotent Lie group G, the
1-parameter subgroup (gt):cr associated to an element g € G. Thus we set

exp(X)" := exp(tX),

forall X € gandtecR.

We can now obtain Mal’cev coordinates for any nilmanifold arising from
a connected and simply connected Lie group:

PROPOSITION B.2 (Mal’cev coordinates of the second kind). — Let G be
a connected and simply connected s-step nilpotent Lie group with central
series

G=Gy=G12G22G32 -2 Gsp1 = {e}.

Let T' be a discrete, cocompact subgroup of G. Then there is a collection

{ela' <5 €i15Cigtls -5 €iny Ein 41, - - 'aeik}
such that
(i) Suppose that j € {1,...,s+ 1}, and define iy := 1. Then every
ti; X
element of G; can be written uniquely as eij{:f efii, for real
numbers t;; y1,. .., tst1.
(ii) We have
D={el"...elt" ima, ... ,mep1 € Z}.
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It turns out to be more natural to deal with coordinates of the first kind,
which are defined on the Lie algebra g. Before defining these, we assemble
some slightly disparate facts about how the exponential map provides a
link between g and G in the nilpotent case. It is not particularly easy to
find proofs of all of these statements in one place: our main resources were
[3] and [5].

ProposITION B.3 (Nilpotent Lie algebras and groups). — Let G be
a connected, simply connected, s-step nilpotent Lie group. Let g be the
corresponding Lie algebra, and let exp : ¢ — G be the exponential map.
We have the following statements.

(i) exp is a diffeomorphism between g and G, both of which are diffeo-
morphic to some Euclidean space R?.

(ii) Define the central series of g by go = g1 := ¢ and g,11 = [g, g;] for
i > 1. Then exp(g;) = G;. In particular, the Lie algebra g is s-step
nilpotent. We have the relations [g;, 9;] C gi+; and [G;, G;] € Giyj.

(iii) (Baker-Campbell-Hausdorff Formula): We have

exp(X) exp(Y) = exp(Z),
where
Z=X+4+Y 43X, Y]+ 1—12[)(, (X, Y]]+ 11—2[1/, Y, X]] +...

Remarks. — The dots in (iii) are supposed to indicate that the Baker-
Campbell-Hausdorff formula has terms involving commutators of fourth
and higher order. Note, however, that since g is nilpotent, the series does
terminate. It is possible to give a description of the whole series, though it
does not have a particularly simple closed form. See [3].

We describe now the Mal’cev coordinates of the first kind:

THEOREM B.4 (Mal'cev coordinates of the first kind). — Let G be
a connected, simply-connected, nilpotent Lie group with Mal’cev basis

{e1,...,ey}. Thus any element g € G may be written uniquely as e'" . . .e}l’“,
giving rise to the Mal’cev coordinates of the second kind (ti,...,tx)11.

Write e; = exp(X;), where X; € g. Then for any g € G there are unique
&1,-.-,& € R such that g = exp(§1 X1 + -+ + & Xi). We refer to the el-
ements of the k-tuple (£1,...,&k)1 as the Mal’cev coordinates of the first
kind.

Remark. — In view of Proposition B.2 (i) and Proposition B.3 (ii), we
have

g; = Spang (X;; 41, .., Xq,)-
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For the Heisenberg nilmanifold, note that
(t1,to,t3)y = (t1,t2,t3 + tita),.

Writing 7 : R® — G for the map which identifies coordinates of the first
kind with the element in G they represent, we see that 7—1(I') is not a
lattice. Fortunately, something nearly as good is true.

ProPOSITION B.5 (Fundamental domain description of a nilmanifold).
[1, Ch IV.6]. Let G/T be a nilmanifold, and suppose that X1,..., X} is a
Mal’cev basis of the first kind in g. Let 7 : (§1,...,&k)1 — exp(& X1+ -+
&, X)) be the coordinate map, and let F be any region of the form

{(51,...,§k>1:ai <& <a;+1 forall Z}

Then each point of G is equivalent, under the right action of I, to precisely
one point in exp(F). Furthermore the natural projection map 7 : G — G/T
is continuous on exp(F) and is a homeomorphism when restricted to the
interior exp(F)°.

Our aim now is to describe the action of some g = (31, ..., Bx)1, on G/T
by finding formulae analogous to (B.1), (B.2) and (B.3). The key tool is the
Baker-Campbell-Hausdorff formula. For notational simplicity we restrict
to the 2-step case from now on, and write m := i and n := i3. Thus the
Mal’cev basis of the first kind for G is { X1, ..., Xon, X1, ..., Xn}, where

Spang (X1, ., Xn) = g2 = [g, 9]

The Lie algebra g is completely specified by its structure constants, a col-
lection of real numbers (a;;x)1<i,j<m,m+1<k<n Such that
n

(B.4) (X0 X1 = > agrXs.

k=m+1
These constants can be arbitrary so long as (aijk)i,jgm is antisymmetric
for each k, though if we want G to possess a cocompact subgroup I' then
certain rationality conditions must hold [16].

LEMMA B.6 (Multiplication in coordinates of the first kind). — Suppose
that GG is a connected and simply-connected 2-step nilpotent Lie group with
group operation *, and abuse notation by identifying elements of G with
their coordinates of the first kind. Then we have

<€lv"')€n>T1 * <V1;---7Vn>T1 = <€1 +V17"'a€m+l/ma€m+l
+ Vg1 + ¢m+1(§<m>ygm)7 cee 7677, + vy +¢n(£<m7V§m)>T17

where the < = (&1,...,&m), V<m = (V1,...,Vm) and the ¢; are anti-
symmetric bilinear forms.
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Proof. — This is a simple matter of combining the Baker-Campbell-
Hausdorff formula with the existence of structure constants (B.4). We re-
mark that the presentation of a 2-step nilmanifold in this form is essentially
the same as an example discussed by Furstenberg in [8].

Observe in particular that

(B5) gn = <n515"'7n6’ﬂ>T13
and thus
(B.6) Tgnff = <nﬂ1 +z1,...,00, + xmvnﬁi + T+, ,nﬁ; + ‘Tn>TI

for certain constants 3; depending on g,z and the bilinear forms ¢;.
To coordinatize G /T" we pick, in view of Proposition B.5, the very natural
fundamental domain

Fi= {<$17~~~axn>TI : _% < T1ye.., Ty & %}

If © = (x1,...,2,)1, € G, then we write v, for the unique element of
I such that zv, € F. Write 7(x) = x7,. We need a formula for v, in
terms of coordinates of the first kind, and to obtain such a result we need
a description of the lattice I' in terms of these coordinates. Since I' may be
identified with Z™ in coordinates of the second kind, such a description can
be obtained by finding the relation between the two types of coordinate.
Such a relation is easy to obtain. Indeed by definition we have

<t17"'7tn>T11 = <t1a0a~'~a0>T1 *oeox <0a"~a0atn>T1'
By inductive use of Lemma B.6 this quickly implies that
(B7) <tlv cee atn>Tn = <t17 R Qm—i-l(tém), BRI} QTL(tSm»TI

for certain quadratic forms g;. In fact these forms are rather related to the
alternating forms 1;; if

Gla,y) = > aumyr then q(x) = apzia.

kl<m k<l

In terms of coordinates of the first kind, then, we see that

D={(r1, oy Pm, "mt1 + Gms1(P<m)s -« 5T+ @u(r<m) 71, - o T € Z}

It follows that

Yz = <—[£C1},...,—[:Um], - [xm+1 ¢m+1(x<mv[ ] m) +Qm+1([ } m)]v
—[2n — Pn(T<m: [T]<m) + @n([2]<m)) T,
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and that

(@) = ({z1} - Azm b {Tms1 — 1 (@gm, [2]<m) + gmir ([2]<m) )
oAz = On(T<m, [2l<m) + an([Zl<m) )y
We remark that we have essentially provided an independent confirmation
of Proposition B.5 for 2-step nilmanifolds. The proof in the s-step case

merely involves more notation.
Combining this with (B.6) leads to the analogue of (B.3):

Tgnx = <n617 ceey nﬂmv¢m+l(n)7 s 7¢n(n)>T1 (mOd ]-)7

where each 1; has the form

Y(n) =an+b+ Z cin[nf;] + Z cu{nBiH{nbe}.

i=1 I<k<m

The remainder of the proof of Proposition 2.3 is, from this point, almost
identical to the special case of the Heisenberg nilmanifold. We leave the
details to the reader. a

Appendix C. Divisor moment estimates

We collect some standard moment estimates for the divisor function
7(n) := >4, 1. These are used to prove Proposition C.2, which is used
in §11 to show that there are not too many “collisions” occuring in sets
such as {dw: D <d <2D;W < w < 2W}.

The basic estimate we need is

LEMMA C.1. — Let m, N > 1 be integers. Then we have the moment
estimate
Ene[N]T(n)m <m (log N)Qm*l.

Proof. — This is very standard: see, for example, [4] or [18]. For our
application, the precise value of exponent 2™ — 1 does not need to be
attained; any bound of the form logcm N would suffice. |

In particular, we have the second moment estimate
Ene[N]T(’I’L)2 < log® N

which by dyadic decomposition then implies

2
(C.1) Z r(n)” < log* N.
ne[N] n
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Now if A C {1,..., N} is a nonempty set of size N and m > 2 is an
integer, then from Holder’s inequality we have

Eneat(n)? < (Epeat(n)™)*™
< a M (Bnepnr(n)™)™)

<m aiQ/m(log N)Q(mel)/m.

In particular, for any x < 1/2 we have the moment estimate

K

(C.2) Epeat(n)? <, a™" log22/ N.
This estimate has the following consequence.

LeMMA C.2 (Divisor packing lemma). — Let A C {1,..., N} be a non-
empty set of size aN, and for each d > 1 let Ay := {n € A : d|n} denote
those elements of A which are multiples of d. Suppose ® C Z% is a finite
set of positive integers such that

| Aa| = 6|4
for all d € © and some § > 0. Then for any positive k < 1/2 we have
| U Agl >, DAl log 2" N.
de®
Proof. — From hypothesis we have

A
Buca Y- Las(n) = 3 15 > a1

deD deD
By Cauchy-Schwarz we conclude that
|Ud€© Z 1 > 62|©|2
‘A| neA Ad = .
deD

From the trivial bound

D 1a,(n) <> 1=7(n)
d|n

de®

and (C.2) we thus have
A "
7’ d|€D| d‘a‘“logQQ/ N >, 2|9

and the claim follows. O
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