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STABLE TWISTED CURVES AND THEIR r-SPIN
STRUCTURES

by Alessandro CHIODO (*)

Abstract. — The subject of this article is the notion of r-spin structure: a
line bundle whose rth power is isomorphic to the canonical bundle. Over the mod-
uli functor Mg of smooth genus-g curves, r-spin structures form a finite torsor
under the group of r-torsion line bundles. Over the moduli functor Mg of stable
curves, r-spin structures form an étale stack, but both the finiteness and the torsor
structure are lost.

In the present work, we show how this bad picture can be definitely improved
just by placing the problem in the category of Abramovich and Vistoli’s twisted
curves. First, we find that within such a category there exist several different com-
pactifications of Mg ; each one corresponds to a different multiindex ~l = (l0, l1, . . . )

identifying a notion of stability: ~l-stability. Then, we determine the choices of ~l for
which r-spin structures form a finite torsor over the moduli of ~l-stable curves.

Résumé. — L’objet de cet article est la notion de structure r-spin : un fibré en
droites dont la puissance r-ième est isomorphe au fibré canonique. Au-dessus du
champ Mg des courbes lisses de genre g, les structures r-spin forment un torseur
fini sous le groupe des fibrés de r-torsion. Au-dessus du champ Mg des courbes
stables de genre g, les structures r-spin forment un champ étale, mais la finitude
et la structure de torseur ne sont pas préservées.

On améliore drastiquement cet état de choses si on resitue le problème dans
la catégorie des courbes champêtres (“twisted curves” au sens d’Abramovich et
Vistoli). On trouve d’abord que, dans cette catégorie, il existe plusieurs compac-
tifications de Mg ; chacune correspond à un multi-indice ~l = (l0, l1, . . . ) identifiant
une notion de stabilité : la ~l-stabilité. On détermine par la suite tout choix conve-
nable de ~l pour lequel les structures r-spin forment un torseur fini au-dessus du
champ des courbes ~l-stables.

Keywords: Spin structures, twisted curves, moduli of curves.
Math. classification: 14H10, 14H60.
(*) Financially supported by the Marie Curie Intra-European Fellowship within the 6th
European Community Framework Programme, MEIF-CT-2003-501940.
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1. Introduction

For any integer r > 2, spin structures of order r are natural generaliza-
tions of theta characteristics: on a space, they are given by a line bundle L

and an isomorphism f : L⊗r ∼−−→ ω. In this paper we focus on their moduli
functor.

For a fixed integer r > 2, we work over Spec Z[1/r].

1.1. Smooth curves: the rth roots form a torsor

For g > 2 and 2g − 2 ∈ rZ, the category of r-spin structures on smooth
genus-g curves forms a Deligne–Mumford stack Mω,r

g , finite and étale on Mg,
which we write as

Mω,r
g = {(C,L, f) | f : L⊗r ∼−−→ ωC}/∼= −→ Mg.

In fact Mω,r
g is a finite torsor under the finite group stack of r-torsion line

bundles on smooth genus-g curves:

MO,r
g = {(C,L, f) | f : L⊗r ∼−−→ OC}/∼= −→ Mg.

1.2. Stable curves: the torsor is lost

When we extend the study of r-spin structures to the category of stable
curves Mg, the properness and the torsor structure are lost.

First, consider the category MO,r
g of r-torsion line bundles on stable

curves. As above, it forms an étale stack on Mg which is equipped with
a group structure. However, MO,r

g → Mg is not proper. Indeed, since MO,r
g

is étale and the generic fibre contains r2g points, one can check that the
valuative criterion fails by exhibiting an example of a geometric fibre with
less than r2g points.

Example 1.1. — Consider an irreducible curve of genus g with only one
node. Note that the set of roots of O consists of r2g−1 elements. Indeed, and
more generally, for any stable curve C the group of r-torsion line bundles
(Pic C)r fits in the exact sequence

(1.1) 1 → µµµr → (µµµr)
#V → (µµµr)

#E → (Pic C)r → (Pic Cν)r → 1

where V and E are the sets of irreducible components and of singularities
of the curve C, whereas Cν is the normalization of C. So, we get

(1.2) #(Pic C)r = r2g−1+#(V )−#(E).
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STABLE TWISTED CURVES AND THEIR r-SPIN STRUCTURES 1637

Second, write Mω,r
g for the category of r-spin structures on stable curves.

In fact, the morphism to Mg is étale; however, it is not proper and it is not
a torsor on Mg. Indeed, the following example shows that the morphism to
Mg is not surjective.

Example 1.2. — Let C be a curve with only one node and two irreduc-
ible components of genus g − 1 and 1, respectively. Then there are no rth
roots of ω on C. This happens because the degree of ω is 1 on the genus-1
component of C. Indeed, recall that the degree of the dualizing sheaf ω on
an irreducible component C ′ of genus i is 2i − 2 + #(N) where N is the
set of points where C ′ meets the rest of the curve (by “genus” we always
mean the arithmetic genus, §2.3).

In the recent years, the interest in moduli of r-spin structures has been
revived by Witten’s conjecture [40], which relates certain enumerative prop-
erties of r-spin structures to the Gelfand–Dikĭı hierarchy. The conjecture is
a generalization of the Kontsevich–Witten Theorem [39] [27] and has been
lately proven in [18]. This result opens the way to further investigations of
Gromov–Witten r-spin theory.

The original formulation of the relevant enumerative properties was only
sketched by Witten in [40]. A rigourous definition requires—first of all—
a compactification of Mω,r

g (once a suitable compactification is given, the
numerical invariants can be defined using [36] or [14], see Proposition 4.21).

In the existing literature, there are several solutions to the problem of
compactifying Mω,r

g : they consist in enlarging the category Mω,r
g of smooth

r-spin curves (C,L, f) to a new category fibred over Mg. In [21] and [22],
Jarvis allows noninvertible sheaves. In [16] for r = 2 and in [12] for all r,
Cornalba, Caporaso, and Casagrande take as new objects line bundles on
semistable curves. In [4] Abramovich and Jarvis realize the same category
as in [22] in terms of stack-theoretic curves. In all these compactifications
the torsor structure is lost over Mg, because ramification occurs at the new
points [22, Thm. 2.4.2] and [12, §3, §4.1].

1.3. Placing the problem in the context of twisted curves:
~l -stability

We consider the category M̃g of twisted curves, which are, over an alge-
braically closed field, stack-theoretic curves whose smooth geometric locus
is represented by a scheme and whose stabilizers at the nodes have finite
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1638 Alessandro CHIODO

order (see Abramovich and Vistoli [5] or §2.4 for the definition over a base
scheme X).

Olsson shows that M̃g forms an algebraic stack, [35]. However, the stack
M̃g is nonseparated. Indeed, a twisted curve C over a discrete valuation
ring R with smooth generic fibre CK is isomorphic to its coarse space over
the field of fractions K and may differ from it on the special fibre; in this
case the coarse space |C| and the twisted curve C are two nonisomorphic
twisted curves extending CK over R. Therefore, the valuative criterion of
separateness fails.

We describe the condition of stability in the category of twisted curves M̃g.
For any multiindex~l = (l0, l1, . . . , lbg/2c) of invertible integers, we say that a
twisted curve is ~l -stable if its stabilizers have order li on nodes of type i (the
notion of type of a node can be found in [17] and is recalled in (4.2)). In this
way, for each multiindex ~l , we have a notion of stability, which corresponds
to a new compactification of Mg (the classical Deligne–Mumford–Knudsen
compactification Mg corresponds to ~l = (1, . . . , 1)). In the following theo-
rem, we show that the compactifications obtained in this way are all the
compactifications of Mg inside M̃g.

Theorem 4.4. — Let us denote by Mg(~l ) the category of~l -stable curves.
It is contained in M̃g and it contains Mg:

Mg ↪→ Mg(~l ) ↪→ M̃g.

I. The stack Mg(~l ) is tame, proper (separated), smooth, irreducible
and of Deligne–Mumford type. The morphism Mg(~l ) → Mg is finite,
flat, and is an isomorphism on the open dense substack Mg.

II. Any proper substack X of M̃g fitting in Mg ↪→ X ↪→ M̃g is isomorphic
to Mg(~l ) for a suitable multiindex ~l .

1.4. The torsor of rth roots of a bundle

For any line bundle F on the smooth universal curve on Mg whose relative
degree is a multiple of r the category MF,r

g of rth roots of F on curves C → X

forms a stack, étale and finite on Mg, and equipped with a torsor structure
under the group stack MO,r

g .
It is well known that F can be written as a power ω⊗k of the relative

dualizing sheaf on the universal curve modulo pullbacks from Mg (Enriques
and Franchetta’s conjecture [20] [32] [6]). Therefore, in view of an extension
of MF,r

g over M̃g, we focus on the case F = ω⊗k and we assume (2g− 2)k ∈
rZ. We compactify MF,r

g in two steps:

ANNALES DE L’INSTITUT FOURIER



STABLE TWISTED CURVES AND THEIR r-SPIN STRUCTURES 1639

(1) over M̃g, we construct the stack parametrizing rth roots of F = ω⊗k;
(2) we restrict such stack to the compactifications Mg(~l ) ⊂ M̃g for

suitable indexes ~l .
For (1), we define the stack M̃F,r

g of rth roots of F = ω⊗k on twisted
curves

M̃F,r
g = {(C, L, f) | f : L⊗r ∼−−→ FC}/∼= −→ M̃g.

Note that M̃F,r
g can be regarded as the fibred product (L̃Bg) kr×F M̃g, where

L̃Bg is the stack of line bundles on genus-g twisted curves, kr is induced by
the rth power in BGm → BGm, and F is regarded as a section M̃g → L̃Bg.
We show that M̃F,r

g is a Deligne–Mumford stack, étale on M̃g.
For (2), we choose a multiindex ~l = (l0, l1, . . . , lbg/2c) of invertible inte-

gers and we consider the restriction MF,r
g (~l ) → Mg(l) of M̃F,r

g → M̃g. In
this way, for each ~l , we obtain a stack MF,r

g (~l ) of rth roots of F on ~l -stable
curves fibred over Mg(~l ). The properness and the torsor structure are lost
for general choices of ~l as we already pointed out in the case ~l = (1, . . . , 1),
which corresponds to stable curves. The following theorem determines the
suitable choices of ~l .

Theorem 4.6. — For any F = ω⊗k, the category MF,r
g (~l ) is a smooth

Deligne–Mumford algebraic stack, étale on Mg(~l ).

I. For F = O, the stack MO,r
g (~l ) is a finite group stack if and only if r

divides l0.
II. For F = ω and 2g−2 ∈ rZ, the stack MO,r

g (~l ) is a finite group stack
and Mω,r

g (~l ) is a finite torsor under MO,r
g (~l ) if and only if r divides

(2i− 1)li for all i.

In this way, we obtain several compactifications of the stack Mω,r
g

of smooth r-spin curves: for each ~l satisfying li(2i− 1) ∈ rZ,

Mω,r
g (~l ) → Mg(~l )

is the finite torsor of r-spin ~l -stable curves.
III. More generally, for F = ω⊗k and (2g− 2)k ∈ rZ, the stack MO,r

g (~l )
is a finite group stack and MF,r

g (~l ) is a finite torsor under MO,r
g (~l )

if and only if r divides

l0 and (2i− 1)kli, for i > 0.

The fact that these compactifications allow a natural extension of the
torsor structure of rth roots defined on the initial uncompactified moduli
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1640 Alessandro CHIODO

stack is an improvement in its own right. We further mention some concrete
situations in enumerative geometry where this construction is useful:

Gromov–Witten theory. — In actual calculations of enumerative geo-
metry of curves, the main advantage of our description of rth roots via this
new notion of stability is the generalization to rth roots of the classical
tools employed for stable curves. As an example, in [13], we illustrate how
the Grothendieck Riemann–Roch formula allows concrete calculations of
the genus-g Gromov–Witten invariants of the stack [C2/G], where G is a
cyclic subgroup of SL2(C). This calculation is the subject of the crepant
resolution conjecture, see [10] for a statement and [15] for recent progress
in genus 0.

Tensor products of rth roots. — In [24, Rem. 4.11] the authors point
out that the natural isomorphism MF,r1r2

g
∼= MF,r1

g ×Mg MF,r2
g , for relatively

prime indexes r1 and r2, does not extend to the boundary. In Proposi-
tion 4.13 we show that the new compactification allows us to extend the
equivalence L 7→ (L⊗r2 , L⊗r1) to the boundary over the category of twisted
curves with stabilizers of order r1r2 on all nodes (r1r2-stable curves).

In fact, in this way, we get smooth compactifications of the moduli func-
tor of m-tuples of spin structures of orders r1, . . . , rm. These moduli stacks
are used in [24, Thm. 6.2] in order to describe tensor products of Frobenius
manifolds (note that, because of ramifications, taking the fibred product of
several Jarvis’s compactifications as in [24, §4.2] does not yield a smooth
compactification).

Counting boundary points. — The description of the geometric points
of the boundary locus becomes straightforward: for the indexes ~l defined
in the previous theorem, the boundary points are simply represented by
~l -stable curves with their r2g distinct rth roots. We illustrate in Exam-
ple 4.14 that this improves our understanding of the enumerative geometry
of rth roots: we show how to count the number of r-spin structures on a
twisted curve C up to automorphisms of C. This leads to a counterexample
of Conjecture 4.2.1 of [23], which states that the Picard group of the moduli
stack of smooth genus-1 r-spin structures is finite, see Example 4.16.

Finally, we point out that the results obtained with previous compacti-
fications extend easily to the above stacks MF,r

g (~l ). In Proposition 4.19, we
show that there is a surjective morphism from our compactification to the
preexisting compactification due to Abramovich and Jarvis and illustrate
where this morphism is not invertible. In Proposition 4.21, we prove that
the functor of [36] and [14] defining the Witten top Chern class yields a
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STABLE TWISTED CURVES AND THEIR r-SPIN STRUCTURES 1641

class in the rational cohomology of the new compactification and we show
that such a class is compatible with previous constructions.

1.5. Structure of the paper

In Section 2, we fix our terminology and prove some preliminary results.
In Section 3 we prove the main technical results. The subsection 3.1 is a

brief subsection where we prove that the functor of rth roots of a line bundle
on a twisted curve on a base scheme X is a Deligne–Mumford stack étale
on X. The subsection 3.2 focuses on the geometric fibres of this functor
on X: we work out the Kummer theory of a twisted curve and compare
the long exact Kummer sequence of a twisted curve to that of its coarse
space, Theorem 3.10. In particular, we state a criterion for a line bundle F

to have r2g rth roots on a twisted curve, see Theorem 3.9 and see Figure
3.2 at 3.14.

By applying these results, in Section 4, we prove Theorem 4.4 and The-
orem 4.6 stated above. We illustrate these theorems in Example 4.14. We
describe the relation with the previous compactification of Abramovich and
Jarvis, Proposition 4.19.

In the Appendix we show that line bundles over twisted curves form a
stack. A more general treatment which extends to coherent sheaves and
proves that such a stack is algebraic can be found in [30].

Acknowledgements. — I would like to thank Arnaud Beauville, Alessio
Corti, Carlos Simpson, Angelo Vistoli, and Charles Walter for comments
and help, and especially André Hirschowitz for numerous stimulating dis-
cussions and for careful reading of preliminary versions of this paper.

2. Terminology and preliminaries

2.1. Schemes

We fix an integer r > 0, and throughout this paper we will consider only
schemes over Spec Z[1/r].

2.2. Stacks

Terminology and generalities. — Our general reference is [29]. An alge-
braic stack is a stack satisfying Artin’s definition [7]. Stacks in the sense of

TOME 58 (2008), FASCICULE 5



1642 Alessandro CHIODO

Deligne and Mumford [17] will be called Deligne–Mumford stacks. When
working with algebraic stacks with finite diagonal, we use Keel and Mori’s
Theorem [26]: there exists an algebraic space |X| associated to the stack X

and a morphism πX : X → |X| (or simply π) which is universal with respect
to morphisms from X to algebraic spaces. We refer to |X| as the coarse
space. In this way we have a functor (and in fact a 2-functor) associat-
ing to any morphism between this type of stacks f : X → Y the unique
morphism between the corresponding coarse algebraic spaces |f| : |X| → |Y|
satisfying f ◦ πY = πX ◦ |f|.

We refer to [9] for the notion of group stack G → X. We say that there
is an action of the group stack G → X with product mG and unit object e

on T → X if there is a morphism of stacks m : G×X T → T and homotopies
m ◦ (mG × idT) ⇒ m(idG×m) and m ◦ (e × idT) ⇒ idT satisfying the as-
sociativity constraint [9, 6.1.3] and the compatibility constraint [9, 6.1.4].
The morphism T → X is a torsor if the morphism

m× pr2 : G×X T → T×X T

is an isomorphism of stacks and T → X is flat and surjective.

Morphisms of stacks. — We often need to consider 2-categories in which
the objects are algebraic stacks, the functors between two stacks are re-
garded as 1-morphisms, and the natural transformations are regarded as
2-morphisms.

The situation is often simplified by the following criterion showing that
certain morphisms between stacks have only trivial 2-automorphisms. In
particular this criterion applies to morphisms between twisted curves.

Lemma 2.1 (Abramovich and Vistoli, [5, Lem. 4.2.3]). — Let f : X → Y

be a representable morphism of Deligne–Mumford stacks over a scheme S.
Assume that there exists a dense open representable substack (i.e. an alge-
braic space) U ⊂ X and an open representable substack V ⊂ Y such that f

maps U into V . Further assume that the diagonal Y → Y×S Y is separated.
Then any automorphism of f is trivial.

Stabilizer of a geometric point of a stack. — Let X be an algebraic stack.
A geometric point p ∈ X is an object Spec k → X, where k is algebraically
closed. We denote by Aut(p) the automorphism group of p as an object of
the fibred category Xp. We refer to Aut(p) as the stabilizer of p.

Local pictures. — We often need to describe stacks and morphisms be-
tween stacks locally in terms of explicit equations. We adopt the following
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STABLE TWISTED CURVES AND THEIR r-SPIN STRUCTURES 1643

standard convention, which avoids repeated mention of strict henselization
[2, §1.5].

Let X and U be algebraic stacks and let x ∈ X and u ∈ U be geometric
points. We say “the local picture of X at x is given by U (at u)” if there
is an isomorphism between the strict henselization Xsh of X at x and the
strict henselization Ush of U at u.

If f : X → Y and g : U → V are morphisms of stacks and x and u are
geometric points in X and U, we say “the local picture of X → Y at x is given
by U → V (at u)” if there is an isomorphism between the strict henselization
fsh : Xsh → Ysh of f at x and the strict henselization gsh : Ush → Vsh of g

at u. This convention allows local descriptions of diagrams of morphisms
between stacks; in particular it allows local description of group actions
G× X → X and of G-equivariant morphisms.

The construction of Cadman, Matsuki, Olsson, and Vistoli. — For any
smooth scheme X and smooth effective divisor D in X we present a stack-
theoretic modification of X, which contains X \D as a dense open repre-
sentable substack and has coarse space X.

In [11], Cadman provides the following construction.

Definition 2.2. — Let X be a smooth scheme X, let D be a smooth
effective Cartier divisor in X, and let l be a positive integer invertible on X.
The category X[D/l] is formed by objects (S, M, j, s), where

(1) S is an X-scheme S → X;
(2) M is a line bundle on S;
(3) j is an isomorphism between M⊗l and the pullback of O(D) on S;
(4) s is a section s ∈ Γ(S, M) such that j(s⊗l) equals the tautological

section of O(D) vanishing along D.
The morphisms are defined in the obvious way.

This definition yields a Deligne–Mumford stack X[D/l], with coarse
space X. The morphism π : X[D/l] → X is an isomorphism over X \ D:
we have

X \D ↪→ X[D/l] π−−→ X,

where X \D is dense in X[D/l] and π is finite and flat. Note that X[D/l]
is equipped with a tautological line bundle M and an isomorphism

(2.1) M⊗l ∼−−→ π∗OX(D).

A special case of this construction was first introduced by Abramovich,
Graber, and Vistoli [3, 3.5.3] (the idea is attributed to Vistoli, see [1, 3.5]).

TOME 58 (2008), FASCICULE 5



1644 Alessandro CHIODO

In the existing literature, two different and compatible definitions can be
found: see Matsuki and Olsson [31] and Cadman [11] for the above definition
(see [11, 2.4.5] for the compatibility between the two constructions).

It is natural to try and generalize this construction. If D1, . . . , Dn are
distinct smooth effective divisors with normal crossings, for any positive
integers l1, . . . , ln invertible on X, we write

(2.2) X[D1/l1 + · · ·+ Dn/ln] := X[D1/l1]×X · · · ×X X[Dn/ln].

In this way, X[D1/l1 + · · ·+ Dn/ln] is a smooth Deligne–Mumford stack.

Generalization 2.3. — The definition provided in [31] by Matsuki
and Olsson generalizes the above definition of X[D1/l1 + · · · + Dn/ln] to
the case where singular divisors Di occur, and the local picture of Di at
each point is the union of smooth divisors with normal crossings (a normal
crossings divisor). This extension involves the notion of logarithmic struc-
tures in the sense of Fontaine and Illusie or the use of étale descent. The
output is again a smooth stack, see [31, Thm. 4.1].

Example 2.4. — Consider the affine space X = Spec R and the divisor
D = {t = 0} for t ∈ R. Assume that l is invertible in R. The stack X[D/l]
is the quotient stack [Spec R̃/µµµl], where R̃ = Spec R[t̃]/(t̃l − t) and µµµl acts
on R̃ as g · t̃ = g−1t̃ and fixes R.

Example 2.5. — Let X be a Deligne-Mumford stack, whose coarse space
is a proper, regular, and reduced curve |X| over a field k and whose geomet-
ric points have trivial stabilizers except for a finite number of distinct points
p1, . . . , pn with stabilizers of order l1, . . . , ln (which we assume invertible).
In that case, we have (see [11, Exa. 3.7])

X ∼= |X|[p1/l1 + · · ·+ pn/ln]

where pi = |pi| ∈ |X| is the point corresponding to pi ∈ X. The local picture
at pi : Spec k → X is given by S[0/li], where S = Spec k[z] and 0 denotes
{z = 0}. In this way there is an isomorphism between Aut(pi) and cyclic
group of lith roots of unity of Gm.

Remark 2.6. — At a point pi : Spec k → X = |X|[p1/l1 + · · · + pn/ln]
the projection pr2 from Spec k |pi|×π X to X induces a canonical embedding
ji : B(Aut(pi)) ↪→ X. The group Pic(B(Aut pi)) is a cyclic group of order li.
The tangent space Ti at pi is a representation of Aut(pi) and is a canonical
generator of Pic(Aut pi). In this way Pic(Aut pi) is canonically isomorphic
to Z/liZ.
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Remark 2.7. — On a Deligne–Mumford stack of dimension 1, the de-
gree of a line bundle F is the degree of the first Chern class c1(F) in the
rational Chow ring ∈ A1(X)Q. Therefore deg(F) is a rational number, see
[28, 3.3] and references therein. In the case of C[p/d], we have the following
proposition.

Proposition 2.8. — Let C be a proper, regular, and reduced curve
over a field k. For a closed point p ∈ C and l a positive integer, consider
π : C[p/l] → C. We write Γ for the stabilizer of the point of C[p/l] over p

and write j : BΓ → C[p/d] for the canonical embedding of Remark 2.6. For
any line bundle F on C[p/d], the degree of F belongs to 1

l Z and we have

l deg(F) ≡ j∗(F) ∈ Z/lZ,

where we used the canonical identification of Pic(BΓ) with Z/lZ of Re-
mark 2.6.

Proof. — Let h ∈ {0, . . . , l−1} be the integer satisfying j∗(F) = T⊗h, for
T the tangent space at p. The tautological line bundle M on C[p/d] satisfies
M⊗l ∼= π∗OC(p), (2.1). Note that j∗M = T. Hence, F⊗(M⊗h)∨ = π∗OC(D)
for an integral divisor D on C, and we have

l deg(F) = l deg(M⊗h ⊗ π∗OC(D))

= deg(M⊗hl ⊗ π∗OC(lD))

= deg(π∗O(h[p])⊗ π∗OC(lD))

= degC(O(h[p])⊗OC(lD))

= h + l deg D

≡ h mod l

≡ j∗(F) mod l.

�

2.3. Stable curves

We recall some standard definition for sake of clarity and for preparing
the definition of twisted curve in §2.4. For any integer g > 2, a stable curve
of genus g on a scheme X is a proper and flat morphism C → X satisfying
the following conditions:

(1) each geometric fibre Cx over x in X is reduced, connected, has di-
mension one, and has only ordinary double points (which we usually
call nodes);
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(2) the dualizing sheaf of Cx is ample;
(3) dimk(x) H1(Cx,OCx) = g.

A stable curve C over an algebraically closed field k yields a natural
combinatorial object: the dual graph. The dual graph Λ of C is the graph
whose set of vertices V is the set of irreducible components of C and whose
set of edges E is the set of nodes of C. An edge connects the vertices
corresponding to the irreducible components containing the two branches
of the nodes. If an orientation of Λ is fixed, we have a chain complex
C•(Λ, Z/rZ) with differential

∂ : (Z/rZ)E −→ (Z/rZ)V ,

where the edge starting at v− and ending at v+ is sent to the 0-chain
[v+] − [v−]. We say that a node e of a stable curve C is separating if by
normalizing C at the point e we obtain two disjoint components.

If we assign to each vertex v ∈ V the genus gv of the connected compo-
nent of the normalization of C corresponding to the irreducible component
attached to v, the (arithmetic) genus of C can be read off from Λ and the
function v 7→ gv. Indeed, we have

(2.3) g(C) = b1 +
∑

v gv

where b1 = 1−#(V ) + #(E) is the first Betti number of Λ.

2.4. Twisted curves

We recall the notion of twisted curve due to Abramovich and Vistoli,
see [5] or the remarks below for some slight generalizations.

Definition 2.9. — A twisted curve of genus g on a scheme X is a
proper and flat morphism of tame stacks C → X, for which

(1) the fibres are purely 1-dimensional with at most nodal singularities,
(2) the coarse space is a stable curve |C| → X of genus g;
(3) the smooth locus Csm is an algebraic space;
(4) the local picture at a node is given by [U/µµµl] → T , where

• T = Spec A,
• U = Spec A[z, w]/(zw − t) for some t ∈ A, and
• the action of µµµl is given by (z, w) 7→ (ξlz, ξ−1

l w).
(Recall that the tameness condition on C means that for every geometric
point p : Spec k → C the group Aut(p) has order prime to the characteristic
of the algebraically closed field k.)
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Remark 2.10 (unbalanced twisted curves). — In the existing literature
twisted curves satisfying the above local condition (4) are often called bal-
anced, [5]. We drop the adjective balanced, because we never consider un-
balanced twisted curves.

Remark 2.11 (twisted curves with smooth stack-theoretic points). —
A further natural generalization, which is usually given in the definition
of a twisted curve (see [5, Def. 4.1.2]), consists of allowing nontrivial sta-
bilizers on smooth points. By [11, Thm 4.1] and [35, Thm 1.8], giving a
stack-theoretic curve with a smooth point whose stabilizer has order l is
equivalent to assigning an invertible integer l, a twisted curve C → X in
the sense of Definition 2.9, and a section σ : X → C in the smooth lo-
cus. (With the notation introduced above, the equivalence is essentially
(C, σ, l) 7→ C[σ(X)/l].)

Remark 2.12 (unstable coarse space). — Twisted curves are generally
defined without imposing the condition of stability on the coarse space. In
Olsson’s paper [35], it is shown that these stack-theoretic curves form an al-
gebraic stack in the sense of Artin’s definition. If we require that the coarse
space |C| is stable, we get a Deligne–Mumford stack. See Theorem 2.13.

A 1-morphism C → X to C′ → X ′ between twisted curves is a morphism
of stacks m fitting in the fibre diagram

C
m //

��

C′

��
�

X // X ′.

By Lemma 2.1, there is at most one natural transformation, which identifies
two morphisms. Therefore, we obtain a category by considering morphisms
as 1-morphisms up to base-preserving natural transformations.

In [35, Thm. 1.9], Olsson proves that such a category is an algebraic stack.
In particular, see [35, Rem. 1.10], he shows how the versal deformation
space of a twisted curve C over a field k relates to the versal deformation
space Spec I of the coarse space |C|. Let e1, . . . , em be the nodes of C and
|e1|, . . . , |em| the corresponding nodes of |C|. Let li be the order of the
automorphism group of ei. Let

(2.4) Di = {ti = 0}

be the divisor classifying deformations of |C| on which the node |ei| persists:

Theorem 2.13 (Olsson, [35, Thm. 1.9]). — The category of twisted
curves M̃g in the sense of Definition 2.9 is a smooth Deligne–Mumford
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stack and the versal deformation space of a twisted curve C → Spec k is
given by

(2.5) Ĩ := I[z1, . . . , zm]/(zl1
1 − t1, . . . , z

lm
m − tm),

where t1, . . . , tm ∈ I are the parameters satisfying (2.4) and l1, . . . , lm are
the orders of the stabilizers of the corresponding nodes.

The group of automorphisms of a twisted curve acts naturally on the
versal deformation space of a twisted curve. Using [2], we describe the
automorphisms of a twisted curve. Then, in Remark 2.16, we illustrate the
action on the versal deformation.

Automorphisms of twisted curves. — Let π : C → |C| be a twisted curve
over an algebraically closed field k. In [2, Prop. 7.1.1] the group Aut(C, |C|)
of automorphisms of C that fix the coarse space |C| is explicitly calculated:

Theorem 2.14 (Abramovich, Corti, Vistoli, [2, Prop. 7.1.1]). — For a
twisted curve over an algebraically closed field, we have an isomorphism

Aut(C, |C|) ∼= µµµl1 × · · · ×µµµlm ,

where l1, . . . , lm are the orders of the stabilizers at the nodes e1, . . . , em.

Remark 2.15. — In fact [2, Thm. 7.1.1] shows that we can choose gen-
erators g1, . . . , gm of Aut(C, |C|) such that the restriction of gi to C \ {ei}
is the identity, and the local picture at ei is given by

k[z, w]/(zw) → k[z, w]/(zw)

(z, w) 7→ (z, ξliw),

where ξli is a primitive lith root of unity. (Local pictures are given up to
natural transformations, and the 1-automorphism above is in fact, locally
on the strict henselization, 2-isomorphic to (z, w) 7→ (ξa

li
z, ξb

li
y) for any

a, b ∈ {0, . . . , li − 1} satisfying a + b = 1 mod li.)

Remark 2.16. — The group Aut(C, |C|), with the basis given above,
acts on the versal deformation space (2.5) as (g1, . . . , gm)zi = ξlizi (see
[35, Lem. 5.3]).

2.5. Line bundles on twisted curves

In view of the study of rth roots in the Picard group we review some
facts on line bundles on twisted curves.
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Proposition 2.17. — For any twisted curve f : C → X with coarse
space |f| : |C| → X the pullback via π : C → |C| of the relative dualizing
sheaf of |f| is the relative dualizing sheaf of f.

Proof. — The natural homomorphism π∗ω|f| → ωf is an isomorphism on
the smooth locus. At the nodes the local picture of C → |C| is

U = Spec A[z, w]/(zw − t) → V = Spec A[x, y]/(xy − tl)

(z, w) 7→ (zl, wl)

with the stabilizer of the node µµµl acting as ξl · (z, w) = (ξlz, ξ−1
l w). The

local generator of the relative dualizing sheaf of |f| is

dzl

zl
− dwl

wl

and is sent to the local generator dz/z − dw/w of ωf (recall that d(zl) =
lzl−1dz and d(wl) = lwl−1dw). �

We now fix a twisted curve over an algebraically closed field k and de-
scribe the action by pullback of Aut(C) on Pic(C). We take one of the
automorphisms belonging to Aut(C,C \ {e}) ⊆ Aut(C, |C|) fixing the entire
twisted curve away from a node e with stabilizer of order l. We describe
explicitly such automorphism by choosing for the rest of this section a
primitive lth root of unity ξ. The local picture of C at e is given by [V/µµµl],
where V equals {z+z− = 0} and µµµl acts as (z+, z−) 7→ (ξz+, ξ−1z−). The
automorphism g ∈ Aut(C, |C|) is chosen in such a way that C \ {e} is fixed
and the local picture at e is

(2.6) gsh : (z+, z−) 7→ (z+, ξz−).

We already noted in Theorem 2.14 and in Remark 2.15 that all auto-
mophisms of C are equal (up to natural transformation) to the composite
of pullbacks from |C| and products of morphisms defined in the same way
as g.

We now take a line bundle L on C and show in Proposition 2.18 that
pulling back L via g is the same as tensoring L by a line bundle TL in the
torsion subgroup of the Picard group of C. We need to set up some standard
notation identifying the line bundle TL.

Consider the homomorphism

γ : Gm → Pic C

sending λ ∈ Gm to the line bundle of regular functions f on the partial
normalization at the node e satisfying f(p+) = λf(p−), where p+ and p−
are the points of the normalization lifting the node e.

TOME 58 (2008), FASCICULE 5



1650 Alessandro CHIODO

Consider the pullback of L on the partial normalization, and its restric-
tion on B(Aut(p+)). We already noted in Remark 2.6 that the Picard group
of B(Aut(p+)) is canonically generated by Tp+ . Therefore, L determines on
B(Aut(p+)) a power of Tp+ ; we denote its exponent by

multp+ L ∈ {0, ..., l − 1}.

Note that γ and multp+ L are transformed into λ 7→ γ(λ−1) and into
l−multp+ L (reduced modulo l) if we interchange the notations p+ and p−.
This implies that the line bundle

TL = γ(ξmultp+ L) ∈ Pic(C)

only depends on L and does not depend on the notation p+, p−.

Proposition 2.18. — For any line bundle L on C over an algebraically
closed field k and for g ∈ Aut(C,C \ {e}) satisfying (2.6) we have

(2.7) g∗L ∼= L⊗ TL.

Proof. — The local picture of L → C at the point of the zero section over
e is

W = [(V × A1)/µµµl] → [V/µµµl]

where V is {z+z− = 0} as above, and ξ ∈ Aut(e) acts on ((z+, z−), λ) ∈
V × A1 as

(2.8) ((z+, z−), t) 7→ ((ξz+, ξ−1z−), ξmultp+ Lt).

By tensoring with a suitable element of π∗ Pic|C|, we can restrict to the
case of a line bundle L on C which is trivial on C \ {e}. In this way, for
V × = V \ (0, 0), we can regard L as the datum of a line bundle W on [V/µµµl]
alongside with an isomorphism Φ between W|V × and the submodule of
OV × = k[z+, z−1

+ ] ⊕ k[z−, z−1
− ] invariant under the action of µµµl. By (2.8),

the line bundle W is trivial on V and µµµl-linearized by the character ξ 7→ ξh

for h = multp+ L. Note that invariant sections of W|V × form a module
zl−h
+ k[zl

+, z−l
+ ] ⊕ zh

−k[zl
−, z−l

− ]. Pulling back via g : (z+, z−) 7→ (z+, ξz−)
changes Φ by multiplication by (1 ⊕ ξh) in k[z+, z−1

+ ] ⊕ k[z−, z−1
− ]. In this

way, we only change the descent datum along the partial desingularization
at e by multiplication by ξh on the branch (z+ = 0). This amounts to
tensoring as in (2.7). �

On a stable curve C → Spec k, the total degree of a line bundle is the
sum of the degrees on the connected components of the normalization. We
extend this definition to twisted curves.
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Proposition 2.19. — The total degree of a line bundle F on a twisted
curve C over k is an integer.

Proof. — We only need to prove the claim in the case when F is trivial
on C \ {e} and nontrivial on the node e. Then, in order to calculate the
total degree, we can regard F as a line bundle on a twisted curve C with
trivial stabilizers on every node except e. The normalization of C is a smooth
stack Cν as in Example 2.5: Cν = X[p1/l+p2/l] for p1, p2 ∈ X and l ∈ Z>1.
We calculate the total degree using Proposition 2.8.

First, assume that the partial normalization of C at e is the disconnected
stack Cν = D1 t D2. By Proposition 2.8, the total degree of F is in 1

l Z.
We need to show that the total degrees of the restrictions F1 and F2 on D1

and D2 satisfy

(2.9) l deg(F1) + l deg(F2) ≡ 0 mod l.

By Proposition 2.8, this amounts to showing that the pullbacks of Fi with
respect to BAut(pi) → Di yield inverse characters of for i = 1 and 2. This
follows using the local picture given above, (2.8).

Finally, if the partial normalization h : Cν → C is connected we have two
distinct points p1 and p2 with nontrivial stabilizer of order d lying over e.
We can define two line bundles F1 and F2 on Cν such that Fi is trivial
at pi, and F1⊗ F2 = h∗F. Then, (2.9) holds (with the same proof) and this
implies the claim. �

3. The functor of rth roots of a line bundle

This section is divided in two subsections: §3.1 and §3.2.
(1) Relying on the results of [30] or on the appendix, this first part re-

calls briefly that rth roots of a line bundle form a Deligne–Mumford
stack. We consider a twisted curve C → X and the functor F1/r of
rth roots of F, a line bundle on C whose relative degree is a multi-
ple of r. We show that it is a µµµr-gerbe over a scheme étale on X.
We notice that the stack of rth roots F1/r is finite as soon as the
geometric fibre on X is constant.

(2) In Section 3.2, we study the geometric fibres of F1/r → X by cal-
culating the cohomology of the Kummer sequence

1 → µµµr → Gm
r−−→ Gm → 1

for a twisted curve C over an algebraically closed field. The main re-
sult is Theorem 3.10, where the endomorphism L 7→ L⊗r of Pic C is
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inscribed in a diagram of exact sequences. In Corollary 3.12, we ap-
ply the result to twisted curves (we draw the diagram for a twisted
curve in Figure 3.2 at 3.14). Finally, in Theorem 3.9, we deduce the
numerical criterion classifying line bundles on twisted curve hav-
ing exactly r2g roots. Let us record straight away a consequence of
Theorem 3.10 in the context where r divides #(Aut(e)) for every
node e.

Corollary 3.1. — Let π : C → |C| be a twisted curve of genus g over
an algebraically closed field. There is an exact sequence

1 → Pic|C| π∗−→ Pic C →
∏

e∈E Pic B(Aut(e)) → 1,

where E is the set of nodes e in C. Furthermore, as soon as

#(Aut(e)) ∈ rZ ∀e ∈ E

we can write
∏

E Pic B(Aut(e))r
∼= C1(Λ, Z/rZ) where Λ denotes the dual

graph of C and we have an exact sequence

(3.1) 1 → (Pic|C|)r
π∗−→ (Pic C)r → C1(Λ, Z/rZ) ∂−→

C0(Λ, Z/rZ) ε−→ Z/rZ → 1

where (Pic|C|)r and (Pic C)r denote the r-torsion subgroups of the Picard
groups, ∂ is the boundary homomorphism with respect to a chosen orien-
tation of Λ, and ε denotes the augmentation homomorphism sending (hv)V

to
∑

V hv ∈ Z/rZ.
As a consequence, for any line bundle on |C|, whose total degree is a

multiple of r, the pullback on C has r2g rth roots. (For (2g−2)k ∈ rZ, this
applies in particular to F = ω⊗k

C by Proposition 2.17.)

3.1. The stack of rth roots of a line bundle

Consider the twisted curve f : C → X. We write LBf for the category of
line bundles on base changes CS = C ×X S for every X-scheme S. More
precisely, the objects are pairs (S, M), where S is an X-scheme and M is a
line bundle on CS = C ×X S. The morphisms (S, M) → (S′,M′) are pairs
(m, a), where m ∈ HomX(S, S′) and a is an isomorphism of line bundles
a : M

∼−→ M′ ×S′ S on CS . This fibred category is an algebraic stack and
indeed a substack of the fibred category of coherent sheaves, [30, Thm. 2.1.1,
Lem. 2.3.1]. The properties of LBf needed here are independently proven
in Appendix A (Proposition A.2 and Remark A.5).
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Remark 3.2. — Note that, in this way, we can define the algebraic stack
L̃Bg: the category fibred on the category of twisted curves M̃g whose fibre
on C → X is the stack LBf .

Let F be a line bundle on C, whose relative degree is a multiple of r;
over X we have F → C. Consider the category F1/r of rth roots of FS =
F×X S on CS = C×X S for an X-scheme S. More precisely, the category is
formed by the objects (S, M, j), where S is an X-scheme, M is a line bundle
on CS , and j is an isomorphism M⊗r ∼−→ FS . The morphisms (S, M, j) →
(S′,M′, j′) are pairs (m, a) as above, with a⊗r commuting with j and j′.

Remark 3.3. — The line bundle F can be regarded as a section from
X to LBf . Consider the X-morphism kr : LBf → LBf defined by (S, M) 7→
(S, M⊗r) and (m, a) 7→ (m, a⊗r). In this way, we can equivalently define
F1/r as the fibre product

F1/r = (LBf) kr×F X.

Proposition 3.4. — The category F1/r satisfies the following proper-
ties.

I. It is a Deligne–Mumford stack, étale and separated over X.
II. If F = O, it is a group stack on X.

III. For any F the functor

m : O1/r ×X F1/r → F1/r

(N, j), (M, k) 7→ (N⊗M, j⊗ k)

is an action of O1/r on F1/r, and

(m× pr2) : O1/r ×X F1/r → F1/r ×X F1/r

is an isomorphism of stacks.

Proof. — Using [30] or Appendix A, the proof of the fact that F1/r is
of Deligne–Mumford type only amounts to showing that the diagonal is
unramified (the category of algebraic stacks is closed under fibred products
[29, 4.5]). We show that the fibre of the morphism IsomS(α, β) → S is
reduced. Indeed, at each point s : Spec k → S the fibre is either empty, if
Mα,s � Mβ,s, or represented by the reduced group scheme µµµr(k), if Mα,s

∼=
Mβ,s (the group scheme µµµr(k) acts transitively and freely by multiplication
along the fibres of the line bundle).

The étaleness of F1/r → X claimed in part (I) follows from the fact that
the relative cotangent complex vanishes. Indeed, as shown in [2, Prop. 3.0.2]
and [4, §2.1], this is a consequence of the fact that the relative cotangent
complex Lkr vanishes.
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In order to show that F1/r → X is separated it suffices to consider the
case F = O and to apply the valuative criterion. Let (Spec R,MR, jR) be an
rth root of O on a twisted curve CR over a discrete valuation ring R. Over
the field of fractions K, we assume that (Spec K, MR⊗K, jR⊗K) is trivial:
i.e. there exists a trivialization bK : MR⊗K → O compatible with jR⊗K.
Then, the trivialization bK can be extended over R. If we assume that MR

is a pullback from |CR|, then we can focus on |CR| → Spec R and the claim
follows from the separateness of the functor of line bundles of degree zero
on each irreducible components of each fibre, [37]. We claim that MR is a
pullback from |CR|, because the stabilizers at the nodes act trivially on the
fibres. This is immediate for nodes that belong to the closure of the nodes
of the generic fibre. Otherwise, we can focus on a ‘new’ node, whose local
picture is [{zy = t}/µµµl] for t ∈ (π) ⊂ R. Note that, here, as soon as µµµl acts
nontrivially on the fibres, the generic rth root of O is nontrivial (it induces
a nontrivial cyclic covering of the generic fibre).

Part (II) follows from the fact that the stack O1/r is a functor sending
each X-scheme S to the groupoid of r-torsion line bundles on CS . In fact
such a groupoid is a Picard category: a symmetric monoid where each
object is invertible and the functors

O1/r ×X O1/r −→ O1/r

(S, (M1, j1), (M2, j2)) 7→ (S, M1 ⊗M2, j1 ⊗ j2),

X −→ O1/r

S 7→ (S,O, id)

and

O1/r −→ O1/r

(S, M, j) 7→ (S, M∨, (j∨)−1)

satisfy the law of associativity, the law of the identity, and the law of the
inverse.

Part (III) holds because the inverse of the morphism m× pr2 is given by
the functor (S, (M1, k1), (M2, k2)) 7→ (S, (M1 ⊗M∨

2 , k1 ⊗ (k∨2 )−1), (M2, k2)).
�

Definition 3.5 (the stack F1/r). — Note that each object (S, M, j) of
F1/r over an X-scheme S has automorphisms given by multiplication by
an rth root of unity along the fibre of L. We can eliminate these automor-
phism by passing to the corresponding rigidified stack (the general setting
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is recalled in §A.2). The stack F1/r is the rigidification of F1/r along µµµr in
the sense of [2] (see Theorem A.6):

F1/r = (F1/r)µµµr .

Proposition 3.6. — The morphism F1/r → X is represented by an
étale and separated X-scheme, whose geometric fibre on x in X is

{α ∈ Pic(Cx) | αr = [Fx]}.

Assume that F is the trivial line bundle O of C; then, O1/r is a group
scheme.

Proof. — The morphism F1/r → X is étale and separated, Proposi-
tion 3.4. The morphism F1/r → F1/r, is surjective and indeed a morphism
“locally isomorphic” to Bµµµr on F1/r (see [38, I. Prop. 3.0.2, (2)] and [2,
Thm. 5.1.5]). Therefore, F1/r → X is étale and separated.

Finally F1/r → X is representable because for any algebraically closed
field k and any τ ∈ F1/r(Spec k) the automorphism group of τ is trivial
(this condition suffices by a criterion due to Abramovich and Vistoli, [5,
Lem. 4.4.3]). Indeed, the objects of F1/r = (F1/r)µµµr over an algebraically
closed field k are the same as the objects of F1/r over k. Now, the auto-
morphism group of the µµµr-rigidified object τ is the quotient by µµµr(k) of
the automorphism group of τ in F1/r, Theorem A.6, (3). This quotient can
be easily seen to be trivial: note that µµµr(k) → Aut(τ) is surjective, be-
cause an automorphism of an rth root (M, j : M⊗r ∼−→ F) on a twisted curve
C → Spec k

a : M
∼−→ M a⊗r ◦ j = j

necessarily satisfies a⊗r = id and, since C ⊗ k is connected, a is given by
the multiplication by an rth root of unity along the fibre of M.

The rest of the proposition follows immediately from Proposition 3.4 (the
group structure and the action of O1/r on F1/r descend to F1/r and their
relations are preserved). �

Proposition 3.7. — Assume that C → X is a twisted curve and F → C

is a line bundle satisfying the following conditions: for any geometric point x

in X the line bundle Fx has r2g rth roots on Cx up to isomorphism. Then,
we have the following properties.

(1) O1/r is a finite group scheme and F1/r is a finite torsor under O1/r.
(1’) O1/r is a finite group stack and F1/r is a finite torsor under O1/r.

Proof. — The morphism p : Y = F1/r → X is étale and the geometric
fibres are reduced and consist of n = r2g distinct points. This condition is
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sufficient for the properness of p: indeed it implies that p is an isomorphism
when n equals 1, and it implies properness by induction on the degree (we
can check properness after an étale base change, and we note that Y ×X Y

is finite on Y because (Y ×X Y ) minus the diagonal ∆(X) is étale and
separated on Y , and has constant reduced fibre consisting of n− 1 points).

Now, note that if Fx has r2g distinct rth roots on Cx, then the structure
sheaf of Cx also has r2g distinct roots. Therefore, O1/r is a finite group and
F1/r is a finite torsor under O1/r, because the geometric fibres of F1/r → X

are nonempty, and O1/r×X F1/r → F1/r×X F1/r is an isomorphism. Finally
the point (1′) follows from Proposition 3.4, and the fact that F1/r is proper
on F1/r. �

3.2. The Kummer theory of a twisted curve

Since, by the above proposition, F1/r is finite as soon as the fibre is
constant, we focus on the geometric fibres of F1/r → X.

Notation 3.8 (multiplicity of a line bundle at a smooth stack-theoretic
point). — We consider 1-dimensional Deligne–Mumford stacks X with
nodal singularities and trivial stabilizers except for a finite number of
points. As noted in Remark 2.6 for each smooth point p there is a canonical
embedding

j : B(Aut(p)) → C

and a canonical generator of Pic B(Aut(p)) induced by the Aut(p)-linearized
tangent space T. With such a canonical generator, the group Pic B(Aut(p))
can be regarded as Z/#(Aut(p))Z. Then for any line bundle F at any
smooth point p of X we define a multiplicity index

0 6 multp F 6 #(Aut(p))− 1

via the pullback homomorphism

Pic X
j∗−→ Pic B(Aut(p)).

If e is a node the notation multe F does not make sense, because there
is no canonical generator for Pic B(Aut(p)). Instead, we will consider the
pullback of F on the normalization, which is smooth, 1-dimensional, and
contains two distinct geometric points p1 and p2 lying over the node e.
By a slight abuse of notation we shall write multp1 F and multp2 F for the
multiplicity index at p1 and p2 of the pullback of F on the normalization.
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Theorem 3.9. — Let C → Spec k be a twisted curve with stabilizers of
order l(e) on each node e. Let F be a line bundle on C whose total degree
is a multiple of r.

The number of rth roots of F is r2g if and only if the two following
numerical conditions are satisfied. First, for each nonseparating node e, r

divides

l(e), m1(e), and m2(e)

where the normalization C at e is the connected stack C0, p1, p2 ∈ C0 map
to e, and mi(e) equals multpi

(F). Second, for each separating node e, r

divides

d1(e)l(e) and d2(e)l(e)

where the normalization of C at e is C1 tC2 and di ∈ (1/l(e))Z is the total
degree of F on the curve Ci.

In particular, for any line bundle on |C|, whose total degree is a multiple
of r, there are exactly r2g roots of the pullback on C if and only if r divides
l(e) for each nonseparating node, and r divides l(e)di(e) for each separating
node.

We prove the above criterion at the end of the section (3.14). The main
tool is the exactness of the following diagram (Figure 3.1) and its interpre-
tation for twisted curves (3.14, Figure 3.2).

Theorem 3.10. — Let π : X → |X| be a tame and proper Deligne–
Mumford stack of dimension 1 with nodal singularities and assume that
Aut(p) is trivial except for a finite number of points pi : Spec k → X. We
write Γi = Aut(pi) and we denote by j the canonical embedding tiBΓi → X.

Then, the direct images Rπ∗µµµr and Rπ∗Gm are represented by complexes
on |X| fitting in the exact sequences

1 → µµµr → Rπ∗µµµr → Rπ∗µµµr/µµµr → 1,(3.2)

1 → Gm → Rπ∗Gm → Rπ∗Gm/Gm → 1.(3.3)

The long exact sequence of hypercohomology of (3.2) yields

1 → H1(|X|,µµµr) → H1(X,µµµr) →
∏

i H1(Γ1,µµµr)
δ−−−→ H2(|X|,µµµr) → H2(X,µµµr) →

∏
i H2(Γ1,µµµr) → 1,

and the long exact sequence of hypercohomology of (3.3) in degree 1 yields

1 → Pic|X| π∗−→ Pic X →
∏

i Pic(BΓi) → 1
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Both exact sequences above fit in the following commutative diagram (see
the second and the third columns), where all vertical and horizontal se-
quences are exact

Pic |X| // H2(|X|,µµµr) // 1 // 1 // 1 // 1

1 //

OO

∏
H1(Γi,µµµr) //

δ

OO

∏
Pic(BΓi)

r //

OO

∏
Pic(BΓi) //

OO

∏
H2(Γi,µµµr)

OO

// 1

OO

1 //

OO

H1(X,µµµr) //

OO

Pic X
r //

j∗

OO

Pic X //

j∗

OO

H2(X,µµµr)

OO

// 1

OO

1 //

OO

H1(|X|,µµµr) //

OO

Pic |X| r //

π∗

OO

Pic |X| //

π∗

OO

H2(|X|,µµµr)

OO

// 1

OO

1

OO

// 1

OO

// 1

OO

// 1

OO

// ∏H1(Γi,µµµr)

δ

OO

// ∏Pic(BΓi).

OO

Figure 3.1. the diagram can be regarded as a double complex K•,•

periodic of period (3,−3).

Proof. — The exactness of 1 → µµµr → Gm → Gm → 1 holds in the
étale topology of X by the same argument of [33, II.2.18b]. Our goal is to
compare the long exact sequences of cohomology of the Kummer sequence
of X and of |X|.

We show that there are three complexes on |X| representing the direct
images in the derived category Rπ∗µµµr, Rπ∗Gm, and Rπ∗Gm and fitting in
a short exact sequence as follows

(3.4) 1 → Rπ∗µµµr → Rπ∗Gm → Rπ∗Gm → 1.

Indeed, in the category of sheaves of abelian groups on |X|, we can consider
three injective resolutions

µµµr → I•1 ,

Gm → I•2 ,

Gm → I•3 ,
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fitting in

1 // I•1 // I•2 // I•3 // 1

1 // µµµr
//

OO

Gm
r //

OO

Gm
//

OO

1,

where all the horizontal sequences are exact (note that this happens be-
cause the category of sheaves of abelian groups has enough injectives, and,
given the injective resolutions I•1 and I•3 , we can also find a third injective
resolution I•2 making all horizontal sequences exact). Now, applying the
direct image via π : X → |X| to 1 → I•1 → I•2 → I•3 → 1, we get the short
exact sequence (3.4), because all the sheaves involved are injective.

The sequence (3.4) allows the comparison of the long exact cohomology
sequences attached to the Kummer sequences of X and of |X|. Indeed, we
show that the Kummer sequence of |X| injects in (3.4). We have π∗µµµr = µµµr

and π∗Gm = Gm, because π∗OC is canonically isomorphic to O|C| by Keel
and Mori’s theorem [26], and the isomorphism yields the identity π∗µµµr = µµµr

because it identifies the rth roots of unity. We deduce that, on |X|, the
sequence 1 → µµµr → Gm → Gm → 1 injects into (3.4). Therefore, we write

(3.5) 1 // Rπ∗µµµr
// Rπ∗Gm

r // Rπ∗Gm
// 1

1 // µµµr
//

OO

Gm
r //

OO

Gm
//

OO

1

1

OO

1

OO

1

OO

.

Note that, each vertical sequence in the diagram above is of the form π∗J →
Rπ∗J, where, on the one hand, π∗J is concentrated in degree 0: (1 → A0 →
1 → 1 → . . . ), on the other hand Rπ∗J is (1 → B0 → B1 → B2 . . . ) and
the morphism of complexes is given by

1 // B0 // B1 // B2

1 // A0 //

OO

1

OO

// 1

OO

,

where A0 → B0 is injective. By taking quotients, we get complexes rep-
resenting Rπ∗J/π∗J for J = µµµr or Gm. By the exactness of the horizontal
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sequences in (3.5), we get the following diagram where horizontal and ver-
tical sequences are exact.

(3.6) 1 1 1

1 // Rπ∗µµµr/µµµr

OO

// Rπ∗Gm/Gm

OO

// Rπ∗Gm/Gm

OO

// 1

1 // Rπ∗µµµr

OO

// Rπ∗Gm

OO

r // Rπ∗Gm

OO

// 1

1 // µµµr
//

OO

Gm
r //

OO

Gm
//

OO

1

1

OO

1

OO

1

OO

We calculate the hypercohomology groups of |X| with respect to the
complexes Gm, µµµr, Rπ∗Gm, Rπ∗µµµr, Rπ∗Gm/Gm, and Rπ∗µµµr/µµµr in the
diagram above. Since the hypercohomology groups coincide with the coho-
mology groups when the complex is concentrated in degree 0, for any sheaf
E on |X| we have

(3.7) Hj(|X|, E) = Hj(|X|, E).

By the Leray spectral sequence, for any sheaf of groups J on X, we have

(3.8) Hj(|X|, Rπ∗J) = Hj(X, J).

Finally the spectral sequence Ep,q
2 = Hp(|X|,Hq(Rπ∗J/π∗J)) abuts to

Hp+q(|X|, Rπ∗J/π∗J). The sheaf Hq(Rπ∗J/π∗J) is equal to Rqπ∗J for q > 0,
and vanishes otherwise. We now notice that Rqπ∗J is supported on the
points with nontrivial stabilizer. Indeed, it is shown in [2, Prop. A.0.1] that
the stalk of Rqπ∗J at a point |p| ∈ |X| is canonically isomorphic to the qth
cohomology group Hq(Aut(p), Jp). Therefore, we have

(3.9) Hj(|X|, Rπ∗J/π∗J) =

{
0 if j = 0∏

i Hj(Γi, Jpi) if j > 0,

because Rqπ∗J is supported on the points |pi|, and the differentials of Ep,q
2

vanish.
Passing to the long exact hypercohomology sequences in all directions

in the diagram (3.6), we get the following diagram. The fact that the dia-
gram (3.6) commutes implies that all the squares below commute except for
the squares involving the boundary homomorphisms, which anticommute.
However, note that all the composition of homomorphism in the squares in-
volving the boundary homomorphisms are trivial, so the following diagram
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is indeed commutative

H1(|X|, Gm) // H2(|X|,µµµr) // 1 // 1 // 1

1 //

OO

∏
H1(Γi,µµµr) //

δ

OO

∏
H1(Γi, Gm) //

OO

∏
H1(Γi, Gm) //

OO

∏
H2(Γi,µµµr)

OO

1 //

OO

H1(X,µµµr) //

OO

H1(X, Gm) //

OO

H1(X, Gm) //

OO

H2(X,µµµr)

OO

1 //

OO

H1(|X|,µµµr) //

OO

H1(|X|, Gm) //

OO

H1(|X|, Gm) //

OO

H2(|X|,µµµr)

OO

1

OO

// 1

OO

// 1

OO

// 1

OO

// ∏H1(Γi,µµµr)

δ

OO

In the diagram above, we used the following facts.

(1) For any proper stack Y the rth power homomorphism is surjective
in H0(Y, Gm).

(2) The coarse space |X| is a 1-dimensional scheme with nodal singu-
larities, therefore we have H2(|X|, Gm) = 1.

(3) For j > 0, the cohomology groups of Γi = Aut(pi) with coefficient
in (Gm)pi

= Gm with a trivial Γi-action are given by

Hj(Γi, Gm) =

{
1 if j is even,
Z/l(i)Z if j is odd,

where l(i) = #(Γi).

After the identifications of H1(Y, Gm) with Pic(Y), this shows the ex-
actness of the diagram of Figure 3.1. �

Remark 3.11 (the boundary homomorphism δ). — We show that the
coboundary homomorphism

δ :
∏

i H1(Γi,µµµr) → H2(|X|,µµµr)

which maps vertically in the commutative diagram of Figure 3.1 can be
explicitly computed. When X is a twisted curve, this allows to provide the
explicit description of the exact sequence

(3.10) 1 → H1(|X|,µµµr) → H1(X,µµµr) →
∏

H1(Γi,µµµr)
δ−→ H2(|X|,µµµr) → H2(X,µµµ2) →

∏
H1(Γi,µµµr) → 1
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and to prove Corollary 3.12 and the weaker version Corollary 3.1 stated
above.

First, for any 1-dimensional stack X satisfying the hypotheses of the
theorem, we use the double complex of Figure 3.1 to define a Z×Z-graded
complex K•,• as follows.

1 1 1 1

1 // ∏
i
H1(Γi,µµµr)

d′ //

OO

∏
i
H1(Γi, Gm)

d′ //

OO

∏
i
H1(Γi, Gm)

d′ //

OO

∏
i
H2(Γi,µµµr)

OO

// 1

1 // H1(X,µµµr)
d′ //

d′′

OO

H1(X, Gm)
d′ //

d′′

OO

H1(X, Gm)
d′ //

d′′

OO

H2(X,µµµr)

d′′

OO

// 1

1 // H1(|X|,µµµr)
d′ //

d′′

OO

H1(|X|, Gm)
d′ //

d′′

OO

H1(|X|, Gm)
d′ //

d′′

OO

H2(|X|,µµµr)

d′′

OO

// 1

1

OO

1

OO

1

OO

1

OO

,

Here K0,0 equals H1(|X|,µµµr) and all terms Kp,q coincide with the terms of
the diagram of Figure 3.1 appearing in Theorem 3.10 except for K3,−1 = 1
and K0,3 = 1. We also set the differentials d′(p, q) : Kp,q → Kp+1,q and
d′′(p, q) : Kp,q → Kp,q+1 as in Figure 3.1, except for d′′(0, 2) and d′′(3,−1)
which are trivial.
Now, by means of the double complex K•,• we identify δ with a dif-
ferential ′d3 of the spectral sequence associated to the filtration ′Kp =∑

i>p Ki,j . This amounts to the following explicit description of δ. For any
x ∈

∏
i H1(Γi,µµµr), δ(x) is the (unique) element of H2(|X|,µµµr) for which

there exist y1 ∈ H1(X, Gm) and y2 ∈ H1(|X|, Gm) satisfying

(3.11)


d′(x) = d′′(y1),

d′(y1) = d′′(y2),

d′(y2) = δ(x).

Indeed, we consider the spectral sequences ′E• and ′′E• with

′Ep,q
2 = Hp

d′(H
q
d′′(K

•,•)) ′′Ep,q
2 = Hq

d′′(H
p
d′(K

•,•))

associated to the filtrations ′Kp =
∑

i>p Ki,j and ′′Kq =
∑

j>q Ki,j . Note
that d′ is exact everywhere; therefore, Hd′(K•,•) vanishes identically. So,
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′′Ep,q
2 is zero; hence, also ′Ep,q

h vanishes for all p and q and for h suffi-
ciently large. Since ′Ep,q

h is constant for h > 4, the homomorphism

(3.12) ′E0,2
3 = coker(d′′(0, 1))

′d3−−−−−→ ′E3,0
3 = ker(d′′(3, 0)).

is an isomorphism. In fact, by construction, the coboundary homomorphism
δ coincides with the composite of K0,2 → coker(d′′(0, 1)) and ′d3. The
definition of the differential ′d3 for the spectral sequence ′Ep,q

3 yields the
equations (3.11) above.

In the following corollary we apply Theorem 3.10 and the explicit com-
putation of the boundary homomorphism δ given above to the case of a
twisted curve. See also 3.14, Figure 3.2 where we summarize the result.

Corollary 3.12. — Let π : C → |C| be a twisted curve. Write Γe for
Aut(e) for any node e ∈ E and l(e) for its order. We have a canonical
isomorphisms

(3.13) H2(C,µµµr) ∼= H2(|C|,µµµr) ∼= (Z/rZ)V .

Choose an orientation of the dual graph of C; then, we have a canonical
isomorphism identifying H1(Γe,µµµr) with the r-torsion of Z/l(e)Z:

(3.14) H1(Γe,µµµr) ∼= (l(e)/ hcf{l(e), r})Z/l(e)Z ∀e.

With respect to these identifications, δ :
∏

e H1(Γe,µµµr) → H2(|C|,µµµr) in
Figure 3.1 as the composite homomorphism of the boundary of the chain
complex C•(Λ, Z/rZ) of the dual graph Λ of C and of the homomorphism∏

e H1(Γe,µµµr) → (Z/rZ)E given by the product over E of

(l(e)/ hcf{l(e), r})Z/l(e)Z ×(r/l(e))−−−−−−−→ (r/ hcf{l(e), r})Z/rZ ↪→ Z/rZ ∀e.

Proof. — First, we see the preliminary case of the stack C[p/l]. Then,
we normalize the twisted curve and use the presentation of smooth stacks
of dimension 1 given in Section 2.5.

Lemma 3.13. — Let C be a proper, connected, smooth, and reduced
curve. For p ∈ C and l an invertible integer, consider the stack C[p/l]: the
point C[p/l] lying over p ∈ C has automorphism group Γ of order l. The
boundary homomorphism δ of Figure 3.1 is the composite homomorphism

H1(BΓ,µµµr) ∼= (l/ hcf{l, r})Z/lZ
×(r/l)−−−−−→ (r/ hcf{l, r})Z/rZ ↪→ Z/rZ ∼= H2(C,µµµr),

where we used the canonical isomorphisms Pic(BΓ) ∼= Z/lZ (Remark 2.6)
and H2(C,µµµr) ∼= Z/rZ.
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Proof. — As in Remark 2.6, we denote by T the tangent space at p. Now,
we apply to T⊗m ∈ H1(Γ,µµµr) the definition of δ given in (3.11). Let M be
a line bundle on C[p/l] such that j∗M = T⊗m; let A be a line bundle
on C, such that π∗A = M⊗r. Then, δ(T⊗m) is deg A mod r. Finally, by
Proposition 2.8, we have

deg(A) = deg(M⊗r) = r deg(M) = r(k + m/l) = rk + mr/l.

This is indeed the claim of the lemma. �

Now let D → C and |D| → |C| be the normalization of C and |C|. Note
that D has trivial stabilizers except for a finite set of smooth points I.
Therefore, Theorem 3.10 applies. Furthermore, for any point p ∈ D with
|Aut(p)| = l > 1, there is a natural projection

(3.15) D → |D|
[
|p|/l

]
.

Using Lemma 3.13, we get a canonical isomorphism from H1(Aut(p),µµµr)
to (l/ hcf{l, r})Z/lZ and a homomorphism

(3.16) H1(Aut(p),µµµr)
×(r/l)−−−−−→ H2(|D|,µµµr).

Note that the morphism δD :
∏

p∈I H1(Aut(p),µµµr) → H2(|D|,µµµr) coincides
with (3.16) on each factor, because δ commutes with pullbacks via the
projections (3.15).

Now, consider D → C. For each node e of C there are two smooth points
pe,+, pe,− ∈ D over e with stabilizer Γe, we denote them according to the
orientation of the dual graph. Now, H1(Γe,µµµr) is the r-torsion subgroup
of H1(Γe, Gm), which is canonically generated by the tangent space Te,+

at the point of pe,+ ∈ D. Thus, by raising Te,+ to the (l(e)/ hcf{l(e), r})th
power, we get the canonical isomorphism (3.14).

The cohomology homomorphisms induced by pullback via D → C are
compatible with the diagrams of Figure 3.1 for C and D. Now,

δC :
∏

eH
1(Γe,µµµr) → H2(|C|,µµµr)

fits in the following commutative diagram∏
eH

1(Γe,µµµr) //δC //∏
e
ge

��

H2(|C|,µµµr)

∼=

��∏
e,i=+,− H1(Aut(pe,i),µµµr)

δD // H2(|D|,µµµr),

where the homomorphism induced via pullback H2(|D|,µµµr) → H2(|C|,µµµr)
is invertible and the morphisms ge are induced by pullback via D → C and
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map as
Te,+ → (Te,+, (Te,+)∨) ∀e.

This happens because, by the definition of twisted curves 2.9, the local
picture of C at e is {zw = 0} with µµµl(e) acting as (z, w) 7→ (ξl(e)z, ξ−1

l(e)w). �

3.14. — Proof of Theorem 3.9. We prove the claim by chasing in the
following diagram derived from Theorem 3.10 and Corollary 3.12.

P // 1 // 1 // 1

Pr

OO

∂|Pr// H2(|C|,µµµr) //

OO

H2(C,µµµr)

OO

// P/rP

OO

// 1

1 //

OO

Pic |C|

OO

π∗ // Pic C
j∗ //

OO

P //

OO

1 //

OO

1

1 //

OO

Pic |C|

OO

π∗ // Pic C
j∗ //

r

OO

P //

r

OO

1 //

OO

1 //

OO

1

1 //

OO

(Pic|C|)r //

OO

(Pic C)r //

OO

Pr

OO

∂|Pr// H2(|C|,µµµr) //

OO

H2(C,µµµr)

OO

// P/rP

OO

// 1

1 //

OO

1 //

OO

1 //

OO

Pic |C|

OO

π∗ // Pic C
j∗ //

OO

P //

OO

1

OO

1 //

OO

1 //

OO

Pic |C|

OO

π∗ // Pic C
j∗ //

r

OO

P //

r

OO OO

1 //

OO

(Pic|C|)r //

OO

(Pic C)r //

OO

Pr

OO

∂|Pr // . . .

OO

1 //

OO

1 //

OO

1

OO

Figure 3.2. the diagram is commutative and all horizontal and vertical
sequences are exact.

In the figure above we used the following notation:
(1) Pe denotes Pic(BAut(e)), and P denotes

∏
e Pe;

(2) for any group H, Hr denotes the r-torsion subgroup;
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(3) ∂ denotes the differential of C•(Λ, Z/rZ) for Λ the dual graph of C

with an orientation;
(4) j denotes the embedding of the singular locus in C;
(5) π denotes the morphism from C to |C|.

We prove Theorem 3.9 in two steps: we first focus on roots of O; then,
we consider the roots of F.

Step 1. The special case: rth roots of O. — We need to show that there
are exactly r2g roots of O if and only if l(e) is a multiple of r for any
nonseparating node e. By Theorem 3.10 (see Figure 3.2), the number of
elements of Pic(C)r equals the product of #((Pic|C|)r) = r2g−1+#(V )−#(E)

by the size of the kernel of

(3.17) ∂ : Pr → H2(|C|,µµµr).

Therefore, it is enough to show the following claim

(3.18) #(ker ∂) = r1−#(V )+#(E) ⇔ l(e) ∈ rZ ∀e nonseparating.

Recall that the first Betti number of the dual graph Λ of C is given by
b1(Λ) = 1−#(V ) + #(E). Consider the subgraph Λ(e) of Λ of |C|, whose
vertices and edges are V and E \ {e}, denote by ∂̂e the restriction of the
chain differential of Λ(e) to Pr(e) =

∏
E\{e}(Pe)r. For any nonseparating

e ∈ E, we have

(3.19) #(ker ∂) = #(ker ∂̂e) · hcf{r, l(e)}.

The claim (3.18) follows. Indeed, assume #(ker ∂) = r1−#(V )+#(E). Now,
we have #(ker ∂̂e) 6 rb1(Λ(e)) and b1(Λ(e)) = b1(Λ)−1 if e is nonseparating.
Hence, r = hcf{r, l(e)}. Conversely, assume l(e) ∈ rZ for all nonseparat-
ing e. The claim holds when there are n − 1 nonseparating edges, then
(3.19) implies #(ker ∂) = rb1(Λ(e))+1 = r1−#(V )+#(E).

Step 2. The general case: rth roots of F. — We assume the numerical
condition in the statement, and we show that it implies that F has one rth
root (by Step 1, this also implies that the number of roots is r2g).

By the diagram in Figure 3.2, this amounts to a combinatorial criterion
on the differential of C•(Λ, Z/rZ) (recall that an orientation for Λ is chosen).
The point is that for any line bundle A on the curve |C| the pullback π∗A

has an rth root in Pic(C) if and only if deg(A) is in the image of ∂ in
Figure 3.2.

In order to state the criterion we attach a partition of E \ {e} and V to
each separating node e joining v+ and v−:

E \ {e} = E+ t E− V = V + t V −,
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where the set E+ (the set V +) contains the edges (the vertices) that can be
connected to v+ without passing through e. Then, regard Pr as the product∏

e∈E(Pe)r and write P±(e) =
∏

e∈E±(Pe)r, write ∂±e for the corresponding
chain differentials, and denote by ε±e the composition of V ± ↪→ V with the
augmentation homomorphism ε : V → Z/rZ (over ker ε, we obviously have
ε+
e = −ε−e ).

Lemma 3.15. — Assume that r divides l(e) if e is nonseparating. Con-
sider an element ~t ∈ ker ε ∈ (Z/rZ)V ; the following conditions are equiva-
lent.

(1) ~t is in the image of Pr ⊆ (Z/rZ)E via ∂.
(2) For any separating edge e, the value of ε+

e (~t ) ∈ Z/rZ belongs to Pe

(or, equivalently, the value of ε−e (~t ) = −ε+
e (~t ) belongs to Pe).

Proof. — Note that the claim is trivial if all edges are nonseparating.
Indeed, (2) is true, whereas (1) is true, because if ε(~t ) vanishes, then ~t is
exact in C• and lies in ∂(Pr) by l(e) ∈ rZ.

Then, choose a separating edge e joining v+ to v− Note that, the homo-
morphism ∂ can be written as

P+(e)× (Pe)r × P+(e) → (Z/rZ)V +
× (Z/rZ)V −

(a, x, b) 7→
(
∂+

e (a) + i+(x), ∂−e (b)− i−(x)
)
,

where i+ and i− are the injections of (Pe)r in (Z/rZ)V +
and (Z/rZ)V −

induced by v+ ∈ V + and v− ∈ V −.
We assume ~t ∈ ∂(Pr), and we prove (2). Indeed, there exist a ∈ P+(e)

and x ∈ (Pe)r satisfying ε+
e (~t ) = ε+

e (∂+
e (a) + i+(x)). Therefore, we have

ε+
e (~t ) = ε+

e (i+(x)) = x ∈ Pe.

Conversely, choose a separating edge e, and set xe = ε+
e (~t ) ∈ (Pe)r. We

construct ~h ∈ Pr such that ∂(~h ) = ~t , by means of the presentation of ∂

given in the diagram above. Using the partition V = V + t V −, write ~t as
(~t +

e ,~t−e ). Now, giving ~h is equivalent to finding two elements mapping via
∂+

e and ∂−e to ~q +
e = ~t +

e − i+e (xe) and ~q −e = ~t−e + i+e (xe). By induction on
the number of separating edges, the lemma holds on the subgraphs with
edges E+ (or E−) and vertices V + (or V −). Therefore, in order to lift
~q = ~q +

e and ~q −e to P+(e) and P−(e), we only need to show that ~q satisfies
(2). This is immediate, since, by construction, for any separating edge f we
have either ε+

f (~q ) = ε+
f (~t ) or ε−f (~q ) = ε−f (~t ). �

Assuming that the numerical condition on the nodes is satisfied, we con-
struct an rth root of F. Using the orientation of the dual graph Λ chosen
above, we have a canonical way to associate to a node e a point p+ over e
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lying in the normalization of C at e. We set m(e) = multp+(F). In the
same way, for any separating node e, the orientation allows us to associate
to e a component C+(e) of the partial normalization of C at e. Then, we
set d(e) = degC+(e)(F). By hypothesis there exists a function k(e) ∈ Z
satisfying

d(e)l(e) = k(e)r for separating nodes and(3.20)

m(e) = k(e)r for nonseparating nodes.(3.21)

The orientation of the dual graph Λ also induces a canonical generator Tp+

for each group Pic(BAut(e)). We consider∏
e T

⊗k(e)
p+ ∈

∏
e Pe.

Let M be a line bundle on C such that j∗M =
∏

e T
⊗k(e)
p+ . By the equations

(3.20) and (3.21) and Proposition 2.8, we have j∗(M⊗r) = j∗F. Therefore,
there exists a line bundle A ∈ Pic |C| satisfying π∗A = (M⊗r)∨ ⊗ F.

In fact, π∗A has an rth root, because it lies in the kernel of the homo-
morphism Pic(C) → H2(C,µµµr). To see this, using the diagram of Figure
3.2, it is enough to show that the homomorphism Pic |C| → H2(|C|,µµµr)
sends A into ∂(Pr). We apply Lemma 3.15 to the multidegree of A mod r;
clearly, condition (2) of the lemma holds if the following numerical condi-
tion is satisfied for each separating node: the total degree of π∗A on the
connected component C̃ = C+(e) is a multiple of r. Indeed, r divides

deg(π∗A|
C̃
) = deg((M⊗r)∨ ⊗ F)|

C̃

= −r deg(M|
C̃
) + d(e) = r(−deg(M|

C̃
) + d(e)/r),

because deg(M|
C̃
)− k(e)/l(e) is an integer by Proposition 2.8 and we have

k(e)/l(e) = d(e)/r by (3.20). This proves the claim, because by tensoring
a root of π∗A by M we get a root of F.

Conversely, if F has r2g rth roots, we show l(e),m(e) ∈ rZ for any non-
separating node e and l(e)d(e) ∈ rZ for any separating node e. First, for
any nonseparating node e, Step 1 implies l(e) ∈ rZ, and, since F has an rth
root, j∗F also has an rth root, and we have m(e) ∈ rZ. Second, we show
l(e)d(e) ∈ rZ for a separating node e. Since j∗F has an rth root and j∗ is sur-
jective, we can choose a line bundle M on C such that j∗M⊗r = j∗F. There
exists A ∈ Pic |C| such that π∗A = (M⊗r)∨ ⊗ F. Since F has an rth root,
π∗A has an rth root; therefore, the homomorphism Pic |C| → H2(|C|,µµµr)
sends A into the image of ∂ : Pr → H2(|C|,µµµr). Note that, by Lemma 3.15,
the degree of π∗A on C+(e) has order l(e) modulo r; hence, we have

l(e) deg(π∗A|C+(e)) ∈ rZ,
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which implies l(e)d(e) ∈ rZ, because

l(e) deg(π∗A|C+(e)) = l(e) deg(j∗(M⊗r)∨ ⊗ F)|C1

= −rl(e) deg(M|C1
) + l(e)d(e).

4. The notion of stability for twisted curves

4.1. Twisted curves and the notion of ~l -stability

By Olsson’s Theorem 2.13, the category of twisted curves of genus g > 2
forms a Deligne–Mumford stack. As the following example shows, the stack
M̃g is not separated.

Example 4.1. — A twisted curve C over a discrete valuation ring R with
smooth generic fibre CK is isomorphic to its coarse space over K and may
differ from it on the special fibre; in this case the coarse space |C| and C

are two nonisomorphic twisted curves extending CK on S. Therefore, the
valuative criterion of separateness fails.

Inside M̃g, we identify all proper substacks containing Mg. We need to
recall the following standard notion of type of a node.

Notation 4.2 (type of a node). — Given a twisted curve of genus g > 2
over an algebraically closed field k and a node e ∈ C we set the following
convention:

e ∈ C is



of type 0 if the normalization of C at e

is connected (i.e. e is nonseparating);

of type i with if normalizing C at e we get C1 t C2

1 6 i 6 bg/2c with {g(C1), g(C2)} = {i, g − i}.

Definition 4.3. — Let~l = (l0, l1, . . . , lbg/2c) be a multiindex of positive
and invertible integers li. A twisted curve C → X is ~l -stable, if the coarse
space is stable and if the stabilizer at a node of type i has order li.

Theorem 4.4. — Let us denote by Mg(~l ) the category of~l -stable curves.
It is contained in M̃g and it contains Mg:

Mg ↪→ Mg(~l ) ↪→ M̃g.
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I. The stack Mg(~l ) is tame, proper (separated), smooth, irreducible
and of Deligne–Mumford type. The morphism Mg(~l ) → Mg is finite,
flat, and is an isomorphism on the open dense substack Mg.

II. Any proper substack X of M̃g fitting in Mg ↪→ X ↪→ M̃g is isomorphic
to Mg(~l ) for a suitable multiindex ~l .

Proof. — There is a natural surjective morphism

M̃g → Mg,

which is the functor sending a twisted curve C → X to the coarse space
|C| → X. Note that Mg is dense in M̃g: by Theorem 2.13 any twisted curve
C → Spec k can be realized as the special fibre of a twisted curve C′ over a
discrete valuation ring in such a way that the generic fibre is smooth.

Point (I) follows from [35, Thm. 1.9] and, in particular, from the de-
scription of versal deformation spaces (2.5). The morphism Mg(~l ) → Mg is
locally represented by the flat, finite, tame morphism of Deligne–Mumford
type

(4.1) [(Spec Ĩ)/µµµh1
× · · · ×µµµhm

] → Spec I

where I is the versal deformation space of a point of Mg, m is the number
of nodes of the curve represented by such point,

Ĩ = I[z1, . . . , zm]/(zh1
1 − t1, . . . , z

hm
m − tm)

and µµµh1
× · · · × µµµhm

acts as (ξh1 , . . . , ξhm)zi = ξhj zj (note that the index
hj depends on the type of the jth node and hj = li if the jth node is of
type i). This means that Mg(~l ) is smooth, which is also shown in [2, §3]
and [4, §3]. The fact that Mg(~l ) is irreducible is a consequence of the fact
that Mg is dense on Mg(~l ).

We show (II). Let X be a proper stack, which contains Mg and is con-
tained in M̃g. By restriction of M̃g → Mg to X, we obtain a morphism of
proper stacks f : X → Mg. Note that Mg is dense in X and in Mg. The val-
uative criterion of properness for X and Mg implies that for any geometric
point y : Spec k → Mg there exists a point x : Spec k → X lifting y. In fact
x is unique. To see this, consider a versal deformation Spec I → Mg at y.
The base change of X → Mg via Spec I → Mg is a restriction of (4.1). The
point y is in the locus z1 = z2 = · · · = zm = 0 and admits only one lifting.

Now, we define positive indexes ~l = (l0, l1, . . . , lbg/2c) such that X is
isomorphic to Mg(~l ). Denote by u : U(Mg) → Mg the universal stable curve.
Consider a geometric point p : Spec k → U(Mg), which is a node of type i.
Let q : Spec k → X be the unique morphism which lifts u ◦ p. The object
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determined by q is a twisted curve C, whose coarse space |C| is represented
by the point u◦p. We define li as the order of the stabilizer of C on the node
p. The index li is locally constant on the (connected) substack of U(Mg)
of nodes of type i. Therefore, li only depends on i. This implies that the
objets of X are ~l -stable curves. Finally, the properness of X implies that
any point Spec k → Mg(~l ) lifts to X. Since Mg(~l ) is regular, this suffices to
show that X is isomorphic to Mg(~l ). �

In fact, the stack Mg(~l ) admits an alternative description.
The first part of Olsson’s proof of Theorem 2.13 in [35] consists of con-

structing a functor from the category of twisted curves to the category
of simple logarithmic extensions of the logarithmic structure M∆ on Mg

canonically associated to the boundary locus ∆ = Mg \ Mg. Indeed, the
boundary locus is a normal crossings divisor ∆ =

∑
i ∆i where ∆i is the

full subcategory of stable curves C → X where the geometric fibres on
every x in X are curves containing at least a node of type i (recall that
a logarithmic structure is canonically associated to any normal crossings
divisor [25, 1.5]). The second part of Olsson’s proof shows that simple ex-
tensions of logarithmic structures form an algebraic stack.

We point out that, by [35, Lem. 5,3], Olsson’s functor can be regarded
as an equivalence between the subcategory Mg(~l ) of ~l = (l0, l1, . . . , lbg/2c)-
stable curves and the subcategory of simple extensions M∆ → N of locally
free logarithmic structures inducing, at each geometric point x : Spec k →
X, the commutative diagram

N⊕k

��

⊕k
i=1×ai // N⊕k

��
M∆,x

// N x

where {1, . . . , k} is the set of irreducible components of the local picture of
∆ at x, and ai = lj if i ∈ {1, . . . , k} corresponds to the component ∆j in
∆ (following Olsson we adopt the notation M∆ = M∆/O×, N = N/O×

and we refer to [31, Lem 4.2] for the proof of the canonical decomposition
of M∆,x

∼= N⊕k).
Now, we notice that this subcategory of logarithmic extensions is pre-

cisely the category used in Matsuki and Olsson’s Generalization 2.3. In this
way, we get the following statement.
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Theorem 4.5. — For any multiindex (l0, l1, . . . , lbg/2c), we have the fol-
lowing isomorphism

Mg(~l )

��5
55

55
5

∼= Mg(
∑

i ∆i/li)

~~||
||

||
||

Mg

where Mg(~l ) is the stack of ~l -stable curves and Mg(
∑

i ∆i/li) is the stack
of simple extensions of the logarithmic structure associated to

∑
i ∆i with

indexes li in the sense of [31, (4.2.2)].

4.2. The moduli stack of rth roots on ~l -stable curves

Let LBg be the category formed by pairs (C → X, M), where C → X is
a smooth curve and M is a line bundle on C. The stack LBg is the category
fibred over Mg whose fibre over a smooth curve f : C → X is the stack
LBf . Let F be a line bundle on the universal curve of Mg, whose relative
degree is a multiple of r. Let MF,r

g be the fibred category whose fibre over
f : C → X is F1/r. By Proposition 3.4, MF,r

g is a Deligne–Mumford stack,
étale over Mg.

It is well known that F is a power ω⊗k of the relative dualizing sheaf
modulo pullbacks from Mg (Enriques and Franchetta’s conjecture, [20] [32]
[6]). In view of a compactification of MF,r

g , we focus on the case

F = ω⊗k

and we assume
(2g − 2)k ∈ rZ.

We extend LBg to M̃g: we consider the category L̃Bg formed by pairs
(C → X, M) where C → X is a twisted curve and M is a line bundle on C,
Remark 3.2. We get the stack

(4.2) L̃Bg → M̃g.

By abuse of notation, we denote by F the power of the relative dualizing
sheaf ω⊗k on the universal curve over M̃g. Let M̃F,r

g be the fibred category
over M̃g whose fibre over f : C → X is the stack of F1/r of rth roots of F

on C. In this way, the objects of M̃F,r
g are triples (C → X, L, j), where C is a

twisted curve, L is a line bundle on C and j is an isomorphism j : L⊗r → FC.
Morphisms from (C → X, L, j) to (C′ → X ′, L′, j′) are pairs (m, a) where
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m : C → C′ is a morphism of twisted curves and a : L → m∗L′ is an isomor-
phism of line bundles, with a⊗r commuting with j and j′.

By Proposition 3.4, M̃F,r
g is a Deligne–Mumford stack étale over M̃g

(4.3) M̃F,r
g → M̃g,

which can be regarded as the projection on the second factor of the fibred
product (L̃Bg) kr×F M̃g fitting in

M̃F,r
g

//

��

L̃Bg

kr���

M̃g F
// L̃Bg

where kr is induced by the rth power in Gm and F = ω⊗k is regarded as a
section of (4.2).

We consider the étale morphism M̃F,r
g → M̃g. Its restriction to the stack

MF,r
g of rth roots of F on smooth curves C → X forms a finite stack on Mg

equipped with a torsor structure under the group stack MO,r
g . On the other

hand M̃g is not separated and so is M̃F,r
g . By Theorem 4.4, we can consider

the base changes to all compactifications of Mg in M̃g via Mg(~l ) ↪→ M̃g: we
get MF,r

g (~l ) → M̃g(~l )

MF,r
g

��

// MF,r
g (~l )

��

// M̃F,r
g

��
� �

Mg
// Mg(~l ) // M̃g.

We now characterize the compactifications MF,r
g (~l ) for which the morphism

to M̃g(~l ) is proper.

Theorem 4.6. — For any F = ω⊗k, the category MF,r
g (~l ) is a smooth

Deligne–Mumford algebraic stack, étale on Mg(~l ).

I. For F = O, the stack MO,r
g (~l ) is a finite group stack if and only if r

divides l0.
II. For F = ω and 2g−2 ∈ rZ, the stack MO,r

g (~l ) is a finite group stack
and Mω,r

g (~l ) is a finite torsor under MO,r
g (~l ) if and only if r divides

(2i− 1)li for all i.

In this way, we obtain several compactifications of the stack Mω,r
g

of smooth r-spin curves: for each ~l satisfying li(2i− 1) ∈ rZ,

Mω,r
g (~l ) → Mg(~l )
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is the finite torsor of r-spin ~l -stable curves.
III. More generally, for F = ω⊗k and (2g− 2)k ∈ rZ, the stack MO,r

g (~l )
is a finite group stack and MF,r

g (~l ) is a finite torsor under MO,r
g (~l )

if and only if r divides

l0 and (2i− 1)kli, for i > 0.

Proof. — It is enough to show (III). We check the numerical condition
of Theorem 3.9 for F = ω⊗k. Let e be a node of a twisted curve. If e is
nonseparating, the condition amounts to require that r divides #(Aut(e)).
If e is separating and of type i, then the numerical condition is that r divides
#(Aut(e))k(2i− 1). In this way, Theorem 3.9 implies the claim. �

Proposition 4.7. — The category MO,r
g (~l ) is equivalent to the cate-

gory of µµµr-torsors on ~l -stable curves. In this way, as soon as r divides l0,
the stack MO,r

g (~l ) is a compactification of the stack of µµµr-torsors on smooth
curves.

Proof. — There is a natural functor from µµµr-torsors to r-torsion line
bundles. Given a torsor T on C with an action of µµµr, consider P = T×C A1

over C. Note that µµµr acts on both factors and the diagonal action on the
fibre product is free. The quotient P/µµµr yields an r-torsion line bundle
on C. The functor is essentially surjective and fully faithful. �

Remark 4.8. — For each object of MF,r
g (~l ) there is an injection of µµµr in

the automorphism group (the rth roots of unity act by multiplication along
the fibres of the line bundle). The rigidification of MF,r

g (~l ) along the group
scheme µµµr yields a representable cover H(F)µµµr of Mg(~l ), see Proposition
3.6. In this way, the morphism MF,r

g (~l ) → Mg(~l ) factors as

MF,r
g (~l ) → H(F)µµµr → Mg(~l ),

where the morphism H(F)µµµr → Mg(~l ) is a representable cover of degree r2g

and the morphism MF,r
g (~l ) → H(F)µµµr is an étale µµµr-gerbe. By Proposition

3.6 and Proposition 3.7, as soon as ~l satisfies l0 ∈ rZ and (2i− 1)kli ∈ rZ
for i > 0 the base change of H(O)µµµr → Mg(~l ) and of H(F)µµµr → Mg(~l )
with respect to a morphism from a scheme X to Mg(~l ) yields a finite group
X-scheme GX and a finite torsor TX under GX .

Remark 4.9 (λ-stable curves). — Note that Theorem 4.6 is automati-
cally satisfied if li = λ for all i and λ is a multiple of r. In this case, we
write “λ-stable” instead ~l -stable.
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Remark 4.10 (n-pointed curves). — Olsson’s results [35, Thm. 1.9] are
formulated in terms of n-pointed curves; therefore, the category M̃g,n of
twisted curves, with n ordered distinct markings σ1, . . . , σn in the smooth
locus, is a Deligne–Mumford stack. We point out that our method produces
proper stacks of rth roots of any line bundle F = ω⊗k(

∑
i−hi[σi]) on the

universal twisted curve over M̃g,n for all integers k, h1, . . . , hn satisfying
(2g − 2)k−

∑
i hi ∈ rZ. (The case k = 1 is relevant to Witten’s conjecture

[40]). This happens by Corollary 3.1 and the fact that F = ω⊗k is a pullback
from the universal (scheme-theoretic) stable n-pointed curve over M̃g,n,
Proposition 2.17. In general, Corollary 3.1 yields the following statement.

Corollary 4.11. — Let F be a line bundle on the universal twisted
n-pointed curve isomorphic to a pullback from the universal stable
n-pointed curve. Let M̃F,r

g,n be the fibred category on M̃g,n of rth roots
of F on twisted curves. It is a stack, étale on M̃g,n. It is nonempty, as long
as we assume that the relative degree of F is a multiple of r.

For any λ ∈ Z, the stack of λ-stable n-pointed curves Mg,n(λ) is smooth,
irreducible, and proper. If r divides λ, the stack MO,r

g,n (λ) of r-torsion line
bundles on λ-stable n-pointed curves is a finite group stack and the stack
MF,r

g,n(λ) of rth roots of F on λ-stable curves is a finite torsor under the
group stack MO,r

g,n (λ).
In this way, we obtain several compactifications of the stack Mω,r

g,n of
smooth r-spin n-pointed curves: for each λ ∈ rZ,

Mω,r
g,n(λ) → Mg,n(λ)

is the finite torsor of r-spin n-pointed λ-stable curves.

Remark 4.12. — Let r1 and r2 be positive and coprime integers. In [24,
§4, Rem. 4.11], it is noted that the functor L 7→ (L⊗r2 , L⊗r1) is an isomor-
phism MF,r1r2

g
∼= MF,r1

g ×Mg MF,r2
g , that does not extend to the compactifica-

tions given in the existing literature. With our formalism the isomorphism
extends immediately (we omit markings for simplicity).

Proposition 4.13 (roots of two coprime orders). — Let r1 and r2 be
positive and coprime integers. Set λ = r1r2. The functor L 7→ (L⊗r2 , L⊗r1)
is an isomorphism of stacks

MF,r1r2
g (λ) ∼= MF,r1

g (λ)×Mg(λ) MF,r2
g (λ).

Proof. — The inverse functor is (L1, L2) 7→ L⊗h2
1 ⊗ L⊗h1

2 for h1 and h2

satisfying h1r1 + h2r2 = 1. Indeed, we have

(L⊗h2
1 ⊗ L⊗h1

2 )⊗r1r2 = L⊗r1r2h2
1 ⊗ L⊗r2r1h1

2
∼= F⊗h1r1+h2r2 = F.
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�

Example 4.14 (g = 1 and n = 1). — Consider the twisted curve C

realized as [E/µµµ2], where E is equal to P1/(0 ∼ ∞) and µµµ2 acts by change of
sign. We now exhibit the four distinct square roots of ωC up to isomorphism.
If we denote by x a smooth point of C, we can regard this example as a check
that the fibre of M

ω/2
1,1 (2) → M1,1(2) over the geometric point representing

(C, x) actually contains 4 distinct geometric points.
Note that ωC is trivial, so we are actually looking for square roots of OC.

Consider the normalization Cν → C, which is isomorphic to [P1/µµµ2]. On
Cν there are 2 roots of O: the line bundle OP1 with trivial µµµ2-action on
the fibres; and the line bundle OP1 with µµµ2-action on the fibres given by
t 7→ −t. Each of these line bundles descend to E to form a root of OE in
exactly two nonisomorphic ways. Therefore, on C, we get four square roots
L++, L+−, L−+, and L−− of ωC up to isomorphism.

Note that the line bundles Lσ,τ above, are 2-torsion line bundles and
can be regarded as the 2-torsion subgroups of Picµµµ2(E), the group of
µµµ2-linearized line bundles. Their geometric realizations are stacks fibred
over C, which we describe explicitly. Let W+ be the line bundle on E, ob-
tained from P1 × A1 by glueing the lines over 0 and ∞ via (0, t) ∼ (∞, t)
and let W− be the line bundle on E obtained from P1 × A1 by glueing
the lines over 0 and ∞ via (0, t) ∼ (∞,−t). The geometric bundles over C

associated to Lσ,τ for σ, τ ∈ {+,−} is the quotient stack [W τ/µµµ2] with µµµ2

acting as t 7→ σt on the fibres.
Since ωC is isomorphic to O, following Proposition 4.7, we also provide a

concrete description of the line bundles above in terms of µµµ2-torsors on C.
We exhibit four distinct representable 2-folded étale covers of C. Note that
some points of the covering stack D over C might have nontrivial stabilizer
µµµ2: in the drawings we adopt the convention of marking them with a black
circle. The labelling D++, D+−, D−+, and D−− matches the above notations
for the line bundles.

1. The cover D++. — It is D++ = C × µµµ2 on which µµµ2 acts as id×ξ2.
The morphism p is the projection to the first factor.

w w wt

←→

D++ = p++

-
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2. The cover D+−. — Take [P1/±] × µµµ2 modulo the relation (0, σ) ∼
(∞,−σ), for all σ ∈ µµµ2. The µµµ2-action is generated by id×ξ2 and the
morphism p is the projection to the first factor.

w w w
↔

D+− = p+−

-

3. The cover D−+. — Take the étale atlas E = P1/(0 ∼ ∞) of C. The
µµµ2-action is the change of sign on P1. The morphism p is E → [E/µµµ2].
Note that, the local picture of p at the node is given by (z, w) 7→ (z, w) on
{zw = 0} → [{z′w′ = 0}/µµµ2].

-

w
←→

D−+ = E =
p−+ : (z, w) 7→ (z, w)

4. The cover D−−. — Take E = P1/(0 ∼ ∞) with µµµ2 acting by change
of sign as above. On the smooth locus Esm −→ Csm the morphism p is
x 7→ x2. On the other hand, we define p so that its local picture at the node
{zw = 0} → [{z′w′ = 0}/µµµ2] is given by (z, w) 7→ (z,−w).

-

w
←→

D−− = E =
p−− : (z, w) 7→ (z,−w)

This completes the check that the fibre of M
ω/2
1,1 (2) → M1,1(2) over the

curve (C, x) in M1,1(2) is the 0-dimensional stack given by 4 disjoint copies
of B(Z/2Z) (recall that each object has a nontrivial automorphism acting
by multiplication by −1 along the fibre of the line bundle).

One can ask a natural question at this point: what is the fibre of the
corresponding morphism between coarse spaces over the closed point cor-
responding to (C, x) in the moduli space of stable curves? In order to answer
this question one should note that the only automorphism of (C, x) that
acts nontrivially on the objects of M

ω/2
1,1 (2) is the automorphism g of order 2
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generating Aut(C, |C|). Then, by Proposition 2.18, we note that the action
of g fixes L++ and L+− and identifies the objects L−+ and L−−. Indeed the
formula in Proposition 2.18 can be written as

g∗L++ = L++ ⊗ L++ = L++,

g∗L+− = L+− ⊗ L++ = L+−,

g∗L−+ = L−+ ⊗ L+− = L−−.

Therefore, the fibre is the disjoint union of two reduced point and a third
point of length two over the coarse moduli space of stable curves.

Remark 4.15. — By Proposition 2.18, this analysis can be generalized to
any integer r > 2. For simplicity, we consider r prime. Let C be the r-stable
curve on the 1-pointed nodal curve P1/(0 ∼ ∞). The group Aut(C, |C|) =
µµµr acts freely on the (r2 − r) spin structures that are not pullbacks from
|C|. This means that the fibre of the morphism to M1,1 contains 1 point
representing the trivial r-spin structures and 2r − 2 points representing
nontrivial r-spin structures, half of which are pullbacks from the coarse
space. After the identifications induced by the hyperelliptic involution we
get

(4.4) there are exactly r − 1 nontrivial r-spin

r-stable curves over P1/(0 ∼ ∞).

This allows to picture the coarse space of nontrivial r-spin curves of genus 1,
with 1 marking. This leads us to point out the following counterexample to
Conjecture 4.2.1 of [23], which predicts that the Picard group of the stack
of smooth r-spin 1-pointed curves of genus 1 is finite.

Example 4.16. — The space Nr of nontrivial r-stable r-spin curves is a
curve covering |M1,1|: indeed it is an (r2− 1)/2-fold cover of the projective
line. For instance, fix r = 11; then Nr → |M1,1| has degree 60. Over the
two curves with extra automorphisms there are respectively (r2−1)/4 = 30
and (r2 − 1)/6 = 20 spin structures. By (4.4), there are exactly r− 1 = 10
singular spin curves. Then, by the Riemann–Hurwitz formula, the Euler–
Poincaré characteristic is χ(Nr) = 0. In this way, Nr is a genus-1 curve. The
moduli stack of nontrivial r-spin structures on smooth 1-pointed genus-1
curves is a stack over the genus-1 curve Nr minus a finite number of points.
Its Picard group cannot be finite. A similar computation using (4.4) shows
that for any prime integer r > 3 we have

(4.5) g(Nr) = (r − 5)(r − 7)/24.

ANNALES DE L’INSTITUT FOURIER



STABLE TWISTED CURVES AND THEIR r-SPIN STRUCTURES 1679

4.3. The relation with Abramovich and Jarvis’s compactification

The compactifications [22] and [4] adopt two different methods but are
isomorphic, [4, Prop. 4.3.1]). We restate the construction. We use system-
atically the equivalence between line bundles on a stack X and morphisms
X → BGm.

The compactification Bg,n(BGm, ω
1/r
log ) introduced in [4] is the following

category. An object is the datum of a 1-commutative diagram

C
L

{{xx
xx

xx
xx

x
ωC/X(

∑
i
Si)

##FF
FF

FF
FF

F

BGm
kr

// BGm

where kr is induced by the homomorphism t 7→ tr and the following condi-
tions are satisfied.

(1) The stack C is of Deligne–Mumford type, flat of relative dimension
1 with nodal singularities over X.

(2) The stacks S1, . . . ,Sn are closed disjoint substacks of Csm and étale
gerbes over X.

(3) The corresponding coarse spaces |C|, |S1|, . . . , |Sn| form a proper,
n-pointed, nodal curve over X, and π : C → |C| is an isomorphism
away from the nodes and the stacks Si.

(4) At a node p in C, for a suitable integer l, the local picture is given
by [V/µµµl], where, for some t ∈ T , V is Spec(T [z, w]/(zw − t)) and
µµµl acts as (z, w) 7→ (ξlz, ξ−1

l w).
(5) The morphism L is representable.

A morphism is a 1-commutative diagram

C

��
L

��


























��5
55

55
55

55
55

55
55

5

C′

L′{{ww
ww

ww
ww

w

##GGGGGGGGG

BGm
kr

// BGm.

As usual, morphism are considered up to 2-isomorphisms (see Lemma 2.1).
In fact, we show that Bg,n(BGm, ω

1/r
log ) is a compactification of⊔

06hi<r

Mω(hhh),r
g,n ,
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where ω(hhh) := ω(−
∑

i hiSi) is the relative dualizing sheaf on the universal
curve over Mg,n twisted by the divisors Sn determining the ith marking.

Definition 4.17 (faithful line bundles). — A line bundle M on a twisted
curve C → X is faithful if it satisfies the following condition: for each node
e on C the action of Aut(e) on Me is faithful.

Remark 4.18. — In the case of a line bundle M whose rth tensor power
is the pullback of a line bundle F on the coarse space, for any g ∈ Aut(e)
the element gr acts as the identity on Me. Therefore, the fact that M is
faithful implies that #(Aut(e)) divides r.

Proposition 4.19. — There is a finite and surjective morphism

(4.6)
⊔

06hi<r

Mω(hhh),r
g,n (r) −→ Bg,n(BGm, ω

1/r
log ),

where M
ω(hhh),r
g,n (r) is the stack of rth roots of ω(hhh) = ω(−

∑
i hiSi) over

n-pointed r-stable curves.
The morphism (4.6) has degree one, but, in general, it is not an iso-

morphism. Indeed, consider a point x in M
ω(hhh),r
g,n (r) and its image y in

Bg,n(BGm, ω
1/r
log ). We have

#(Aut(x))/#(Aut(y)) = rm/
∏m

i=1 di

where d1, . . . , dm are the orders of the automorphism groups of the nodes
e1, . . . , em of the twisted curve corresponding to y.

Proof. — There is an equivalence of categories

Bg,n(BGm, ω
1/r
log ) −→

⊔
06hi<r

P(h1, . . . , hn),

where P(h1, . . . , hn) is the category on M̃g,n of faithful rth roots of the line
bundle ω(hhh) = ω(−

∑
i hiSi) on twisted curves. We prove the equivalence.

First, we need to introduce a decomposition of Bg,n(BGm, ω
1/r
log ) into

connected components P(~l , ~m ). The local picture of a line bundle L on C

at a point p : Spec k → Si ↪→ C is given, for suitable indexes li and mi, by
a µµµli-equivariant line bundle W on [V/µµµli ] where V is Spec T [z], the action
is z 7→ ξliz, and W is linearized by the character ξli 7→ ξmi

li
. The coefficients

li and mi induce locally constant morphisms l,m : Bg,n(BGm, ω
1/r
log ) → Zn

with 0 6 m < l. Note also that the representability condition on L implies
that l and m are coprime on each coordinate of Zn. The values taken by l

and m determine a decomposition of Bg,n(BGm, ω
1/r
log ) as the disjoint union
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of substacks P(~l , ~m ) where the vectors ~l = (li), ~m = (mi) ∈ Zn satisfy
0 6 ~l < ~m and hcf{mi, li} = 1 for any i.

Second, there is an equivalence of category between P(~l , ~m ) and the stack
P(h1, . . . , hn) for hi = rmi/li − 1. By [11, Thm. 4.1] and [35, Thm. 1.8],
there is an equivalence between the category of twisted curves equipped
with n distinct sections

C

��
X

s1 ···

33

sn

??

in the smooth locus and the category of Deligne–Mumford stacks C → X

satisfying conditions (1-4) in the definition of Bg,n(BGm, ω
1/r
log ), where we

require that the automorphism groups have order li over the points of Si.
The functor sends (C → X, s1, . . . , s2) to the stack C ×|C| D, where we set
D = |C|[S1/l1] ×|C| · · · ×|C| |C|[Sn/ln] for Si = si(X). Note that the latter
stack is equipped with a natural projection to C. For hi = rmi/li − 1, we
have a functor P(h1, . . . , hn) → P(~l , ~m ) induced by pushforward via the
projection. Indeed, the pushforward of line bundles on D is a line bundle on
|C|, see [4, §3] or [11]. In this way, the functor lands in P(h1, . . . , hn) (the
representability assumption at the nodes is equivalent to requiring that
the rth root is faithful at the nodes). The inverse functor is induced by
pullback and tensorization with the tautological line bundles M⊗mi

i , which
are defined on D and satisfy M⊗li

i = O(Si).
The morphism (4.6) is the composite of P(h1, . . . , hn) → P(~l , ~m ) and

the disjoint union of finite and surjective morphisms of stacks

(4.7) Mω(hhh),r
g,n (r) → P(h1, . . . hn),

whose restriction to the open and dense substack M
ω(hhh),r
g,n is the identity and

whose corresponding morphism between coarse spaces is an isomorphism.
We define the morphisms (4.7) here below.

The functor M
ω(hhh),r
g,n (r) → P(h1, . . . hn), sends the morphism of stacks

C
L−→ BGm to the corresponding representable morphism C′

L′−→ BGm mak-
ing C → C′ → BGm the the “relative moduli space” in the sense of [2,
5.2.4,(c)]. By means of the weak valuative criterion it is easy to see that
this functor defines a surjection (each geometric point is lifted as in the
proof of Theorem 4.4). The functor sending the object determined by C

and L to the object determined by C′ and L′ is not an isomorphism in gen-
eral. Indeed, the ratio of the orders of the automorphism groups at the two
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objects is #(Aut(C,C′)), where Aut(C,C′) denotes the group of automor-
phisms of C that fix C′ (this happens because L is the pullback of L′ via
C → C′). By Theorem 2.14, the order of Aut(C,C′) is equal to rm/

∏m
i=1 di,

if we denote by d1, . . . , dm the orders of the automorphism groups of the
nodes e1, . . . , em of C′. �

Remark 4.20 (the Witten top Chern class). — The Witten top Chern
class is a rational Chow cohomology class which plays a crucial role in the
definition of the relevant numerical invariants in Witten’s conjecture [40].
Although the new compactifications are not isomorphic to the preexisting
one, the surjective morphism above yields an isomorphism between the
coarse spaces. This implies that the rational Chow rings are isomorphic,
see for example [28].

There are two equivalent formulations [36] and [14] of the construction
of the Witten top Chern class and they both use the universal stable r-spin
structure of Jarvis’s compactification [22], which is a sheaf of rank 1 rather
than an invertible sheaf. Nevertheless they can be applied without mod-
ification to the new compactifications and yield the same class after the
identification of the rational Chow cohomology rings.

Proposition 4.21. — The Witten top Chern class functor defined in
[36] and [14] yields a class cW in the rational cohomology of M

ω(hhh),r
g,n (r) as

well as a class cW in the rational cohomology of Abramovich and Jarvis’s
compactification. The outputs are compatible in the sense that cW is a
pullback of cW via the surjective morphism of degree one exhibited in
Proposition 4.19.

Proof. — To see this, note that both constructions start from a datum
in the derived category which is obtained by pushing Jarvis’s universal rth
root L and the universal homomorphism f along the universal stable curve.
The morphism between our compactification and the compactification of
Abramovich and Jarvis induces a morphism between the universal twisted
curve on M

ω(hhh),r
g,n (r) and the universal stable curve on Jarvis’s compactifi-

cation. We only need to check that the pushforward to the universal stable
curve yields the universal sheaf-theoretic stable r-spin structure (L, f) of
Jarvis’s construction [22]. The proof of this fact can be found in [4, §3,
§4.3], which applies verbatim to our setting. �

Appendix A. Appendix. The stack LBf

We analyse the category LBf of line bundles on a flat and proper mor-
phism f : Y → X, where Y is a tame stack of Deligne–Mumford type, and
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|f| : |Y| → X is flat on X. The fact that this category LBf forms a stack even
when f is not represented by a scheme is a preliminary to our compactifi-
cation. We show that it can be proven by adapting Mumford’s treatment
of cohomology and base change [34, II. §5] to the stack-theoretic situa-
tion: f : Y → X. As mentioned in §3.1, M. Lieblich provides a more general
statement implying this result by showing that the category of flat families
of coherent sheaves on Y with proper support over X is an algebraic stack,
[30, Thm. 2.1.1, Lem. 2.3.1].

A.1. The fibred category LBf is a stack

Let Y be a Deligne–Mumford stack, flat and proper on a base scheme X

f : Y → X.

We write LBf for the category of line bundles on base changes YS = Y×X S

for every X-scheme S. More precisely, the objects are pairs (S, M), where
S is an X-scheme and M is a line bundle on YS = Y×X S. The morphisms
(S, M) → (S′,M′) are pairs (m, a), where m ∈ HomX(S, S′) and a is an
isomorphism of line bundles a : M

∼−→ M′ ×S′ S on YS .

Remark A.1. — The category LBf induces a functor sending an
X-scheme S to the groupoid in LBf formed by the objects (S, M) on S.
Even when f is a representable morphism f : Y → X, such a functor differs
from the functor sending an X-scheme S to the set Pic(YS), which is the
functor used in Grothendieck’s treatment [19] of the relative Picard func-
tor. We illustrate the relation between the two functors at the end of this
appendix using the notion of rigidification of a stack along a group scheme,
Theorem A.6.

Proposition A.2. — On a base scheme X, let f : Y → X be a flat and
proper morphism of Deligne–Mumford type, with geometrically connected
fibres, tame, and coarsely represented by an X-scheme |Y|, projective and
flat on X. Then, the category LBf is a stack on X.

Proof. — Since the category is fibred in groupoids by definition, we only
need to show

(1) the representability of the isomorphism functors,
(2) the effectiveness of any étale descent datum of objects

(as far as L̃Bg is concerned, we ignore the issue of geometrization, namely
the existence of a smooth and surjective morphism from a scheme to the
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stack, see Remark A.5). We show point (1) by means of the following state-
ment, a stack-theoretic generalization of Mumford’s theorem on cohomol-
ogy and base change [34, II. §5] for schemes.

Lemma A.3. — Let Y be a tame Deligne–Mumford stack, flat and
proper over an affine scheme S. Assume that the morphism of schemes
|Y| → S is flat. Let E be a locally free and coherent sheaf on Y. Then, there
exists a perfect complex K• : 0 → K0 → K1 → · · · → Kn → 0 on S and
an isomorphism of functors

Hp(YT , ET ) = Hp(K•
T )

on the category of S-schemes T (here, YT , ET , and K•
T denote the base

change via T → S).

Proof. — Recall that the direct image via π : Y → |Y| is an exact func-
tor from the category of coherent sheaves on Y to the category of coher-
ent sheaves on |Y|, [5, Lem.2.3.4]. Therefore, we have the isomorphism
Hp(YT , ET ) ∼= Hp(|Y|T , π∗ET ), and it is enough to find a complex K• sat-
isfying

Hp(|Y|T , π∗ET ) ∼= Hp(K•
T ).

Mumford’ theorem [34, II. §5] shows that such a K• exists if π∗E is a
coherent sheaf, flat on S = Spec A. Indeed, we check that π∗E is flat on
S, which means that, locally on |Y|, there exists an affine open set on
which π∗E is given by a flat A-module. This happens because, as shown
in [5, Lem.2.2.3], for a stack Y of Deligne–Mumford type, there is an étale
covering Yα → |Y| such that, for all α, the pullback Y×|Y| Yα is a quotient
stack of the form [Uα/Gα], where Uα is a scheme and Gα is a finite group
acting on Uα (note that since Y is tame, #(Gα) is prime to the residue
characteristic). So, on an affine open set V ⊂ |Y|, π∗E can be regarded
as the direct image of a locally free G-equivariant coherent sheaf on an
affine scheme U = Spec R. Such a sheaf can be regarded as a G-linearized
R-module M . Therefore, as an OV -module, π∗E corresponds to MG, the
submodule of M of G-invariant elements. The tameness assumption implies
linear reductiveness: M splits as MG ⊕ M ′. So, as an A-module, MG is
flat, because it is a direct summand of M and, on the other hand, M is flat
over R, which is flat over A. �

Now, point (1) follows from the following lemma.

Lemma A.4. — For any scheme S and objects α = (S, Mα) and β =
(S, Mβ) in LBf the functor IsomS(α, β) from S-schemes to sets is represented
by a separated scheme locally of finite type over S.
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Proof. — Write DS = Mα ⊗M∨
β . We write π for Y → |Y|, and we adopt

the notation p : YS → S and p : |Y|S → S. For any morphism Z → S

write YZ and DZ for the base change of YS and DS . We need to represent
the functor IsomS(α, β) sending an S-scheme Z to the set of isomorphisms
between Mα and Mβ on Z. This is equivalent to the set of nonzero sections
s ∈ Γ(YZ ,DZ), where s is nowhere vanishing. By Lemma A.3, we can take
d : K0 → K1, a homomorphism of vector bundles on S; then, the S-scheme
Tα,β = {d = 0} of K0 represents represent the functor HomS(α, β) sending
an S-scheme Z to the set of homomorphisms between Mα and Mβ on Z.
The composition of homomorphism induces a morphism

c : Tα,β ×S Tβ,α → Tα,α.

Let 1: S → Tα,α be the section representing the identity homomorphism.
The functor IsomS(α, β) is represented by {c = 1}. Since K0 is a finite
dimensional vector bundle, Tα,β is separated and of finite type over S. It
follows that the scheme representing the functor IsomS(α, β) is separated
and of finite type (it is closed in the scheme Tα,β×S Tβ,α, which is separated
and of finite type over S). �

Finally, we show point (2): any étale descent datum of line bundles on Y

is effective. Indeed, given an X-scheme S, an étale cover (Sα → S), and
objects (Sα,Mα), where Mα is a line bundle on Yα = Y ×S Sα, together
with isomorphisms between pullbacks of (Sα,Mα) and (Sβ ,Mβ) to Sα×SSβ

satisfying the cocycle condition, we claim that these data descend to an
object (S, M), where M is a line bundle on YS . Indeed M is defined by étale
descent of line bundles and morphisms of line bundles for schemes: for any
scheme T → YS the line bundle MT on T is induced by descent along the
étale cover (Yα×YS

T → T ) of the line bundles Mα×YS
T on Yα×YS

T . �

Remark A.5. — Although we did not show that LBf is an algebraic stack
in the sense of Artin’s definition, we point out that Lemma A.4 together
with the fact that the relative cotangent complex of F1/r → X is trivial
(see 3.4) can be used to prove that the stack F1/r is algebraic. The claim
follows easily from Artin’s method, in which one starts from a deformation
theory, constructs formal deformation spaces, and shows that they are alge-
braizable. Indeed the deformation functor of F1/r coincides with that of X,
since the relative cotangent complex of F1/r → X is trivial. To finish the
proof one only needs to show that formal deformations are algebraizable,
which is an immediate consequence of Grothendieck’s Existence Theorem
extended to tame stacks by Abramovich and Vistoli, [5].
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A.2. Rigidification

Note that each object (S, L) of LBf over an X-scheme S has automor-
phisms given by multiplication by s ∈ Γ(S, Gm) along the fibre of L. More
precisely, H = LBf and G = Gm fit in the following setting.

Theorem A.6 (Abramovich, Corti, Vistoli, [2, Thm. 5.1.5]). — Let H

be a stack on a base scheme X, let G be a flat finitely presented group
scheme on X, and assume that for any object τ of H over an X-scheme S

there is an embedding iτ : G(S) ↪→ AutS(τ) compatible with pullbacks in
the obvious sense (for any ϕ : τ → τ ′ in H over the morphism of X-schemes
f : S → S′ we have iτ ◦ f∗ = ϕ∗ ◦ iτ ′). Then, there exists a stack HG and a
morphism of stacks H → HG over X satisfying the following conditions.

(1) For any object τ ∈ H(S) with image ξ ∈ HG(S), the set G(S) lies
in the kernel of AutS(ξ) → AutS(τ).

(2) The morphism H → HG is universal for morphisms of stacks H → H′

satisfying (1) above.
(3) In the condition (1) above, if S is the spectrum of an algebraically

closed field, we have AutS(ξ) = AutS(τ)/G(S).
If H is an algebraic stack, then HG is also an algebraic stack. If H is of
Deligne–Mumford type, then HG is also of Deligne–Mumford type and the
coarse space |H| is isomorphic to |HG|.

We call HG the rigidification of H along G. In [38, I. Prop. 3.0.2, (2)],
Romagny shows that if H is a Deligne–Mumford stack, then it is “locally
isomorphic” to BG (on HG) and is indeed an étale G-gerbe.

The construction of HG consists of two steps.
(1) We define a prestack HG

pre: the category whose objects are the ob-
jects of H and whose morphisms are obtained by means of a quotient
operation on the sheaves of morphisms of H (for any object τ the
embeddings G(S) ↪→ AutS(τ) induce a categorically injective mor-
phism of S-group schemes of the pullback GS of G to S to the group
scheme AutS(τ) of automorphisms of τ).

(2) We pass to the stack HG associated to the prestack HG
pre in the sense

of [29, Lem. 3.2].
This construction provides a natural framework to a standard procedure

that occurs systematically in the construction of the Picard functor. In
general, for any morphism of schemes f : Y → X, the natural functor
S 7→ Pic(YS) from X-schemes to sets is a presheaf and is not represented
by a scheme. The actual “relative Picard functor” is defined by the passage
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to the associated sheaf. This point is illustrated in detail in [8, Ch. 8], by
Bosch, Lütkebohmert, and Raynaud. In this way, the construction of the
relative Picard functor is just another way to rigidify LBf along Gm.
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