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ALMOST REGULAR QUATERNARY QUADRATIC
FORMS

by Jacek BOCHNAK & Byeong-Kweon OH (*)

Abstract. — We investigate the almost regular positive definite integral qua-
ternary quadratic forms. In particular, we show that every such form is p-anisotropic
for at most one prime number p. Moreover, for a prime p there is an almost regular
p-anisotropic quaternary quadratic form if and only if p 6 37. We also study the
genera containing some almost regular p-anisotropic quaternary form. We show
several finiteness results concerning the families of these genera and give effective
criteria for almost regularity.

Résumé. — Nous étudions les formes quadratiques entières quaternaires (c’est-
à-dire à quatre variables) qui sont définies positives et presque régulières. Nous
montrons en particulier qu’une telle forme n’est p-anisotrope que pour au plus un
nombre premier p. De plus, pour un nombre premier p, il existe une forme qua-
dratique quaternaire presque régulière p-anisotrope si et seulement si p 6 37. Nous
étudions également les genres contenant une forme quadratique presque régulière p-
anisotrope. Nous démontrons plusieurs résultats de finitude concernant les familles
de ces genres et établissons des critères effectifs presque réguliers.

1. Introduction

We investigate properties of the almost regular positive definite integral
quaternary quadratic forms. An integral quadratic form f is called almost
regular (resp. regular) if it represents every large (resp. every) rational pos-
itive integer which is represented by f over the ring Zp of p-adic integers,
for every prime p. By an integral form we shall always mean a positive
definite nonsingular quadratic form having an integer matrix. Quite often
we shall make no distinction between a form and its equivalence class.

Keywords: Quadratic equations, almost regular quadratic forms.
Math. classification: 11E12, 11E20.
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If a form f represents zero nontrivially over Zp, we say that f is p-
isotropic, otherwise f is called p-anisotropic.

The following result is contained in the works of Kloosterman, Tartakow-
sky, Pall and Ross (cf. [12], [18], [16], [5]).

Theorem 1.1. — Every positive definite integral quadratic form which
is p-isotropic for every prime p is almost regular.

In particular, every integral form in more than four variables is almost
regular. An almost regular quadratic form which is p-anisotropic for some
prime p is called exceptional. Since there are simple and effective criteria
of p-isotropy (cf. [17, p. 37]), Theorem 1.1 reduces the problem of deciding
almost regularity of forms to the case of exceptional ones. There are no
exceptional almost regular forms in more than four variables. All almost
regular forms in less than four variables are exceptional. In the case of two
variables there is only a finite number of primitive almost regular forms.
They are, in fact, all regular and coincide with primitive binary forms
representing one-class genera. In the case of three variables there are at
most 913 primitive regular ternaries (cf. [11]), and the structure of almost
regular ternaries is well understood from works [6], [8], [7]. Primitive almost
regular ternaries constitute an infinite family.

In dimension 4, both families of exceptional and nonexceptional prim-
itive regular forms are infinite (an example of the former is provided by
x2 + y2 + z2 + 4nt2, n > 0). We shall focus our attention on the case of
the exceptional almost regular quaternaries. Strangely enough, they never
seemed to be the object of any investigation. We shall show that the set of
all exceptional almost regular quaternaries, although infinite, is neverthe-
less very “small” in the sense which is explained by several results stated
below in this section.

Theorem 1.2. — Any integral positive definite almost regular quater-
nary quadratic form is p-anisotropic for at most one prime p. Moreover, for
a prime p there exists an almost regular p-anisotropic quaternary form if
and only if p 6 37.

This theorem shows already that the exceptional quaternaries do not
occur frequently. But even within the family of p-anisotropic quaternaries,
p 6 37, they are very rare. To make this claim precise we need some
preparation.

Recall that a quadratic form g over Zp is said to be p-universal if g

represents all p-adic integers. A quaternary quadratic form g over Z2 is
called 2Z2-universal if g is even and either g is 2-isotropic and represents
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all numbers in 2Z2, or g ' h ⊥ 2h over Z2, where h = 2x2 + 2xy + 2y2;
in either case g represents all numbers in 2Z2. An integral quadratic form
f is said to be p-universal (resp. 2Z2-universal) if fp = f⊗Zp is p-universal
(resp. f2 = f ⊗Z2 is 2Z2-universal). If an integral quadratic form f is even
and represents all even positive integers, f is said to be even-universal.

Let Ep be the family of all primitive p-anisotropic almost regular integral
quaternary quadratic forms. Since Ep = ∅ for p > 37, we only need to
investigate twelve families E2,E3,E5, . . . ,E37. We shall see that the study
of Ep is often reduced to the study of its subfamily Rp consisting of those
forms in Ep which are regular, and p-universal (if p > 2) or 2Z2-universal
(if p = 2). The families Rp are finite (cf. Theorem 5.4). This allows to prove
several finiteness results concerning Ep. The families Rp play the crucial role
in our investigations. One can say that Rp is the key for understanding the
structure and properties of forms in Ep. In turn, Rp contains an important
subfamily Up consisting of those forms in Rp which are even-universal.
In Section 3 we shall find explicitly all forms in Up, and in Section 6 we
shall prove that for p > 17 one has Rp = Up. On the other hand, if p 6 13
then Rp contains an even form which is not in Up (cf. Theorem 8.1). The
forms in Ep for the top six primes p, 17 6 p 6 37, often behave differently
than the forms in the remaining six families (corresponding to p 6 13). For
example, for p > 17 a primitive p-anisotropic quaternary form f is in Ep

if and only if f represents all positive integers divisible by 2ps, where s

depends only on fp. The analogous property is not valid anymore for p 6 13
(cf. Section 7). This difference in behavior of elements of Ep, depending
whether p > 17 or p 6 13, is explained precisely by the fact that Rp = Up

only for p > 17. It also explains why we can say much more about the six
families E17, E19, . . . , E37, than about the remaining six E2, E3, . . . , E13.
The families Rp, for 17 6 p 6 37, are very small, they are just reduced
to one or two forms (cf. Theorem 6.1). The families Rp, for p 6 13, are
not known explicitly but they are certainly much larger. For example, R2

contains at least 81 forms but most likely a few hundreds.
The families Rp are also used to prove several effective criteria of almost

regularity (cf. Theorems 1.3, 1.8, 1.9, 4.2, Section 7). For example, Rp

intervenes in an explicit description of all genera containing some almost
regular p-anisotropic quaternary quadratic form.

Given a genus Γ containing an integral quaternary form f , let Γp be
the class of equivalence over Zp of Zp-forms represented by fp = f ⊗ Zp.
Clearly, the sequence {Γp}p∈P , where P is the set of all primes, completely
determines Γ, and conversely. By abuse of notation, we shall identify Γ and

TOME 58 (2008), FASCICULE 5



1502 Jacek BOCHNAK & Byeong-Kweon OH

the sequence {Γp}p∈P , Γ = {Γp}p∈P . Given a quadratic form H over Zp,
we say that a genus Γ of an integral quadratic form is of type H if Γp ' H,
where ' denotes the equivalence over Zp.

The next theorem shows that for an arbitrary p-anisotropic quaternary
quadratic form H over Zp, p 6 37, there exists a genus Γ of type H con-
taining some almost regular p-anisotropic integral quaternary form. The
theorem also provides a characterization of all such genera.

Theorem 1.3. — Let H be a primitive p-anisotropic quaternary qua-
dratic form over Zp. For any genus Γ of type H the following conditions
are equivalent:

(i) Γ contains a primitive almost regular integral quaternary quadratic
form (which is necessarily p-anisotropic).

(ii) There is a form g in Rp such that gq ' Γq for all primes q 6= p.

Theorems 1.1, 1.2 and 1.3 imply

Corollary 1.4. — Let H be a quaternary quadratic form over Zp.
Then the following properties are equivalent:

(i) There is an integral almost regular quaternary quadratic form f

such that fp ' H.
(ii) H is p-isotropic or p 6 37.

Let αp be the number of all genera represented by the forms of family Rp.
In Section 6 we shall prove that α17 = α19 = α29 = α37 = 1 and α23 =
α31 = 2. Of course, αp = 0 for p > 37. The finiteness of Rp, together with
Theorem 1.3, implies the following result.

Corollary 1.5. — Let H be a primitive p-anisotropic quaternary qua-
dratic form over Zp. Then the number of all genera of type H, containing
some primitive almost regular quaternary, is finite and equal to αp. In
particular, this number depends only on p, but not on H.

For H as in Corollary 1.5 the number of all genera of type H, containing
some primitive integral quaternary form anisotropic only at p, is infinite.
Therefore Corollary 1.5 shows the scarcity of almost regular quadratic forms
even within the family of all integral quaternaries which are anisotropic only
at p. It also shows a remarkable equidistribution of the genera containing
a primitive almost regular p-anisotropic quaternary: their number is finite
and identical within each p-type.

The fact that Ep constitutes a very “small” part of the family of all
primitive quaternaries which are anisotropic only at p can also be seen from
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the shape of the discriminants of the forms in Ep. This is well illustrated
by the next two theorems.

Theorem 1.6. — For each prime p there is a finite set Ap of integers
relatively prime to p, such that a number d is the discriminant of a form
in Ep if and only if d = rp2n, where r ∈ Ap and n is an integer, n > 1
for p > 2, and n > 0 for p = 2.

We shall see in Section 6 that Ap = {1} for p = 17, 19, 29, 37, and Ap =
{1, 4} for p = 23, 31. For p 6 13 the sets Ap are not known explicitly, but
the elements of Ap are bounded by an effective constant (cf. Theorem 9.1).

We are able to determine with more accuracy the sets

Dp = {q ∈ P | q divides d(f), f ∈ Ep},

where d(f) is the discriminant of f .

Theorem 1.7. — One has

D2 =
{
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 59, 61, 67, 73, 89,

97, 107, 113, 137, 193, 233, 241, 257, 281, 353
}
;

D3 =
{
2, 3, 5, 7, 37

}
, D5 =

{
2, 3, 5, 11

}
;{

2, p
}
⊂ Dp ⊂

{
2, 3, 5, p

}
for p = 7, 11;{

2, 3, 13
}
⊂ D13 ⊂

{
2, 3, 5, 13

}
;

Dp =
{
2, p

}
for p = 23, 31;

Dp = {p} for p = 17, 19, 29, 37.

Letting D denote the set of all primes dividing the discriminant of some
primitive exceptional almost regular quaternary quadratic form, one has
D = D2.

Define
P ∗ =

{
17, 19, 23, 29, 31, 37

}
,

Ω17 =
{
2, 4, 6, 34, 68

}
, Ω19 =

{
2, 4, 6, 20

}
, Ω23 =

{
2, 4, 6, 10, 46

}
,

Ω29 =
{
2, 4, 10, 58, 290

}
, Ω31 =

{
2, 4, 6, 10, 62

}
, Ω37 =

{
2, 4, 10, 58}.

In Section 4 we shall define, for every primitive integral quaternary qua-
dratic form f and every prime p, an invariant s(f, p). This invariant is a
nonnegative integer which can be effectively computed and which depends
only on fp.

The explicit knowledge of all elements of Rp for p ∈ P ∗ leads to the
following effective criterion of almost regularity of p-anisotropic integral
quaternaries.

TOME 58 (2008), FASCICULE 5
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Theorem 1.8. — Let p ∈ P ∗. For any primitive integral p-anisotropic
quaternary quadratic form f the following properties are equivalent:

(i) f is almost regular.
(ii) f is even and represents all numbers in the set ps(f,p)Ωp.

For primes p in P ∗ we can formulate a particularly simple and explicit
description of all genera containing some p-anisotropic primitive almost
regular quaternary quadratic form.

Theorem 1.9. — Let p ∈ {17, 19, 29, 37} (resp. p ∈ {23, 31}). For any
primitive p-anisotropic integral quaternary quadratic form f the following
properties are equivalent:

(i) The genus of f contains an almost regular form.
(ii) The form f is even and the discriminant d(f) = p2n (resp. d(f) =

p2n, or d(f) = 4p2n and f2 ' 2(xy + z2− t2) over Z2), where n > 1
is an integer.

The proofs of Theorems 1.2 and 1.3 are given, respectively, in Section 3
and 4. Theorems 1.6, 1.7 (resp. 1.8 and 1.9) are proved in Section 9 (resp. 7).
These proofs rely heavily on the properties of a descent method known as
the “Watson transformation” presented in Section 2, and on the knowl-
edge of the list of all even-universal quaternaries. Such a list was compiled
recently with the help of “the 290 Theorem” (cf. [3], [10], [14]).

2. The Watson transformation

First we shall fix the notation and terminology which will be used through-
out this paper. As is well known, there is a natural bĳection between classes
of integral quadratic forms and lattices having integral inner product: the
Gram matrix of a quadratic form f can be regarded as the matrix of the
corresponding lattice Lf . Although the results in the Introduction were
stated in the language of forms, it is more convenient to use the language
of lattices in the proofs. We shall therefore oscillate between these two lan-
guages. A Z-lattice (by definition always equipped with an integral inner
product) is called regular, almost regular, p-universal, etc. if the correspond-
ing form is regular, almost regular, p-universal, etc. We shall also work with
Zp-lattices, always equipped with a Zp-valued inner product. The notation
〈a1, a2, . . . , an〉 is used to indicate the diagonal form

∑n
i=1 aix

2
i , or the cor-

responding lattice.

ANNALES DE L’INSTITUT FOURIER
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Given a Z-lattice L, we denote by Lp = L⊗Zp the lattice L regarded as a
lattice over Zp. For two lattices L and M over a ring R, where R = Z or Zp,
we use the notation M ' L to indicate that they are isometric over R. For
an R-lattice L we denote by BL(x, y) the inner product of elements x, y

in L, and we use the notation L(x) = BL(x, x).
For a rational number s we denote by sL the lattice L equipped with a

new inner product BsL defined by

BsL(x, y) = sBL(x, y).

In particular, (sL)(x) = s(L(x)). The lattice sL is thus obtained from L

by scaling s. Such a lattice is sometime denoted by Ls (cf. [15]), but the
notation Ls would not be practical in this paper. We should stress that
in the case when s is in Z, the lattice sL should not be confused with a
sublattice of L defined by{

x ∈ L | x = sy for some y ∈ L
}
,

the latter being isometric to s2L.
A Zp-lattice L is called unimodular if its discriminant d(L) is a unit in Zp.

Clearly, L is a primitive Zp-lattice if and only if L splits off a unimodular
sublattice.

Often we shall make no distinction between a lattice L and its Gram
matrix, and we shall use the same symbol for both objects. In particular,
throughout this paper we shall always denote by A (resp. H) the Z- or Z2-
lattice corresponding to the matrix

A =
[ 2 1
1 2

] (
resp. H =

[ 0 1
1 0

])
.

All Z-lattices are assumed to be positive definite.

The Watson transformation. — We shall now recall the definition of the
Watson transformation δp and present its properties needed in this paper.
(Watson introduced this transformation in [19]; see also [20], [6], [8], [7]
and [9]).

Given a Z- or Zp-lattice L define, for an integer m, a sublattice Λm(L) by

Λm(L) =
{
x ∈ L | L(x + y)− L(y) ≡ 0 (mod m) for all y ∈ L

}
.

The defining condition can also be expressed equivalently as

L(x) ≡ 2BL(x, y) ≡ 0 (mod m).

TOME 58 (2008), FASCICULE 5
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One sees easily that mx is in Λm(L) for all x in L. The operation Λm was
introduced essentially in order to handle the subsets{

x ∈ L | L(x) ≡ 0 (mod m)
}
,

which are not lattices, in general (see however Proposition 2.2). We shall
be interested only in the case when m is a prime or m = 4.

If p is an odd prime, let δp(L) be the primitive lattice obtained from
Λp(L) by scaling by a suitable rational number.

If p = 2 and L is an odd (resp. even) Z- or Z2-lattice, let δ2(L) be the
primitive lattice obtained from Λ2(L) (resp. Λ4(L)) by a suitable scaling.

Proposition 2.1. — Let L be a primitive Z-lattice and let p be a prime
number. The operations Λp and δp satisfy the following properties

(i) (δp(L))p ' δp(Lp).
(ii) If p > 2 and Lp ' M ⊥ pN for some Zp-lattices M and N , M

unimodular, then

Λp(Lp) ' p2M ⊥ pN.

(iii) For any prime q 6= p (
δp(L)

)
q
' ηLq,

where η = 1 or 1/p. In particular, L is q-universal if and only if
δp(L) is q-universal.

(iv) For any prime q, L is q-anisotropic if and only if δp(L) is q-anisotropic.
(v) For any prime q

δp

(
δq(L)

)
' δq

(
δp(L)

)
.

(vi) If the lattices L and L′ are in the same genus, then so are δp(L)
and δp(L′).

(vii) For each Z-lattice M ′ in the genus of δp(L) there is a lattice M in
the genus of L such that δp(M) = M ′.

Proof. — (i) is obvious from the definition of δp.
(ii) Let x ∈ Λp(Lp) and x = y+z, where y ∈ M and z ∈ pN . It suffices to

show that y is in the sublattice of M consisting of all nonprimitive elements.
If y were not of the form y = pv, v ∈ M , then BL(y, u) = 1 for some u ∈ M

and one would have

L(x + u)− L(u) = L(x) + 2BL(x, u) = L(x) + 2.

But the left side of this equality is 0 (mod p), while the right one is 2
(mod p), which is impossible.

ANNALES DE L’INSTITUT FOURIER
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(iii)–(vi) These properties are immediate consequences of the fact that
δp(L) is obtained from Λp(L) (resp. Λ4(L), if L is even and p = 2) by scaling
1, 1/p or 1/p2, and that (Λp(L))q ' Lq for q 6= p (resp. (Λ4(L))q ' Lq

for q > 2).
(vii) is proved in [20]. �

Clearly,
Λ2(L) =

{
x ∈ L | L(x) ≡ 0 (mod 2)

}
.

The analogous equality for p > 2 is not always valid. However it is valid in
a few important cases.

Proposition 2.2. — Let L be a primitive quaternary Z-lattice and let p

be a prime.
(i) If p > 2 and Lp is either p-anisotropic or is not p-universal, then

Λp(L) = {x ∈ L | L(x) ≡ 0 (mod p)}.

(ii) If p = 2, L2 is even and either L2 is 2-anisotropic or L2 does not
represent all elements in 2Z2, then

Λ4(L) =
{
x ∈ L | L(x) ≡ 0 (mod 4)

}
.

Proof. — Since

Λm(L) =
{
x ∈ L | L(x) ≡ 2BL(x, y) ≡ 0 (mod m) for all y ∈ L

}
,

in order to prove (i) (resp. (ii)), it suffices to prove the implication

(*) Lp(x) ≡ 0 (mod p) =⇒ BLp(x, y) ≡ 0 (mod p) for all y ∈ Lp

(**) (resp. L2(x) ≡ 0 (mod 4) =⇒ BL2(x, y) ≡ 0 (mod 2) for all y ∈ L2).

(i) Since Lp is either p-anisotropic or is not p-universal, it suffices to
prove the implication (*) for Lp of the form

Lp ' 〈ε, pα, pβ, pγ〉 or Lp ' 〈1,−η, pα, pβ〉,

where ε is a unit in Zp, α, β, γ are in Zp and η is a nonsquare unit in Zp.
But in either of these cases the implication (*) is then trivial to check.

(ii) Since L2 is even, primitive and either 2-anisotropic or does not rep-
resent all elements in 2Z2, one has

L2 ' A ⊥ `,

for some even binary Z2-lattice `. Moreover, `(u) ≡ 0 (mod 4) for all u

in `. Indeed, if we would have `(u) = 2ε for some u in ` and some unit ε

in Z2, then L2 would contain a sublattice A ⊥ 〈2ε〉 ' H ⊥ 〈10ε〉, which is
2-isotropic and represents all elements in 2Z2.

TOME 58 (2008), FASCICULE 5
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If e1, e2 (resp. e3, e4) is a Z2-basis of A (resp. `), and if for a vector
x =

∑4
i=1 xiei in L2, xi ∈ Z2, one has L(x) ≡ 0 (mod 4), then L2(x1e1 +

x2e2) = 2x2
1 + 2x1x2 + 2x2

2 ≡ 0 (mod 4), which implies x1 ≡ x2 ≡ 0
(mod 2). But then necessarily BL2(x, y) ≡ 0 (mod 2) for all y in L2, which
shows (**). �

Proposition 2.3. — Let L be a primitive almost regular (resp. regular)
quaternary Z-lattice. Then the lattice δp(L) is also almost regular (resp.
regular) if any of the following conditions is satisfied:

(i) p > 2 and L is not p-universal.
(ii) L is p-anisotropic.
(iii) p = 2 and either L is odd or L is even and does not represent all

elements in 2Z2.

Proof. — Let E(L) be the set of all positive integers represented by the
genus of L but not by L itself. In particular, L is almost regular (resp.
regular) if and only if E(L) is finite (resp. empty).

To prove the proposition it suffices to show that, assuming either (i)
or (ii) or (iii), the set E(Λp(L)) (or E(Λ4(L)) if p = 2 and L is even) is
contained in E(L).

Case p > 2. — Assume that Lp is either p-anisotropic or is not p-
universal. Let b ∈ E(Λp(L)). Then b is represented by the Zp-lattice Λp(Lp).
In particular, b is divisible by p. If b were represented by L, then, by Propo-
sition 2.2 (i), b would be represented by Λp(L), contrary to the assumption
that b ∈ E(Λp(L)). Hence b is not represented by L. But b is represented
by (Λp(L))q ' Lq for every q 6= p, and clearly by Lp itself. Hence b is
represented by the genus of L and thus b is in E(L).

Case p = 2. — If L is odd, then E(L) ∩ 2Z = E(Λ2(L)).
Assume therefore that L is even and either L2 is 2-anisotropic or L2 is

not representing all elements in 2Z2. Let b ∈ E(Λ4(L)). Then b is repre-
sented by Λ4(L2). In particular, b is divisible by 4 and is represented by L2.
If b were represented by L, then, by Proposition 2.2 (ii), it would also
be represented by Λ4(L), contrary to the assumption that b ∈ E(Λ4(L)).
Since b is represented by (Λ4(L))q ' Lq for every q > 2, it follows that b is
in E(L). �

Now we shall investigate the effect of the iteration of the operation δp.
For k > 0 define inductively δk

p (L) as follows:

δ0
p(L) = L and δk+1

p (L) = δp

(
δk
p (L)

)
.

ANNALES DE L’INSTITUT FOURIER
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Recall that for p > 2, a quaternary Zp-lattice M is p-universal if and
only if M contains the hyperbolic plane 〈1,−1〉, or

M ' 〈1,−τp, p,−εpp〉,

where τp is a nonsquare unit in Zp, and εp = 1 or τp.

Proposition 2.4. — Let p > 2 be a prime number. For any primitive
quaternary Z-lattice L there is an integer k > 0 such that the Z-lattice
δk
p (L) is p-universal.

Proof. — Assume that L is not p-universal, otherwise k = 0. Let

Lp ' 〈ε1, ε2pα2 , ε3p
α3 , ε4p

α4〉,

where εi are units in Zp and αi are integers satisfying α2 6 α3 6 α4.
Given a p-adic integer γ = pvε, ε a unit in Zp, let denote v = ordp(γ).

Since Lp is not p-universal, one has necessarily α3 > 1 and ordp(d(Lp)) > 3,
where d(Lp) is the discriminant of Lp.

If ordp(d(Lp)) = 3, then

Lp ' 〈1,−τp, ε3p, ε4p
2〉 or Lp ' 〈ε1, ε2p, ε3p, ε4p〉.

Applying Proposition 2.1 (ii) one sees immediately that

δp(Lp) ' 〈ε3, p,−τpp, ε4p〉 or δp(Lp) ' 〈ε2, ε3, ε4, ε1p〉.

In the second case, δp(Lp) is p-universal, and one takes k = 1. In the first
case, applying again δp one gets δ2

p(Lp) p-universal.
Assume now that ordp(d(Lp)) > 4. Since

δp(Lp) '


〈ε1, ε2pα2−2, ε3p

α3−2, ε4p
α4−2〉 if α2 > 2,

〈ε2, ε1p, ε3p
α3−1, ε4p

α4−1〉 if α2 = 1,
〈ε1, ε2, ε3pα3−2, ε4p

α4−2〉 if α2 = 0 and α3 > 2,
〈ε3, ε1p, ε2p, ε4p

α4−1〉 if α2 = 0 and α3 = 1,

we have
ordp

(
d
(
δp(Lp)

))
< ordp

(
d(Lp)

)
.

Hence, arguing by induction, we deduce the existence of an integer k as
requested in the proposition. �

A quaternary Z2-lattice M is said to be 2Z2-universal if M is even and
either M is 2-isotropic and represents all numbers in 2Z2, or M ' A ⊥ 2A.
A quaternary Z-lattice L is 2Z2-universal if L2 is 2Z2-universal.

Proposition 2.5. — Let L be a primitive quaternary Z-lattice. Then
there is a k > 0 such that the Z-lattice δk

2 (L) is 2Z2-universal.
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Before giving the proof we need five lemmas.

Lemma 2.6. — Let M be an odd unimodular quaternary Z2-lattice.
Then δ2(M) is 2Z2-universal.

Proof. — There are exactly eight odd unimodular quaternary Z2-lattices
M . They are listed below, together with the corresponding expressions
for δ2(M).

M δ2(M) M δ2(M)

A ⊥ 〈1, 3〉 A ⊥ 2A A ⊥ 〈1, 7〉 A ⊥ 2H

H ⊥ 〈1, 5〉 H ⊥ 〈6, 14〉 H ⊥ 〈1, 3〉 H ⊥ 2A

A ⊥ 〈1, 1〉 A ⊥ 〈2, 2〉 A ⊥ 〈1, 5〉 A ⊥ 〈6, 14〉

A ⊥ 〈3, 3〉 A ⊥ 〈6, 6〉 A ⊥ 〈3, 7〉 A ⊥ 〈2, 10〉

One sees easily that all these δ2(M) are even Z2-lattices representing all
elements in 2Z2. Only the first lattice M ' A ⊥ 〈1, 3〉 is 2-anisotropic. The
lemma follows. �

Lemma 2.7. — Let N = 〈ε1, ε2〉 be a binary Z2-lattice, where εi are
units in Z2. Let M be a quaternary Z2-lattice of the form

M ' N ⊥ 2α`,

where α > 1 and ` is a primitive binary Z2-lattice. Then

δ2(M) ' N ′ ⊥ 2α−1`

for some unimodular binary Z2-lattice N ′.

Proof. — First observe that N is isometric over Z2 to one of the following
Z2-lattices:

〈1, 1〉, 〈3, 3〉, 〈1, 3〉, 〈1, 5〉, 〈3, 7〉, 〈1, 7〉.
Also observe that if {e1, e2} is a basis of N satisfying BN (ei, ei) = εi,
BN (e1, e2) = 0, then

Λ2(N) ' Z2(2e1) + Z2(e1 + e2).

This allows to compute Λ2(N ⊥ 2α`), and thus also δ2(N ⊥ 2α`), for each
of the six cases of N . One has

δ2(N ⊥ 2α`) ' N ′ ⊥ 2α−1`,

where the N ′ corresponding to N are listed in the table below:
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N 〈1, 1〉 〈3, 3〉 〈1, 3〉 〈1, 5〉 〈3, 7〉 〈1, 7〉

N ′ 〈1, 1〉 〈3, 3〉 A 〈3, 7〉 〈1, 5〉 H

Since every N ′ is unimodular, the proof is complete. �

Lemma 2.8. — Let M be an odd quaternary Z2-lattice. Then there is a
k > 0 such that δk

2 (M) is either even or splits off a unimodular sublattice
of rank > 3.

Proof. — We may assume that either

M ' 〈ε1〉 ⊥ 2αU ⊥ 〈ε22β〉, 1 6 α < β,

or
M ' 〈ε1, ε22β〉 ⊥ 2α`, 0 6 β 6 α,

where εi are units in Z2, U ' A or H, and ` is a primitive binary Z2-lattice.
In the first case, one has

δk
2 (M) '

{
〈2ε1〉 ⊥ U ⊥ 〈ε22β−α〉, if α = 2k − 1, k > 0;

〈ε1〉 ⊥ U ⊥ 〈ε22β−α〉, if α = 2k, k > 0.

Therefore in this case δk
2 (M) is either even, or the rank of its unimodular

component is 3.
Consider now the second possibility, that is, M ' 〈ε1, ε22β〉 ⊥ 2α`, where

0 6 β 6 α. If β = 2m + 1 for some m > 0, then

δm
2 (M) ' 〈ε1, 2ε2〉 ⊥ 2α−2m` and δm+1

2 (M) ' 〈ε2, 2ε1〉 ⊥ 2α−β`.

It follows that
δ

m+1+(α−β)
2 (M) ' 〈εi, 2εj〉 ⊥ `,

where i, j = 1, 2, i 6= j, either has a unimodular component of rank 3 (if `

is unimodular), or

〈εi, 2εj〉 ⊥ ` ' 〈εi, ε3〉 ⊥ 2〈εj , 2γε4〉

for some units ε3, ε4 in Z2 and some γ > 0. By Lemma 2.7, applying δ2

to the latest lattice, one obtains a Z2-lattice which is either unimodular
(if γ = 0), or has a unimodular component of rank 3 (if γ > 0).

Finally, if β = 2m for some m > 0, then

δm
2 (M) ' 〈ε1, ε2〉 ⊥ 2α−β`.

By Lemma 2.7, applying to this lattice the operation δ2 at most α − β

times, one obtains either an even lattice, or a lattice having a unimodular
component of rank > 3. This completes the proof. �
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Lemma 2.9. — Let M be a quaternary Z2-lattice which the unimodular
component is of rank 3. Then δ2(M) is an even Z2-lattice.

Proof. — Since any unimodular ternary Z2-lattice splits off either the
lattice A or H, we may assume that

M ' U ⊥ 〈ε1〉 ⊥ 〈ε22α〉,

where U ' A or H, the εi are units in Z2, and α > 1. Then

Λ2(M) ' U ⊥ 〈4ε1〉 ⊥ 〈ε22α〉 and δ2(M) = Λ2(M),

which is an even lattice. �

Lemma 2.10. — Let M be a primitive even quaternary Z2-lattice. Then,
for some k > 0, the Z2-lattice δk

2 (M) is 2Z2-universal.

Proof. — The lattice M is either 2Z2-universal or is of the form M '
A ⊥ ` for some binary even Z2-lattice `. Assume first that ` = 2αU , where
U ' A or H. If α = 0 or 1, the lattice M is 2Z2-universal, and we take k = 0.
For α > 2 one has

Λ4(M) ' 4A ⊥ 2αU and δ2(M) ' A ⊥ 2α−2U.

It follows that for k =
[
1
2α

]
δk
2 (M) ' A ⊥ U or A ⊥ 2U,

and either of these lattices is 2Z2-universal.
Assume now that ` ' 〈ε12α1 , ε22α2〉, where εi are units in Z2 and 1 6

α1 6 α2. Observe that for any unit ε in Z2 the lattice A ⊥ 〈2ε〉 ' H ⊥ 〈10ε〉
represents all elements in 2Z2.

If α1 = 1 then M ' A ⊥ 〈2ε1〉 ⊥ 〈ε22α2〉 is 2Z2-universal. For α1 > 2
one has

Λ4(M) ' 4A ⊥ 〈ε12α1 , ε22α2〉 and δ2(M) ' A ⊥ 〈ε12α1−2, ε22α2−2〉.

If α1 = 2m + 1, then

δm
2 (M) ' A ⊥ 〈2ε1〉 ⊥ 〈ε22α2−2m〉

is 2Z2-universal.
If α1 = 2m, then

δm
2 (M) ' A ⊥ 〈ε1, ε22α2−2m〉

is an odd Z2-lattice.
If α2 − 2m = 2t for some t > 0, then

δm+2t
2 (M) ' A ⊥ 〈ε1, ε2〉
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is an odd unimodular Z2-lattice. By Lemma 2.6, the lattice δm+2t+1
2 (M) is

then 2Z2-universal. Finally, if α2 − 2m = 2t + 1, then

δm+2t+1
2 (M) ' A ⊥ 〈2ε2〉 ⊥ 〈4ε1〉

is 2Z2-universal. This completes the proof. �

Now we are ready to prove Proposition 2.5.

Proof of Proposition 2.5. — If L is an odd primitive quaternary Z-lattice
then, by Lemmas 2.6, 2.8 and 2.9, the lattice δm

2 (L) is even for some m > 0.
We can therefore assume L even and apply Lemma 2.10 to complete the
proof. �

Operation ∆p. — Fix a prime number p. Let L be a primitive quaternary
Z- or Zp-lattice. Let k > 0 be the smallest integer such that δk

p (L) is p-
universal (if p > 2), or 2Z2-universal (if p = 2). The existence of such a k

follows from Propositions 2.4 and 2.5. For such a k define

∆p(L) = δk
p (L).

Operation ∆. — Let L be a primitive quaternary Z-lattice and let {p1, . . . ,

pm} be the set of all primes p such that Lp is not p-universal (if p > 2),
or not 2Z2-universal (if p = 2). Define ∆(L) to be a quaternary Z-lattice
obtained from L by applying successively the operations ∆pi , i = 1, . . . ,m,

∆(L) = ∆pm

(
· · ·

(
∆p1(L)

)
· · ·

)
.

The lattice ∆(L) is therefore even, p-universal for every p > 2 and 2Z2-
universal.

The next theorem is the main result of this section and one of the main
tools needed in the proof of the results stated in the Introduction. Recall
that a Z-lattice L is called even-universal if L is even and represents all even
positive integers. If L represents all positive integers then L is said to be
universal. Let S(L) be the set of all primes p such that L is p-anisotropic.

Theorem 2.11. — Let L be a primitive almost regular quaternary Z-
lattice. Then

(i) ∆p(L) is an almost regular Z-lattice which is p-universal if p > 2,
and 2Z2-universal if p = 2. If L is regular or p-anisotropic then
∆p(L) is regular.

(ii) ∆(L) is an even Z-lattice representing all large even integers. If
S(L) 6= ∅, then ∆(L) is even-universal.

(iii) S(L) = S(∆p(L)) = S(∆(L)).
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Proof. — (i) The first part of (i) follows from Proposition 2.3 and the
definition of ∆p(L). Proposition 2.3 also implies that ∆p(L) is regular if L

is regular. Assume therefore that L is p-anisotropic. To show that ∆p(L) is
regular let us consider an integer m represented by the genus of ∆p(L).
Then ∆p(L) represents all mp2n for n large. Since ∆p(Lp) is p-anisotropic
and p-universal (if p > 2), or ∆2(L2) ' A ⊥ 2A (if p = 2), if ∆p(L)(x) =
mp2n for some n > 1, then x = py for some y ∈ L and ∆p(L)(y) = mp2(n−1).
Arguing by induction one deduces that ∆p(L) represents m. Hence ∆p(L)
is regular.

(ii) The lattice ∆(L) represents every even positive integer over every
ring Zq. Since ∆(L) is almost regular, it represents all large even integers.
If S(L) 6= ∅, then by (i), ∆(L) is regular and thus represents all even
positive integers.

(iii) Follows from Proposition 2.1 (iv) and the definition of ∆p(L) and ∆(L).
�

3. Even-universal p-anisotropic lattices

Recall that Ep denotes the family of all primitive almost regular p-
anisotropic quaternary Z-lattices. In this section we shall prove Theo-
rem 1.2 after first investigating the subfamily Up of Ep of lattices in Ep

which are even-universal (if p = 2 we further require that for L in U2 one
has L2 ' A ⊥ 2A). This family is easier to handle than the (often) larger
family Rp, and yet Up already provides important information about Ep.
Our interest in Up comes essentially from two facts: for L ∈ Ep one has
∆(L) ∈ Up (cf. Theorem 2.11), and, for p > 17, Rp = Up (cf. Theorem 6.1).
Both these properties have far reaching consequences.

The list F of all even-universal quaternary Z-lattices was recently ob-
tained with the help of “the 290 Theorem”, which says that an even lat-
tice L is in F if and only if L represents every even positive integer not ex-
ceeding 580 (in fact, only 29 specific integers, the largest being 580, should
be represented) (cf. [3], [10], [14]). The family F is quite large, it contains
exactly 6436 elements. The largest discriminant of a lattice in F is 4292.
We shall see that the subset

⋃
p Up of F is relatively small and contains

only 123 lattices, most of them belonging to U2.

Family U2. The elements of U2 are precisely the even-universal quater-
nary Z-lattices L with L2 ' A ⊥ 2A. The family U2 was already investi-
gated in [4] where it played a crucial role in obtaining a complete description
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of all almost universal quaternaries. It contains exactly 79 lattices which are
listed, with their discriminants, in [4] Table 4. All of them are q-isotropic
for q > 2 and they represent 65 genera. The set U2 of all primes dividing
the discriminant of some lattice in U2 contains exactly 29 primes which are
listed below:

U2 =
{
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 59, 61, 67,

73, 89, 97, 107, 113, 137, 193, 233, 241, 257, 281, 353
}
.

It should be mentioned that there are even-universal 2-anisotropic Z-lattices
which are not in U2. They are of two kinds: the lattices of the form 2M ,
where M is universal and 2-anisotropic (the most famous example is M =
〈1, 1, 1, 1〉), and the lattices L which are primitive, 2-anisotropic and even-
universal, but with L2 6' A ⊥ 2A. Since for any lattice L in E2 one has ∆(L)
in U2, it suffices for our purposes to deal only with those 2-anisotropic even-
universal lattices which are in U2. �

We shall now study the families Up with p > 2.

Proposition 3.1. — If p > 37 the family Up is empty.

Proof. — Let L be a lattice in Up. Then L contains at least one of the
following binary Z-lattices defined below by their Gram matrices:[ 2 0

0 2

]
,

[ 2 1
1 2

]
,

[ 2 0
0 4

]
,

[ 2 1
1 4

]
.

The smallest even positive integers not represented by these lattices are,
respectively, 6, 4, 10, 6. It follows that L contains a ternary sublattice M

having the successive minima µi(M) satisfying

µ1(M) = 2, µ2(M) 6 4, µ3(M) 6 10,

and therefore

d(M) 6
3∏

i=1

µi(M) 6 80.

Since the discriminant of any even p-anisotropic ternary Z-lattice is divis-
ible by 2p, it follows that 2p 6 80, which shows that p 6 37. �

Next we shall study the families Up, where 17 6 p 6 37.
Let

P ∗ = {17, 19, 23, 29, 31, 37}.
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For each p ∈ P ∗ (resp. p ∈ {23, 31}) let G(p) (resp. G′(p)) be a quaternary
Z-lattice defined by the following matrices:

G(17) =


2 1 1 0
1 4 2 −1
1 2 6 2
0 −1 2 10

, G(19) =


2 1 1 0
1 4 1 2
1 1 6 3
0 2 3 12

,

G(23) =


2 0 0 1
0 4 1 0
0 1 6 0
1 0 0 12

, G(29) =


2 0 1 1
0 4 1 2
1 1 8 1
1 2 1 16

,

G(31) =


2 0 0 1
0 4 1 0
0 1 8 0
1 0 0 16

, G(37) =


2 0 1 1
0 4 1 2
1 1 10 1
1 2 1 20

 ,

G′(23) =


2 0 0 0
0 4 1 0
0 1 6 0
0 0 0 46

, G′(31) =


2 0 0 0
0 4 1 0
0 1 8 0
0 0 0 62

.

Observe that d(G(p)) = p2 and d(G′(p)) = 4p2.

In the next theorem we shall refer to the sets Ωp, p ∈ P ∗, defined in the
Introduction.

Theorem 3.2. — Let p ∈ P ∗. For any even p-anisotropic quaternary
Z-lattice L the following properties are equivalent:

(i) L is in Up.
(ii) L represents all elements of the set Ωp.

(iii) L '

{
G(p) if p ∈ {17, 19, 29, 37},
G(p) or G′(p) if p ∈ {23, 31}.

Before giving the proof we need some preparation. A sublattice M of a
lattice L, M 6= L, is said to be primitive if M has the following property:
for each x in L, if kx is in M for some k in Z\{0}, then x is in M . Observe
that a primitive sublattice need not be primitive as a lattice.

Lemma 3.3. — Let M be a primitive sublattice of L and let x ∈ L \M .
Then

d(M + Zx) 6 d(M)L(x).
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Furthermore, the equality holds if and only if M + Zx = M ⊥ 〈L(x)〉.

For the proof of this result see [1] p. 330. �

It is convenient to introduce the following notation: if A is a lattice
isometric to a sublattice of L, we shall write A→L. In the contrary case,
we put A9L.

Let denote

K1 =
[ 2 1
1 2

]
, K2 =

[ 2 0
0 2

]
, K3 =

[ 2 1
1 4

]
, K4 =

[ 2 0
0 4

]
.

Lemma 3.4. — Let p ∈ P ∗ and let L be an even p-anisotropic quater-
nary Z-lattice which represents all elements in Ωp. If p ∈ {17, 19} (resp.
p ∈ {23, 29, 31, 37}), then K3→L and Ki9L for i 6= 3 (resp. K4→L and
Kj9L for j 6= 4).

Proof. — Since 2 and 4 are in Ωp, Ki→L for some i. We shall prove the
rest of the lemma in three steps.

1) Since Ki should be p-anisotropic and d(Ki) is not divisible by p,
it follows that if Ki→L then(d(Ki)

p

)
= −

(−1
p

)
.

This excludes the following cases:

K2, K49L if p = 17; K2, K39L if p = 29;
K1, K49L if p = 19; K19L if p = 31;

K39L if p = 23; K1, K2, K39L if p = 37.

2) Now we shall prove that K19L and K29L. Recall that the discrimi-
nant of any ternary sublattice of an even p-anisotropic quaternary Z-lattice
is divisible by 2p. If K1→L, then L contains a ternary sublattice T of the
form

T =

 K1
a

b

a b c

 ,

where 0 6 a 6 1, 0 6 |b| 6 1, c even and 2 6 c 6 4. Since 2p should divide
d(T ) and, by Lemma 3.3, d(T ) 6 cd(K1) 6 12, we get a contradiction.
If K2→L, then by 1), p = 19, 23 or 31. Since 69K2 but 6 ∈ Ωp for p = 19,
23, 31, it follows as above that for some ternary sublattice T of L one has
d(T ) 6 6d(K2) = 24. This is not possible, as d(T ) should be divisible by 2p.
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3) If p = 31, then K39L. Indeed, since 69K3 but 6 ∈ Ω31, if K3→L

then L contains a ternary sublattice T with d(T ) 6 6d(K3) = 42. But
then d(T ) would not be divisible by 2 · 31.

Now the lemma follows from 1), 2) and 3). �

Observe that for L as in Lemma 3.4 one has µ1(L) = 2 and µ2(L) = 4.
Define the following ternary Z-lattices by their Gram matrices:

T (17) =

 K3
1
2

1 2 6

, T (19) =

 K3
1
1

1 1 6

, T (23) =

 K4
0
1

0 1 6

,

T (29) =

 K4
1
1

1 1 8

, T (31) =

 K4
0
1

0 1 8

, T (37) =

 K4
1
1

1 1 10

.

Observe that d(T (p)) = 2p and that µ3(T (p)) is the integer in the lower
right corner of the matrix defining T (p).

Lemma 3.5. — Let p ∈ P ∗ and let L be an even p-anisotropic quater-
nary Z-lattice representing all elements in the set Ωp. Let

T (a, b, c) =

 K
a

b

a b c

,

where 0 6 a 6 1, 0 6 |b| 6 2, c even and

K = K3, 4 6 c 6 6 if p = 17, 19;

K = K4, 4 6 c 6 10 if p > 19.

Then T (a, b, c)→L for some a, b, c as above, and any such T (a, b, c) is iso-
metric to T (p). Furthermore, µi(T (p)) = µi(L) for i = 1, 2, 3.

Proof. — By assumption, 6→L for p = 17, 19 (resp. 10→L for p > 19).
Since 69K3 and 109K4, it follows from Lemma 3.4 that T (a, b, c)→L for
some a, b, c. The direct computation of all discriminants d(T (a, b, c)) shows
that either d(T (a, b, c)) = 2p, or d(T (a, b, c)) is not divisible by 2p. Then
one checks that every T (a, b, c) with d(T (a, b, c)) = 2p is isometric to T (p).
Since the discriminant of any ternary sublattice of L is divisible by 2p,
the lemma follows. �

Proof of Theorem 3.2. — (i) ⇒ (ii) is obvious.
(iii) ⇒ (i) Each of the lattices G(p) or G′(p) is p-anisotropic primitive

and on the list F of all even-universal Z-lattices (cf. [10], [14]). Hence if
L ' G(p) or G′(p), then L is in Up.
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(ii) ⇒ (iii) Let L be an even p-anisotropic quaternary Z-lattice repre-
senting all elements in Ωp.

Define w17 = 34, w19 = 20, w23 = 46, w29 = 58, w31 = 62, w37 = 58.
Note that wp ∈ Ωp and wp9T (p). We know from Lemma 3.5 that T (p)→L.
We can therefore assume that T (p) is a primitive sublattice of L and
µi(T (p)) = µi(L) for i = 1, 2, 3. Choose a basis e1, . . . , e4 such that µi(L) =
L(ei), i = 1, . . . , 4. Such a basis always exists for a quaternary Z-lattice
(cf. [13, Cor. 6.2.3]). We can therefore deduce that the Gram matrix of L

with respect to this basis is of the form

L ' L(a, b, c, f) =

 T (p)
a

b

c

a b c f

,

for some integers a, b, c, f satisfying the following conditions: 0 6 a 6 1,
0 6 |b| 6 2, 0 6 |c| 6 1

2µ3(T (p)), and µ3(T (p)) 6 f = µ4(L) 6 wp.
Since L ' L(a, b, c, f) is p-anisotropic, the discriminant d(L(a, b, c, f)) is
divisible by p2. The direct computation of all d(L(a, b, c, f)) and checking
the isometry class of these L(a, b, c, f) whose discriminant is divisible by p2,
imply the following conclusions which prove the implication (ii)⇒(iii).

For p = 17, if 172 divides d = d(L(a, b, c, f)), then d = 172 and

L ' L(a, b, c, f) ' G(17) or L ' T (17) ⊥ 〈34〉.

But 689T (17) ⊥ 〈34〉 and 68 ∈ Ω17. Hence L ' G(17).
For p = 19, if 192 divides d = d(L(a, b, c, f)), then d = 192 and

L ' L(a, b, c, f) ' G(19).

For p = 23, if 232 divides d = d(L(a, b, c, f)), then d = 232 or d = 4 · 232,
and

L ' L(a, b, c, f) ' G(23) or L ' G′(23).

For p = 29, if 292 divides d = d(L(a, b, c, f)), then d = 292 and

L ' L(a, b, c, f) ' G(29) or L ' T (29) ⊥ 〈58〉.

But 2909T (29) ⊥ 〈58〉 and 290 ∈ Ω29. Hence L ' G(29).
For p = 31, if 312 divides d = d(L(a, b, c, f)), then d = 312 or d = 4 · 312,

and
L ' L(a, b, c, f) ' G(31) or L ' G′(31).

For p = 37, if 372 divides d = d(L(a, b, c, f)), then d = 372 and

L ' L(a, b, c, f) ' G(37).
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This completes the proof of Theorem 3.2. �

We shall now deal with the remaining families Up for p = 3, 5, 7, 11, 13.
For each p ∈ {3, 5, 7, 11, 13} define first a Table (p) containing some qua-
ternary Z-lattices G and their discriminants d(G). A lattice G in Table (p)
will be identified by its Gram matrix (aij)ij , and we shall represent a sym-
metric 4× 4 matrix (aij)ij by a sequence of ten numbers a11, a22, a33, a44,
a12, a13, a14, a23, a24, a34.

G d(G)/32 G d(G)/32

2 2 2 2 1 0 0 0 0 1

2 2 4 4 0 1 1 1 1 1

2 2 2 6 0 0 0 1 0 0

2 2 6 8 0 0 0 0 1 3

2 4 4 6 1 1 0 1 0 0

2 4 4 8 1 1 0 1 2 2

1

22

22

24

24

24

2 4 6 6 1 0 0 0 0 0

2 2 6 12 0 0 0 0 0 3

2 4 6 8 1 0 0 0 2 3

2 4 4 10 1 1 1 1 0 0

2 4 6 12 1 0 0 0 0 3

2 4 6 10 1 0 1 0 0 3

22 · 7
22 · 7
52

52

72

37

Table (3)

G d(G)/52 G d(G)/52

2 2 4 4 1 1 0 1 1 2

2 2 4 10 1 1 0 1 0 0

2 4 4 4 0 0 0 1 1 −1

2 4 4 6 0 1 0 2 2 1

2 4 10 14 0 0 0 0 1 0

2 4 4 20 0 0 0 1 0 0

2 4 8 10 0 1 0 0 0 0

1

22

22

22

22 · 11
23 · 3
23 · 3

2 4 4 14 0 0 0 1 1 −1

2 4 8 8 0 1 1 0 0 −2

2 4 4 20 1 1 0 2 0 0

2 4 6 10 1 0 0 1 0 0

2 4 4 8 0 0 1 1 0 0

2 4 4 12 0 1 1 2 1 1

2 4 6 6 1 0 0 1 1 1

24

24

24

24

32

32

32

Table (5)

G d(G)/72 G d(G)/72

2 2 4 4 0 0 1 1 0 0

2 4 6 6 0 1 1 1 1 −1

1

22
2 4 4 8 1 0 0 0 0 2

2 2 4 14 0 0 0 1 0 0

22

22

Table (7)

G d(G)/112 G d(G)/112

2 2 6 6 0 0 1 1 0 0 1 2 2 6 22 0 0 0 1 0 0 22

Table (11)

G d(G)/132 G d(G)/132

2 4 4 8 0 1 1 1 2 1

2 4 4 26 0 1 0 1 0 0

1

22
2 4 10 10 0 0 0 1 1 −3

2 4 10 26 0 0 0 1 0 0

22

22 · 3

Table (13)
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Define also the sets

Ω3 = {2, 4, 6, 10, 12, 14, 20, 26}, Ω5 = {2, 4, 6, 10, 20, 30}
Ω7 = {2, 4, 6, 10, 12, 14, 42, 70}, Ω11 = {2, 4, 6, 10, 20, 44},
Ω13 = {2, 4, 10, 26}

Theorem 3.6. — Let p ∈ {3, 5, 7, 11, 13}. For any even primitive p-
anisotropic quaternary Z-lattice L the following properties are equivalent:

(i) L is in Up.
(ii) L represents all elements of the set Ωp.
(iii) L ' G, where G is a lattice listed in Table (p).

Sketch of the proof. — (i) ⇒ (ii) is obvious.
(iii) ⇒ (i) Each of the lattices G listed in Table (p) is primitive p-

anisotropic and on the list F of all even-universal quaternary Z-lattices
(cf. [10], [14]). It follows that G, and therefore L, is in Up.

(ii) ⇒ (iii) The proof of this implication goes along similar lines as the
proof of the analogous implication in Theorem 3.2. Let us briefly indicate
how the arguments used in the proof of Theorem 3.2 should be modified.
Lemma 3.4 should be replaced by

Lemma 3.4′. — Let p ∈ {3, 5, 7, 11, 13} and let L be an even p-anisotropic
quaternary Z-lattice which represents all elements in Ωp. Then

K2 or K3→L, and K1, K49L, if p = 3;

K1 or K3 or K4→L, and K29L, if p = 5;

K2 or K3 or K4→L, and K19L, if p = 7;

K2→L, and K1, K3, K49L, if p = 11;

K4→L, and K1, K2, K39L, if p = 13.

The proof of this lemma is analogous to that of Lemma 3.4.

Lemma 3.5 should be modified as follows. In Lemma 3.5 intervenes, for
each p ∈ P ∗, a single ternary lattice T (p). Now, for p 6 13, we have usually
several ternary lattices Ti(p) playing this role. These lattices are defined
below, by their Gram matrices, for each p = 3, 5, 7, 11, 13.
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. p = 3,

T1(3) =

 2 0 0
0 2 0
0 0 6

12

24

, T2(3) =

 2 0 0
0 2 1
0 1 2

12

6

, T3(3) =

 2 0 1
0 2 1
1 1 4

6

12

,

T4(3) =

 2 1 0
1 4 0
0 0 6

12

42

, T5(3) =

 2 1 1
1 4 0
1 0 4

12

24

,

. p = 5,

T1(5) =

 2 1 1
1 2 1
1 1 4

10

10

, T2(5) =

 2 0 0
0 4 0
0 0 10

20

80

, T3(5) =

 2 0 0
0 4 1
0 1 4

20

30

,

T4(5) =

 2 0 0
0 4 2
0 2 6

10

40

, T5(5) =

 2 0 1
0 4 0
1 0 8

10

60

, T6(5) =

 2 1 1
1 4 2
1 2 4

20

20

,

T7(5) =

 2 1 0
1 4 1
0 1 6

10

40

,

. p = 7,

T1(7) =

 2 0 0
0 2 1
0 1 4

42

14

, T2(7) =

 2 0 0
0 4 2
0 2 8

14

56

, T3(7) =

 2 0 1
0 4 1
1 1 6

14

42

,

T4(7) =

 2 1 0
1 4 0
0 0 4

10

28

,

. p = 11, T (11) =

 2 0 0
0 2 1
0 1 6

44

22

,

. p = 13,

T1(13) =

 2 0 0
0 4 1
0 1 10

26

78

, T2(13) =

 2 0 1
0 4 1
1 1 4

26

26

, T3(13) =

 2 0 1
0 4 2
1 2 8

10

52

.
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The numbers given at the right side of each of the matrices above in-
dicate the smallest positive integer not represented by the corresponding
lattice (the upper number), and its discriminant (the lower number). These
data are used in the proof of Theorem 3.6 in the way as the numbers wp

and d(T (p)) were used in the proof of Theorem 3.2.

The version of Lemma 3.5 for, say, p = 3 is now as follows.

Lemma 3.5′. (p = 3) Let L be a primitive even 3-anisotropic quaternary
Z-lattice which represents all numbers in the set Ω3. Let

T (a, b, c, K) =

 K
a

b

a b c

 ,

where 0 6 a 6 1, c even, and either 0 6 |b| 6 1, 2 6 c 6 6, K = K2,
or 0 6 |b| 6 2, 4 6 c 6 10, K = K3. Then T (a, b, c, K)→L for some a,
b, c, K as above, and any such T (a, b, c, K) is isometric to some Ti(3),
i = 1, . . . , 5.

The proof of this lemma is an easy adaptation of the proof of Lemma 3.5.
The analogous statements for p = 5, 7, 11, 13 are now obvious to formulate
(using the lattices Ti(p), p = 5, 7, 11, 13).

Once Lemmas 3.4 and 3.5 are modified as just explained, the rest of
the proof of Theorem 3.6 (ii) ⇒ (iii) goes along the same line as that of
Theorem 3.2, and is left to the reader. �

Let U′
p be the set of all even-universal p-anisotropic Z-lattices. If M is a

p-anisotropic universal Z-lattice then obviously 2M is in U′
p. No such lattice

exists for p > 7 (cf. [2]). For p = 3 and 7 there is just one universal lattice
(namely M(3) and M(7), corresponding to the forms x2 + y2 + 3z2 + 3t2

and x2+2y2+4z2+7t2+2yz), and for p = 5 there are exactly two universal
lattices M(5) and M ′(5) (corresponding to the form x2+2y2+5z2+10t2 and
x2 +2y2 +3z2 +5t2 +2yz), (cf. [2]). One has therefore U′

3 = U3∪{2M(3)},
U′

5 = U5 ∪ {2M(5), 2M ′(5)}, U′
7 = U7 ∪ {2M(7)} and U′

p = Up for p > 7.

Let Up be the set of all primes dividing the discriminant of some lattice
in Up. Theorems 3.2 and 3.6 imply the following corollary.

Corollary 3.7. — One has

U3 = {2, 3, 5, 7, 37}, U5 = {2, 3, 5, 11}, U13 = {2, 3, 13},
Up = {2, p} for p = 7, 11, 23, 31,

Up = {p} for p = 17, 19, 29, 37.

TOME 58 (2008), FASCICULE 5



1524 Jacek BOCHNAK & Byeong-Kweon OH

We are now ready to prove Theorem 1.2 stated in the Introduction.
Although all results in the Introduction were formulated in the language
of quadratic forms, we shall give their proofs in the language of lattices.

Proof of Theorem 1.2. We have to show that Ep 6= ∅ if and only if p 6 37,
and that Ep ∩ Eq = ∅ for every pair of primes p < q. By Theorem 2.11,
if L ∈ Ep then ∆(L) ∈ Up and S(L) = S(∆(L)). It suffices therefore to
show the analogous properties only for Up. We have shown already in this
section that Up 6= ∅ if and only if p 6 37.

Consider now Up∩Uq, p < q. By Corollary 3.4 in [4] one has S(L) = {2}
for all L in U2. Hence U2∩Uq = ∅ for all q > 3. Assume now that Up∩Uq 6= ∅
for some primes 3 6 p < q. Then Corollary 3.7 implies that p = 3 and
q = 5. But no lattice in U3 is 5-anisotropic, as one can check by the direct
inspection of the lattices in Table (3) (it suffices to check two lattices G

with d(G) = 32 · 52). If follows that Up ∩ Uq = ∅ for all primes p < q. This
completes the proof of Theorem 1.2. �

4. Genera containing almost regular quaternary Z-lattices

In this section we shall study the genera containing some p-anisotropic
almost regular quaternary Z-lattice. In particular, we shall prove Theo-
rem 1.3.

Lemma 4.1. — Let L be a quaternary Z-lattice with S(L) = {p}. Then
L is almost regular if and only if δp(L) is almost regular.

Proof. — We can assume L to be primitive. By Proposition 2.3, if L is
almost regular, then so is δp(L).

Conversely, suppose δp(L) is almost regular. Let α = 2 if L is even
and p = 2; otherwise let α = 1. Then the lattice Λαp(L) is also almost
regular and, by Proposition 2.2,

Λαp(L) =
{
x ∈ L | L(x) ≡ 0 (mod αp)

}
.

Thus the lattice Λαp(L) represents exactly all integers represented by L

and divisible by αp. In particular, the set

E(L) ∩ αpZ = E
(
Λαp(L)

)
is finite (recall that E(L) is the set of all integers represented by the genus
of L but not by L itself). Since S(L) = {p}, all large integers not divisible
by αp and represented by the genus of L are represented by L (cf. [16],
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Theorem 1). This, together with the finiteness of E(L)∩αpZ, implies that
L is almost regular. �

Recall that Rp is the family of all primitive regular p-universal (or 2Z2-
universal, if p = 2) p-anisotropic quaternary Z-lattices.

Theorem 4.2. — For a primitive quaternary Z-lattice L the following
properties are equivalent:

(i) L is almost regular.
(ii) S(L) = {p} and ∆p(L) ∈ Rp for some prime p 6 37, or S(L) = ∅.

Proof. — (i)⇒(ii) follows from Theorems 1.2 and 2.11.
(ii)⇒(i) follows from Theorem 1.1 and Lemma 4.1. �

Theorem 4.2 provides a strong criterion for almost regularity. Since for
p > 17 the families Rp are known explicitly (cf. Theorem 6.1), this criterion
is effective for these values of p. It will become unconditionally effective,
once the finite families Rp are enumerated for the remaining six primes
p 6 13.

Lemma 4.3. — For each lattice G in Rp there is a lattice G′ in Rp such
that Gq ' pG′

q for all primes q 6= p.

Proof. — Define α(p) = p if p > 2, and α(2) = 4. For each G in Rp one
has

δp(G) =
1
p
Λα(p)(G).

Moreover, G′ = δp(G) is in Rp and

G′
q '

1
p

(
Λα(p)(G)

)
q
' 1

p
Gq

for all q 6= p. The lemma follows. �

Invariants bH,p and s(H, p). — Now we shall define, for each prime p,
two invariants bH,p ∈ {1, p} and s(H, p) ∈ Z, of a primitive quaternary
Z- or Zp-lattice H. As defined in Section 2, ∆p(H) = δk

p (H) for some
minimal k > 0. If k = 0, we put bH,p = 1 and s(H, p) = 0. For k > 0,
each operation δp used in the definition of δk

p (H) consists of taking a lattice
defined by the transformation Λp (or Λ4) and scaling it by 1, 1/p or 1/p2 (cf.
Proposition 2.1 (ii) for p > 2, and Lemmas 2.6–2.10 for p = 2). The scaling 1
can occur only if p = 2. Let βH,p be the number of all operations δp, with
scaling 1/p, involved in the definition of ∆p(H). Define

bH,p =

{
p if βH,p is odd,

1 if βH,p is even,
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and

s(H, p) =

{
2k − βH,p if p > 2,

2k − βH,p − 2γH if p = 2,

where γH is the number of all operations δ2, with scaling 1, involved in the
definition of ∆2(H). Both invariants can be computed effectively and, for
a Z-lattice H, bH,p = bHp,p and s(H, p) = s(Hp, p).

Corollary 4.4. — Let L be a primitive quaternary Z-lattice.
(i) One has

bL,p(∆p(L))q ' Lq

for all primes q 6= p.
(ii) If L is p-anisotropic, then an integer n (n even if p = 2) is repre-

sented by ∆p(L) if and only if ps(L,p)n is represented by L.

Proof. — (i) Follows from the definition of bL,p and ∆p(L), and the fact
that (Λp(L))q ' Lq for all q 6= p, (Λ4(L))q ' Lq for all q > 2.

(ii) Follows from Proposition 2.2 and the definition of s(L, p) and ∆p(L).
�

We can now prove Theorem 1.3 stated in the introduction. The proof is
given in the language of lattices.

Proof of Theorem 1.3. Let H be an arbitrary primitive p-anisotropic
quaternary Zp-lattice and let Γ be a genus of type H.

(i) ⇒ (ii) Let L be an almost regular primitive Z-lattice representing
genus Γ. The quaternary Z-lattice G′ = ∆p(L) is in Rp and

bL,pG
′
q ' Lq

for all primes q 6= p (cf. Theorem 2.11 and Corollary 4.4 (i)). Let G = G′ if
bL,p = 1. If bL,p = p, choose G in Rp such that Gq ' pG′

q for all q 6= p (cf.
Lemma 4.3). Then in both cases Γq ' Lq ' Gq for all q 6= p, and G ∈ Rp.

(ii) ⇒ (i) Let G be a lattice in Rp and let Γ satisfy Γq ' Gq for all
q 6= p. We shall show that Γ contains an almost regular Z-lattice N (which
is necessarily p-anisotropic and primitive). Let L be any lattice in Γ. If
bL,p = 1, let G′ = G. If bL,p = p, let G′ be a lattice in Rp satisfying
Gq ' pG′

q for all primes q 6= p (cf. Lemma 4.3). For arbitrary p-anisotropic
quaternary Z-lattices M and M ′ one has ∆p(M) ' ∆p(M ′). In particular,

∆p(Lp) ' ∆p(H) ' ∆p(G′
p) ' G′

p.

By Corollary 4.4 (i),

bL,p

(
∆p(L)

)
q
' Lq ' bL,pG

′
q
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for all q 6= p. It follows that (
∆p(L)

)
q
' G′

q

for all primes q. In other words, ∆p(L) and G′ are Z-lattices representing
the same genus. By Proposition 2.1 (vii), there is a Z-lattice N in the
genus of L such that ∆p(N) = G′. By Theorem 4.2, the lattice N is almost
regular. Since, by construction, N is in Γ, the theorem follows. �

Corollary 4.5. — Let H be a primitive 2-anisotropic quaternary Z2-
lattice. Let Γ = {Γp}p∈P be a genus of an integral quaternary Z-lattice.
Then the following properties are equivalent:

(i) Γ contains an almost regular Z-lattice which is q-universal for all
odd primes q, and Γ2 ' H.

(ii) There is a Z-lattice G in U2 such that Gq ' Γq for all q > 2.

Proof. — The corollary follows from Theorem 1.3. �

Corollary 4.6. — Let H be a primitive p-anisotropic quaternary Zp-
lattice. The numbers ηp of all genera Γ containing some almost regular
Z-lattice such that Γq is q-universal for all q 6= p and Γp ' H are as
follows:

ηp =


65 if p = 2,

1 if p = 3 or 7,

2 if p = 5,

0 if p > 7.

Proof. — For p = 2 the corollary follows from Corollary 4.5 and the fact
that the lattices in U2 represent exactly 65 genera. For p > 2 the corollary
is a consequence of Theorem 1.3 and the facts mentioned in Section 3 about
p-anisotropic universal Z-lattices, p > 2. �

5. Regular p-anisotropic p-universal Z-lattices

In this section we shall prove that the families Rp are finite.

Lemma 5.1. — Let L be a primitive regular quaternary Z-lattice. As-
sume that L is not p-universal for some prime p > 5, but is q-universal for
all odd primes q 6= p and is 2Z2-universal (in particular L is even). Then

Lp ' L0 ⊥ pL1 ⊥ p2M

for some unimodular Zp-lattices L0 and L1, and some Zp-lattice M .

TOME 58 (2008), FASCICULE 5



1528 Jacek BOCHNAK & Byeong-Kweon OH

Proof. — Let
Lp ' L0 ⊥ pL1 ⊥ p2M,

where L0 and L1 are either unimodular or null. Since L is primitive and
is not p-universal, the rank of L0 is either 1 or 2. It suffices to show that
L1 6= 0. Assume to the contrary that L1 = 0 and that L0 ' 〈ε〉 for some ε

which is a p-adic unit. Let

T =
{

2t ∈ 2Z | 1 6 t 6 p− 1,
(2t

p

)
=

( ε

p

)}
.

Clearly, T contains exactly 1
2 (p − 1) elements, and every element of T

is represented by the genus of L. Since L is regular, L represents every
element of T . Let K be the sublattice of L generated by all elements x

in L with L(x) in T . Let k be the rank of K; necessarily k > 1. Since in
the present situation the rank of M is 3, the discriminant of K satisfies
p2(k−1) 6 d(K). Let µi(K), i = 1, . . . , k, be the successive minima of K. In
particular, µ1(K) 6 p − 1. Here we use the fact that there is a quadratic
nonresidue mod p not exceeding 1

2 (p− 1).
If k > 3, then

p2(k−1) 6 d(K) 6 µ1(K) · · ·µk(K) 6 (p− 1)(2p− 2)k−1,

which is impossible.
If k = 2, then K corresponds to a reduced even binary quadratic form

K = ax2 + 2bxy + cy2,

where a, b, c are integers satisfying 0 6 2b 6 a 6 c, 0 6 a 6 p − 1, a, c

even. Assume first that p > 31. For any 2t in T the equation

(*) aK(x, y) = (ax + by)2 + d(K)y2 = a2t

should have an integer solution x, y. Since d(K) > p2, one has necessarily
y = 0 or y = ±1. It follows that the number of t’s, 1 6 t 6 p − 1, for
which (*) has an integer solution x (where y = 0 or ±1) is not exceeding
(
√

2 + 1)
√

p− 1 + 1, which is less than 1
2 (p− 1) if p > 31. This contradicts

the fact that K represents 1
2 (p−1) elements in T . If 7 6 p < 31 we have to

use a different argument. Since by assumption Lp ' 〈ε〉 ⊥ p2M , it follows
that the discriminant of every binary sublattice of L is divisible by p2. We
shall show the contradiction with the assumption L1 = 0 by constructing
for each prime p, 7 6 p < 31, a binary sublattice B(p) of L such that
d(B(p)) is not divisible by p2. Let p = 7. Consider first the case where ε is
a square unit in Z7. Then 2 and 4, being square units in Z7, are represented
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by L7, and therefore by any Lq, q prime. Since L is regular, 2 and 4 are
represented by L. It follows that one of the following binary Z-lattices[

2 a

a b

]
,

where a = 0, 1 and b = 2, 4, is contained in L, which is impossible, as their
discriminants are smaller than 72. Let now ε be a nonsquare unit in Z7.
Then 6 and 10, being nonsquare units in Z7, are both represented by L7,
and therefore by L. Hence L contains at least one of the following binaries[

6 a

a b

]
,

where a = 0, 1, 2, 3 and b = 6, 8, 10, which is impossible because none of
them has the discriminant divisible by 72.

For p satisfying 7 < p 6 29 the argument is identical. Assume that for
any such p we can find four even positive integers sp, s′p, rp, r′p such that
sp, s′p (resp. rp, r′p) are square (resp. nonsquare) units in Zp, sps

′
p < p2,

rpr
′
p < p2, and s′p/sp, r′p/rp are not squares in Q. Then L represents sp and

s′p (resp. rp and r′p), if ε is a square (resp. nonsquare) in Zp. The existence
of these numbers implies the existence of a binary sublattice B(p) of L,
such that

d(B(p)) 6 max(sps
′
p, rpr

′
p) < p2,

which is impossible. It suffices therefore to exhibit sp, s′p, rp, r′p with these
properties, which is done in the table below.

p 11 13 17 19 23 29

rp, r′
p 2, 6 2, 6 6, 12 2, 20 10, 14 2, 10

sp, s′
p 4, 12 4, 12 2, 4 4, 6 2, 6 4, 6

If k = 1, then K = 〈2m〉 for some 2m in T , and the number of t’s,
1 6 t 6 p− 1, for which the equation

K(x) = 2mx2 = 2t

has an integer solution x is not exceeding
√

p− 1 < 1
2 (p − 1). This again

contradicts the fact that K represents 1
2 (p−1) elements of T . Hence L1 6= 0

if L0 is of rank 1.
Assume now that L1 = 0 and L0 has rank 2. It follows immediately

that the discriminant of any ternary (resp. quaternary) sublattice of L is
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divisible by 2p2 (resp. p4). Also it follows that the genus of L represents all
elements of the set

{2t ∈ 2Z | 1 6 t 6 p− 1}.
Since L is regular, L represents all these elements.

Let N be a sublattice of L generated by the vectors x satisfying L(x) 6
2(p− 1). Since p > 7, N represents therefore all even positive integers not
exceeding 12. If N was of rank 1, then necessarily N = 〈2〉 contradicting
the fact that N represents 4. Assume that the rank of N is k > 2. If k = 2
(resp. k > 3), then N is isometric to (resp. contains) one of the following
binary lattices, given below by their matrices:[ 2 1

1 2

]
,

[ 2 0
0 2

]
,

[ 2 1
1 4

]
,

[ 2 0
0 4

]
.

Since the smallest even integers not represented by these lattices are, re-
spectively, 4, 6, 6, 10, the lattice N cannot be of rank 2. If k = 3, then N

would be a ternary lattice of discriminant d(N) 6 80, contradicting that
2p2 divides d(N) and 2p2 > 2 · 72. Finally, if k = 4, one would have

d(N) 6
4∏

i=1

µi(N) 6 2 · 4 · 10 · 2(p− 1) 6 160(p− 1),

contradicting the fact that p4 divides d(N) and p4 > 74. Hence L1 6= 0 if
L0 is of rank 2. This completes the proof of Lemma 5.1. �

For a Z-lattice L let denote by A(L) the set

A(L) =
{
p ∈ P | p > 5 and p divides d(L)

}
.

Lemma 5.2. — Let L be a primitive regular quaternary Z-lattice. Then

A(L) = A
(
∆(L)

)
.

Proof. — Fix a prime p > 5. We shall show that p ∈ A(L) if and only if
p ∈ A(∆(L)). The property p ∈ A(L) depends only on the p-adic structure
of L and is therefore not affected if L is replaced by ∆q(L), q 6= p. The
lattice ∆q(L) is regular if L is regular (cf. Theorem 2.11). Hence we can
assume without loss of generality that Lq is q-universal for q > 2, q 6= p,
and L2 is 2Z2-universal. In particular, ∆p(L) = ∆(L).

If L is p-universal, then L = ∆(L) and there is nothing further to prove.
Assume therefore that L is not p-universal. Then, by Lemma 5.1,

Lp ' L0 ⊥ pL1 ⊥ p2M,

where L0 and L1 are unimodular Zp-lattices.
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By Proposition 2.1 (ii)

Λp(Lp) ' p2L0 ⊥ pL1 ⊥ p2M and δp(Lp) ' pL0 ⊥ L1 ⊥ pM.

The Z-lattice δp(L) is regular and

ordp

(
d(L)

)
> ordp

(
d
(
δp(L)

))
> 1.

It follows that applying, if necessary, to δp(L) the operations δp, finally one
finds the smallest k > 1 such that the Z-lattice δk

p (L) will satisfy

1 6 ordp

(
d
(
δk
p (L)

))
6 2.

Such a lattice is necessarily p-universal. Thus, ∆(L) = ∆p(L) = δk
p (L), and

p divides both d(L) and d(∆(L)). �

Recall that

Up =
{
q ∈ P | q divides d(L), L ∈ Up

}
,

Dp =
{
q ∈ P | q divides d(L), L ∈ Ep

}
.

Also recall that the sets Up are known explicitly (cf. Corollary 3.7 for p > 2,
and the subsection on “Family U2” in Section 3 for p = 2).

Corollary 5.3. — For every prime number p one has

Up ⊂ Dp ⊂ Up ∪ {2, 3, 5}.

Proof. — Since Up ⊂ Ep, clearly Up ⊂ Dp. Let π(L) be the set of all
primes dividing d(L). By Proposition 2.1 (iii), for L ∈ Ep one has

π(L) = π
(
∆p(L)

)
for p > 2, and π(L) ∪ {2} = π

(
∆2(L)

)
.

Since ∆(L) = ∆(∆p(L)), by Lemma 5.2 one has that

π
(
∆p(L)

)
∪ {2, 3, 5} = π

(
∆(L)

)
∪ {2, 3, 5}.

By Theorem 2.11,
Up =

{
∆(L) | L ∈ Ep

}
.

The corollary follows. �

Later on we shall describe the sets Dp with more accuracy (cf. Theo-
rem 9.2).

Theorem 5.4. — There is a constant c, which can be computed effec-
tively, such that for every lattice L in Rp one has d(L) 6 c. In particular,
the family Rp is finite.
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Proof. — Case p > 2. Clearly, Rp = ∅ for p > 37. Define

Σ3 = {2, 5, 7, 37}, Σ5 = {2, 3, 11}, Σp = {2, 3, 5} for p > 7.

It follows from Corollaries 3.7 and 5.3 that if L ∈ Rp then Lq is q-universal
for all q ∈ P \ Σp (simply observe that Dp ⊂ Σp ∪ {p}).

Fix p > 2, and let Σp = {q0 = 2, q1, . . . , qn}. Let Ci = {1, τi}, where τi is
the smallest positive integer which is a nonsquare unit in Zqi

, i = 1, . . . , n,
and let

C0 =
{
1, 2, 3, 5, 6, 7, 10, 14

}
.

Observe that the elements of C0 represent all different eight square classes
in Q∗

2/Q∗2
2 . Let

Sp =
n∏

i=0

Ci.

For a, b in Zq we shall write a ∼ b to indicate that a = u2b for some unit
u in Zq. For every α = (α0, . . . , αn) in Sp let aα, bα, cα and dα be positive
integers such that:

(i) aα ∼ bα ∼ pcα ∼ pdα ∼ αj in Zqj
for j = 0, . . . , n;

(ii) aα, bα, pcα, pdα represent different square classes in Q∗
p/Q∗2

p .

Observe that the integers aα, bα, cα, dα depend only on p, and can be
computed effectively.

Let L ∈ Rp and choose an element α = (α0, . . . , αn) in Sp such that αi

is represented by L over Zqi
, i = 0, . . . , n. Condition (i) implies that

aα, bα, pcα, pdα are represented by the genus of L. Since L is regular, L

represents these integers over Z. Condition (ii) implies that if L(x1) = aα,
L(x2) = bα, L(x3) = pcα and L(x4) = pdα, then the vectors x1, . . . , x4 are
linearly independent. Hence the successive minima µi(L) of L satisfy

4∏
i=1

µi(L) 6 aαbαcαdαp2 = sα,

and the discriminant

d(L) 6 max
{
sα | α ∈ Sp

}
is bounded by a constant which depends only on p and can be computed
effectively. (Observe that Sp = C0 × {1, 2} × {1, 2} for p > 5, and S3 =
C0 × {1, 2} × {1, 3} × {1, 2}).

Case p = 2. The set U2 is known explicitly, and U2 = {2, 3, 5, . . . , 281, 353}
contains exactly 29 primes listed in Section 3. If follows from Corollary 5.3
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that D2 = U2, and thus the m = 28 primes constituting the set

D2 \ {2} = {q1, . . . , qm} = {3, . . . , 353}

are also known explicitly. Let Ci = {1, τi}, where τi is the smallest positive
integer which is a nonsquare unit in Zqi

, i = 1, . . . , m. Let

S =
m∏

i=1

Ci,

and let A = {2, 4, 6, 10, 12, 14, 20, 28}.
For every α = (α1, . . . , αm) in S fix a sequence

Aα =
{
aα(t) | t ∈ A

}
of eight even positive integers which satisfy the following properties:

(i) aα(t) ∼ αi in Zqi , for all i = 1, . . . , m and all t ∈ A;
(ii) aα(t) ∼ t in Z2, for all t ∈ A.

Observe that for each α the elements of Aα represent all different 8 square
classes in Q∗

2/Q∗2
2 . Let L ∈ R2 and choose α = (α1, . . . , αm) in S such that

αi is represented by L over Zqi
, i = 1, . . . , m. Condition (i) implies that

every element in Aα is represented by the genus of L, and thus by L itself, L

being regular. If {xt | t ∈ A} are the vectors in L such that L(xt) = aα(t),
then condition (ii) implies that the sublattice of L generated by these eight
vectors is of rank 4. As above, it follows that

d(L) 6 max
{ ∏

t∈A

aα(t)
∣∣∣∣ α ∈ S

}
.

Thus d(L) is bounded by a constant which is independent of L and can be
computed effectively. �

6. Families Rp, 17 6 p 6 37

In this section we shall study in more detail the families Rp of all prim-
itive regular p-universal p-anisotropic quaternary Z-lattices for p in P ∗ =
{17, 19, 23, 29, 31, 37}, and we shall determine explicitly all their elements.
As proved earlier, Rp = ∅ for p > 37. We shall prove below that for p ∈ P ∗

one has Rp = Up. Recall that Up is the family of all p-anisotropic even-
universal quaternary Z-lattices. These families were studied in Section 3.
In particular it was shown that

Up =

{
{G(p)} if p ∈ {17, 19, 29, 37},
{G(p), G′(p)} if p ∈ {23, 31},
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where the lattices G(p) and G′(p) are defined in Section 3 (cf. Theorem 3.2).
One has d(G(p)) = p2 and d(G′(p)) = 4p2. In Section 7 we shall give some
important applications of Theorem 6.1. The equality Rp = Up is no longer
valid for p < 17 (cf. Section 8).

Theorem 6.1. — For p ∈ P ∗ one has Rp = Up.

It follows immediately from this theorem that for p ∈ P ∗ the invari-
ants αp and the sets Ap, defined in the Introduction, are as follows:

α17 = α19 = α29 = α37 = 1, α23 = α31 = 2,

A17 = A19 = A29 = A37 = {1}, A23 = A31 = {1, 4}.

Before proving Theorem 6.1 we need some preparation.

Lemma 6.2. — Let L ∈ Rp for some p ∈ P ∗. Then

∆(L) = ∆5

(
∆3

(
∆2(L)

))
.

Proof. — By Theorem 2.11, ∆(L) is in Up. Since p ∈ P ∗, one has
d(∆(L)) = p2 or 4p2. Hence, by Lemma 5.2, all primes dividing d(L) are
contained in {2, 3, 5, p}. In particular, L is q-universal for all q 6= 2, 3, 5
and ∆(L) = ∆5(∆3(∆2(L))). �

Lemma 6.3. — Let L ∈ Rp for some p ∈ P ∗. Then ∆(L) = ∆3(∆2(L)).

Proof. — Let denote ∆3(∆2(L)) = L(2, 3). By Lemma 6.2 we only have
to show that L(2, 3) is 5-universal. The lattice L(2, 3) is regular, p-anisotropic,
2Z2-universal and q-universal for every odd prime q 6= 5. Moreover, since
d(∆(L)) is not divisible by 5, L(2, 3)5 is of the form H ⊥ 52M , where H

and M are the Z5-lattices and H is unimodular.
Suppose that L(2, 3) is not 5-universal. Then we may assume that

L(2, 3)5 ' 〈ε〉 ⊥ 52M or L(2, 3)5 ' 〈1, 2〉 ⊥ 52N,

where ε is a unit in Z5, and M and N are the Z5-lattices.
Consider first L(2, 3)5 ' 〈ε〉 ⊥ 52M . If ε is a square (resp. nonsquare)

unit in Z5, then L(2, 3) represents the numbers 4 and 6 (resp. 2 and 12).
Then one has for the successive minima µi

µ1(L(2, 3)) 6 4 (resp. 2), µ2(L(2, 3)) 6 6 (resp. 12).

Hence L(2, 3) contains a binary sublattice of discriminant at most 24, con-
tradicting the fact that, in the case under consideration, the discriminant
of any binary sublattice of L(2, 3) is divisible by 25.
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In the second case, i.e., if L(2, 3)5 ' 〈1, 2〉 ⊥ 52N , the lattice L(2, 3)
represents 2 and 4. Hence L(2, 3) contains at least one of the following
binary Z-lattices [ 2 0

0 2

]
,

[ 2 1
1 2

]
,

[ 2 1
1 4

]
,

[ 2 0
0 4

]
.

The smallest even positive integers not represented by the first three lattices
are, respectively, 6 , 4, 6. The number 6 is represented by L(2, 3)5 and thus
by L(2, 3) itself. The smallest even positive integer not represented by 〈2, 4〉
is 10, but 10 is not necessarily represented by L(2, 3)5. On the other hand,
14 is represented by L(2, 3)5, and thus by L(2, 3). Hence

µi(L(2, 3)) 6 ni,

where n1 = 2, n2 = 4, n3 = 14. Therefore L(2, 3) contains a ternary
sublattice whose discriminant is not exceeding 2 · 4 · 14 = 112, contrary to
the property that, in the case under consideration, the discriminant of any
ternary sublattice of L(2, 3) is divisible by 25p.

It follows that L(2, 3) is 5-universal and ∆(L) = ∆3(∆2(L)). �

Lemma 6.4. — Let L ∈ Rp for some p ∈ P ∗. Then ∆(L) = ∆2(L).

Proof. — It follows from Lemma 6.3 that we only have to show that
∆2(L) is 3-universal. Let denote ∆2(L) = L(2). The lattice L(2) is regu-
lar p-anisotropic 2Z-universal and q-universal for every odd q 6= 3. Since
d(∆(L)) is not divisible by 3, L(2)3 is of the form H ⊥ 32M , where H

and M are the Z3-lattices and H is unimodular.
Suppose that L(2) is not 3-universal. Then we may assume that

L(2)3 ' 〈ε〉 ⊥ 32M or L(2)3 ' 〈1, 1〉 ⊥ 32N,

where ε = 1 or 2, and M , N are the Z3-lattices.
Consider first L(2)3 ' 〈ε〉 ⊥ 32M . If ε = 1 (resp. 2), then 4 and 10 (resp. 2

and 14) are represented by L(2). Since in the case under consideration the
discriminant of any binary sublattice of L(2) is divisible by 9, it follows
easily that L(2) contains a primitive sublattice isometric to

B =
[ 4 2
2 10

] (
resp.

[ 2 1
1 14

])
.

For example, to show that L(2) contains the first of these lattices, one
observes that 2, 6, 8 are not represented by L(2) if ε = 1. Then L con-
tains

[
4 a
a b

]
, for some a = 0, 1, 2, and b = 4 or 10. But the cases b = 10

and a = 0, 1 or b = 4, are excluded by the discriminant condition. The
number 22 (resp. 20) is represented by L(2), but not by B, which implies
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by Lemma 3.3 that L(2) contains a ternary sublattice whose discriminant
is not exceeding 36 ·22 (resp. 27 ·20). This however is not possible, because
the discriminant of any ternary sublattice of L(2) is, in the present case,
divisible by 34p. Hence L(2) is necessarily 3-universal in this case.

If L(2)3 ' 〈1, 1〉 ⊥ 32N , the numbers 2 and 4 are represented by L(2).
Hence L(2) contains a binary sublattice isometric to one of the following
lattices

B1 =
[ 2 0
0 2

]
, B2 =

[ 2 1
1 4

]
, C =

[ 2 1
1 2

]
, D =

[ 2 0
0 4

]
.

Since 14 (resp. 10) is not represented by B1 (resp. B2), but 14 and 10 are
both represented by L(2), it follows by Lemma 3.3 that if L(2) contains
B1 or B2 then L(2) contains a ternary sublattice T with d(T ) 6 70, in
contradiction to the property that d(T ) is divisible by 9p. On the other
hand, the lattices C and D are isometric over Z3 to, respectively, 〈1, 3〉
and 〈1,−1〉. But neither 〈1,−1〉, which is 3-universal, nor 〈1, 3〉 embeds
in L(2)3. It follows that none of these 4 binary lattices can be contained
in L(2).

Therefore L(2) is 3-universal and thus ∆(L) = ∆2(L). �

In the next results of this section we shall use the following six quaternary
Z2-lattices:

K(1) = 〈1, 3〉 ⊥ 2A, K(2) = A ⊥ 4A, K(3) = 〈1, 3〉 ⊥ 〈4, 12〉,
K(4) = 〈1, 28〉 ⊥ 2H, K(5) = 〈3, 20〉 ⊥ 2H, K(6) = 〈8, 24〉 ⊥ A.

Lemma 6.5. — Let K be a primitive quaternary Z2-lattice such that
δ2(K) ' A ⊥ A. Then K is either 2-universal or 2Z2-universal or K ' K(i)
for some i ∈ {1, 2}.

Proof. — Assume that K is neither 2-universal nor 2Z2-universal. Con-
sider first the case when K is an odd lattice. Let r0 be the rank of the
unimodular component of K. Clearly, r0 6 3. Let ε and εi denote a unit
in Z2.

If r0 was 1, then K ' 〈ε〉 ⊥ 2` for some ternary Z2-lattice ` and

Λ2(K) ' 〈4ε〉 ⊥ 2`,

contradicting the assumption that δ2(K) ' A ⊥ A.
If r0 was 3, then K ' N ⊥ 〈ε, 2a〉, where N ' A or H and a ∈ Z2. But

then δ2(K) ' N ⊥ 〈4ε, 2a〉, contradicting again the assumption δ2(K) '
A ⊥ A.

ANNALES DE L’INSTITUT FOURIER



ALMOST REGULAR QUATERNARY QUADRATIC FORMS 1537

Therefore r0 = 2 and K ' 〈ε1, ε2〉 ⊥ 2`, for some binary Z2-lattice `. It
follows that

δ2(K) ' δ2(〈ε1, ε2〉) ⊥ `,

which implies that either

〈ε1, ε2〉 ' 〈1, 3〉 and ` ' A, or 〈ε1, ε2〉 ' 〈1,−1〉 and ` ' H.

Since 〈1, 3〉 ⊥ 2A ' 〈1,−1〉 ⊥ 2H, the lemma follows for K odd.
If K is even, then K ' A ⊥ ` for some binary even Z2-lattice `. Since

K is not 2Z2-universal, one has `(x) ≡ 0 (mod 4) for every x ∈ `. Hence
Λ4(K) ' 4A ⊥ `, which implies ` = 4A. The lemma follows. �

Lemma 6.6. — Let K be a primitive quaternary Z2-lattice such that
δ2(K) ' 〈2, 6〉 ⊥ A. Then K is either 2-universal or 2Z2-universal or
K ' K(i) for some i ∈ {3, 4, 5, 6}.

The proof of this lemma is similar to that of Lemma 6.5 and is left to
the reader.

Definition. — Let p be a prime, k, s positive integers, and B a binary
Z-lattice. A quaternary Z-lattice L is said to have property πp(k, s, B) if
the following conditions are satisfied:

1) The discriminant of any ternary sublattice of L is divisible by kp.
2) L contains a primitive sublattice isometric to B.
3) s is represented by L but not by B.

Lemma 6.7. — If sd(B) < kp, then there is no quaternary Z-lattice L

satisfying property πp(k, s, B).

Proof. — By 2), 3) and Lemma 3.3, such a lattice L contains a ternary
sublattice T with d(T ) 6 sd(B). But then 1) contradicts the assumption
sd(B) < kp. �

Lemma 6.8. — Let M be a primitive regular quaternary Z-lattice which
is q-universal for every odd prime q, and p-anisotropic for some p ∈ P ∗

(resp. p ∈ {23, 31}). Then M2 is not isometric to any K(i), i = 1, 2, 3, 4
(resp. K(i), i = 5, 6).

Proof. — The proof is divided into several cases. In each case, the as-
sumption M2 ' K(i) leads to a contradiction.

Case 1. Assume p ∈ P ∗ and M2 ' K(1) or K(3). Then M satisfies
property πp(4, 5, 〈1, 3〉), which is impossible by Lemma 6.7.
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Case 2. Assume p ∈ P ∗ and M2 ' K(2). In particular, every ternary
sublattice of M has the discriminant divisible by 8p, and d(M) is divisible
by 16p2.

(a) Since 2 and 6, but not 4, are represented by M , M contains one of
the following primitive sublattices

B1 =
[ 2 1
1 2

]
, B2 =

[ 2 0
0 6

]
, B3 =

[ 2 1
1 6

]
.

The lattices B1 and B2 are excluded, otherwise M would satisfy prop-
erty πp(8, 10, Bi), i = 1, 2, which is impossible by Lemma 6.7. As for B3,
M would have property πp(8, 14, B3) which is excluded by Lemma 6.7,
if p > 23.

(b) In the remaining two cases p = 17 and 19 we argue as follows. If
p = 17 (resp. 19), then M contains a ternary sublattice of the form

T (p) =

 2 1 a

1 6 b

a b 14

 ,

where 0 6 a 6 5 and −9 6 b 6 9 depend on p, d(T (p)) 6 14d(B3) = 154,
and d(T (17)) (resp. d(T (19))) is divisible by 8·17 = 136 (resp. 8·19 = 152).
The bounds on a and b are simply dictated by the requirement d(T (p)) > 0.
It follows that a = 0, b = ±1 for p = 17, and a = 1, b = 3 for p = 19. In
turn, this implies that d(T (p)) = 8p and that T (p) is a primitive sublattice
of M . If p = 17, the number 34 is represented by M but not by T (17).
Therefore M contains a quaternary sublattice M ′ such that

16 · 172 6 d(M) 6 d(M ′) 6 d
(
T (17)

)
· 34 = 16 · 172.

Hence M = M ′ and, by Lemma 3.3,

M = M ′ ' T (17) ⊥ 〈34〉,

contradicting the assumption M2 ' K(2) = A ⊥ 4A.
If p = 19, then the argument above is valid replacing 17 by 19, and 34

by 38.
Case 3. Assume M2 ' K(4) and p ∈ P ∗. Here every ternary sublattice T

of M has d(T ) divisible by 4p. Since 1 and 5, but not 2 and 3, are represented
by M , M contains a sublattice isometric to 〈1, 4〉. It follows that M has
property πp(4, 12, 〈1, 4〉), which is impossible by Lemma 6.7.

Case 4. Assume M2 ' K(5) and p ∈ {23, 31}. Here every ternary sub-
lattice of M has the discriminant divisible by 4p. Since 3 and 4, but not 1
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and 2, are represented by M , the lattice M contains one of the following
binary sublattices

B1 =
[ 3 1
1 3

]
or B2 =

[ 3 0
0 4

]
.

In case of B1 the lattice M would have property πp(4, 7, B1), which is
impossible. In case of B2, the number 8 is represented by M but not by B2.
Then, for p = 31, M would have property π31(4, 8, B2) which is impossible.
For p = 23 the lattice M would have a ternary sublattice of the form

T (a, b) =

 3 0 a

0 4 b

a b 8


where 0 6 a 6 4, −5 6 b 6 5. For each (a, b) 6= (1, 0) the discriminant
of T (a, b) is not divisible by 4 · 23. On the other hand, d(T (1, 0)) = 4 · 23
but the rank of the unimodular component of T (1, 0)2 is 2 in contradiction
with the assumption that M2 ' K(5) = 〈3, 20〉 ⊥ 2H.

Case 5. Assume M2 ' K(6) and p ∈ {23, 31}. The argument used in
Case 2 (a) applies to this case without modification. �

Lemma 6.9. — Let L ∈ Rp for some p ∈ P ∗. Then ∆(L) = L.

Proof. — By Lemma 6.4, ∆(L) = ∆2(L). If ∆(L) 6= L, then ∆(L) =
∆2(L) = δk

2 (L) for some minimal k > 0. Define M = δk−1
2 (L). Then M is a

primitive regular p-anisotropic Z-lattice which is q-universal for all primes
q > 2. By Lemma 6.8, for p ∈ P ∗ and i ∈ {1, 2} (resp. p ∈ {23, 31} and
i ∈ {1, . . . , 6}) the lattice M2 is not isometric to K(i), where K(1), . . . ,
K(6) are the Z2-lattices listed above Lemma 6.5.

Since ∆(L) is in Up, by Theorem 3.2 one has

∆(L) '

{
G(p) if p ∈ P ∗ \ {23, 31},
G(p) or G′(p) if p ∈ {23, 31}.

One can check easily that (G(p))2 ' A ⊥ A and (G′(p))2 ' 〈2, 6〉 ⊥ A.
It follows that

δ2(M2) = ∆2(L2) ' ∆(L)2 '

{
A ⊥ A if p ∈ P ∗ \ {23, 31},
A ⊥ A or 〈2, 6〉 ⊥ A if p ∈ {23, 31}.

Lemmas 6.5 and 6.6 imply that M2 is either 2-universal or 2Z2-universal.
However M2 cannot be 2-universal because then M would be an universal
p-anisotropic quaternary Z-lattice, and no such a lattice exists for p > 7
(cf. [2]). Thus M is 2Z2-universal and ∆(L) = δk−1

2 (L), contradicting the
assumption of the minimality of k. Hence ∆(L) = L. �
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Finally we can complete the proof of Theorem 6.1.

Proof of Theorem 6.1. — Let L ∈ Rp. By Lemma 6.9, L = ∆(L). By The-
orem 2.11, ∆(L) is in Up. The theorem follows. �

7. Criteria for almost regularity

The explicit knowledge of all lattices in Rp for p ∈ P ∗ allows us to
formulate a very simple and effective description of all genera containing
some primitive p-anisotropic almost regular quaternary Z-lattice.

Theorem 7.1. — Let p ∈ {17, 19, 29, 37} (resp. p ∈ {23, 31}). For any
primitive p-anisotropic quaternary Z-lattice L the following properties are
equivalent:

(i) The genus of L contains some almost regular lattice.
(ii) The lattice L is even and d(L) = p2n (resp. d(L) = p2n, or d(L) =

4p2n and L2 ' A ⊥ 〈2, 6〉) for some integer n > 1.

Proof. — (i) ⇒ (ii) Without loss of generality we may assume that
L ∈ Ep. One has d(L) = kp2n, where k and p are relatively prime, and
n > 1. By Theorem 1.3, Lq ' Gq for some G ∈ Rp and all q 6= p. It follows
that k = d(G)/p2. If p ∈ {17, 19, 29, 37} (resp. p ∈ {23, 31}), then by The-
orem 6.1, d(G) = p2 (resp. d(G) = p2 or 4p2). Furthermore, if d(G) = 4p2

then L2 ' G2 ' A ⊥ 〈2, 6〉. Finally, since for p ∈ P ∗ all lattices in Rp = Up

are even, and L2 ' G2, the lattice L is even.
(ii) ⇒ (i) By Theorem 6.1, if G ∈ Rp then Gq ' x2

1 + · · · + x2
4 over Zq

for all q 6= 2, p, and G2 ' A ⊥ A (if d(G) = p2), or G2 ' A ⊥ 〈2, 6〉
(if d(G) = 4p2). If d(L) = p2n or 4p2n, then clearly Lq ' x2

1 + · · · + x2
4

over Zq for all q 6= 2, p. Since L is even and p-anisotropic, if d(L) = p2n

then necessarily L2 ' A ⊥ A. If d(L) = 4p2n then L2 ' A ⊥ 〈2, 6〉 by
assumption. In either case, Lq ' Gq for some G in Rp and all q 6= p. It
follows from Theorem 1.3 that the genus of L contains some almost regular
lattice. �

The sets Ωp ⊂ 2Z, p ∈ P ∗, intervening in the next theorem are defined in
the Introduction. We shall also use the lattices G(p) and G′(p) defined in
Section 3 (cf. Theorem 3.2), and the invariant s(L, p) defined in Section 4.
Recall that s(L, p) is a nonnegative integer which depends only on Lp and
can be effectively computed. The next result gives effective criteria for
almost regularity of p-anisotropic quaternaries for p ∈ P ∗.
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Theorem 7.2. — Let p ∈ P ∗. For any primitive p-anisotropic quater-
nary Z-lattice L the following properties are equivalent:

(i) L is almost regular.
(ii) One has

∆p(L) '

{
G(p) if p ∈ {17, 19, 29, 37},
G(p) or G′(p) if p ∈ {23, 31}.

(iii) L is even and represents all positive integers divisible by 2ps(L,p).
(iv) L is even and represents all elements of the set ps(L,p)Ωp.

Proof. — (i) ⇔ (ii) follows from Theorems 4.2, 6.1 and 3.2.
(i) ⇒ (iii). By Theorem 4.2, ∆p(L) is in Rp, and by Theorem 6.1, ∆p(L)

is even-universal. Hence L is even and, by Corollary 4.4 (ii), L represents
all positive integers divisible by 2ps(L,p).

(iii) ⇒ (iv) is obvious.
(iv) ⇒ (i). Since L is even, ∆p(L) is also even and, by Corollary 4.4

(ii), ∆p(L) represents all elements in Ωp. By Theorem 3.2, ∆p(L) is even-
universal. In particular ∆p(L) is in Rp and L is almost regular by Theo-
rem 4.2. �

Theorem 7.2 does not extend to primes p 6 13. For p 6 7 there exist
odd p-anisotropic almost regular quaternaries. But the reason for failure is
deeper. Even if we disregard odd lattices, the implication (i) ⇒ (iii) is not
valid for all even lattices in Ep if p 6 13. Indeed, (iii) implies that every
even lattice in Rp is even-universal, which is not the case if p 6 13 (cf.
Theorem 8.1). We conjecture that the equivalence (i) ⇔ (iv) is not valid
either for p 6 13 and any set Sp in place of Ωp (even if we consider only
even lattices). A counterexample for p = 2 is given below.

Counterexample 7.3. — There is no set S ⊂ Z (finite or infinite)
such that the following statement holds true:

Statement A. — For any even primitive 2-anisotropic quaternary Z-
lattice L the following properties are equivalent:

(i) L is almost regular.
(ii) L represents all integers in the set 2s(L,2)S.

Since ∆2(L) ' A ⊥ 2A, the statement above is equivalent, by Corollary 4.4
(ii), to the following one:

Statement A′. — Any primitive quaternary Z-lattice L, with L2 ' A ⊥
2A, is regular if and only if L represents all elements in S.
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Assume that A′ holds true for some S necessarily contained in 2Z. We
claim that m ∈ S, for some integer m with m 6≡ 0 (mod 18). Indeed,
consider the Z-lattice H = A ⊥ 18A. Clearly H2 ' A ⊥ 2A. Since H

contains 9(A ⊥ 2A), H represents all positive integers divisible by 18. The
lattice H is not regular because 20 which is represented by the genus of H is
not represented by H. Hence S must contain an integer not divisible by 18.
We shall show that this is not possible. Let M and M ′ be the Z-lattices
corresponding to the quadratic forms

M = 4x2 + 10y2 + 10z2 + 10t2 + 4xy + 4xz + 4xt + 2yz + 2yt + 2zt,

M ′ = 2x2 + 14y2 + 14z2 + 14t2 + 2xy + 2xz + 2xt + 10yz + 10yt− 8zt.

Observe that d(M) = d(M ′) = 22 · 36, M and M ′ are primitive, M2 '
M ′

2 ' A ⊥ 2A. One can check that the class number of M and M ′ is 1.
In particular, M and M ′ are regular. Since M3 ' 〈1, 32, 32, 32〉 and M ′

3 '
〈2, 32, 32, 2 · 32〉, it follows that any integer represented simultaneously by
M3 and M ′

3 is divisible by 9. Hence any integer represented by M and M ′

is divisible by 18, and S ⊂ 18Z. Therefore S does not exist. �

However we conjecture that for each p 6 13 there is a finite collection
Ω1,p, . . . , Ωnp,p of finite sets of positive integers such that a primitive
p-anisotropic quaternary Z-lattice L is almost regular if and only if L rep-
resents all elements in ps(L,p)Ωi,p, for some i.

Here we shall prove only a weaker result. The sets Ω3, . . . , Ω13 intervening
in the next proposition are defined in Section 3 (cf. Theorem 3.6).

Proposition 7.4. — Let L be a primitive p-anisotropic quaternary Z-
lattice, 3 6 p 6 13. Then the following properties are equivalent:

(i) L is almost regular, 2Z2-universal and q-universal for all q 6= 2, p.
(ii) ∆p(L) is in Up.
(iii) L is even and represents all elements in ps(L,p)Ωp.

Proof. — (i)⇔(ii) follows from Proposition 2.1 (iii) and Theorem 4.2.
(ii)⇔(iii) follows from Theorem 3.6 and Corollary 4.4 (ii). �

Proposition 7.5. — For any primitive 2-anisotropic quaternary Z-lattice
L the following properties are equivalent:

(i) L is almost regular and q-universal for all q > 2.
(ii) ∆2(L) ∈ U2.
(iii) L represents all elements of the set 2s(L,2)Ω2, where

Ω2 =
{
2, 4, 6, 10, 12, 14, 20, 28

}
.
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Proof. — (i) ⇔ (ii) follows from Proposition 2.1 (iii) and Theorem 4.2.
(ii) ⇔ (iii) follows from Corollary 4.4 (ii) and Theorem 3.1 in [4] which

says that a Z-lattice M with M2 ' A ⊥ 2A is even-universal if and only if
M represents all elements in Ω2. �

Example 7.6. — For every n > 0 the form fn = x2 + y2 + z2 + 4nt2 is
regular, 2-anisotropic and q-universal for all q > 2. The last two properties
are obvious. Let n > 1. Let An be the set of all integers represented by the
genus of fn, let B be the set of all integers represented by x2 + y2 + z2,
and let Cn =

{
4s(8k + 7) | s > n − 1, k > 0

}
. Clearly, An = B ∪ Cn. To

show that fn is regular it suffices to show that fn represents every number
of the type 4n−1(8k + 7), k > 0. The equation

4n−1(8k + 7) = x2 + y2 + z2 + 4n

is equivalent to
4n−1(8k + 3) = x2 + y2 + z2,

which is solvable in integers. The regularity of fn follows. �

8. Families Rp, 2 6 p 6 13

We have seen in Section 6 that for all p > 17 one has Rp = Up. This is
no longer true for p < 17.

Theorem 8.1. — For each prime p 6 13 there is an even lattice H(p)
in Rp which is not even-universal.

The lattices H(p) will by defined explicitly below.

Family R13. This family contains at least 5 elements, namely the 4 lattices
of U13 and another lattice H(13) defined by

H(13) =
[ 4 1
1 10

]
⊥ 〈6, 78〉,

which is not even-universal.

Proposition 8.2. — The lattice H(13) is in R13, but is not 3-universal.

Proof. — One sees easily that for H = H(13) one has d(H) = 22 ·33 ·132

and

H2 ' H ⊥ 〈6, 14〉, H3 ' 〈1, 3, 3, 3〉 and H13 ' 〈1,−2, 13,−26〉.

It follows that H is 13-anisotropic, q-universal for every prime q > 5 and
2Z2-universal. Clearly, H is not 3-universal.
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Checking that H is regular is much more delicate. It consists in showing
that every positive integer not of the form 6k + 2 is represented by H.

Since

H '
[ 4 3
3 12

]
⊥ 〈6, 78〉,

it follows that

Λ3(H) '
[ 36 9

9 12

]
⊥ 〈6, 78〉,

which implies that

δ3(H) =
1
3
Λ3(H) '

[ 4 1
1 10

]
⊥ 〈2, 26〉

is even-universal (cf. Section 3, Table (13)). Then any even positive integer
2m is represented by δ3(H), which implies that any 6m is represented by
Λ3(H) ⊂ H. It suffices therefore to show that every positive integer of the
form 6m + 4 is represented by H. One easily shows that

δ13(H) ' 1
13

Λ13(H) ' H.

Hence, if a number k is represented by H, then 13k is represented by
Λ13(H), and thus by H. Consequently, it suffices to prove that H represents
every positive integer of the form 6m + 4 which is not divisible by 13. Now
the regularity of H follows from the next lemma. �

Lemma 8.3. — The ternary Z-lattice

` =
[ 4 1
1 10

]
⊥ 〈6〉

represents every integer in the set

U =
{
n ∈ Z | n > 0, n ≡ 4 (mod 6), n 6≡ 0 (mod 13)

}
.

Sketch of the proof. Let `′ be a ternary Z-lattice defined by its Gram matrix

`′ =

 4 1 1
1 4 1
1 1 16

 .

The lattices ` and `′ are not isometric and the genus of ` is {`, `′}. The
lattice ` is not regular (` does not represent 138 which is represented by
its genus). It is easy to see that any number in U is represented by the
genus of `, that is, either by ` or `′. To prove the lemma it suffices therefore
to show that if ξ ∈ U is represented by `′ then ξ is also represented by `.
However this part of the proof is quite long and will be omitted. �

ANNALES DE L’INSTITUT FOURIER



ALMOST REGULAR QUATERNARY QUADRATIC FORMS 1545

Family R11. This family contains at least 3 elements. There are exactly
two lattices in R11 which are even-universal. But there is also a lattice
H(11) = B ⊥ 4B, where

B =
[ 2 1
1 6

]
,

which is not even-universal.

Lemma 8.4. — The lattice H(11) is in R11, but is not 2Z2-universal.

Proof. — Let denote H(11) = H. Since H11 ' 〈1, 1, 11, 11〉 and H2 '
A ⊥ 4A, the lattice H is 11-anisotropic, 11-universal, but is not 2Z2-
universal. We have to show that H is regular. Consider the lattice M =
B ⊥ B which is even-universal (cf. Theorem 3.6). The ternary sublattice
T = B ⊥ 〈8〉 of M is regular, though its class number is 2 (cf. [11]). The
lattice T2 represents every element b ∈ 2Z2 such that ord2(b) 6= 2, and
Tq is q-universal for every odd prime q 6= 11. Since T11 ' 〈1, 1,−11〉, T

represents every even positive integer b 6≡ 4 (mod 8), except integers of the
form 112n+1u, where n and u are nonnegative integers, and u is a square
unit in Z11.

Let e1, . . . , e4 be a basis of H corresponding to the matrix B ⊥ 4B. Since
the sublattice Z2e1+Z2e2+Ze3+Ze4 of H is isometric to 4B ⊥ 4B = 4M ,
H represents every positive integer divisible by 8. Hence if we show that
every positive integer of the form 2(2s + 1) is represented by H, then H is
regular. Furthermore, since T is also a sublattice of H, it suffices to show
that every integer of the form

v(n, m, k) = 112n+1(44m + k),

where n, m are nonnegative integers and k = 14, 26, 34, 38, 42, is repre-
sented by H.

Let N = Ze1 + Ze2 + Ze3 + Z(e3 − 2e4) be a sublattice of H. Then
N ' T ⊥ 〈88〉. Hence if v(n, m, k) − 88c2 is represented by T for some
integer c, then v(n, m, k) is represented by H.

Let rk = 8 (resp. 32) if k = 14, 26, 38 (resp. k = 34, 42). Then 112n+1rk

is of the form 88c2 and

β = v(n, m, k)− 112n+1rk = 112n+1(44m + k − rk)

is of the form β = 112n+1t, where t is a nonsquare unit in Z11, and 1
2β

is odd. It follows that β is represented by T and therefore v(n, m, k) is
represented by H, which completes the proof. �

Families R3, R5 and R7. These families contain, respectively, 12, 14 and 4
even-universal lattices (cf. Theorem 3.6). Furthermore, there is a single
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universal lattice in each of R3 and R7, and there are two in R5 (cf. [2]).
Each Rp, p = 3, 5, 7, also has at least one even lattice H(p) which is not
even-universal. They are H(3) = A ⊥ 4A,

H(5) =
[ 4 1
1 4

]
⊥ 3

[ 4 1
1 4

]
and H(7) =


2 1 1 0
1 6 −1 2
1 −1 6 2
0 2 2 16

 .

One can easily verify that H(p) is p-universal and p-anisotropic. If p = 3
or 7 then H(p)2 ' A ⊥ 4A, so neither H(3) nor H(7) is 2Z2-universal. The
regularity of H(3) and H(7) follows from the fact that each of them is single
in its genus. Since H(5)3 ' 〈1, 3, 6, 18〉, the lattice H(5) is not 3-universal.
The question of its regularity is more delicate, because the genus of H(5)
contains two lattices. It requires a computation similar to that given above
for H(11) and will be omitted. �

Family R2. — This family consists of all primitive regular quaternaries L

such that L2 ' A ⊥ 2A. Among them there are 79 lattices of the family U2

mentioned in Section 3 and listed in [4]. The set R2 \ U2 is certainly quite
large. Two examples of the lattices M and M ′ which are in R2 \ U2 were
given in Counterexample 7.3. The invariant α2 is at least 67, but probably
much bigger. �

Solving the following problem would be of great interest.

Open problem. — Determine all elements of Rp, p 6 13.

9. Discriminants of almost regular quaternary lattices

In this section we shall study the discriminants of the lattices in Ep.

Theorem 9.1. — For each prime p there is a finite set Ap of integers
relatively prime to p, such that an integer d is the discriminant of a primitive
almost regular p-anisotropic quaternary Z-lattice if and only if d = rp2n

for some r ∈ Ap and some integer n > 1 (if p > 2), and n > 0 (if p = 2).

Proof. — Theorem 1.3 implies that

Ap =
{d(L)

p2

∣∣ L ∈ Rp

}
,

which is finite, and bounded by an effective constant (cf. Theorem 5.4). �
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We have seen that Ap = {1} for p = 17, 19, 29, 37, and Ap = {1, 4} for
p = 23, 31 (cf. Theorem 6.1). Clearly, Ap = ∅ for p > 37. The list of all
elements of Ap for the remaining 6 primes p 6 13 is not known. However,
from the next two results we can get some idea about the shape of Ap for
these values of p.

Recall that Dp = {q ∈ P | q divides d(L), L ∈ Ep} and that the set

U2 =
{
q ∈ P | q divides d(L), L ∈ U2

}
=

{
2, 3, 5, . . . , 281, 353

}
contains exactly 29 primes which are listed at the beginning of Section 3.
Let D =

⋃
Dp be the set of all primes dividing the discriminant of some

primitive exceptional almost regular quaternary Z-lattice.

Theorem 9.2. — One has

D = D2 = U2 = {2, 3, 5, . . . , 281, 353}.
D3 = {2, 3, 5, 7, 37}, D5 = {2, 3, 5, 11},
{2, p} ⊂ Dp ⊂ {2, 3, 5, p} for p = 7, 11,

{2, 3, 13} ⊂ D13 ⊂ {2, 3, 5, 13},
Dp = {2, p} for p = 23, 31,

Dp = {p} for p = 17, 19, 29, 37.

Proof. — Since by Corollary 5.3 one has

Up ⊂ Dp ⊂ Up ∪ {2, 3, 5},

the theorem follows from the direct inspection of the sets Up, which are
known explicitly (cf. Corollary 3.7 for p > 3). �

Proposition 9.3. — For a primitive almost regular p-anisotropic qua-
ternary Z-lattice L at most one prime greater than 5 divides d(L) if p > 2,
and at most 2 if p = 2.

Proof. — By inspecting the list of the discriminants d(L) for L in Up

(cf. Section 3 for p > 2, and Table 4 in [4] for p = 2), one sees that
the proposition is valid for L in Up. Let π(L) be the set of all primes
dividing d(L). By Lemma 5.2 and Proposition 2.1 (iii), for L in Ep one has

π(L) ⊂ π
(
∆(L)

)
∪ {2, 3, 5}.

Since ∆(L) is in Up, the proposition follows. �

Corollary 9.4. — Let ξp be the maximal number of primes dividing
the discriminant of some lattice in Ep. Then ξp = 1 for p = 17, 19, 29, 37;
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ξp = 2 for p = 23, 31; 3 6 ξp 6 4 for p = 3, 5, 13; 2 6 ξp 6 4 for p = 7, 11,
and 4 6 ξ2 6 5.

Proof. — For p 6 13 the upper bound for ξp follows from Proposition 9.3,
and the lower bound from the direct inspection of the discriminants of the
lattices in Up. For p > 13, the corollary follows from Theorem 7.1. �
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