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ON RESTRICTED MEASURABILITY

by A. K. MOOKHOPADHYAYA

1. Introduction and Definitions.

The purpose of the present paper is to study some proper-
ties of the restricted measurability [5] and to show that
a Radon measure similar to that of [4] can be constructed
with the help of the notion of the restricted measurability.
Before we go into details, we write out, for the sake of comple-
teness, a few definitions and notations some of which are
borrowed from the above papers and the standard texts
such as Halmos [1] and Kelley [2].

1.1. DEFINITION. — (x is a measure (Caratheodory) on X
if ̂  is a function on the family of all subsets of X to 0 <^ ( ̂  oo
such that

(i) fx(0) = 0
oo °°

(ii) 0 < pA < S t^Bn, whenever A c [^j B, c X.
»==1 re==l

1.2. DEFINITION. — A c X is [/.-measurable if for e^eryT c X

piT == [JL(T n A) + ^(T - A)

where p. is a measure on X.

1.3. DEFINITION. — A partition is a finite or infinite dis-
joint sequence ^ E i j of sets such t h a t t J E ( == X.

i
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1.4. DEFINITION. — A partition jE.j is called a ^.-partition
if

(^A = S (X(A n E.)
1=1

for every A in X and where a 15 a measure on X.

1.5. DEFINITION. — If ^ is a measure on X, then a parti-
tion ^E^ is called a [^-partition F if for every E of F

pi(TE) = 1 p.(TE n E,) whenever T c X.
i==l

1.6. DEFINITION. — If [E,} and |F^ are partitions, then
JE^ i$ called a subpartition of |F^ i/" each E; 15 contained
in some Fy.

1.7. DEFINITION. —- A set E 15 a pi-set if the partition ^E, E7 {
15 a ^-partition.

1.8. DEFINITION. — A se( D is a pi-se( F i/* the partition
|D, D' ^ is a ^partition F.

1.9. DEFINITION. — A is ^-measurable F i/* pi is a measure
and, for each member JL of ¥

[X(TE) = (X(TE n A) + pi(TE ~ A)

whenever T c X.

1.10. DEFINITION. — F is [^-convenient if pi is a measure,
F is hereditary, and corresponding to each T of finite pi measure

( 00 \

there exists such a sequence C that pi T ~ [ J C,) == 0 and
y==o /

/or each integer n, C^ c C^+i e F and C^ is a pi-s<°( F.

1.11. DEFINITION. — Sect (pi, B) is the function f on the subsets
of X such that /*(a) = pi(aB) /or a c X.

1.12. DEFINITION. — If p metrizes X, then

dist (A, B) == inf ^p(a;, i/)$ xe A., y e Bj .
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1.13. DEFINITION. — If X 15 a topological space, then pi
is a Radon measure on X if pi 15 a measure and

(i) open 5e(5 are ^-measurable
(ii) i/* C is compact, then piC < oo
(iii) if a 15 open, then p.a = sup^aC; C compact, C c a ^
(iv) i/' A c X, (Aen (J.A == infipia, a open, A c a ^ .

1.14. DEFINITION. — (D, <) is a directed set if D ̂  0,
D 15 partially ordered by < 5ucA ^W /br am/ i, / e D, (Aere
ea;i5(5 k e D wi(/i i <^ k, / < /c.

L^ X be a regular topological space', 3i be a base for the
topology, (D, <) fee a directed set and for each i e D, pi; &^
a Radon measure on X.

For each a e 9^, fct
^

g(a, E) = -.—_ Sect (^, E)a wAere E 15 a member of F.

L^ 9(A, E) = infj S g(a, E); H countable, H c 93, A c [ j a^
(aeH -̂̂  ^

anrf y*(A, E) = inf sup 9(6, E) where A c X.
a open C compact
Aca CCa

Then 9 is a measure on X generated by g and S> [3].

2. Theorems and Corollaries.

2.1. THEOREM. — Product of two ^-partitions F 15 a ^par-
tition F.

Proof. — Let {E^ and |F^ be two a-partitions F, then
for every E of F

(X(TE) = 1 pi(TE n E,) and pi(TE) = ^ pi(TE n F,)
*=l i=l

whenever T c X.
Since

S ^(TE n E, n F,) = S g S ^-(TEF, n E,) j

== S t^(TE n F,)
-t^TE),

the proof is complete.
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2.2. THEOREM. — If a subpartition \VA of a partition
|Eij is a ^-partition F, then |Eij is a ^-partition F.

Proof. — For T c X and any member E of F, we have

S t<TEnEO= S pTTEntljE^]
1 l j

where [_JE^ == E^ and E^ is a member of \V,\

< S S ^(TE n E,,) = p.(TE),
i J

since ^F(J is a pi-partition F. The reverse inequality is,
however, clear. This proves the theorem.

2.3. THEOREM. — A partition |Ei| is a ^.-partition F if
each E; is a y.-set F.

Proof. — Suppose that each E; is a pi-set F. Then for E
in F and T c X, we have

pi(TE) = ?L(TE n E,) + E^(TE n E,)
= (X(TE n Ei) + (JI(TE n ^uEsU ...p.

And

(x(TEn t E a u E s U ...p
== p.(TEn t E ^ u E a U . . . j n E^)
+ p.(TEn lEguEaU .. . j n E,)
== ^(TEnEg) + [^(TEn |E3uE4U ...I).

So,

(X(TE) == pi(TEnEi) + pi(TE n Eg) + [JL(TE n | E 3 u E 4 U . . . j ) .

Proceeding in this way, we ultimately obtain

pi(TE) = [<TE n Ei) + a(TE n Eg) + ... = S ^(TE n E,).
i

This proves that |Eij is a pi-partition F.
Conversely, suppose that |Eij is a pi-partition F. Then for

every E of F and T c X, we have pi(TE) = ^ [^(TE n E»).
i

Replacing T by T n IE^ u E3 u • * • j , we obtain

pi(TE n IE^ u ES u .. . ^ ) = 5 p.(TE n |Ea u E3 u • • . } n E,)

= [X(TE n E,) + p.(TE n E,) + ...
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So,
(JL(TE) = (X(TE n Ei) + t^(TE n ^uEsU ...|)

= (<TE n Ei) + t<TE nEi).

This shows that Ei is a pi-set F. Similarly, it can be shown
that each E», i ==2,3,. . . is a pi-set F.

COROLLARY. — If F is ^-convenient, then any ^.-partition F
is a [^-partition.

Proof. — Let the partition ^Ei] be a pi-partition F, then
each E, is a pi-set F. Since F is pi-convenient, by Theorem
3.4 [5], a pi-set F is a pi-set. So, each E( is a pi-set and conse-
quently the partition |Eij is a pi-partition |p. 48 [l]j.

In the following two theorems, we shall suppose that
p metrizes X.

2.4. THEOREM. — IfF is hereditary and pi(A u B) == piA + [̂ B
whenever A and B are such members of F that d{A, B) > 0,
then each open set is a y»-set F.

Proof. — This theorem is due to Trevor J. McMinn [5].

2.5. THEOREM. — If F is [/.-convenient and every open set
is a [/.-set F, then pi is a metric outer measure.

Proof. — It follows from Theorem 3.4 [5] that each open
set is a pi-set. Let A and B be two sets with d(A, B) > 0.

Let a be an open set such that A c a and a n B == 0. Then

pi(AuB) == pi(|AuB^ na) + ̂ (|AuB| ~ a)
== piA + piB.

In the following theorems, we shall suppose that X is
a regular topological space and S> be a base for the topology.

2.6. THEOREM. — If A and B are disjoint, closed compact
sets, then

9(A u B, E) == 9(A, E) + <p(B, E) for each E ofF.

Proof. — Let a and (3 be two open sets such that A c a,
B c p and a n ? = 0. This is possible, since X is regular.
If £ > 0 is arbitrary, there exists a sequence |v^ of open
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sets such that

A u B c (J v, and S g(^, E) < y(A u B, E) + e.
n "

Let v, = Vn n a and v^ = v, n (3, then Vn, v;, are open and

A=|J< B=U<.

So,
9(A, E) + 9(B, E) < S |g« E) + g« E)|

= S ^(^na,E)+g(Vnnp,E)^
n

/ c^/
v^ \ ^t Sect ((A,, E)(v, n a)= 5 ; i e D

+^Sect((x.,E)(^np)

^

^

Sect ((A;, E)v,< s
" n ( ^ D

= S g(Vn, E)

< 9"(A u B, E) + E.

Since e > 0 is arbitrary, we have

9(A, E) + y(B, E) < <p(A u B, E).

The reverse inequality is clear, because 9 is a Caratheodory
measure. This proves the theorem.

2.7. THEOREM. — For each E of F, <p* is a Radon measure
on X.

Proof. — (i) If a is any open set, by definition

9*(a, E) = sup 9(C, E) < 9(a, E).
C compact

Cca

So, for any A c X, we have

9*(A, E) = inf sup y(C, E) = inf y*(a, E)
a open C compact a open
Aca Cca Aca

< inf ©(a, E) = (p(A, E).
a open
Aca
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If C is compact and a is open, C c a, we have

9(C, E)< 9*(a, E), so 9(6, E) < y*(C, E).

Therefore, if C is compact, <p(C, E) == 9*(C, E). But, it is
clear that for any compact C, <p(C, E) < oo and hence
9*(C, E) < oo.

(ii) Let a be an open set, T c X and £ > 0 arbitrary.
Since for any A c X, y*(A, E) == inf 9*(v, E), there exists

V open
A C V

open set T, T c T and 9*(T, E) < y*(T, E) + £.
Also, 9*(a, E) == sup 9(6, E).

C compact
CCa

Therefore, since X is regular, there exists a closed compact
set Ci c T n a such that <p*(T n a, E) <; 9(Ci, E) + £• Simi-
larly, there exists a closed compact set Cg c T' ̂  Q such
that 9*(T - Ci, E) < <p(C,, E) + s.

So,

9*(T n a, E) + y*(T - a, E)
< 9*(T n a, E) + 9*(T - C,, E)
< 9(C,, E) + 9(^2, E) + 26
= 9*(Ci u Cg, E) + 2e, by Theorem 2.6
< 9*(T, E) + 2e
< 9*(T, E) + 3£.

Since £ > 0 is arbitrary, this shows that a is 9*-measurable.
The other properties are evident. This proves the theorem.

2.8. THEOREM. — If A and B are sets of which any one of
them is open and A n B = 0, then

y*(A u B, E) = 9*(A, E) + y*(B, E) for each E of F.

Proof. — Let A be open and so it is 9*-measurable. Hence

9*(AuB, E) = 9 * t ( A u B ) n A , E| + 9* | (AuB) — A, Ej
= 9*(A, E) + 9*(B, E).

2.9. THEOREM. — J/*X is a metric space, then 9* is a metric
outer measure.
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Proof. — This is clear.
In conclusion, I offer my best thanks to Dr. B. K. Lahiri

of Calcutta University for his helpful guidance in the prepara-
tion of this paper.
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