A. K. MOOKHOPADHYAYA On restricted measurability

Annales de l'institut Fourier, tome 16, nº 2 (1966), p. 159-166 <http://www.numdam.org/item?id=AIF_1966__16_2_159_0>

© Annales de l'institut Fourier, 1966, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 16, 2 (1966), 159-166.

ON RESTRICTED MEASURABILITY

by A. K. MOOKHOPADHYAYA

1. Introduction and Definitions.

The purpose of the present paper is to study some properties of the restricted measurability [5] and to show that a Radon measure similar to that of [4] can be constructed with the help of the notion of the restricted measurability. Before we go into details, we write out, for the sake of completeness, a few definitions and notations some of which are borrowed from the above papers and the standard texts such as Halmos [1] and Kelley [2].

1.1. DEFINITION. — μ is a measure (Carathéodory) on X if μ is a function on the family of all subsets of X to $0 \leq t \leq \infty$ such that

(i)
$$\mu(0) = 0$$

(ii) $0 \leq \mu A \leq \sum_{n=1}^{\infty} \mu B_n$, whenever $A \subset \bigcup_{n=1}^{\infty} B_n \subset X$.

1.2. DEFINITION. — A \subset X is μ -measurable if for every T \subset X

$$\mu T = \mu(T \cap A) + \mu(T \sim A)$$

where μ is a measure on X.

1.3. DEFINITION. — A partition is a finite or infinite disjoint sequence $\{E_i\}$ of sets such that $\bigcup_i E_i = X$.

1.4. DEFINITION. — A partition $\{E_i\}$ is called a μ -partition if

$$\mu \mathbf{A} = \sum_{i=1}^{\infty} \mu(\mathbf{A} \cap \mathbf{E}_i)$$

for every A in X and where μ is a measure on X.

1.5. DEFINITION. — If μ is a measure on X, then a partition $\{E_i\}$ is called a μ -partition F if for every E of F

$$\mu(TE) = \sum_{i=1}^{\infty} \mu(TE \cap E_i) \quad \text{whenever} \quad T \subset X.$$

1.6. DEFINITION. — If $\{E_i\}$ and $\{F_j\}$ are partitions, then $\{E_i\}$ is called a subpartition of $\{F_j\}$ if each E_i is contained in some F_j .

1.7. DEFINITION. — A set E is a μ -set if the partition {E, E'} is a μ -partition.

1.8. DEFINITION. — A set D is a μ -set F if the partition $\{D, D'\}$ is a μ -partition F.

1.9. DEFINITION. — A is μ -measurable F if μ is a measure and, for each member E of F

$$\mu(TE) = \mu(TE \cap A) + \mu(TE \sim A)$$

whenever $T \subset X$.

1.10. DEFINITION. — F is μ -convenient if μ is a measure, F is hereditary, and corresponding to each T of finite μ measure there exists such a sequence C that $\mu\left(T \sim \bigcup_{j=0}^{\infty} C_j\right) = 0$ and for each integer n, $C_n \subset C_{n+1} \in F$ and C_n is a μ -set F.

1.11. DEFINITION. — Sect (μ, B) is the function f on the subsets of X such that $f(\alpha) = \mu(\alpha B)$ for $\alpha \in X$.

1.12. DEFINITION. - If ρ metrizes X, then

dist (A, B) = inf { $\rho(x, y)$; $x \in A, y \in B$ }.

160

1.13. DEFINITION. — If X is a topological space, then μ is a Radon measure on X if μ is a measure and

(i) open sets are μ -measurable

(ii) if C is compact, then $\mu C < \infty$

- (iii) if α is open, then $\mu\alpha = \sup\{\mu C; C \text{ compact, } C \subset \alpha\}$
- (iv) if $A \subset X$, then $\mu A = \inf \{ \mu \alpha, \alpha \text{ open}, A \subset \alpha \}$.

1.14. DEFINITION. - (D, <) is a directed set if $D \neq 0$, D is partially ordered by < such that for any i, $j \in D$, there exists $k \in D$ with i < k, j < k.

Let X be a regular topological space; \mathfrak{B} be a base for the topology; (D, <) be a directed set and for each $i \in D$, μ_i be a Radon measure on X.

For each $\alpha \in \mathcal{B}$, let

$$g(\alpha, E) = rac{\mathfrak{L}t}{i \in D} \operatorname{Sect} (\mu_i, E) \alpha$$
 where E is a member of F.

Let $\varphi(A, E) = \inf \left\{ \sum_{\substack{\alpha \in H \\ \alpha \in H}} g(\alpha, E); H \text{ countable, } H \subset \mathcal{B}, A \subset \bigcup_{\alpha \in H} \alpha \right\}$ and $\varphi^*(A, E) = \inf_{\substack{\alpha \text{ open } C \text{ compact} \\ A \subset \alpha}} \sup_{\substack{\alpha \text{ open } C \text{ compact} \\ C \subset \alpha}} \varphi(C, E) \text{ where } A \subset X.$

Then φ is a measure on X generated by g and \Re [3].

2. Theorems and Corollaries.

2.1. THEOREM. — Product of two μ -partitions F is a μ -partition F.

Proof. — Let $\{E_i\}$ and $\{F_i\}$ be two μ -partitions F, then for every E of F

$$\mu(TE) = \sum_{i=1}^{\infty} \mu(TE \cap E_i)$$
 and $\mu(TE) = \sum_{i=1}^{\infty} \mu(TE \cap F_i)$

whenever $T \subset X$. Since

$$\sum_{i,j} \mu(\operatorname{TE} \cap \operatorname{E}_i \cap \operatorname{F}_j) = \sum_j \left\{ \sum_i \mu(\operatorname{TEF}_j \cap \operatorname{E}_i) \right\}$$
$$= \sum_j \mu(\operatorname{TE} \cap \operatorname{F}_j)$$
$$= \mu(\operatorname{TE}),$$

the proof is complete.

2.2. THEOREM. — If a subpartition $\{F_i\}$ of a partition $\{E_i\}$ is a μ -partition F, then $\{E_i\}$ is a μ -partition F.

Proof. — For $T \subset X$ and any member E of F, we have

$$\sum_{i} \mu(\text{TE} \cap \text{E}_{i}) = \sum_{i} \mu[\text{TE} \cap \{\bigcup_{j} \text{E}_{ji}\}]$$

where $\bigcup_{j} E_{ji} = E_{i}$ and E_{ji} is a member of $\{F_{i}\}$ $\leqslant \sum_{i} \sum_{j} \mu(TE \cap E_{ji}) = \mu(TE),$

since $\{F_i\}$ is a μ -partition F. The reverse inequality is, however, clear. This proves the theorem.

2.3. **THEOREM.** — A partition $\{E_i\}$ is a μ -partition F if each E_i is a μ -set F.

Proof. — Suppose that each E_i is a μ -set F. Then for E in F and $T \subset X$, we have

$$\mu(TE) = \mu(TE \cap E_1) + \mu(TE \cap E'_1) \\ = \mu(TE \cap E_1) + \mu(TE \cap \{E_2 \cup E_3 \cup \dots\}).$$

And

$$\begin{split} \mu(\operatorname{TE} \cap \{ \operatorname{E}_2 \cup \operatorname{E}_3 \cup \cdots \}) &= \mu(\operatorname{TE} \cap \{ \operatorname{E}_2 \cup \operatorname{E}_3 \cup \cdots \} \cap \operatorname{E}_2) \\ &+ \mu(\operatorname{TE} \cap \{ \operatorname{E}_2 \cup \operatorname{E}_3 \cup \cdots \} \cap \operatorname{E}_2) \\ &= \mu(\operatorname{TE} \cap \operatorname{E}_2) + \mu(\operatorname{TE} \cap \{ \operatorname{E}_3 \cup \operatorname{E}_4 \cup \cdots \}). \end{split}$$

So,

 $\mu(TE) = \mu(TE \cap E_1) + \mu(TE \cap E_2) + \mu(TE \cap \{E_3 \cup E_4 \cup \cdots\}).$ Proceeding in this way, we ultimately obtain

$$\mu(TE) = \mu(TE \cap E_1) + \mu(TE \cap E_2) + \cdots = \sum_i \mu(TE \cap E_i).$$

This proves that $\{E_i\}$ is a μ -partition F.

Conversely, suppose that $\{E_i\}$ is a μ -partition F. Then for every E of F and T \subset X, we have $\mu(TE) = \sum_i \mu(TE \cap E_i)$. Replacing T by T $\cap \{E_2 \cup E_3 \cup \cdots\}$, we obtain $\mu(TE \cap \{E_2 \cup E_3 \cup \cdots\}) = \sum_i \mu(TE \cap \{E_2 \cup E_3 \cup \cdots\} \cap E_i)$ $= \mu(TE \cap E_2) + \mu(TE \cap E_3) + \cdots$ So,

$$\mu(TE) = \mu(TE \cap E_1) + \mu(TE \cap \{E_2 \cup E_3 \cup \cdots\})$$

= $\mu(TE \cap E_1) + \mu(TE \cap E_1).$

This shows that E_1 is a μ -set F. Similarly, it can be shown that each E_i , i = 2,3,... is a μ -set F.

COROLLARY. — If F is μ -convenient, then any μ -partition F is a μ -partition.

Proof. — Let the partition $\{E_i\}$ be a μ -partition F, then each E_i is a μ -set F. Since F is μ -convenient, by Theorem 3.4 [5], a μ -set F is a μ -set. So, each E_i is a μ -set and consequently the partition $\{E_i\}$ is a μ -partition $\{p. 48 [1]\}$.

In the following two theorems, we shall suppose that ρ metrizes X.

2.4. THEOREM. — If F is hereditary and $\mu(A \cup B) = \mu A + \mu B$ whenever A and B are such members of F that d(A, B) > 0, then each open set is a μ -set F.

Proof. — This theorem is due to Trevor J. McMinn [5].

2.5. THEOREM. — If F is μ -convenient and every open set is a μ -set F, then μ is a metric outer measure.

Proof. — It follows from Theorem 3.4 [5] that each open set is a μ -set. Let A and B be two sets with d(A, B) > 0. Let α be an open set such that $A \subset \alpha$ and $\alpha \cap B = 0$. Then

$$\mu(A \cup B) = \mu(\{A \cup B\} \cap \alpha) + \mu(\{A \cup B\} \sim \alpha)$$

= $\mu A + \mu B.$

In the following theorems, we shall suppose that X is a regular topological space and \mathcal{B} be a base for the topology.

2.6. THEOREM. — If A and B are disjoint, closed compact sets, then

$$\varphi(A \cup B, E) = \varphi(A, E) + \varphi(B, E)$$
 for each E of F.

Proof. — Let α and β be two open sets such that $A \subset \alpha$, $B \subset \beta$ and $\alpha \cap \beta = 0$. This is possible, since X is regular. If $\varepsilon > 0$ is arbitrary, there exists a sequence $\{\nu_n\}$ of open

sets such that

A
$$\cup$$
 B $\subset \bigcup_n \nu_n$ and $\sum_n g(\nu_n, E) \leqslant \varphi(A \cup B, E) + \varepsilon$.

Let $\nu'_n = \nu_n \cap \alpha$ and $\nu''_n = \nu_n \cap \beta$, then ν'_n , ν''_n are open and

$$A \subset \bigcup_n \nu'_n, \quad B \subset \bigcup_n \nu''_n.$$

So,

$$\begin{split} \varphi(\mathbf{A}, \mathbf{E}) + \varphi(\mathbf{B}, \mathbf{E}) &\leqslant \sum_{n} \left\{ g(\mathbf{v}_{n}', \mathbf{E}) + g(\mathbf{v}_{n}'', \mathbf{E}) \right\} \\ &= \sum_{n} \left\{ g(\mathbf{v}_{n} \cap \alpha, \mathbf{E}) + g(\mathbf{v}_{n} \cap \beta, \mathbf{E}) \right\} \\ &= \sum_{n} \left\{ \frac{\pounds}{i \in \mathbf{D}} \operatorname{Sect} \left(\mu_{i}, \mathbf{E} \right) (\mathbf{v}_{n} \cap \beta) \right\} \\ &+ \frac{\pounds}{i \in \mathbf{D}} \operatorname{Sect} \left(\mu_{i}, \mathbf{E} \right) (\mathbf{v}_{n} \cap \beta) \right\} \\ &\leqslant \sum_{n} \left\{ \frac{\pounds}{i \in \mathbf{D}} \operatorname{Sect} \left(\mu_{i}, \mathbf{E} \right) \mathbf{v}_{n} \right\} \\ &= \sum_{n} g(\mathbf{v}_{n}, \mathbf{E}) \\ &\leqslant \varphi(\mathbf{A} \cup \mathbf{B}, \mathbf{E}) + \varepsilon. \end{split}$$

Since $\varepsilon > 0$ is arbitrary, we have

 $\varphi(A, E) + \varphi(B, E) \leqslant \varphi(A \cup B, E).$

The reverse inequality is clear, because ϕ is a Carathéodory measure. This proves the theorem.

2.7. Theorem. — For each E of F, ϕ^* is a Radon measure on X.

Proof. — (i) If α is any open set, by definition

$$\varphi^*(\alpha, E) = \sup_{\substack{C \text{ compact} \\ C \subset \alpha}} \varphi(C, E) \leqslant \varphi(\alpha, E).$$

So, for any $A \subset X$, we have

$$\varphi^{*}(A, E) = \inf_{\substack{\alpha \text{ open } \\ A \subset \alpha}} \sup_{\substack{C \text{ compact} \\ C \subset \alpha \\ \alpha \text{ open } \\ A \subset \alpha}} \varphi(C, E) = \inf_{\substack{\alpha \text{ open } \\ A \subset \alpha \\ A \subset \alpha}} \varphi^{*}(\alpha, E) = \varphi(A, E).$$

164

If C is compact and α is open, $C \subset \alpha$, we have

 $\phi(C,\,E) \leqslant \phi^*(\alpha,\,E), \qquad \text{so} \qquad \phi(C,\,E) \leqslant \phi^*(C,\,E).$

Therefore, if C is compact, $\varphi(C, E) = \varphi^*(C, E)$. But, it is clear that for any compact C, $\varphi(C, E) < \infty$ and hence $\varphi^*(C, E) < \infty$.

(ii) Let α be an open set, $T \subset X$ and $\varepsilon > 0$ arbitrary. Since for any $A \subset X$, $\varphi^*(A, E) = \inf_{\substack{v \text{ open} \\ A \subset v}} \varphi^*(v, E)$, there exists open set T', $T \subset T'$ and $\varphi^*(T', E) < \varphi^*(T, E) + \varepsilon$. Also, $\varphi^*(\alpha, E) = \sup_{\substack{C \text{ compact} \\ C \subset \alpha}} \varphi(C, E)$.

Therefore, since X is regular, there exists a closed compact set $C_1 \in T' \cap \alpha$ such that $\varphi^*(T' \cap \alpha, E) \leqslant \varphi(C_1, E) + \varepsilon$. Similarly, there exists a closed compact set $C_2 \in T' \sim C_1$ such that $\varphi^*(T' \sim C_1, E) \leqslant \varphi(C_2, E) + \varepsilon$.

So,

$$\begin{array}{l} \varphi^*(T \cap \alpha, E) + \varphi^*(T \sim \alpha, E) \\ \leqslant \varphi^*(T' \cap \alpha, E) + \varphi^*(T' \sim C_1, E) \\ \leqslant \varphi(C_1, E) + \varphi(C_2, E) + 2\epsilon \\ = \varphi^*(C_1 \cup C_2, E) + 2\epsilon, \text{ by Theorem 2.6} \\ \leqslant \varphi^*(T', E) + 2\epsilon \\ \leqslant \varphi^*(T, E) + 3\epsilon. \end{array}$$

Since $\varepsilon > 0$ is arbitrary, this shows that α is φ^* -measurable. The other properties are evident. This proves the theorem.

2.8. THEOREM. — If A and B are sets of which any one of them is open and $A \cap B = 0$, then

$$\varphi^*(A \cup B, E) = \varphi^*(A, E) + \varphi^*(B, E)$$
 for each E of F.

Proof. — Let A be open and so it is φ^* -measurable. Hence $\varphi^*(A \cup B, E) = \varphi^*\{(A \cup B) \cap A, E\} + \varphi^*\{(A \cup B) \sim A, E\}$ $= \varphi^*(A, E) + \varphi^*(B, E).$

2.9. THEOREM. — If X is a metric space, then φ^* is a metric outer measure.

Proof. - This is clear.

In conclusion, I offer my best thanks to Dr. B. K. Lahiri of Calcutta University for his helpful guidance in the preparation of this paper.

BIBLIOGRAPHY

- [1] P. R. HALMOS, Measure Theory (1950).
- [2] J.-L. KELLEY, General Topology (1955).
- [3] M. E. MUNROE, Measure and Integration (1952).
- [4] M. SION, A characterization of weak convergence, Pacific Journal of Mathematics (1964), vol. 14, nº 3, 1059.
- [5] TREVOR J. McMinn, Restricted Measurability, Bull. Amer. Math. Soc. (1948), vol. 54, July-Dec., 1105.

Manuscrit reçu le 24 septembre 1965.

Asim K. MOOKHOPADHYAYA, Department of Mathematics, Charuchandra College, 22 Lake Road, Calcutta-29 (Inde)