
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Quang Dieu NGUYEN & Dau Hoang HUNG

Jensen measures and unbounded B−regular domains in Cn

Tome 58, no 4 (2008), p. 1383-1406.

<http://aif.cedram.org/item?id=AIF_2008__58_4_1383_0>

© Association des Annales de l’institut Fourier, 2008, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2008__58_4_1383_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
58, 4 (2008) 1383-1406

JENSEN MEASURES AND UNBOUNDED
B−REGULAR DOMAINS IN Cn

by Quang Dieu NGUYEN & Dau Hoang HUNG

Abstract. — Following Sibony, we say that a bounded domain Ω in Cn is
B-regular if every continuous real valued function on the boundary of Ω can be
extended continuously to a plurisubharmonic function on Ω. The aim of this paper
is to study an analogue of this concept in the category of unbounded domains in
Cn. The use of Jensen measures relative to classes of plurisubharmonic functions
plays a key role in our work

Résumé. — En suivant Sibony, nous dirons qu’un domaine borne Ω de Cn est
B− régulier si toute fonction continue à valeurs réelles sur la frontière de Ω peut
être prolongée continûment à une fonction plurisousharmonique sur Ω. Le but de
ce papier est d’étudier une notion analogue dans la catégorie des domaines non
bornés dans Cn. L’usage des mesures de Jensen relatives à des classes de fonctions
plurisousharmoniques jouent un rôle clé dans notre travail.

1. Introduction

Let Ω ⊂ Cn be an open set. An upper semicontinuous function u :
Ω → [−∞,∞) is said to be plurisubharmonic if the restriction of u on
the intersection of Ω with every complex line is subharmonic (the function
identically −∞ is considered to be plurisubharmonic). By PSH(Ω) we de-
note the set of plurisubharmonic functions on Ω and by PSHc(Ω) we mean
the set of continuous functions on Ω which are plurisubharmonic on Ω. We
say that u ∈ PSH(Ω) is maximal if for every relatively compact subdomain
Ω′ of Ω and every v ∈ PSH(Ω) satisfying v 6 u on ∂Ω we have v 6 u on
Ω′. Denote by MPSH(Ω) the class of maximal plurisubharmonic functions

Keywords: Plurisubharmonic function, Dirichlet-Bremermann problem, B-regular
domain.
Math. classification: 32T27.



1384 Quang Dieu NGUYEN & Dau Hoang HUNG

on Ω. It is well known that in pluripotential theory maximal plurisubhar-
monic functions play the role as harmonic functions do in classical potential
theory.

In this paper, we concern with the following problem: Given h ∈ C(∂Ω),
the space of real valued continuous function ∂Ω, we study conditions on
Ω and h to ensure the existence of u ∈ MPSH(Ω) which is continuous on
Ω such that u = h on ∂Ω. This problem, which is usually referred to as
the Dirichlet-Bremermann problem, in the case Ω is bounded, has been
initiated in a classical work of Bremermann (cf. [3]). Bremermann proved
among other things that if Ω is bounded and h ∈ C(∂Ω) then there is
at most one continuous function ϕ on Ω with boundary data h which is
maximal plurisubharmonic on Ω. This solution, if exists, is given by

(1.1) ϕh,Ω(z) = sup{u(z) : u ∈ PSH(Ω), u∗ 6 h on ∂Ω},

where u∗ is the upper regularization of u which is defined on Ω as

u∗(z) = lim sup
x→z

u(x) ∀z ∈ Ω.

Notice that if Ω is regular in the real sense i.e., for every h ∈ C(∂Ω) there
is H ∈ C(Ω) harmonic on Ω such that H = h on ∂Ω, then ϕh,Ω ∈ PSH(Ω).
On the other hand, the continuity of ϕh,Ω is more delicate, Bremermann
showed that if Ω is strictly pseudoconvex (e.g., Ω is an open ball) then
ϕh,Ω is continuous at every boundary point of Ω and coincides with h

there. Later on, Walsh proved in [16] that ϕh,Ω is indeed continuous on
Ω. He also gives an example where ϕh,Ω is not continuous. More recently,
in [14] Sibony characterizes bounded domains Ω in Cn such that ϕh,Ω is
continuous on Ω and satisfies ϕh,Ω = h on ∂Ω for every h ∈ C(∂Ω). This
class of domains is called B− regular domains. It should be remarked that
the class of B− regular domains properly contains the class of strictly
pseudoconvex domains.

The Dirichlet-Bremermann problem for unbounded domains Ω was stud-
ied only recently in [13] and [15]. In [13], the authors pointed out that ϕh,Ω

may be identically −∞ even if h ∈ C(∂Ω) and Ω is a strictly convex do-
main with smooth boundary (cf. [13] and [15]). On the other hand, it is
shown in Proposition 19 in [15] that if h ∈ C(∂Ω) is bounded and if Ω is an
unbounded strictly convex domain with C2 smooth boundary, then there
exists u ∈ C(Ω), maximal plurisubharmonic on Ω such that u = h on ∂Ω.
In Theorem 4.4 and Proposition 5.1 we generalize this nice result to the
case Ω is only locally B− regular i.e., for every z ∈ ∂Ω there is a bounded
neighbourhood U of z such that U ∩ Ω is B− regular.

ANNALES DE L’INSTITUT FOURIER



JENSEN MEASURES 1385

The principal tool in this paper is the use of Jensen measures relative
to classes of plurisubharmonic functions. Roughly speaking, we express
upper envelopes of type (1) in terms of lower envelopes of integral relative
to different classes of Jensen measures. Then equality of these classes of
measures will give continuity of the corresponding upper envelopes. This
approach has been used in [17], [11] and [9]. During the course of our
development, we also obtain in Theorem 4.1 a global approximation result
for bounded plurisubharmonic functions on unbounded domains.

Acknowledgment. This work is essentially done during the first named
author’s stay at the Abdus Salam International Center Theoretical Physic,
Trieste, Italy in the Summer of 2007 and finally completed during his visit
to the Department of Mathematics, Seoul National University in the Fall
of 2007 as a post doc fellow under the Korea Research Foundation Grant
2005-070-C00007. He would like to thank Professor Le Dung Trang (ICTP)
and Professor Chong-Kyu Han (SNU) for the kind invitations and the staffs
of these institutions for their warm hospitality. We also like to thank the
referee for fruitful comments, especially for drawing our attention to a gap
in the proof of (an earlier version of) Proposition 2.7. Last but not least, we
are indebted to Professor Giuseppe Tomassini for his interest in our work
and stimulating talks on the article [15].

2. Necessary Background

We first fix notation and terminology that will be used in this paper. The
set of (real valued) continuous functions on a subset X of Cn is denoted
by C(X). Denote by C0(X) the set of functions u ∈ C(X) that vanishes at
infinity i.e., for every ε > 0 there is a compact K ⊂ X such that |u| < ε

on X\K. We write USC∗(X) for the set of bounded upper semicontinuous
functions u on X that is non positive at infinity i.e., for every ε > 0, there
is a compact K ⊂ X such that u < ε on X\K. We also denote by Cc(X)
the subset of C(X) consisting functions of compact support.

Given a subset A of USC∗(X) and z ∈ X we denote by Jz(A) the class
of of positive regular Borel measures µ on X satisfying µ(X) 6 1 and

u(z) 6
∫

X

udµ ∀u ∈ A.

It is customary to call Jz(A) the class of Jensen measures relative to A
with barycentre at z.

Now we recall the following result of Sibony (cf. Theorem 2.1 in [14]).

TOME 58 (2008), FASCICULE 4



1386 Quang Dieu NGUYEN & Dau Hoang HUNG

Theorem 2.1. — Let Ω be a bounded domain in Cn. Then the following
conditions are equivalent.

(a) For every h ∈ C(∂Ω) there exists u ∈ MPSH(Ω) ∩ C(Ω) satisfying
u = h on ∂Ω.

(b) For every z ∈ ∂Ω, there exists u ∈ PSHc(Ω) satisfying u(z) = 0
while u < 0 elsewhere.

(c) There exists ϕ ∈ C2(Ω) ∩ PSH(Ω) and λ > 0 such that {ϕ < c}
is relatively compact in Ω for every c < 0 and ϕ(z) − λ|z|2 is
plurisubharmonic on Ω.

(d) For every h ∈ C(∂Ω) there exists u ∈ PSH(Ω) ∩ C(Ω) satisfying
u = h on ∂Ω.

(e) For every z ∈ ∂Ω, there exists a negative function u ∈ PSH(Ω) such
that u∗ < 0 on ∂Ω\{z} while limx→z u(x) = 0.

Following Sibony, a bounded domain Ω in Cn is called B−regular if Ω
satisfies one of above equivalent conditions. For more details on bounded
B−regular domains, the reader is invited to the original article [14] (see
also [2] and [10] for more recent developments).

We now extend some notions introduced at the beginning of the article
to the context of unbounded domains.

Definition 2.2. — An unbounded domain Ω ⊂ Cn is called B−regular
if for every bounded function h ∈ C(∂Ω) there is a bounded function u ∈
MPSH(Ω) ∩ C(Ω) such that u = h on ∂Ω.

By considering the functions hξ(z) := max(−|z − ξ|,−1) for ξ ∈ ∂Ω
we deduce that if an unbounded domain Ω is B− regular and has an iso-
lated boundary point then it is not locally B−regular. Recall that Ω is
said to be locally B−regular if for every ξ ∈ ∂Ω, there exists a bounded
neighbourhood U of ξ such that U ∩ Ω is B−regular. Notice also that the
restriction on boundedness of h in Definition 2.2 seems natural, in view of
the mentioned above example due to Shcherbina and Tomassini. However,
it is unclear that a result analogous to Theorem 2.1 still holds in the case
where Ω is unbounded.

Definition 2.3. — An unbounded domain Ω is called regular in the
real sense if for every z ∈ ∂Ω, there is an open neighbourhood z ∈ U such
that U ∩ Ω is regular in the classical sense.

Observe that Ω is regular in the real sense if and only if every z ∈ ∂Ω
is a regular boundary point of Ω i.e., there exists a subharmonic function
u on Ω satisfying u∗ < 0 on ∂Ω\{z} while limx→z u(x) = 0. To check the
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regularity of z ∈ ∂Ω we frequently appeal to Theorem 2.11 in [7] which
asserts that if n > 2 and if there exists a real cone lying in Cn\Ω with
vertex at z, then z is a regular boundary point of Ω. It is also easy to see
that every (unbounded) locally B−regular domain is regular in the real
sense but the reverse implication does not hold in general.

Throughout this paper, unless otherwise specified, by Ω we always mean
an unbounded domain in Cn.

The simple fact below explains the role of regular domains in the real
sense in the study of Dirichlet-Bremermann problem.

Lemma 2.4. — Assume that Ω is regular in the real sense. Let h ∈ C(∂Ω)
be a bounded function. Define h̃ = h on ∂Ω and h̃ = M := sup∂Ω h on Ω.
Set

ϕ(z) := sup{u(z) : u ∈ PSH(Ω), u∗ 6 h̃ on Ω}.

Then ϕ ∈ PSH(Ω) and ϕ∗ 6 h̃ on Ω.

Proof. — Clearly ϕ∗ 6 M on Ω, so ϕ = ϕ∗ ∈ PSH(Ω). It remains to
show ϕ∗ 6 h on ∂Ω. Fix z ∈ ∂Ω. Choose an open ball B ⊂ Cn such that
z ∈ B. Let Ω′ := Ω ∩B. Then Ω′ is bounded regular in the real sense. Let
H be the solution to the (classical) Dirichlet problem on Ω′ with boundary
data h̃. It follows that ϕ 6 H on Ω. Since z is a regular boundary point of
Ω′ and h is continuous near z, we infer ϕ∗(z) 6 H∗(z) = h(z). The proof
is complete. �

The following classical fact due to Choquet(cf. [8], Lemma 2.3.4) is very
useful while working with upper envelopes .

Choquet’s lemma. — Let {uα}α∈A be a family of functions which are
locally bounded from above on a subset X of Cn. Then there is a countable
subfamily {αj}j>1 ⊂ A such that

(sup{uα : α ∈ A})∗ = (sup{uαj : j > 1})∗.

Furthermore, if uα is lower semicontinuous for every α ∈ A, then we can
choose {αj}j>1 such that

sup{uα : α ∈ A} = sup{uαj : j > 1}.

We also need some elements from pluripotential theory. For more com-
plete treatments on this subject we refer the reader to the excellent ac-
counts [1] and [8]. First recall that maximality for locally bounded pluri-
subharmonic function is a local property, and if {uj}j>1 is a sequence in
MPSH(Ω) that converges monotonically almost everywhere to u ∈ PSH(Ω)

TOME 58 (2008), FASCICULE 4
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then u ∈ MPSH(Ω). These properties are applications of the highly nontriv-
ial theory of the complex Monge-Ampere operator developed by Bedford
and Taylor. Next, a subset F in Cn is called pluripolar if for every z ∈ Ω
there exists an open neighbourhood U of z and u ∈ PSH(U), u 6≡ −∞ on
any connected component of U such that u = −∞ on F ∩ U. A basic the-
orem of Josefson states that for every pluripolar set F in Cn we can find
u ∈ PSH(Cn), u 6≡ −∞ such that u = −∞ on F . In particular, if F is
bounded then u can be made to be negative on every fixed ball contain-
ing F . It also follows from Josefson’s theorem that a countable union of
pluripolar set is pluripolar.

We continue this preparatory section by showing that the class of un-
bounded locally B−regular domains is much richer than that of strictly
convex domains. Before formulating it, recall that a compact K ⊂ Cn is
called B−regular if every function in C(K) can be approximated by con-
tinuous plurisubharmonic functions on neighbourhood s of K. This notion
is also introduced by Sibony in [14]. We also say that a closed set K in
Cn is locally B−regular if for every z ∈ K there exists an open bounded
neighbourhood U of z such that U ∩K is B−regular. For a detailed treat-
ment of B−regular compact sets, the reader may consult Section 1 in [14].
In this work, we only use the following properties.

(i) A compact K ⊂ Cn is B−regular if and only if K is locally B−re-
gular.

(ii) If the compact K is a countable union of B−regular compacts then
K is B−regular.

Proposition 2.5. — Ω is locally B−regular if the following conditions
are verified.

(a) For every z ∈ ∂Ω, there exists an open ball U around z such that
Ω∩U is hyperconvex i.e., there exists a negative plurisubharmonic
exhaustion function on Ω ∩ U .

(b) There exists a locally B−regular closed subset K of ∂Ω such that
Ω is strictly pseudoconvex near every point of ∂Ω\K.

Here by strict pseudoconvexity of Ω near z0 ∈ ∂Ω we mean the following:
there is an open neighbourhood U of z0 and a C2 smooth plurisubharmonic
function u on U such that U ∩ Ω = {z : ρ(z) < 0}, dρ(z0) 6= 0 and ρ(z) −
λ|z|2 ∈ PSH(U) for some constant λ > 0. In this case, it is well known that
there is v ∈ PSHc(U ∩ Ω) such that v(z0) = 0 whereas v < 0 elsewhere.

Proof. — Fix a point z0 ∈ Ω and an open ball U containing z0 such that
Ω′ := Ω ∩ U is hyperconvex. Set K ′ = K ∩ ∂Ω′. Then the compact K ′ is

ANNALES DE L’INSTITUT FOURIER
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B−regular. It follows from (b) that ∂Ω′ is a countable union of B−regular
compact sets. Therefore, the compact ∂Ω′ is B−regular as well. Since Ω′ is
hyperconvex, we may apply Lemma 2.8 in [10] to get that Ω′ is B−regular.
The proof is complete. �

The following type of unbounded domains is quite important in our study.

Definition 2.6. — We say that Ω is of bounded type if there exists a
real valued function ψ ∈ PSH(Ω) such that ψ < 0 and lim|z|→∞ ψ(z) =
−∞.

In particular, Ω can not contain any (non constant) biholomorphic im-
age of the complex plane. It is immediate to note that the bounded type
property is invariant under biholomorphic maps. Now we construct a class
of unbounded domains of bounded type.

Proposition 2.7. — Assume that there are n complex hyperplane H1,

· · · ,Hn lying in Cn\Ω such that
⋂n

i=1Hi is a singleton and that dist
(
⋃n

i=1Hi, ∂Ω) > 0. Then Ω is of bounded type.

Proof. — After a linear change of coordinates, we may arrange that Hi =
{zi = 0} for i = 1, · · · , n. It is easy to check that for large constant A, the
function

ψ(z1, · · · , zn) = − log |z1 · · · zn| −A

is negative plurisubharmonic on Ω. Moreover, lim|z|→∞ ψ(z) = −∞. Thus
Ω is of bounded type. �

Finally, we introduce a class of (unbounded) domains which enable us to
control the growth to infinity of upper envelopes like (1).

Definition 2.8. — If n > 2 then we say that Ω contains no complex
hyperplane at infinity if there is a compact K of Ω such that Ω\K contains
no complex hyperplane.

Consider the domain Ω := B ×C, where B is the open unit ball in C2.
It is easy to see that Ω containes no complex hypersurface whereas Ω is
not of bounded type.

Proposition 2.9. — Assume that Ω contains no complex hyperplane
at infinity and h ∈ C(∂Ω) is bounded. Then for every bounded function
u ∈ PSH(Ω) satisfying u∗ 6 h on ∂Ω we have

lim sup
|z|→∞

u(z) 6 lim sup
|z|→∞

h(z).

TOME 58 (2008), FASCICULE 4
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Proof. — Choose a compact K ⊂ Ω such that Ω\K contains no com-
plex hyperplane. Denote α := lim sup|z|→∞ h(z). Fix ε > 0, then there is
compact L ⊂ ∂Ω such that h < α + ε on ∂Ω\L. We are going to show
that u(z) < α + ε for all z outside the convex hull of K ∪ L. Fix such a
point z. Then there is a complex hyperplane H passing through z which is
disjoint from K ∪ L. Pick z′ ∈ H\Ω. Let l be the complex line connecting
z and z′. Set U = l ∩Ω. Then U ∩ L = ∅. Thus h < α+ ε on ∂U . We may
view U as a nonempty open subset (possibly unbounded) of C. Since u is
bounded, u∗ 6 h < α + ε on ∂U and U is not dense in C, we may apply
the maximum principle to reach u(z) < α+ ε. The proof is complete. �

3. Duality theorem and unbounded B− regular domains

We start with the following variation on a basic duality theorem of Ed-
wards (cf. [5] and [17]).

Theorem 3.1. — Let X be a closed subset of Cn and A be a convex
cone of USC∗(X). Let g : X → (−∞,∞] be a lower semicontinuous function
which is increasing limit of a sequence in C0(X). Then for every z ∈ X we
have

sup{u(z) : u 6 g, u ∈ A} = inf
{∫

X

gdµ : µ ∈ Jz(A)
}
.

We require the following elementary fact.

Lemma 3.2. — Let u ∈ USC∗(X) then there is a uniformly bounded
sequence {uj} ⊂ Cc(X) such that:

(a) uj → u pointwise on X.

(b) uj > u− 1/j for every j > 1.

Proof. — Define for j > 1 the function

vj(z) = sup{u(x)− j|x− z| : x ∈ X}.

Clearly the sequence {vj}j>1 is uniformly bounded. It is also well known
that vj ∈ C(X) and that vj ↓ u on X as j →∞. Next, we claim that vj is
non positive at infinity for every j. Fix j > 1 then for every ε > 0, we can
find a compact K ⊂ X such that u < ε on X\K. Set

Kj = {z : z ∈ X, dist(z,K) 6 M/j},

where M = supX u. Obviously Kj is a compact subset of X. Furthermore,
from the definition of vj we can check easily that vj(z) 6 ε for z ∈ X\Kj .

This proves the claims.

ANNALES DE L’INSTITUT FOURIER
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Now we choose a sequence of compacts sets Pj ↑ X and a sequence of
positive numbers λj ↑ ∞ such that Qj := X ∩ {z : |z| > λj} ∩ Pj = ∅. By
Tietze’s extension theorem, we can find ṽj ∈ Cc(X) such that ṽj = vj on
Pj , ṽj = 0 on Qj and |ṽj | 6 ||vj ||X . Set

uj = max(ṽj , u− 1/j) ∀j > 1.

It is easy to check that uj is the desired sequence. �

Remark. — It follows easily from Lemma 3.2 that Jz(A) is a closed
convex subset of the space of positive regular Borel measures on X with
total mass 6 1.

Proof of Theorem 3.1. — Fix z ∈ Ω. Given u ∈ A, u 6 g and µ ∈ Jz(A)
we have

u(z) 6
∫

X

udµ 6
∫

X

gdµ.

To prove the reverse direction, first we consider the case g ∈ C0(X). For
ϕ ∈ USC∗(X) we set

Sϕ := sup{u(z) : u 6 ϕ, u ∈ A}.

Clearly Sϕ is of real value for all ϕ ∈ USC∗(X). Moreover, since A is a
convex cone we have

(a) S(λϕ) = λS(ϕ) for λ > 0 and ϕ ∈ USC∗(X).
(b) S(ϕ1) + S(ϕ2) 6 S(ϕ1 + ϕ2) for ϕ1, ϕ2 ∈ USC∗(X).

In view of Hahn-Banach’s theorem we can find a real linear func-
tional S̃ on C0(X) such that

(c) S̃g = Sg.
(d) S(ϕ) 6 S̃ϕ 6 −S(−ϕ) for all ϕ ∈ C0(X).

Since |Sϕ| 6 ||ϕ|| we infer that S̃ is a continuous linear functional on
C0(X) and ||S̃|| 6 1. By Riesz’s representation theorem (cf. Theorem 6.19
in [12]), there is a Borel measure µ on X satisfying

S̃ϕ =
∫

X

ϕdµ, ∀ϕ ∈ C0(X).

Since ϕ > 0 implies S̃(ϕ) > 0 we infer that µ is a positive regular Borel
measure on X satisfying µ(X) 6 1. It remains to check that µ ∈ Jz(A).
For this, fix u ∈ A. By Lemma 3.2, there is a uniformly bounded sequence
uj ⊂ Cc(X) satisfying uj → u as j →∞ and uj > u− 1/j. By Lebesgue’s
convergence theorem we have∫

X

udµ = lim
j→∞

∫
X

ujdµ > lim
j→∞

Suj(z) > u(z).

TOME 58 (2008), FASCICULE 4
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Now for general g. Take a sequence {gj}j>1 ⊂ C0(X) such that gj ↑ g on
X. By the previous paragraph, we can find a sequence µj ∈ Jz(A) satisfying

(3.1) sup{u(z) : u 6 gj , u ∈ A} =
∫

Ω

gjdµj .

Let µ be a weak∗− limit of µj , then by the Remark following Lemma 3.2,
µ ∈ Jz(A). Observe that for any fixed k > 1

lim sup
j→∞

∫
Ω

gjdµj > lim
j→∞

∫
Ω

gkdµj =
∫

Ω

gkdµ.

Letting k → ∞ and using Lebesgue’s monotone convergence theorem we
get

(3.2) lim sup
j→∞

∫
Ω

gjdµj >
∫

Ω

h̃dµ.

Putting (3.1) and (3.2) together we arrive at the desired conclusion. This
completes the proof. �

The following result is an application of the above duality theorem to
the case where X is the closure of an unbounded domain in Cn.

Proposition 3.3. — Let h ∈ C(∂Ω) be a bounded, non negative func-
tion and A ⊂ USC∗(Ω) be a convex cone. Let h̃ be the function equal to
h on ∂Ω and to M on Ω, where M is some positive constant larger than
sup∂Ω h. Then for z ∈ Ω

sup{u(z) : u 6 h̃, u ∈ A} = inf
{∫

Ω

h̃dµ : µ ∈ Jz(A)
}
.

Proof. — According to Theorem 3.1, it suffices to construct a sequence
{hj} ∈ Cc(Ω) such that hj ↑ h̃. To do this, we first choose sequences of
compact sets Kj ↑ Ω, Lj ↑ ∂Ω and a sequence of positive numbers λj ↑ ∞
such that Pj ∩ (Lj ∪Kj) = ∅, where Pj = Ω ∩ {z : |z| > λj}. Define

gj =
{
h on ∂Ω\Pj

0 on Pj ,

and

g̃j =
{
h on Lj

0 on (∂Ω ∪ Pj)\Lj .

Then gj is lower semicontinuous on ∂Ω∪Pj and g̃j is upper semicontinuous
on ∂Ω∪Pj . Notice that g̃j 6 gj on ∂Ω∪Pj . Thus by the Hahn interpolation
theorem (cf. [4], Proposition 7.2.1), we can find h̃j ∈ C(∂Ω∪ Pj) satisfying
g̃j 6 h̃j 6 gj . In particular h̃j 6 h on ∂Ω, h̃j = h on Lj and h̃j = 0 on Pj .

ANNALES DE L’INSTITUT FOURIER
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By Tietze’s extension theorem we may extend h̃j to ĥj ∈ Cc(Ω) such that
0 6 ĥj 6 M on Ω and that ĥj = M on Kj . Set

hj = max(ĥ1, · · · , ĥj).

It is easy to check that hj is the desired sequence. We are done. �

From now on, we only interested in the case where X = Ω and A is
one of the following convex subcones of USC∗(Ω) : A1, the set of functions
having compact support in PSHc(Ω), A2, the set of functions in USC∗(Ω)
which are plurisubharmonic on Ω. For any bounded function ϕ on Ω and
1 6 i 6 2 we also define upper envelopes relative to the convex cone
introduced above.

Siϕ(z) = sup{u(z) : u 6 ϕ, u ∈ Ai}, z ∈ Ω.

The result below is a geometric interpretation of the situation when the
class of Jensen measures at every boundary point of Ω is trivial.

Proposition 3.4. — The following assertion are equivalent.
(a) For every z ∈ ∂Ω, there is an open neighbourhood U of z and a

function u ∈ PSHc(U ∩ Ω) satisfying u(z) = 0 whereas u < 0
elsewhere.

(b) Ω is regular in the real sense and Jz(A1) = {δz} for every z ∈ ∂Ω,
where δz is the Dirac mass at z.

(c) Ω is locally B−regular.

Proof. — (a) ⇒ (b). Clearly Ω is regular in the real sense. Fix z ∈ ∂Ω
and µ ∈ Jz(A1). Let V be an open neighbourhood of z lying compactly
in U . Set α = supΩ∩∂V u. Since α < 0, the function v equals to 0 on Ω\V
and to max(u− α, 0) on Ω ∩ V belongs to A1. It follows that

−α = v(z) 6
∫

Ω

vdµ =
∫

Ω∩V

vdµ.

Since µ is a positive regular Borel measure on Ω with total mass 6 1 and
since α < 0 we deduce that the support of µ is contained in V . Since V is
arbitrary µ must be supported at z. Thus µ = δz. The proof is complete.

(b) ⇒ (c). In view of Theorem 2.1, it is enough to show that for every
z0 ∈ ∂Ω there is a negative function u ∈ PSH(Ω) such that u∗ < 0 on
∂Ω\{z0} while limx→z0 u(x) = 0. For this, fix such a point z0. Define

h(z) =
{

max(−|z − z0|,−1) z ∈ ∂Ω
0 z ∈ Ω.

By Proposition 3.3 we have S1h = h on ∂Ω and S1h 6 0 on Ω. On the
other hand, by Lemma 2.4 we obtain (S1h)∗ 6 h on ∂Ω. Since S1h is lower
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semicontinuous on Ω, by the choice of h, we can check that u := (S1h)∗ is
the desired function.

(c) ⇒ (a) follows immediately from Theorem 2.1. �

Remark. — It is important to note that Jz(A2) = {δz}, for every z ∈
∂Ω. Indeed, for z0 ∈ ∂Ω, consider the function h(z) = max(−|z−z0|−1,−2)
for z ∈ ∂Ω and h(z) = −2 on Ω. Since h ∈ A2, h(z0) = −1 and h < −1
elsewhere, we see immediately that Jz0(A2) = {δz0}.

In view of Theorem 3.1, if Jz(A1) = {δz} for every z ∈ ∂Ω then Ω is
locally B− regular. Our next result is a partial generalization of Proposi-
tion 19 in [15].

Proposition 3.5. — Assume that Ω is locally B−regular. Let h ∈
C(∂Ω) be bounded. Then there exists ϕ ∈ MPSH(Ω) having the follow-
ing properties.

(a) inf∂Ω h 6 ϕ 6 sup∂Ω h, limx→z ϕ(x) = h(z) for all z ∈ ∂Ω.
(b) There is a pluripolar subset F of Ω such that ϕ is continuous on

Ω\F .
Moreover, if h ∈ C0(∂Ω) then the pluripolar set F can be constructed to

be independent of h.

Proof. — We may assume that h > 0 on ∂Ω. Define the function h̃ as h̃ =
h on ∂Ω and h̃ = sup∂Ω h on Ω. Then by Theorem 3.1 and Proposition 3.4
we have S1h̃ = h on ∂Ω. Since ∂Ω is regular in the real sense, Lemma 2.4
implies ϕ := (S1h̃)∗ ∈ PSH(Ω) and 0 6 ϕ 6 h̃ on Ω. Thus ϕ satisfies (a)
of the theorem. For (b), fix an open ball B ⊂ Ω it suffices to show the
maximality of ϕ on B. By Choquet’s lemma, there is a sequence {vj}j>1 ⊂
PSHc(Ω) such that vj ↑ S1h̃ on Ω. Let ṽj be the solution of the Dirichlet-
Bremermann problem on B with boundary data vj . Then the function
v∗j = ṽj on B and v∗j = vj on Ω\B belongs to PSHc(Ω) and satisfies
vj 6 v∗j 6 h̃ on Ω. Thus ṽj ↑ S1h̃ on Ω. It follows that ṽj ↑ ϕ almost
everywhere on B. Thus ϕ is maximal on B. Finally, by the solution to the
second problem of Lelong (cf. [1]) the set F := {z ∈ Ω : S1h̃(z) < ϕ(z)} is
pluripolar, thus the function ϕ, being lower semicontinuous on Ω\F , must
be continuous on Ω\F .

Next, observe that C0(∂Ω) is a separable Banach space with the sup norm.
Choose a countable dense sequence {hj}j>1 in C0(∂Ω). For each j > 1 we
set h̃j = hj on ∂Ω and hj := sup∂Ω hj on Ω. By the above argument, there
exist a pluripolar subset Fj of Ω and ϕj ∈ MPSH(Ω) such that

(a) limx→z ϕj(x) = hj(z) for all z ∈ ∂Ω.
(b) ϕj is continuous on Ω\Fj .
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Thus F := ∪Fj is pluripolar. Now given h ∈ C0(∂Ω), we can choose a
subsequence hjk

that converges to h uniformly on ∂Ω. It is easy to check
that h̃jk

converges to h̃ uniformly on Ω. Therefore ϕjk
converges uniformly

to ϕ on Ω. Thus ϕ ∈ MPSH(Ω), limx→z ϕ(x) = h(z) for all z ∈ ∂Ω and ϕ

is continuous on Ω\F .
It would be interesting to know if every unbounded locally B− regular

domain is B−regular. Unfortunately, we can only prove this statement
under an additional assumption on the domain (cf. Theorem 4.4). However,
if we discard the requirement on maximality of the solution in Definition 2.2
then a satisfactory answer can be obtained. More precisely, we have the
following generalization of Theorem 2.1 in [15]. �

Proposition 3.6. — Assume that Ω is locally B−regular. Then for
every h ∈ C(∂Ω), h > 0 and every closed set K of Ω such that K ∩ ∂Ω = ∅,
there exists u ∈ PSHc(Ω) satisfying u > 0, u = 0 on K and u = h on ∂Ω.

Proof. — We use the same idea as in [15]. Since Ω is locally B−regular,
we can choose locally finite open coverings {Ui}i, {U ′i}i>1 of ∂Ω consisting
of open balls such that Ωi := Ω∩Ui is B−regular, U ′i ⊂⊂ Ui and K∩Ui = ∅
for all i > 1. Let {χi}i>1 be a partition of unity subordinating to {U ′i}i>1.

By Tietze’s extension theorem, for every i > 1 there exists hi ∈ C(∂Ωi)
such that 0 6 hi on ∂Ωi, hi = 0 on Ω∩∂Ωi and hi = hχi on U ′i ∩∂Ω. Let ui

be the solution to the Dirichlet-Bremermann problem on Ωi with boundary
values hi. Clearly ui > 0 on Ωi and ui = 0 on Ω∩∂Ui. Thus we may extend
ui to ũi ∈ PSHc(Ω) by setting ũi = 0 out of Ωi. Set u(z) =

∑
i>1 ũi(z)

for z ∈ Ω. By the construction of ũi, locally this sum is taken over a finite
number of indices i. It is not hard to see that u is the desired function. �

4. Equality of Jensen measures

We start with a simple relation between equality of Jensen measures and
the possibility of global approximation of bounded plurisubharmonic func-
tions by continuous ones.

Theorem 4.1. — The following assertions are equivalent.

(a) Jz(A1) = Jz(A2) for every z ∈ Ω.
(b) S1ϕ = S2ϕ on Ω for every ϕ ∈ C0(Ω).
(c) For every u ∈ A2 there is a uniformly bounded sequence {vj}j>1 ∈

A1 such that vj → u on Ω and lim supj→∞ 6 u∗ on ∂Ω.
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Proof. — We follow the lines of the proof of Theorem 3.2 in [9] (see also
Theorem 2.1 in [11]).

(a) ⇒ (b). This is a direct application of the duality Theorem 3.1.
(b) ⇒ (c). By Lemma 3.2 we can find a sequence uj ∈ C0(Ω) such that

uj → u and uj > u− 1/j. Clearly for all j > 1

u− 1/j 6 S2uj 6 uj on Ω.

Notice that (S2uj)∗ 6 uj , so S2uj ∈ A2 for all j and S2uj → u on Ω.
Moreover, S1uj = S2uj on Ω. In particular S2uj is continuous on Ω for all
j. By Choquet’s lemma we, can find a sequence {vj,k}k>1 ⊂ A1 increasing
to S2uj on Ω. Let Kj ↑ Ω be an increasing sequence of compact sets. In
view of Dini’s lemma and continuity of S2uj , we can find a sequence kj ↑ ∞
such that |vj,kj

− S2uj | < 1/j on Kj . It is easy to check that vj,kj
is the

desired sequence.
(c) ⇒ (a). Given z ∈ Ω and µ ∈ Jz(A1) we must show µ ∈ Jz(A2). Fix

u ∈ A2, then there is a sequence {vj}j>1 ⊂ A1 satisfying vj → u on Ω and
lim supj→∞ vj 6 u∗ on ∂Ω. Notice that for all j > 1

vj(z) 6
∫

Ω

vjdµ.

Letting j → ∞ and using Fatou’s lemma we get u(z) 6
∫
Ω
udµ. Thus

µ ∈ Jz(A2). �

Remarks. — (a) By Dini’s lemma and the construction of the sequence
{vj}j>1 we see that if u is continuous on a compact subset K of Ω then,
in addition, the sequences {vj}j>1 in (c) can be chosen to converge to u

uniformly on K.
(b) Building on a previous example of Fornaess and Wiegerinck (cf. [6]

p. 260) we will construct a unbounded domain Ω such that any of equiv-
alent assertions in Theorem 4.1 does not hold. Recall that Fornaess and
Wiegerinck consider a smoothly bounded domain D in C2 defined by

D = {(z, w) : |w − eiϕ(|z|)|2 < r(|z|)},

where r and ϕ are C∞ smooth functions on R. Moreover, Fornaess and
Wiegerinck show that if r and ϕ are well chosen then D has the following
properties.

(i) The projection of D onto the first coordinate is the annulus {z :
1 < |z| < 17}.

(ii) The compact A := {(z, 0) : |z| = 2} ∪ {(z, 0) : |z| = 9} ∪ {(z, 0) :
|z| = 16} is contained in D.

(iii) The annulus B := {(z, 0) : 2 6 |z| 6 15} lies in Ω (but not in Ω).
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(iv) There is u ∈ PSHc(D) such that u(z, w) = 0 if |z| 6 4 or |z| > 14
and that there is no continuous plurisubharmonic function g on a
neighbourhood of D verifying |g − u| < 1 on A, since otherwise
there would be a violation to the maximum principle on B.

Now denote by f the holomorphic mapping f(z, w) = ( 1
z−a , w), where

a is any number in (16, 17). Then Ω := f(D′) is an unbounded domain in
C2 with smooth boundary, where D′ = D\{{a}×C}. Define ũ := u ◦ f−1,
then ũ is continuous and plurisubharmonic on Ω. Notice that, in view
of (iv), the function u∗ has compact support in Ω. Assume that (a) of
Theorem 4.1 holds on Ω, then by Remark (a) there is a g ∈ A1 satisfying
|g − ũ| < 1 on f(A). Set g̃ = g ◦ f−1. Then |g̃ − u| < 1 on A. Observe that
g̃ is plurisubharmonic on D′, continuous at every point of ∂D\{{a}×C},
and equals to 0 near the complex line z = a. Thus we may extend g̃ to an
element of PSHc(D) by setting g̃ = 0 on D ∩ ({a} × C). By Theorem 1
in [6], the function g̃ can be approximated uniformly on D by continuous
plurisubharmonic functions on neighbourhood s of D. Thus we can find
such a function g∗ satisfying |g∗ − u| < 1 on A. This is a contradiction to
the property (iv).

(c) Similar statements to the equivalence between (a) and (b) in Theo-
rem 4.1 have been claimed in Section 2 in [9] and at the end of the proof
of Theorem 4.3 in [11]. The proofs given in these references contain gaps
due to incorrect applications of Hahn-Banach’s separation theorem. How-
ever, we can give honest (and simpler) proofs by repeating the proof of
Theorem 4.1.

It remains to decide when one of the equivalent conditions in Theorem 4.1
holds. For this, we recall the following terminology from Section 3 of [11]
(see also [9]).

Definition 4.2. — By an isotopy family of biholomorphic mappings
defined on Ω, we mean a continuous map Φ : Ω × [0, 1] → Cn having the
following properties.

(a) Φt := Φ(t, ·) maps Ω biholomorphically onto its image; moreover,
Φt is a homeomorphism between Ω and Φt(Ω).

(b) Φ−1
t (z) is real analytic in t on a neighbourhood of 0 for all z ∈ Ω.

(c) Φ−1
t converges uniformly to Φ−1

0 = Id on compact subsets of Ω
when t→ 0.

Definition 4.3. — Let Φt be an isotopy family of biholomorphic map-
pings on Ω. Then by the boundary cluster set of Φt we mean the set of
limit points of sequence of elements in Ω ∩ Φt(∂Ω) when t→ 0.
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Theorem 4.4. — Assume that Ω is of bounded type and that there is
an isotopy family Φt of biholomorphic mappings on Ω such that for every
z lying in the boundary cluster set X of Φt we have Jz(A1) = {δz}. Then
the following assertions hold.

(a) Jz(A1) = Jz(A2) for all z ∈ Ω.
(b) Assume in addition that Ω is regular in the real sense. Then for

every bounded function h ∈ C(∂Ω) there exists a bounded function
Ψ ∈ MPSH(Ω) ∩ C(Ω) satisfying the following properties.

(i) Ψ∗ 6 h on ∂Ω.
(ii) limx→z Ψ(x) = h(z) for all z ∈ ∂Ω that satisfies Jz(A1) = {δz}.

Moreover, if Jz(A1) = {δz} for every z ∈ ∂Ω then there exists a unique
bounded function Ψ ∈ MPSH(Ω) ∩ C(Ω) such that u = h on ∂Ω.

Proof. — (a) We will use some ideas in the proof of Theorem 4.4 in [9]
(see also Theorem 3.5 in [11]). Fix ϕ ∈ C0(Ω) and z0 ∈ Ω, we will show
that S1ϕ(z0) = S2ϕ(z0). For this, notice that infΩ ϕ 6 S2ϕ 6 (S2ϕ)∗ 6 ϕ.

This implies that S2ϕ = (S2ϕ)∗ ∈ A2. By Choquet’s lemma we can choose
a sequence {vm}m>1 ⊂ A1 such that vm ↑ S1ϕ on Ω. Observe that, by
Theorem 3.1 we also have

(4.1) S1ϕ ≡ S2ϕ ≡ ϕ on X.

In particular vm ↑ ϕ on X. Now for t ∈ (0, 1) we define ut = (S2ϕ) ◦ Φ−1
t .

It is clear that ut is non negative, plurisubharmonic on Φt(Ω). For k > 0
we set

Ωk := {z : z ∈ Ω, |z| 6 k,dist(z, ∂Ω) > 1/k}.

Let ρ ∈ C∞0 (Cn) be a nonnegative, radial function with support in the unit
ball and satisfies

∫
ρ dV = 1, where dVCn is the volume form in Cn. Set

ρδ := δ−nρ(z/δ) for δ > 0.
Fix ε > 0, we claim that there is t0 ∈ (0, 1), k0 > 1 and m > 1 such that

for all t ∈ (0, t0) and k > k0 there is

0 < δk < ak := min06t6t0 dist(Φt(∂Ω),Φt(∂Ωk))

satisfying

ut ∗ ρδk
+ ψ ∗ ρδk

− ε 6 vm on Ω ∩ Φt(∂Ωk),

where the convolution of a locally integrable function u with ρδ is defined
by

(u ∗ ρδ)(ξ) :=
∫
|t|<δ

u(ξ − t)ρδ(t)dV (t).
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Assume otherwise; then we obtain sequences tj ↓ 0, kj ↑ ∞,mj ↑ ∞,

{ξj}j>1 ⊂ Ω ∩ Φt(∂Ωk), and 0 < δkj < akj such that

(utj
∗ ρδkj

)(ξj) + (ψ ∗ ρδkj
)(ξj)− ε > vmj

(ξj) ∀j.

After passing to a subsequence we may assume that either |ξj | → ∞ or
ξj → ξ∗ ∈ X. The first possibility is excluded since ψ tends to −∞ at
infinity and vmj

are uniformly bounded from below. The second possibility
can not occur either, since

(4.2) lim inf
j→∞

vmj (ξj) > lim
j→∞

vmj (ξ
∗) = ϕ(ξ∗).

On the other hand, from (6) and the condition (c) in Definition 4.2 we
obtain

(4.3) lim sup
j→∞

(
utj ∗ ρδkj

)
(ξj)− ε 6 ϕ(ξ∗)− ε.

Combining (4.2) and (4.3) we get a contradiction. Thus the claim follows.
By shrinking t0 and increasing k0 we may obtain that z0 ∈ Φt(Ωk) for all
k > k0 and t ∈ (0, t0). Consider the function

ṽt,k,m =
{

max{vm, ut ∗ ρδk
+ ψ ∗ ρδk

− ε} on Ω ∩ Φt(Ωk)
vm on Ω\Φt(Ωk).

By the claim proven above we can check that ṽt,k,m ∈ A1 and that ṽt,k,m 6
ϕ on Ω. It follows that ṽt,k,m 6 S1ϕ on Ω, in particular

S1ϕ(z0) > ṽt,k,m(z0) > (ut ∗ ρδk
)(z0)− ε > ut(z0)− ε.

Taking the limsup of the rightmost term when t → 0, and observing the
curve t 7→ Φ−1

t (z0), being real analytic near 0, is not plurithin at 0, we infer
that S1ϕ(z0) > S2ϕ(z0) − ε. Since ε > 0 is arbitrary we have S1ϕ(z0) =
S2ϕ(z0). Now by Theorem 4.1 we conclude that Jz(A1) = Jz(A2) for all
z ∈ Ω.

(b) After adding a constant to h, we may assume that h > 0 on ∂Ω.
Let h̃ be the function equal to h on ∂Ω and to M = sup∂Ω h on Ω. Since
Jz(A1) = Jz(A2) on Ω, by Proposition 3.3 we have S1h̃ = S2h̃ on Ω and
S1h̃(z) = h(z) for all z ∈ ∂Ω satisfying Jz(A1) = {δz}. We will show that
Ψ := S2h̃ is the desired function. Since Ω is regular in the real sense, by
Lemma 2.4 we have 0 6 Ψ∗ 6 h̃ on Ω. The proof of Proposition 3.5 also
implies that Ψ∗ ∈ MPSH(Ω). Now we claim that Ψ∗ = Ψ on Ω. For this,
fix ε > 0 and define on Ω the function

uε := max(Ψ∗ + εψ, 0).

Observe that u∗ε ∈ A2 and satisfies uε 6 h̃ on Ω. It follows that uε 6 S2h̃

on Ω. Letting ε → 0, one obtains Ψ∗ 6 S2h̃ on Ω. The claim follows. In
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particular Ψ ∈ MPSH(Ω) ∩ C(Ω). Finally, fix a point z ∈ ∂Ω such that
Jz(A1) = {δz} then

lim inf
x→z

Ψ(x) > lim inf
x→z

S1h̃(x) > h(z).

Therefore limx→z Ψ(x) = h(z).
Finally, assume that there are functions Ψ,Ψ′ ∈ MPSH(Ω) ∩ C(Ω) such

that Ψ = Ψ′ = h on ∂Ω. Let {Ωk}k>1 be a sequence of subdomains of Ω
such that Ωk ↑ Ω. Fix ε > 0. By the assumptions on boundary values of Ψ
and Ψ′ we see that there is k0 so large that Ψ + εψ 6 Ψ′ + ε on ∂Ωk for
all k > k0. Using maximality of Ψ′ one obtains Ψ + εψ 6 Ψ′ on Ωk for all
k > k0. Letting k →∞ and ε→ 0 we have Ψ 6 Ψ′ on Ω. By changing the
role of Ψ and Ψ′ we get Ψ = Ψ′ on Ω. The proof is thereby concluded. �

Remarks. — (a) If Jz(A1) = {δz} for every z ∈ ∂Ω then by considering
the family Φt = Id for all t, we deduce from Theorem 4.4 that Jz(A1) =
Jz(A2) for all z ∈ Ω. The reverse implication does not hold in general.
Indeed, consider the following pseudoconvex domain of bounded type Ω :=
{(z, w) : 1 < |z| < |w|}. Since through every boundary point of ∂Ω we can
find a non constant complex analytic disk lying in ∂Ω and passes through
this point, by Proposition 3.4 we see that Jz(A1) 6= {δz} for every z ∈ ∂Ω.
On the other hand, by considering the family Φt(z, w) := (z, (1 + t)w) and
applying Theorem 4.4 we infer that Jz(A1) = Jz(A2) for all z ∈ Ω. It is an
open problem if such an example can be found in the class of unbounded
pseudoconvex domains with smooth boundaries.

(b) It is proved in Theorem 26 of [15] that an unbounded strictly pseu-
doconvex domain Ω is B−regular if Ω satisfies the following condition:

(L′) there exists a holomorphic polynomial p such that :

|p(z)|2 > (1 + |z|2)deg p ∀z ∈ Ω.

We claim that if the domain Ω satisfies the condition (L′) then it is of
bounded type. Indeed, pick a polynomial p such that

|p(z)|2 > (1 + |z|2)deg p ∀z ∈ Ω.

Then we have log |p| > 0 on Ω and log |p(z)| → ∞ as |z| → ∞. It follows
that the function

ψ(z) :=
1
4

log(1 + |z|2)− 1
deg p

log |p(z)|

is negative, plurisubharmonic on Ω and tends to −∞ when |z| goes to ∞.
This proves the claim. We own this elegant proof to the referee.
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In the next result, we deal with domains which are not necessarily of
bounded type but stronger conditions on boundary data are imposed.

Proposition 4.5. — Assume that Ω satisfies the following conditions.

(i) Ω is regular in the real sense.
(ii) There is an isotopy family Φt of biholomorphic mappings on Ω such

that for every z lying in the boundary cluster set X of Φt we have
Jz(A1) = {δz}.

(iii) Ω contains no complex hyperplane at infinity.

Then for every h ∈ C0(∂Ω), h > 0, there is u ∈ MPSH(Ω)∩C(Ω) satisfying
(i) and (ii) in Theorem 4.4 (b).

Proof. — Set M = sup∂Ω h. Let h̃ = h on ∂Ω and h̃ = M on Ω. By
the proof of Proposition 3.5, S2h̃ ∈ MPSH(Ω) and satisfies (S2h̃)∗ 6 h on
∂Ω. We will show that u := S2h̃ is the desired function. For this, we first
observe that by Proposition 2.9

lim
|z|→∞

u(z) = 0.

Next, we apply Choquet’s lemma to get a sequence {vm}m>1 ⊂ A1 such
that 0 6 vm 6 h̃ and vm ↑ S1h̃ on Ω. Define for t ∈ [0, 1] the function

ut := u ◦ Φ−1
t .

Given ε > 0, using (10) and the same reasoning as in the proof of The-
orem 4.4 (a), we can find t0 ∈ (0, 1), k0 > 1 and m > 1 such that for all
t ∈ (0, t0) and k > k0 there is

0 < δk < ak := min
06t6t0

dist(Φt(∂Ω),Φt(∂Ωk))

satisfying
ut ∗ ρδk

− ε 6 vm on Ω ∩ Φt(∂Ωk),

where Ωk is defined as in Theorem 4.4. Now we proceed exactly as in the
proof of Theorem 4.4.(a) to reach u = S1h̃ on Ω. Thus u ∈ C(Ω) and
satisfies limx→z u(x) = h(z) for every z ∈ ∂Ω satisfying Jz(A1) = {δz}.
The proof is complete. �

5. Examples of unbounded B−regular domains

We start with the following generalization of Proposition 19 in [15].

TOME 58 (2008), FASCICULE 4



1402 Quang Dieu NGUYEN & Dau Hoang HUNG

Proposition 5.1. — Assume that Ω is an unbounded convex domain
in Cn with C1 smooth boundary. For every z ∈ ∂Ω, denote by Kz the
intersection between Tz∂Ω the real tangent space at z and ∂Ω. Assume
that for every z ∈ ∂Ω there is a real hyperplane Lz ⊂ Tz∂Ω satisfying
Lz ∩Kz = {z}. Then Ω is B−regular. In particular, every strictly convex
domain with C2 smooth boundary is B−regular.

Proof. — First we must show that Ω is locally B−regular. Fix z ∈ ∂Ω
and an open ball U around z. Let µ be a Jensen measure relative to
PSHc(U ∩ Ω) with barycentre at z. Since Ω is convex, we see that the
support of µ is contained in Kz ∩∂Ω∩U . From the existence of Lz, we can
find a pluriharmonic function u on Cn such that u(z) = 0 whereas u < 0
on Kz\{0}. It follows that µ = {δz}. Thus Ω is locally B−regular. Now
we claim that Ω is of bounded type. Fix a point z0 ∈ ∂Ω. Let ρ be a local
defining function for Ω on a neighbourhood U of z0. Define the map

Φ(z) :=
(
∂ρ

∂z1
(z), · · · , ∂ρ

ρzn
(z)

)
, ∀z ∈ ∂Ω ∩ U.

The following claim is crucial. There exists a1, · · · , an ∈ ∂Ω ∩ U such that
n vectors Φ(a1), · · · ,Φ(an) are linearly independent. Assume otherwise,
then Φ(∂Ω∩U) is contained in a complex hyperplane. Therefore, there is a
vector λ := (λ1, · · · , λn) satisfying

∑n
k=1 λk

∂ρ
∂z1

(z) = 0 for all z ∈ ∂Ω ∩ U.
This means that λ ∈ TzΩ for all z ∈ ∂Ω. If λ 6∈ ∂Ω, then there is some
point λ′ ∈ ∂Ω which is closest to λ. Obviously λ 6∈ Tλ′∂Ω. A contradiction.
Thus λ ∈ ∂Ω. It follows that Tλ∂Ω contains an open piece of ∂Ω which is
absurd. The claim follows. Then we can push those points ai slightly into
the half spaces separated by Tai

∂Ω and disjoint from Ω to get points a′i.
Let Hi be the complex hyperplane passing through a′i and parallel to the
complex tangent space at ai. Clearly Hi ∩ Ω = ∅ and dist (Hi, ∂Ω) > 0.
By the choices of a′i we also have

⋂n
i=1Hi is a singleton. Now the claim

follows from Proposition 2.7. Finally, the proof is completed by applying
Theorem 4.4. �

The next result is another easy application of Theorem 4.4.

Proposition 5.2. — Assume that Ω is of bounded type and regular in
the real sense and that there is an open subset A of ∂D having the following
properties.

(a) tA ∩ Ω = ∅ for every t > 1.
(b) Jz(A1) = {δz} for every z ∈ ∂Ω\A.
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Then for every bounded function h ∈ C(∂Ω), there is Ψ ∈ MPSH(Ω) ∩
C(Ω) such that Ψ∗ 6 h on ∂Ω and limx→z Ψ(x) = h(z) for all z ∈ ∂Ω
satisfying Jz(A1) = {δz}.

Proof. — Denote by Φt(z) = (1+ t)z for t > 0 and z ∈ Cn. Clearly Φt is
an isotopy of biholomorphic mappings on Ω. We can check, in view of the
assumptions (a) that the boundary cluster of Φt is contained ∂D\A. Thus
using (b), we conclude the proof by invoking Theorem 4.4. �

Remarks. — (a) As an a concrete application of Proposition 5.2, con-
sider the following unbounded domain in C2

Ω = {(z, w) : < z 6 0,−1 < < w < 1} ∪ {(z, w) : |z|2 + |w|2 < 1,< z > 0}.

It is easy to check that Ω is convex and satisfies t∂Ω ∩ Ω = ∅ for t > 1. In
particular, Ω is regular in the real sense. Since the hyperplanes z = 2 and
w = 2 have positive distances to Ω, by Proposition 2.7, Ω is of bounded
type. Notice also that A := ∂Ω∩ {< z > 0} is strictly pseudoconvex. Thus
for every bounded function h ∈ C(∂Ω), there exists u ∈ MPSH(Ω) ∩ C(Ω)
satisfying u = h on A. By pushing A slightly inside the unit ball, we may
construct similar examples where Ω is not convex.

(b) It is not hard to check that the domain Ω given in the above re-
mark also satisfies the assumptions of Proposition 4.5. Thus, for every h ∈
C0(∂Ω), h > 0, there exists a non negative function u ∈ MPSH(Ω) ∩ C(Ω)
such that limx→z u(x) = h(z) for all z ∈ A and lim|z|→∞ u(z) = 0.

The final result of the section is an invariant property for a class of
unbounded B−regular domains. Before formulating it, we introduce the
following terminology. A surjective holomorphic map f between domains
Ω and Ω′ in Cn is said to have the property (P) if the following conditions
hold.

(a) f extends continuously to ∂Ω and f : Ω → Ω′ is an open surjective
continuous map.

(b) There is (possibly empty) a complex subvariety E of Ω′ such that
f : Ω\f−1(E) → Ω′\E is a holomorphic covering i.e., for every w ∈ Ω′\E,
there is a neighbourhood U of w such that f−1(U) is a union of at most
countably disjoint open sets Vi and h is a biholomorphism from Vi onto U .

It is immediate to check that if f : Ω → Ω′ is a holomorphic proper map
which extends holomorphically to a neighbourhood of Ω then f has the
property (P).

Proposition 5.3. — Let Ω,Ω′ be unbounded domains in Cn and f :
Ω → Ω′ be a holomorphic map having the property (P ). Assume that Ω is
B−regular and that Ω does not contain any complex hyperplane at infinity.
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Then Ω′ is locally B−regular. Moreover, if we assume in addition that Ω
is of bounded type then Ω′ is B−regular.

Proof. — (a) Fix z0 ∈ ∂Ω. Define

h(z) = max(−|f(z)− f(z0)|,−1) ∀z ∈ ∂Ω.

Since Ω is B−regular, we can find u ∈ PSHc(Ω) such that u = h on ∂Ω.
Since Ω contains no complex hyperplane at infinity, by Proposition 2.9 we
have u < 0 on Ω and

lim sup
|z|→∞

u(z) 6 −1.

Define
ũ(w) = sup{u(ξ) : ξ ∈ f−1(w)} ∀w ∈ Ω′\E.

We claim that ũ∗ < 0 on ∂Ω′\{f(z0)} while limx→f(z0) ũ(x) = 0. Indeed,
given w∗ ∈ ∂Ω\{f(z0)}, then w∗ = f(ξ∗) where ξ∗ ∈ ∂Ω\{z∗}. Consider an
arbitrary sequence wj ∈ Ω′\E,wj → w∗ such that ũ(wj) → α. It suffices
to check that α < 0. To this end, we choose for j > 1 a point ξj ∈ Ω such
that

f(ξj) = wj and α 6 u(ξj) + 1/j.

After passing to a subsequence we may assume that either |ξj | → ∞ or
ξj → ξ′ ∈ Ω. In either case, it is easy to check by using properties of u
that α < 0. Now we deal with the point f(z0). Since f is open, we can
find a small open neighbourhood U of z0 in Ω such that f(U) is an open
neighbourhood of f(z0) in Ω′. By the choice of u, ũ and h, it is not hard
to show

lim
x→f(z0),x∈f(U)\E

ũ(x) = 0.

Putting all this together, the claim follows.
Next, since f : Ω\f−1(E) → Ω′\E is a holomorphic covering, we see

that locally on Ω′\E, the function ũ is supremum of a family of negative
plurisubharmonic functions. Thus ũ∗ is plurisubharmonic on Ω′\E. Notice
that f−1(E) is pluripolar in Ω, so ũ∗ is in fact plurisubharmonic on Ω.
This statement is implicit in the proof of the theorem on extending locally
bounded plurisubharmonic functions through pluripolar sets (cf. Chapter 2
in [8]). By the claim proven above, we have also

lim sup
x→f(z0),x∈Ω′

ũ∗(x) < 0 on ∂Ω′\{f(z0}.

Since z0 is arbitrary, we may apply Theorem 2.1 to find that Ω is locally
B−regular.
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Finally, by Theorem 4.4, it is enough to check that if Ω is of bounded
type then so is Ω′. Take a negative real valued function ψ ∈ PSH(Ω) such
that lim|z|→∞ ψ(z) = −∞. Define

ψ̃(w) = sup{ψ(ξ) : ξ ∈ f−1(w)} ∀w ∈ Ω′\E.

Reasoning as above, ψ̃∗ is a negative real valued plurisubharmonic function
on Ω′ and satisfies lim|w|→∞ ψ̃∗(w) = −∞. Thus Ω′ is of bounded type.
The proof is complete. �
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