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BOUNDEDNESS FROM H'! TO L' OF RIESZ
TRANSFORMS ON A LIE GROUP
OF EXPONENTIAL GROWTH

by Peter SIOGREN & Maria VALLARINO @)

ABSTRACT. — Let G be the Lie group R? x Rt endowed with the Riemannian
symmetric space structure. Let X, X1, X2 be a distinguished basis of left-invariant
vector fields of the Lie algebra of G and define the Laplacian A = —(Xg +X12+X22).
In this paper we consider the first order Riesz transforms R; = X;A~1/2 and
S; = A~Y2X; for i = 0,1,2. We prove that the operators R;, but not the S,
are bounded from the Hardy space H' to L'. We also show that the second-order
Riesz transforms T;; = X; AL Xj are bounded from H' to L', while the transforms
Si]' = A*lXin and Rij = XiX]'Ail, for 4,7 = 0,1, 2, are not.

RESUME. — On considere le groupe de Lie G = R?2 x Rt muni de la structure
Riemannienne d’espace symétrique. On choisit une base Xg, X1, X2 de champs
vectoriels invariants & gauche de algebre de Lie de G et on définit le Laplacien
A = —(X2 4+ X2 + X2). Dans cet article nous considérons les transformées de
Riesz du premier ordre R; = X;A"1/2 et S; = A~1/2X;, avec i = 0,1,2. Nous
prouvons que les opérateurs R;, mais non pas les S;, sont bornés de ’espace de
Hardy H! &4 L'. Nous démontrons aussi que les transformées de Riesz du deuxiéme
ordre Tj; = XiA_lXj sont bornées de H' & L', tandis que les transformées
Sij = A’lXin et Ri; = XinAfl, i,7 = 0,1,2, ne sont pas bornées.

1. Introduction

Let G be the Lie group R? x Rt where the product rule is the following:

(1, 22,a) - (2, 25,a") = (v1 + az),v2 + axh,aad)

Keywords: Singular integrals, Riesz transforms, Hardy space, Lie groups, exponential
growth.
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1118 Peter SJOGREN & Maria VALLARINO

for (x1,x9,a), (z},25,a") € G. The group G is not unimodular; the right
and left Haar measures are given by

dp(z1,x9,a) = a 'dz;dzyda  and dX(z1, z2,a) = a3 dzy dzs da,

respectively. The modular function is thus 6(z1, x2,a) = a~2. Throughout
this paper, unless explicitly stated, we consider the right measure p on G
and we denote by L?, || - ||, and (-,-) the LP-space, the LP-norm and the
L?-scalar product with respect to the measure p.

The group G has a Riemannian symmetric space structure, and the cor-
responding metric, which we denote by d, is that of the three-dimensional
hyperbolic half-space. The metric d is invariant under left translation and
it is given by

a+at+at2? + 23)
2

(1.1)  coshr(zy,x2,a) = V(z1,22,0) € G,
where r(z1,29,a) = d((:z:l,:zzg,a),e) denotes the distance of the point
(z1,22,a) from the identity e = (0,0,1) of G. It is easy to verify that
if r(z1,x2,a) < 1, then r(zy1, z2,a) ~ |(x1,z2,loga)|, where |-| denotes the
euclidean norm in R3. The measure of a hyperbolic ball B,., centered at the
identity and of radius r, behaves like

B ifr<l1
MNB,) =p(B,) ~
(Br) = p(B:) {e2’“ ifr>1.

Thus G is a group of exponential growth. In this context, the classical
Calderén—Zygmund theory and the classical definition of the atomic Hardy
space H' (see [8, 23]) do not apply. Recently W. Hebisch and T. Steger [17]
constructed a new Calderén—Zygmund theory which holds in some spaces
of exponential growth, in particular in the space (G,d, p) defined above.
The main idea is to replace the family of balls which is used in the classical
Calderon—Zygmund theory by a suitable family of parallelepipeds which we
call Calderén—Zygmund sets. The definition appears in [17] and implicitly
in [16], and reads as follows.

DEFINITION 1.1. — A Calderén-Zygmund set is a parallelepiped R =
[b1 —L/2,by + L/2] X [by — L/2,bs + L/2] X [ae™", ae"], where L > 0, r > 0
and a € RT are related by

etar < L < ear ifr<1,

ae’ < L<ae® ifr>1.

ANNALES DE L’INSTITUT FOURIER



BOUNDEDNESS FROM H! TO L' OF RIESZ TRANSFORMS 1119

We let R denote the family of all Calderon-Zygmund sets, and observe
that R is invariant under left translation. Given R € R, we define its dilated
set as R* = {x € G : d(z,R) < r}. There exists a constant Cy such that
p(R*) < C() p(R) and R C B((bl, b2, a), Oo’l").

In [17] it is proved that every integrable function on G admits a Calder6n—
Zygmund decomposition involving the family R, and that a new Calderén—
Zygmund theory can be developed in this context. This makes it natural to
introduce an atomic Hardy space H' on the group G, as follows (see [24]
for details).

We define an atom as a function @ in L' such that

(i) a is supported in a Calderén—Zygmund set R;
(i) llalleo < p(R)™';
(iif) [adp=0.

The atomic Hardy space is now defined in a standard way.

DEFINITION 1.2. — The Hardy space H' is the space of all functions f
in L' which can be written as f = Zj Ajaj, where a; are atoms and A
are complex numbers such that }_,|\;| < oo. We denote by || f||m: the
infimum of 3 |A;| over such decompositions.

The new Calderéon—Zygmund theory is used to study the boundedness of
some singular integral operators related to a distinguished Laplacian on G,
which is defined as follows.

Let Xy, X1, X5 denote the left-invariant vector fields

onaaa Xliaazl ngaé‘m,

which span the Lie algebra g of G. The Laplacian A = —(X& + X? + X3)
is a left-invariant operator which is essentially selfadjoint on L?(p). Since
A is positive definite and one-to-one [13], its powers A%, «a € R, have
dense domains and are selfadjoint. This makes it possible to form the Riesz
transforms of the first order associated with A, defined by

(1.2) Ri=X,A"Y? and S, =A"'Y%2X;, i=0,1,2,
and the Riesz transforms of the second order, defined by
(13) RU = X1X] Ail and Sij = A71 XZXJ and T‘U = XiAilXj s

for 4,7 = 0,1,2. The boundedness properties of the Riesz transforms as-
sociated with the distinguished Laplacian A defined above have been con-
sidered by many authors. Actually, some results in the literature concern
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1120 Peter SJOGREN & Maria VALLARINO

the Riesz transforms associated with a distinguished right-invariant Lapla-
cian A", which is related to A as follows. Let X, i =0, 1,2, be the right-
invariant vector fields on G which agree with X; at the identity, i.e.,

X0 =210y, + 2200, +a0y X[ =0y, X5 =0,,.

It is well known that X7 f = (X;f)V for any f € C®(G), where f(z) =
f(x=1) for x € G. The Laplacian A™ = —(X[)? — (X7)? — (X5)? is a right-
invariant operator which is essentially selfadjoint on L?(\). We denote by
Ry, 87, Ry, S, T, the Riesz transforms defined as above by using the
right-invariant vector fields and the right-invariant Laplacian instead of the
left-invariant ones. It is easy to see that for any f € C2°(G), A™f = (Af)Y,
R f = (Rif)", Sif = (Sif)"
and
Ry f = (Ri; )", SLf = (8 0)Y, T f = (T f)Y

Since f — f is an isometry between LP()\) and LP(p) for p € [1, 0], results
concerning the boundedness of the right-invariant Riesz transforms with
respect to the left Haar measure A may be reformulated in terms of the
left-invariant Riesz transforms with respect to the right Haar measure p.
We now summarize some results formulated in terms of the left-invariant
Riesz transforms defined by (1.2) and (1.3).

In [15, 22] G. Gaudry and P. Sjogren studied Riesz transforms of the
type XA~1/2 and A='/2X | where A is a distinguished Laplacian and X
is a distinguished vector field, in the context of the group R x R, also
known as affine group of the real line. They proved that these operators
are of weak type 1 and bounded on LP, for 1 < p < oo. In the sequel
we sometimes refer to their papers: even if their setting is different, their
arguments may be applied also to our context with some slight changes,
and so their results carry over.

Hebisch and Steger then proved that all the operators R; are of weak
type 1 and bounded on LP when 1 < p < 2 [17, Theorem 6.4]. This result
was obtained as an application of the Calderon—Zygmund theory on the
group G.

The operators S; are bounded on L2, for i = 0,1,2. For i # 0 the
operators S; are of weak type 1 and bounded on LP when 1 < p < 2, while
the operator Sy is not of weak type 1 but bounded on LP for 1 < p < 2
(Hebisch, private communication).

Since R; and S; are bounded on LP for p < 2, it follows by duality that R;
and S; are also bounded on LP when 2 < p < co.

ANNALES DE L’INSTITUT FOURIER



BOUNDEDNESS FROM H! TO L' OF RIESZ TRANSFORMS 1121

The second-order Riesz transforms have been studied first in [13] in the
context of the affine group of the real line, then in [14] in the general setting
of NA groups of rank 1, including the group G. The operators T;; are of
weak type 1 and bounded on L” when 1 < p < co. The operators R;; and
S;; are not of weak type p, for any 1 < p < 0.

In this paper we study the H' — L' boundedness of the Riesz transforms
on the group G. Our main results are the following;:

(1) the operators R;, i = 0,1,2, are bounded from H' to L' (Section
3);

(2) the operators S;, i = 0, 1,2, are not bounded from H' to L' (Sec-
tions 4, 5);

(3) the operators T;; are bounded from H! to L' (Section 7);

(4) the operators S;; and R;; are not bounded from H! to L' (Sections
8,9).

We remark that since the interpolation spaces between H' and L? for the
real interpolation method are the LP spaces for 1 < p < 2 (see [24]), the
boundedness of R; and Tj; from H I to L' implies their boundedness on
LP for 1 <p<2.

The Riesz operators, and in particular their boundedness on LP and
on the Hardy space H', have been studied on various Lie groups and
Riemannian manifolds. Many results in the literature concern “doubling
spaces”, i.e., measured metric spaces where the volume of balls satisfies the
doubling condition. In this context, the Hardy space H'! is defined as in
[8].

In the classical setting of R™, the Riesz transforms are bounded on LP
for 1 < p < oo, of weak type 1 and bounded on H! [23, I11.3].

For nilpotent Lie groups and first-order Riesz operators, the LP-bounded-
ness, for 1 < p < oo, the weak type 1 and the H'-boundedness were proved
by N. Lohoué and N. Varopoulos [18]. Subsequently, this was extended to
all connected Lie groups of polynomial growth by L. Saloff-Coste [21] and
G. Alexopoulos [1].

In the setting of symmetric spaces of noncompact type, J.-P. Anker [2]
considered Riesz transforms associated with the Laplace—Beltrami opera-
tor. He proved the weak type 1 estimate for the first-order operators and
the LP-estimates for operators of arbitrary order.

On a Riemannian manifold the Riesz transform R = VA2, where V is
the gradient and A is the Laplace—Beltrami operator, has been considered.
If the manifold has nonnegative Ricci curvature, then the Riesz transform R
is bounded on LP, 1 < p < oo, of weak type 1 and bounded from H!

TOME 58 (2008), FASCICULE 4



1122 Peter SJOGREN & Maria VALLARINO

to L' [6, 7]. Subsequently, T. Coulhon and X.T. Duong proved that on a
Riemannian manifold with the doubling property whose heat kernel verifies
an upper estimate on the diagonal, R is of weak type 1 and bounded on L?,
for 1 < p < 2[9]. The connection between the LP-boundedness of the Riesz
transform, Poincaré inequalities and heat kernel estimates is also studied
in [4, 5, 10, 11]. In Riemannian manifolds satisfying the doubling condition
and the Poincaré inequality, E. Russ [20] proved that R is bounded from
H! to L'; then M. Marias and Russ [19] proved the boundedness on H'! of
the linearized Riesz transforms.

The previous results do not apply to our space (G,d, p), since it is of
exponential growth and the doubling condition fails.

Our paper is organized as follows: Section 2 contains an analysis of the
kernels of the Riesz transforms. The H! — L'-boundedness of the opera-
tors R; is proved in Section 3, as a consequence of a general boundedness
theorem for integral operators. In Section 4, we prove the unboundedness
from H' to L' of the operators S; and S», and in Section 5 that of Sy. We
analyze the local part of the second-order Riesz transforms in Section 6,
proving that they are bounded from H' to L'. In Section 7 we show that
the operators Tj; are bounded from H 1 to L'. Finally, we show that the
global part of the operators S;; and R;; are not bounded from H Lto LT
in Sections 8 and 9.

In the following, C' denotes a positive, finite constant which may vary
from line to line and may depend on parameters according to the context.
Given two quantities f and g, by f ~ g we mean that there exists a
constant C such that 1/C < f/g < C.

2. The convolution kernels of the Riesz transforms

In this section, we analyze the convolution kernels of the Riesz transforms
of the first and the second order. First recall that the definition of the
convolution of two functions f, g on G is

fog(x) = /G flay ) o) dply)  VreG.

Let V denote the space {Au : w € C°(G)}. In [14] it is verified that
V is a dense subspace of L? and that V C D(A™') ¢ D(A~'/2). For
a > 0, we denote by U, the convolution kernel of A~%/2 in the sense that

ANNALES DE L’INSTITUT FOURIER



BOUNDEDNESS FROM H! TO L' OF RIESZ TRANSFORMS 1123

A2 f = fx U, for all f € V. Since

1 o0
A—a/Q — / ta/2—1 —tA dt
I(a/2) Jo ©
we have that
1 o
Uy = /21y, dt
meA et

where p; denotes the heat kernel of A. It is well known [12, Theorem 5.3,
Proposition 5.4], [3, Formula (5.7)] that

1 r(z) _ _ @)
_ 5172 1—3/2 ¢
p(2) 8m3/2 (@ sinh 7(x) © vreG,

where r(x) denotes as before the distance of = from the identity. Hence, for
a<3

1 1 r(z) O /9 1._3/9 @
U(z) = —— §1/2 7/ ja/2=14-3/2 2
(z) I'(«/2) 873/2 (@) sinhr(x) Jg ¢

11—« o] 5
_ # 2 51/2(1;) T(I’))/ r(m)a—302—ae—v dv
) Jo

[(a/2) 73/2 sinh r(
a—2
_ sy @)
Cod/%(x) Sinh 7 (2) Vo e G.

1

We consider the cases a = 1 and a = 2 and get that €1 = 5 and Cy = ﬁ.

We denote by U = U, the convolution kernel of A=1/2 given by

1 1

Aoy 1
272 o) r(z) sinhr(z)

(2.1) Uz) = Vz € G,

and by W = Us the convolution kernel of A~! given by

(2.2) W) = i 51/2(z) m Vred.

Since R; = X; A™Y/2 we get for all f € V and z € G
&ﬂwz&ﬁﬂwwz/&MWMWWMM@

= lim Xiof(zy~ ") U(y) dp(y)

e—0 r(y)>e

— _ lim Xiyf(zy= ") Uly) dp(y)

e—0 r(y)>e

(2.3) = lim flzy™) X, U(y) dp(y) ,

=0 Jr(y)>e

TOME 58 (2008), FASCICULE 4



1124 Peter SJOGREN & Maria VALLARINO

where the last step follows by integration by parts, as in [22, Section 3].
Thus the convolution kernel of R; is the distribution pv k;, where k; = X;U.
Moreover, for f € V and x ¢ suppf

0 = [ flan) o) axw)
= [ )ty 2)80) anto)
(24) = | 10 B o).
where R;(-,-) denotes the integral kernel of R;, related to k; by

(2.5) Ri(z,y) = d(y) k,—(y_lm) Vz, y € G, xFy.

We now consider the operators S;. By arguing as in [15, page 246-247), it
is easy to see that if f € C2°(G), then X, f € D(A™Y/2), so that S; is well
defined on C2°(G). Moreover, for all f € C°(G) and g € V

(Sif,9) = (A7V2Xif g) = (Xif, A7V29) = (£, X;A™V2g) = —(f, Rig).
Thus by (2.5) we deduce that the integral kernel of \S; is given by
(2.6) Si(z,y) = —Rily, ) = —0(z) ki(z™'y)  Va,ye G,  x#y.

We now compute k; explicitly. To do so, we shall need the following simple
lemma.

LEMMA 2.1. — At any point (z1,x2,a) # (0,0,1) in G, the derivatives
of r along the vector fields X; are given by

{aa_la (w1+$2) afvcoshr ifi=0

2 sinh r(zy,z2,a) sinh r

z ifi=1,2.

sinh r(z1,z2,a)

Xir(z1,x2,a) =

Proof. — It suffices to differentiate the expression

a+at+at(z?+23)
2 )

coshr(z1,z2,a) =

with respect to X;. For Xg = ad, we obtain

. 1—a"2—a2(z2 + 22
sinhr(zq, xe,a) Xor(z1,22,0) = a 5 (21 2) ,

which gives the result for ¢ = 0. The cases of X; = a0,,, i« = 1,2, are
similar. O

ANNALES DE L’INSTITUT FOURIER



BOUNDEDNESS FROM H! TO L' OF RIESZ TRANSFORMS 1125

By (2.1) and Lemma 2.1 for ¢ = 1,2 and (x1,x2,a) # (0,0,1) we get

ki(x1,22,a) = X;U (21,22, a)

1 _, sinhr+7r coshr
=———a 1—er(a:1 x9,a)
2 2 2 1 ) )
27 r2 sinh” r
1 _, sinhr+7rcoshr

(27) = —ﬁa ZT;

r2 sinh®r
For i = 0 and (21, z2,a) # (0,0,1) we get

ko(z1,22,a) = XoU (21, 72, a)

1 _ 1 _q sinh7 47 coshr
= ﬁ[_ 2 e il 1 B a— Xor(xh:vz,a)}
1 4 1 ya—at—a Yz} +23) sinhr +r coshr
727#2[7 rsinhr  C 2 72 sinh® r ]
(2.8)
ey ea) + —— —1+a?2+a2%(z?+22) Sinhrfr coshr
2m? 2 2 sinh® r

We now consider the second-order Riesz transforms. We shall regard
A~ as the operator of convolution by the kernel W. The operators R =
X;X;A7H S = AT1X, X, T;; = X; A1 X, are then properly defined on
C* (@), with values in C*°(G). By arguing as in [14, Lemma 6] we may
show that there exist distributions k;;, ¢;;, gi; such that for any f € C2°(G)

Rijf=Ffx*kiy  Syf=Ff*b;  Tiyf=7[*g;.

To compute these convolution kernels, we recall some simple properties of
right- and left-invariant vector fields, which are the analogs of those proved
in [14, Section 4.2] with respect to the measure A.

Given a vector Z in g, we here denote by Z" and Z* the right-invariant
and left-invariant vector fields on G which agree with Z at the identity,
defined by

r _ d 74 _ i
Z"f(x) = %‘tzof(exp(tZ) ) and Z f(x) = dt‘t:of(m exp(tZ))
for any f € C*°(G) and x € G. It is easy to check that for any f € C*(G)
(2.9) 7rf = (7).
Let k be a distribution on G and f, g € C°(G). Then

(2.10) (fxk,g)=(k fxg).

TOME 58 (2008), FASCICULE 4



1126 Peter SJOGREN & Maria VALLARINO

The left-invariant derivative Z°k of k is the distribution such that for any
g€ Cx(G)

(2.11) (Z°k,9) = —(k, Z"9) .
If f, g € C°(G), then
<erag> = <fa 7Z7‘g> + Z(S(e) <fag> .

So it is natural to define the right-invariant derivative of a distribution k
as the distribution Z"k for which

(2.12) (Z7k,g) = (k,—Z"g) + Zo(e) (k,g)  Vge CZ(Q).
It is easy to verify that

(2.13) Zfxk)=fxZ'% and  Z"(fxk)=Z"fxk.
By (2.10) and (2.12) we deduce that

(2.14) Z'fxk=fx(—Zk+Z5(e)k).

Applying (2.13) we get that for any f € C°(G)
Rijf = XiX;AT f = XoX5(f+ W) = X(f + X;W) = [+ Xi X; W

Thus the convolution kernel of R;; is
(2.15) kij = X, X; W,
the derivative taken in the distribution sense. We denote by R;;(-,-) the
integral kernel of R;; defined by R;;(z,vy) = (y) ki;(y '), for = # y.

Moreover, by (2.11) for all f, g € C°(G)

(Sijf.9) = (A" XiX;f.9) = (XX, f, A7 g)
= (X, [, Xi A7 g) = (f, Rjig) -

This implies that the integral kernel of S;; is given by
(2.16) Sij(z,y) = Rji(y,z) = §(z) kji(z™y) Ve #£vy.
It easily follows that the convolution kernel of S;; is £;; = 5kji.

Applying (2.14), we get that for any f € C°(G)

njf = XiAilXjf = Xz (X_]f * W)
=X; [« XiW = fx (= X]X;W + X;6(e) X; W) .

Thus the convolution kernel of Tj; is g;; = — X7 X;W + X;0(e) X, W.

To avoid long computations, we do not compute explicitly the kernels of
the second-order Riesz transforms, but we shall find their behavior away
from the identity, i.e., in the complement of the unit ball B;.

ANNALES DE L’INSTITUT FOURIER



BOUNDEDNESS FROM H! TO L' OF RIESZ TRANSFORMS 1127

In the sequel, we shall denote by R(r) any series of the type Y=, cxe™2F",

where the ¢ are real numbers and the series is convergent for r > 1;
we denote by S(r) any function of the type 1 + R(r). These functions
may vary from occurrence to occurrence. It is easy to see that a func-
tion S(r) = 14 R(r) may be differentiated termwise and its derivative is
S'(r) = R(r). Moreover, multiplying two functions of the type S, we obtain
a function of the same kind.

Lemma 2.1 implies that for points (z1,z2,a) € Ei

2x;e7 " S(r) ifi=1,2
(2.17) Xir(xy,x2,a) =
2ae " S(r)—S(r) ifi=0,
and by (2.2)
1
(2.18) W(z1,29,a) = —a ‘e "S(r).

27
Let Z3% be the set of m = (mg, mi,ms) in Z* such that m;,ms > 0 and
mo > —1. We denote by |m| the sum mg + my + mg and by 2™ the
product 7" x5'2a™°. The principal term of W is of the type 2™e~P", where
|m| — p = —2. We shall study the integrability of similar expressions in an
elementary lemma, and first split Pi into two parts, as follows:

Gy = {(x1,29,a) € B} : a>1},

and
G_ = {(x1,22,a) € B} : a <1}.

LEMMA 2.2. — Let m be in Z3 and p € N.
(i) The function ™ e~P" is integrable in G if and only if
(2.19) my +mg — 2p < =2 and m| —p < —2.
(ii) The function ™ e~P" is integrable in G_ if and only if
(2.20) my+mo —2p < —2 and mo+p>0.
Proof. — If (x1,x2,a) € G4, then e” ~ a (1 + a2 |(xy,12)[?), so that

d
/ a™0 |1 |™ |ag|™? eTP T day dmg—a

d
/ o [l ™ P (1 2 G, )) 7 o da

Under the change of variables a=!(x1,22) = (y1,%2), this transforms into
the product

/ a7 da /2 lya ™ y2|™2 (1 + [(y1,y2)|*) P dy1 dys .
1 R

TOME 58 (2008), FASCICULE 4



1128 Peter SJTOGREN & Maria VALLARINO

Here the integral in a converges if and only if |m| — p < —2. By means
of polar coordinates, the second integral is seen to converge if and only if
my1 + mg — 2p < —2. This proves (i).

If (x1,72,a) € G_, then € ~ a~! (1 + |(x1,x2)[?), so that

d
/ a™ |z ™ |xa|™? e 7P day dxg—a
G a

1
”/ @t da / 1™ o™ (14 (1, 0)[2) P day das
0 R2

and (ii) follows. O

To study the higher order derivatives of W, we start with the derivatives
along X, X1, X5 of an expression 2™e ?" S(r), as above. We shall always
have

(2.21) my+mg—2p < -2 |m| —p < -2 and mo+p=0,

which does not imply the integrability of z"e™P". For many remainder
terms, we shall denote by Q(x) any finite sum of terms z"e~9" R(r), where
|n| —q¢ < —2,n9+¢ >0 and n; +ny — 2¢ < —2, so that Q(z) is integrable
in BS. By (2.17) we get that in B}
Xi(z™e P S(r)) =my amot gl o= § () -

—pa™xMxy?e P 2z 67 S(r)+

+a™x"xy?e™" R(r)2xz1e”" S(r)

=m am‘)“x?ﬁ”l*lx?%_pr —2p amox;n1+1x;n2e_(p+l)r+
(2.22) +Q(z).
By symmetry an analogous formula holds for ¢ = 2. From (2.17) we get
Xo(z™e P"S(r)) = moa™0a a2e P S (r)—

—pa™ " xh?e " [2ae”"S(r) — S(r)]+

+ a2l e P R(r) [2ae7"S(r) — S(r)]

= (mo +p)a™xzy?e P — 2pam°+1x§”1m§"’26_(1’+1)r+
(2.23) + Q(x).
Differentiating the expression (2.18) for W and applying (2.22) and (2.23),
we get that in B

1

XjW(l‘l,IEQ, a) = —%

alzje 4+ Q(x) if j=1,2,
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and

- r
XOW(x17x27a) = _%e 2 +Q(£L')

We now differentiate W a second time, applying again (2.22) and (2.23)
and also the observation that X,;Q(z) = Q(x), for i, j = 0,1, 2. The result
is that there exist constants ay;, 3;; € R and m, n € Zi such that in Ei

(2.24) kij(z) = ayj 2™ e 2 4 Bij " e 4+ Q(x),

where 3;; # 0, |m| =0, |n| =1, mi +my —4 < =2, ny +ny — 6 < =2,
mo + 2 > 0 and ng + 3 > 0. This means that k;; has a principal part in
Ei given by at most two nonintegrable terms, while the remaining part
of the kernel is integrable. Finally, we estimate the derivative of k;; along
the vector field Xs. We get that, for 7,5 = 0,1,2, there exist constants
Yij» Nij, 0ij, Uij € R and h, £, m, n € Z3 such that in B

(2.25)

XQk'ij (l‘) = Yij zhe 2" + Nij ztedr + 054 xme 3" + 01'3' e 4 + Q(l‘) s

where 0,; #0, |h| =0, |¢| = |m| =1, |n| = 2.

3. H' — L'-boundedness of R;

In this section we prove that the Riesz transforms R; are bounded from
H' to L', fori=0,1,2.

This result is a consequence of the following boundedness theorem for
integral operators. Note that the hypotheses of the following proposition
are the same as those of [17, Theorem 2.1].

PROPOSITION 3.1. — Let T be a linear operator bounded on L? such
that T'=3_,c, T}, where

(i) the series converges in the strong operator topology of L?;
(ii) every Tj is an integral operator with integral kernel Tj;
(iii) there exist positive constants «, A,e and ¢ > 1 such that

B [ Bel 0+ ddey) d) <4 e

62 [ Ly -Tealde < A@dp.2)"  weed.

Then T is bounded from H' to L.
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Proof. — We first show that there exists a constant C' such that for any
atom a

(3-3) [Tall < C.

Let R be the Calderén—Zygmund set supporting a, and denote by cgr the
center of R and by R* its dilated set (defined in Section 1). We estimate
the integral of T'a on R* by the Cauchy—Schwarz inequality:

34) [ 1Taldp < |Tallp(r)
< ClT g2 llalls p(R)/2 < C Tl

It is easy to show that from the estimates (3.1) and (3.2) it follows that

(3.5) sup sup / T (2, y) — T(z,2)| dp(z) < oo,
ReER y,z€R J(R*)e

where T is the integral kernel of T'. Thus the integral of T'a on the comple-
mentary set of R* is estimated as follows:

| rdas |
(Rx)c (R*)“
.

< / / (2, y) — T(x,cr)| Ja(y)| dp(y) dp(z)
(R*)eJR

[ T alw) dptw)] dote)
R

[ 17e.0) = T, cn)l ) dot) | apta)

_ /R ja(w))( /W (2, y) = T(w,cn)| dp() ) do(y)

<l sup [ [T(ey) - Tlosen)] dofe)
yER J(R*)e

<C.

This concludes the proof of (3.3). We shall deduce from (3.3) that T is
bounded from H' to L'. Indeed, by [17, Theorem 2.1] T is bounded from
L' to LY. Now take a function f in H' and suppose that f = Z;’il Aja;is
an atomic decomposition with >, |A;| ~ || f||g:. Define fy = Zjvzl Aja;.
Since fy converges to f in L', Tfy = Z;v:l AjTa; converges to T'f in
LY. On the other hand, by (3.3)

ITfx =D NTagli < > NIITalh <C Y Nl
j=1 j=N+1 j=N—+1
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so that Tfy converges to Y 7%, A;jTa; in L'. This implies that Tf =
322, AT € Lt and [Ty < C |f 0

We now easily obtain the following theorem.

THEOREM 3.2. — The Riesz transforms R;, for i = 0,1, 2, are bounded
from H' to L'.

Proof. — In the proof of [17, Theorem 6.4], it is shown that the operator
R; satisfies the assumptions of Proposition 3.1. Thus R; is bounded from
H' to L'. O

4. Unboundedness of S; and S,

In this section we prove that the Riesz transforms S; and S are not
bounded from H' to L'. To do so, we shall define an atom a on G such
that the images of a under these operators are not integrable in a region

far from the support of the atom (see Theorem 4.2).
Differentiating the expression (2.7) for k; along the vector field X5 and
applying Lemma 2.1, we obtain that
2 o 3 .
Xoki(z1,x2,a) = —# a” 'z Xor(x1, 2, a) [T sinh rq(j C:Z}};g:_ rsinhr) _
(sinhr + 7 cosh r)(2r sinh® r + 372 sinh? r cosh r)
74 sinh® r }

(4.1)
1 1 X112 272 cosh?r + 72 + 2sinh? r + 3r sinh r cosh r

= ——a - -
272 sinh r r3 sinh* r

LEMMA 4.1. — There exist regions I C IV C T, a positive continuous
function ® on I' and a positive constant C' such that
(ii) for any (z1,22,a) inT” and 7 in [0,1/4], the point (x1,z2,a)-(0,7,1)
isin I' and

(I)((£E1,£E2,a) : (077—7 1)) = (I)(xla'r%a) ;

(iii) [, ®dp = oo.
Let E be the parallelepiped (—1/2,1/2) x (=1/4,0) x (1,2). Then

(4.2) I”.-E-'.ECT.
Proof. — Given B, A > 1 and 0 < £ < 1 we define I" as the region

I'={(z1,22,0) € G: 1—e<my/w1 <1l+e¢, 21> Ba,a>A}.
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For any (z1,x2,a) in I' we have that
—1,2

a
L < coshr(zy,29,a) < Ca™?

and 7(z1,x2,a) > 1, for A and B sufficiently large. Moreover, since " <
2 coshr < Ca=ta?,

r(z1,12,a) < C logla™' z%).

By the formula (4.1) it is clear that X5k, is positive on I'. Considering the
first term in the numerator of the last fraction in (4.1), we see that for
(x1,29,a) in T

2

Xoky ( ) >Ca a2 — > o o
x1,29,a) =2 Ca 'z > .
2D 2 Lo coshdr log(a=1 22) (a1 22)3

We define
1

log(a™" 23) (a=" 2%)?

The condition (i) is verified. We now define

b(x1,x9,a) =

I'"={(z1,29,a) €T : 1 —¢& <ay/m1 <1+¢, 21> Ba},
I ={(x1,29,a) €T : 1 —¢&" <a9/x1 <1+4€", 21 > B"a,a>2A},

where B” > B’ > B, 0 <&” <& < e <1 have to be chosen.

Let (z1,x2,a) be a point in I and 7 in [0, 1/4]. Then (x1,z2,a)-(0,7,1) =
(1,22 + aT1,a). It is easy to see that we may choose B’,¢’ such that
(z1,22 + a7,a) € T'. Moreover,

1

=&
TogfaT9) (@ Tag )

@((ml,mg, a) - (0,7, 1))

as required in (ii). To prove (iii), we integrate ® over I’ and obtain

(1+e")zy 1 da
ddp = dxo dry —
/r// p= / /// /1 ene, 1ogla=ta?) (a1 af)? 208
da
=C 1 de 22
/2A /”a (a 1232 logla1a3) * ' a
oo o0 d
:C/ / 27uda
2A (B”)Qa u logu
>~ 1
> C/ da
94 @ loga

= 0.

ANNALES DE L’INSTITUT FOURIER



BOUNDEDNESS FROM H! TO L' OF RIESZ TRANSFORMS 1133

Given (x1,29,a) € T and (y1,y2,b), (21, 29,¢) € E, we have

(I‘l,ig,a) ' (ylzyQab)il : (ZlaZQaC)
=(z1 + ab™ (21 — y1), w2 +ab (20 — yQ)aabilc) )

where ab~1lc > 24/2 = A, and
z14+ab (2 —y1) > B"a—ab™' > B"a/2 > B ab”'c,
for B” sufficiently large. Moreover,

o+ ab Mz —y2) > (1—€") —abt/4
=x21(1—&)+ (& -z, —ab™ /4
>a1(1—¢)+ (€ —&")B"a—ab™' /4
>ai(1—¢)+ [ —")B" —1/4]ab™"
> [xl +ab (2 — yl)] (1-¢,

if &’ <& and B” is sufficiently large. In the same way, we can achieve
zy +ab (2o —y2) < [xl +ab (2 — yl)] (1+¢€).
Thus the point (z1,22,a)- (y1,y2,b) "t (21, 22,¢) is in I, proving (4.2). O

THEOREM 4.2. — The operators S, and Sy are not bounded from H*
to L.

Proof. — By symmetry, it is enough to treat the case of S;. We shall
construct an atom a such that Sja does not belong to L!. Let R be the
parallelepiped [—e?log2/2,e?log2/2] x [—e®log2/2, e log 2/2] x[1/2,2]; it
is easy to check that R is a Calderén—Zygmund set centered at the identity.
Now let E be the parallelepiped defined in Lemma 4.1, and consider the
right translate E of E by the point exp(o X2) = (0,0, 1) for some o > 0,
ie.,

E’=FE- <an-a 1) = {(ylayQ + bU7 b) : (y17y27b) € E}
C(-1/2,1/2) x (= 1/4+0,20) x (1,2).
With 0 =1/4, E and E? are disjoint and contained in R.
Let us consider the function a = p(R)~! (1E—1EU). It is obvious that a is

supported in the Calderén—Zygmund set R and ||a|oc < p(R)~!. Moreover
Jadp =0 and so a is an atom. We now compute Sja outside the support
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of a. For all z ¢ EU E”
Siae) = [ Si(.) alw) doly)
o) [ i) dots) —oB) [ Sitednty).

Changing variable y = v - (0,0,1) in the last integral, this transforms into

p(R)! /E 81 (2,9) dp(y) — p(R)~! /E Si(2, 0+ (0,0,1)) dp(v)
— p(R)" / [S1(z,y) — 51 (2.9 - (0.0,1))] dp(y).
E
By (2.6) we know that
Sy(z,y) — St (x,y - (0, o, 1)) =4(x) ( —ky(z7'y) + ki (z tyexp(o Xg)))

d
f(s(x)crg

k1 (xily exp(t X))
t=7(z,y)
= (5(1’) g Xle (x’lyexp(T(m, y) XQ)) )

for some 7(z,y) in (0,0). It follows that for all x ¢ EU E°
(13)  Siale) = p(R) o 8(e) [ Xk (o yexp(re.n) X)) do).
E
To prove that Sja is not in L', we integrate |Sia| in the region E (I'")~!,

where I'" is the set which appears in Lemma 4.1. It is easy to check that
E (I'")~! is disjoint with EU E7, so that we can apply (4.3) and obtain

[ Isia@]dota)
E()-1
oy te [ o] [ ok yespire ) X2) dptw)]dpte)

—oB) o |
I E—l

If 2 € I”E! and y € E, then zy € I, in view of (4.2). Since 0 <
T(x71,y) < 0 = 1/4, by Lemma 4.1 the point zyexp(r(z~!,y) X3) isin T
and

/EX2k1 (zyexp(r(z™,y) X2)) dp(y)‘ dp(z) .

Xoky (zy exp(T(z™, ) X,)) = Cd(zyexp(r(z,y) X)) = C®(zy) .
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Hence, applying Fubini’s theorem and using w = xy instead of =, we get

/E(F”)1 |S1a($)|dp(l‘) >Cp(R) o /F”Eil /E@(xy) dp(y) dp(x)
=C,0(R)‘10/Edp(y) /FE? ®(w) dp(w)
>Cor)ta [

E

(o) | @w) dofw).

Lemma 4.1 (iii) implies that this integral diverges. |

5. Unboundedness of S,

To prove that the operator Sy is not bounded from H' to L', we use the
same idea as in the previous section. The only difference is that we consider
now the derivative Xoko in a slightly different region.

We first compute the derivative of the expression (2.8) for ko along the
vector field Xj:

Xoko(z1,22,0) =

1 ot N 1 1-a2-a2(x?+23) sinhr +r coshr
272 psinhr @ 272 2 r2 sinh®r
1 9 —9, o gv7 Sinhr + 7 coshr
272 |07 + a7 (w1 + 7)) r2 sinh®r
1 —1+4+a?2+a2(@?+23) a—a ! —a (22 +23)
272 2 2 sinhr

y [ (2coshr 4 r sinh7)r? sinh® r
r4sinh® r
(sinh7 4+ cosh7)(2r sinh®r + 372 sinh® 7 cosh 7’)}

r4sinh® r

1 at 1 1-3a2-3a"2(2?+23) sinhr + 7 coshr
T 272 rsinhr | 272 2 2 sinh® r

1y fa-a—a7l @} +aB)]
o 1

(5.1)
y 272 cosh? 472 + 2 sinh® r + 37 sinhr coshr
73 sinh® r ’

LEMMA 5.1. — There exist two regions ' C €, a positive continuous

function ¥ on §2 and a positive constant C such that
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(ii) for any (z1,x2,a) in Q and 7 in [0,1], the point (z1, z2,a)-(0,0,e7)
is in §} and

‘If((xl,xg,a) . (O,O,eT)) > CU(xy,22,a);

(iii) [, Udp=o0.
Let F be the parallelepiped (—1/16,1/16) x (—1/16,1/16) x (1,+/2). Then
(5.2) Q-F ' FCQ.

Proof. — Let A > 1 be a constant to be chosen later and define

Q= {(z1,22,a) € G: 23 + 235 <a’/4,a> A},
(5.3) Q' = {(z1,29,0) € G: 22+ 12 < d?/64, a > V2A}.
For all (z1,22,a) in Q
g < coshr(zy,x9,a) < Ca.

For A sufficiently large, r(z1, 22,a) > 1 here, and, since e” < 2coshr < C a,
we have r < C loga.
It is easy to show that in the region  all the summands which appear
in the last expression in (5.1) are positive, so that for all (z1, 2, a) in
a! C
- P .
rsinhr ~ a? loga

Xoko(x1,22,a) > C

We define
1

U(z1,29,a) = m.
The condition (i) is satisfied.

Let (x1,22,a) € Q and 7 € [0,1]. It is easy to check that the point
(z1,23,a) - (0,0,e7) = (x1,x2,ae”) is in Q. Moreover,
1 1

\p((xlal’%a) ) (070797)) - a?e?" log(aeT) > a? loga

=CU(x1,x2,a),

as claimed in (ii). To prove (iii), we integrate ¥ over ' and obtain

e 1 d
! V34 6% loga 22 +x2<a2/64 a
e 1
d

V34 aloga

= 0.
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Given (x1,22,a) € Q" and (y1,y2,b), (21, 22,¢) € F, we have that

(331,.132,&) ' (ylvaab)il : (ZlaZQac)
=(2z1+ab (21 —y1), 22+ ab (22 — yz)aabflc) )

where ab~'c > V2A4/v/2 = A, and
[z1 + ab™(z1 — )] + (22 + ab™ (22 — y2))?
< (|| + a/8)? + (|z2| + a/8)?
<2(1/8+1/8)%*a®
< (ab~'c)?/4.
Thus (21, 72,a) - (y1,92,0) "1 - (21,22,¢) € Q, and (5.2) is proved. a
THEOREM 5.2. — The operator Sy is not bounded from H' to L".

Proof. — Following closely the proof of Theorem 4.2, we shall construct
an atom a such that Spa does not belong to L'. With R as in that proof,
we let I be the parallelepiped defined in Lemma 5.1 and consider

F?=F. (anaea) = {(yhy%aea) : (y17y27b) € F}
= (—1/16,1/16) x ( —1/16,1/16) x (¢7,e”/2).
With o = (log2)/2, F and F'? are disjoint and contained in R.

Let us consider the atom a = p(R)_1 (lp — 1Fa). We compute Spa
outside the support of a. For all z ¢ F'U F°

Spal(x) = p(R)~! /F So(a, ) dp(y) — p(R)™* [ So(z,y) dp(y)

Fo
=B [ [S0(.9) = Sof - 0,0.6)] dply)
F
By (2.6) we know that
So(z,y) — So (:E,y - (0, O,eU)) =4(z) ( — ko(z™y) + ko(z 'y exp(o Xo)))
d 1
Yo pn ‘t:‘r(w,y)ko (:zc— yexp(t XO))

= 0(z) 0 Xoko (™ 'y exp(7(x,y) Xo)) ,

=(x

for some 7(z,y) in (0,0). It follows that for all x ¢ F U F°

(5.4)  Spa(z) = p(R) "' o é(x) /FXoko (z7 'y exp(r(z,y) Xo)) dp(y) -
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To prove that Spa is not in L', we integrate Spa in the region F (€)1
It is easy to verify that F (€2)~! is disjoint with F'U F?, so that we can
apply (5.4) and obtain

/ |Soa()| dp(z) =
F ()1
oy te [ s [ Xkl yesa(r (e X0) o) o)

=p(R) o /Q/Fi1 /FXoko (zyexp(r(z™",y) Xo)) dp(y)‘ dp(z) .

If z € YF ! and y € F, then zy € Q, in view of (5.2). Since 0 <
T(x7ly) < o < 1, by Lemma 5.1(ii) the point zyexp(r(z~t, y) Xo) is
in  and

Xoko (zyexp(r(z7",y) Xo)) = C ¥(zyexp(r(z~",y) Xo)) = C U(zy).
As in the proof of Theorem 4.2, we get

/F(Q,)l [Soa(x)| dp(x) > C p(R) "o / . /F W(xy) dp(y) dp(x)
:Cp(R)_lo/

F
> CpR) o /F do(y) / () dpfuw).

Lemma 5.1 (iii) implies that the last integral diverges. a

o) [ W) dp(w)

6. The local parts of T;;, S;; and R;;

In this section, we study the local parts of the kernels of the second-order
Riesz transforms. We shall prove that they behave like standard Calderén—
Zygmund kernels in R? and deduce that they correspond to operators which
are bounded from H' to L'.

Let ¥ be a function in C2°(S) such that 0 < ¥ < 1, ¥ is supported in
the ball By of radius 2 and ¥ = 1 on the ball B;. Define

95 =9i; ¥ and  g77 = gij (1 - V),
kj; =k ¥ and kY =k (1- W),
g?j = éij v and Efjo = f” (1 — \I/) s
and let T2, T2°, RY., RS S?j and S77 be the corresponding convolution

130 Tig 0 179 70
operators. We shall prove that the operators T}, RY; and Sf; are bounded
from H' to L'. To do so, we use the following lemma.

ANNALES DE L’INSTITUT FOURIER



BOUNDEDNESS FROM H! TO L' OF RIESZ TRANSFORMS 1139

LEMMA 6.1. — Let T be a convolution operator which is bounded on
L2. Suppose that its kernel k is a distribution supported in the ball B, and
given by a function in Bs \ {e}. Define

(6.1) B((z1,22,5), (y1,92,1)) = 6(y1,y2,€") k((y1,y2,¢") 7" - (1,72, ¢%))
for any (x1,22,8) # (y1,y2,t) € R3. If 3 satisfies the standard estimate

(6.2)  |B(x,y) +Ix =yl [[VxBx )|+ [VyBx¥)] < Clx -y,

for |y| < 249, x # y, where Ay is a suitable constant, then T is bounded
from H' to L'.

Proof. — We first verify that the operator T is of weak type 1. Via a stan-
dard Calderén-Zygmund decomposition argument, the L2-boundedness of
T and the estimate (6.2) imply that for any f € L*(B;)

p({rec:ri@l>n) < Sl viso,

There exists a sequence of balls B;, centered at points xz; and of radius
1, such that G = Uj Bj and each point of G belongs to at most n of the
balls B; (see [13, Lemma 8]). From the left-invariance of the operator T,
the right-invariance of the measure and a simple application of a partition
of unity (¢;); such that suppt; C B, we may deduce that for any f € L'
and t >0

p({z € G:|Tf(z)| > t}) <p({z eC: Z|T (i f)(@)] > t})

< S Issl < Sl
J

The inequalities above follow by a standard argument (see [13, Lemma 7]
for the details). Thus, T is of weak type 1. As in the proof of Theorem 3.1,
the lemma will follow if we show that there exists a constant C' such that
[|T5]|; < C for any atom b.

Any atom b can be transformed by an appropriate left-translation into
an atom a supported in a Calderén—Zygmund set centered at the identity,
and ||Tb||1 = ||Tally by the left-invariance of T'. Thus, it suffices to con-
sider an atom a supported in a Calderén-Zygmund set R = [-L/2, L/2] x
[—L/2,L/2] x [e”",e"] centered at the identity. Recall that the dilated set
R* is defined by {z € G : d(x, R) < r}. Since T is bounded on L?,

(6.3) ITall s rey < p(R)Y2IT N p2—r2 llall2 <

Note that supp(Ta) CR-Bs C{x € S: d(z,R) < 2}.
If r > 2, then supp(T'a) € R-By C R*, so that ||Tally = |Tal|11(r-) < C.
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Suppose now that r < 2. Since r(z1,x2,a) ~ |(21,22,loga)| near the
identity, there exists an absolute constant Ay such that
R C {(x1,22,a): |(x1,x2,l0ga)| < Agr} =B

Notice that B corresponds to a euclidean ball in R3. Since r < 2, p(B) ~
p(R) ~ r? and, by arguing as in (6.3), we obtain that |Ta| ;125 < C.

It remains to estimate the L!'-norm of Ta outside 2B. Since the distri-
butional convolution of T is k, we get

/ (Ta(z)| dp(z) = /
(2B)¢ (2B)¢
- /<23>c

Rewriting this in terms of 3 and euclidean coordinates, we conclude

Tl oy < ol % [ /
[(z1,32,8)|>2A07 J|(y1,y2,t)|[<Aor

‘ﬂ(($1,$27 8)7 (yla y27t)) - ﬁ(($1u$27 8)7 0) | dyl dy2 dt d.’L‘l dLL'Q ds.

If |x| > 2Aor and |y| < Aor, by (6.2) we get

1B(x,y) = B(x,0)| < sup |VyB(x,y)|lyl <Crlx|™*,

ly'|[<Aor

| skt a) do(w)| o)

| aw)s) ko) = k()] do)| do(o).
B

so that

[Talene <lale [ [ Ja6y) - B(x.0)|dydx
|x|>2A07 |[<Aor

< 07”73/ / x| rdy dx
|x|>2A0r J|y|<Aor

<C.
|

PROPOSITION 6.2. — The operators Tg, RO and SO are bounded from
H' to L.

Proof. — It is enough to apply Lemma 6.1 to the operators TU7 R and

S%;. By [14, Theorem 12] they are bounded on L? and their kernels gw, k3,

E?j are supported in the ball Bs. Let k denote one of the kernel gi], Zj, K%
We must show that the function 3, given by

B((w1,22,5), (y1,92,1)) = e > k(e (@1 —y1), e~ (@2 = p2), ™),
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satisfies (6.2). By means of some elementary Taylor expansions in the vari-
able x = (z1, z2,loga) € R3, one finds that near e

11
— — (1 +hi+ha+...
47T|x|(+ 1+he+..0),

where each h; is a function of x which is homogeneous of degree j and

W(l’l,IEQ, a) =

smooth away from 0, and the series ) j h; converges near 0. Termwise
differentiation is possible, and we let ¢ denotes a differentiation operator
with respect to (1, 22,loga), of order a. Then

W =h_1_ja| + hoja| +---
with similar smooth homogeneous functions Bj. This implies
0°W ()| < C x|~
for small x, and thus
(6.4) |k(x1,29,0)| + |(z1,72,loga)| [VE(21,22,a)| < C |(21,22,loga)| >

in By \ {e}, where V denotes the gradient with respect to (x1, z2,loga).
If (y1,y2,t) is near the origin, we have

|B((21,22,5), (y1,92,1)) | < C[k(e™ (21 —y1), 7 (22 — ya), e "))
< Cle (@1 —w1), e (z2 — o), s — )|~
<Cl(x1 —y1,m2 —y2,5 — )|

3

and

IV o100, 8((@1,22,5), (y1,92:0)) | + |V ety B((1, 22, 5), (y1,52,1))]
§C|k(e*t(x1—y1) “Hag — yo), €% t)|+
+ C|VE(e ™z —y1), e (22 — y2),e" )|
<Cl(z1 —y1, 22 —y2,5 — t)| 77,

and the theorem follows. O

7. Boundedness of T;;

We shall prove that the operators T;; = X;A™'X; are bounded from
H' to L'. Since we already verified the boundedness of their local parts, it
remains to consider the global parts.

In [14, Lemma 9] it is proved that the global parts of the kernels gfjioo of
the right-invariant Riesz transforms 77; are integrable with respect to the
measure \. Since (2.9) implies that (T[jf)v =T,;f for any f € C°(G), we
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obtain that g;¥ = g;:>°. Thus g7¥ is integrable with respect to the measure
p and the corresponding convolution operator 777 is bounded from H !
to L',

8. Unboundedness of S;;

In this section we prove that the operators S;; are not bounded from
H' to L'. Again it suffices to consider their global parts. To do so, we use
the same idea as in Section 4, defining an atom whose image under the
operator S;; is not integrable far from the support of the atom.

We will need to estimate some integrals of derivatives of the kernels k;;.
Notice that it is enough to treat the values of (7, ) listed in the following
lemma, since the remaining cases will follow by symmetry.

LEMMA 8.1. — For each pair (i,5) € {(1,1), (1,2), (1,0), (0,1), (0,0)},
there exist regions " C IV C T in G, a positive continuous function ® on
I" and positive constants C, T such that

(i) |X2ki| > C® inT;
(ii) for any (x1,x2,a) inT" and o in [0, 7], the point (x1,x2,a)-(0,0,1)
is in I' and

<I>((x17x2,a) - (0, 0, 1)) = ®(z1,29,0a);

(iii) [, ®dp = oo.
Moreover, there exist constants 0 < § < 1 and 1 < 3 < 2 such that the
parallelepiped E = (0,9) x (—6,0) x (1, §) satisfies the condition

(8.1) I"”-E~'.ECT.

Proof. — Let us fix a pair (4,7). To simplify the notation we write k
for the kernel k;; and drop the indices ¢, j. Because of (2.25), there exist
constants v, 7, o, 0 € R and h, ¢, m, n € Z3 such that for x in B

Xok(z) =~vz"e ™ 4 nale™ +oa™me™ + 02" e + Q)

= F(z) +Q(x),
where F(x) is defined by the last equality. Here 8 # 0, |h| = 0, |{| =
|m| = 1, |n|] = 2. The remainder term Q(z) is as described in Section 2.
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For large a, (1.1) implies e” ~ a + a~* (2% + 22)? and more precisely,

e =at+a (2?4 tat—e"
(171 —e T
a+a (a3 + x%)) '
Inverting the last factor here and expanding, we see that for x = (21,22, a)
with a large

e = a (@ + 2F +a3) P(1+ 0(e)) = a2 P (14 0(e) |

= (a+a (2} +23)) (1 +

where | - | denotes the euclidean norm in R3. Thus, for such =
Oz a* + |z|?[yah a? |z + nala® + o™ a®
F(z) = =y |x||8 7 L+ B
P(x)
= E
PR

where P is a polynomial in the variables x1, z2, a, homogeneous of degree
6. Further, F(z) is a sum like F(z), but with e~ instead of e™?" in
each term. We write P(z) = 62" a* + |z|?> P(x), where P is homogeneous
of degree 4. Notice that P is not identically 0, since the monomial z™ a*
cannot equal a product 6~ |x|? I:’(x) We can thus find ¢1,qg2 > 0 with
P(q1,92,1) # 0. By continuity and homogeneity, P(z) # 0 also for z in a
narrow cone near the ray in the direction (g1, g2, 1), in particular for z in
the truncated cone

I'={(z1,22,0) €G: a> A,

x1/a — q1| < g, |x2/a—q2’ <e},

for some small ¢ > 0. With A sufficiently large, this implies that in the
region T' the quantities |E|, |Q| are much smaller than |F| and so for any
(x1,22,0) €T

|P(e1,22,0)
|($1, L2, a)|8
Defining ®(x1,22,a) = a~? in ', we have proved (i).

We define

| Xok(z1,22,a)| = C|F(x1,22,a)| > C >Ca 2.

I' = {(z1,22,0) €T : |21/a—q1| < /2, |w2/a—q2| <e/2},
and
I ={(x1,72,a) €T : a> 24, |x1/a — ql‘ <e/4, |za/a — qg} <eg/4}.
Now choose 7 < ¢/2 and ¢ € [0,7], and let (x1,22,a) be in TV. Then

(x1,22,a) - (0,0,1) = (21,22 + ao, a). We have that ‘xl/a — ql‘ <g/2<e
and

|(z2 + ao)/a — q2| < |w2/a—q2| + o0 <e/2+T<e.
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Thus (21,72 + ao,a) € T and ®((21,z2,a) - (0,0,1)) = a2 = ®(z1, 22, a).
To prove (iii), it suffices to note that

da o da
/ a_dede1—>C/ a?a®— =c.
" a 24 a

Aiming at (8.1) we take points (1, x2,a) € I and (y1,y2,b), (21,22,¢) € E
and consider (z1,z2,a) - (y1,y2,b) 7" - (21, 22,¢) = (1 +ab~ (21 —y1), 22 +
ab=(z — y2),ab~tc). Obviously, ab~tc > 24/ > 2A/2 = A. Moreover,
‘1’1 +ab~'(z1 — 1)
ab—lc

T |21 — 1]

— g —

(h‘ ‘ab—lc Q1‘+

< ﬂ‘b/cfl‘+’ﬂfq1’+5
a a

<21 |8—1]+¢e/4+6

<e/2,

for § sufficiently small and 3 sufficiently close to 1. In a similar way, we can

achieve )
T2 +ab” (22 — y2)
— g <e/2,
ab—lc 42| <¢/
so that (z1,22,a) - (y1,y2,b) "L - (21, 22,¢) € I, proving (8.1). O
THEOREM 8.2. — The operators S;;, for i,j = 0,1,2, are not bounded

from H! to L'.

Proof. — As remarked above, we need only consider the operators Si1,
S21, 510, 501, Soo-

We argue as in the proof of Theorem 4.2. This time by (2.16) for all
oc>0and z,y € G, with z #y and z # y - (0,0,1)
(8.2)

Sij(@,y) = Sij(z,y - (0,0,1)) = 6(x) 0 Xokji (¢ y exp(r(2,y) X2)) ,
where 0 < 7(z,y) < o and S,; denotes the integral kernel of the operator
Sij.

As in the proof of Theorem 4.2 one constructs an atom a such that
J Sii(-,y)a(y) dp(y) does not belong to L': it suffices to apply (8.2) and
Lemma 8.1. We omit the details. g

9. Unboundedness of R;;

In this section we prove that the operators R;; are not bounded from
H' to L', and it suffices to consider their global parts. The proof of the
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unboundedness of R is different from the previous cases. We shall now
construct a sequence of functions in H*' such that their images under the
operator R;7 lie in L' but have large L'-norms. To do so, we first analyze
the kernels £7¥.

LEMMA 9.1. — For any i, = 0,1, 2, there exists a splitting k¥ = kilj +

k?; + k}; such that
(i) kl = kS X{(21,22,a)€C: a<1} 1S integrable;

ii is supported in the region {(x1,x2,a) € Doa 2 and 1is

k:fj d h BY 1 di
integrable;

(iii) kg’j is supported in the region {(z1,22,a) € B : a > 1} and for
any f € Lt

frkd(x1, 00, 0) = [Yhg *g2 h](z1,22)  V(x1,22,0) € G,

where h(x1,x2) fo (z1,22,a)da/a, ¥ is a continuous function
on R? such that |1 (z1,72)] < C (14 |(x1,22)]) "2 for some C, and
Ya(21,29) = a"2p(a " oy, a" twy) for a > 0.

Proof. — We fix a pair (¢, 7) and drop the indices 4, j on the kernels. By
(2.24) there exist constants «, 8 and m, n € Z3 such that in B¢
EX(z) = az™e™? + fa" e + Q(x),
where @ is integrable, 3 > 0, |m| =0, |n| =1 and

mo+2>0 ng+3>0
(9.1) my+mg—4< -2 and ny+ng—6< —2.

We define k' = k™ X{(z,,25,0)eG: a<1}- By (9.1) and Lemma 2.2(ii), k' is
integrable.

We now consider the region {(x1,x2,a) € B : a > 1}. There we may
approximate e~" by 1/(2coshr) and coshr by a (1 + ‘a‘l(xl,x2)|2). Es-
timating the errors, we can write the principal terms in the expression for
k°° above as

al,m e—2r 4 ﬁ.’lﬁn e—3r
)" 1
4a2(1 + |a= (21, 22)[?)?

1
nl (=)™ (o Lay )™

o (@) (0 ) s T PR

+q(z)

= a_2¢(a_l(x1, z2)) +q(x),

= aal™ (ailxl)ml (a71x2
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where
oy rytwy®
xr1,T) =« +8
) = e PP T S0+ e PP
and

q(z) = O(a™e™ ™ +ame 7).
By Lemma 2.2(i) and (9.1), ¢ is integrable in the region where a > 1, and
(1, 22)] < C(1+ (1, 22)) 72
Define k* (1'1,372, ) = _21/)( (x17$2))X{(x1 x2,a)€BS: a>1} and k* =
k> — k3 — k'. Then
k*(z1,72,0) = Q(z) + q(z),

and so k? is integrable, which proves (ii).
Given a function f in L', we obtain

f*k3(x1,20,0) =

= / / f(@1 —ab™yr, 20 — ab tyo,ab™ ) b2 (b yr, b ya)
0 R2
dy1 dy2 db/b

o0
= / / f(xy —az, x5 — azo,ab ) (21, 22) dzy dzo db/b
RQ

// “2y(atvr,a / f(x1 — v1, 22 — v2,¢)de/cdvy dog
Rz
= I:’(/}a *R2 h] (xlva)a

which proves (iii). O
We remark that in [14, Section 7], the analog of Lemma 9.1 was proved
for the operators Rj; = X{X}(Ar)_l. We could also deduce Lemma 9.1
from that result.
We shall need the following technical lemma, which shows how to con-
struct functions in H'(G) from functions in H*(R?).

LEMMA 9.2. — For any function h in H'(R?), there exists a function f
in Hl(G) such that Hf”Hl(G) < Hh||H1(R2) and

o da

O R

0 a

Proof. — Let h be in H'(R?). Take a decomposition of h as 3 \;bj,
where \; € C, 37, [)\j| < oo and b; are atoms in R?. The atom b; is
supported in a square Q; of side L;, and [b; = 0 and [|bj||oc < Lj_2. We
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choose r; > 0 such that either r; <1 and e*r; < L; <e®r; or r; > 1 and
e?i < Lj < €%, Define

1 _
a;(z1, 2, a) = ) 5 1X[e”j 7e7~j](a) bj(z1,22).
The functions a; are atoms in G supported in the Calderén-Zygmund sets
R; = Qj x [e7™,e"]. Now define f =} . Aja;. It is easy to check that f
is H1(G) and has the required properties. a

We now concentrate on the part of the kernel which is not integrable,
ie., k3.
> i

LEMMA 9.3. — The operator f — fxk3; is not bounded from H" to L'.

Proof. — The proof will follow those of [13, Lemmata 13,14]. We will
define a sequence of functions hy in the Hardy space H!(R?) such that
1Ya * hn |1 /[|hn || (r2y is large. From Lemma 9.2, we then obtain a se-
quence of functions fy in H'(G) such that || fx * k3 [l1/[|fx ]|z is not uni-
formly bounded.

Let ¢ be a C°°-function in R? supported in [~1,1] x [~1,1] such that
J ¢ =0, and ¢ *g2 ¢(0,0) # 0. Let L > 1 and let N be the greatest natural
number with N < log L. Let p, ¢ be large natural numbers to be chosen
later. Define

N

(9-2) hv=> > tonk

n=0k€Z?, |k;|<(29"L—1)/p

where the signs will be chosen later and
Onk(T1,22) = (29" 21 — pki, 29" T2 — Ph2).

Let n and k be as in the double sum. Since supp ¢ C [—1,1] x [-1,1], we
conclude

supp ¢ni C [27"(ph1 —1),27 " (pky + 1)] x [27"(pk2 — 1),27 " (phk2 + 1)] .

It follows that hy is supported in [—L, L] x [-L, L].
Claim 1. One can choose p,q and t > 0 independently of N so that for
all sign choices in (9.2)

p{(w1,22,0) : [0 * b (w1, 29)] > 1)) > C N L.

Claim 2. The signs in (9.2) can be chosen so that ||hy]|l2 < C VN L.

Proof of Claim 1. Since 9 *gz ¢(0,0) # 0, there exists a positive ¢ such
that |¢q *g2 ¢(x1,x2)| > 6 for (21,22, a) in a neighbourhood U of (0,0, 1)
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in R? x RT = G. We can take U contained in [—1,1] x [-1,1] x [1/2,2]. Tt
follows that
(9.3) |0 *R2 Gk (@1, @2)| > 6 if (21,22,a) € Up,
where Uy, = {(21,22,a) : (29"x1 — pky, 2929 — pks,27"a) € U}. The sets
Upni are mutually disjoint and p(U,x) = 272" p(U).

Now fix 0 < m < N, ¢ € Z? such that |¢;| < (29L — 1)/p and take
(21,22,a) € Upe. By (9.3), in the sum

N

z Z +1)q * (w1, 22),

n=0keZ?, |k;|<(29"L-1)/p

the term with n = m, k = /¢ is greater than § in absolute value. The other
terms are much smaller; more precisely, we can choose p, ¢ such that

(9.4) DD [ta* bnklar, w2)| < 6/2.
(n,k)#(m,1)
The proof of (9.4) is the same as [13, Proof of Claim 1, page 277], and we
omit it.
This means that
N

{(z1,22,a) : |tg * hy(x1,22,0)] > 6/2} 2 U U Unk -

n=0k€Z2,|k;|<(29" L—1)/p
Thus, choosing t = 6/2,

N

p({(z1,22,0) : |Ya * hy(z1,22,0)] > t}) =Y > p(Uni)

n=0keZ?, |k;|<(2¢"L—-1)/p
N
>Cp(U) Y 27220 L — 1)
n=0

>CNIL?.

Proof of Claim 2. This proof follows the idea of [13, Proof of Claim 2, page
279]. On the set of all sign choices in (9.2), consider the probability measure
which makes the signs into independent Bernoulli variables. Denote by E
the corresponding expectation. Then

Elhy > () = |énr ()]
n,k

N
=y > (29" 1 — phy, 27" g — phy)|?

n=0keZ?, |k;|<(29"L—-1)/p
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and

/E|h]\/($1,.’£2)‘2 diL’l de

N
<C Z Z 272nq

n=0keZ?, |k;|<(29"L—-1)/p
<CNI2.

Thus E||hx|]2 < C VN L, and Claim 2 follows.

If we choose p, ¢ and the signs in (9.2) as in Claim 1 and 2, the function
hy will be a multiple of a (1, 2)-atom in R? (see [8]). Indeed, it is supported
in [~L, L] x[~L, L], with integral zero, and ||hx ||z < C' v/N L. In particular,
hy is in H'(R?) and ||hn| g re) < C L2 V/N.

By Lemma 9.2, there exists fy in H(G) such that || fn || z1(q) < C L2 VN
and

da

hN(x1>372):/ fn(zr, z2,a)— .
0 a

Thus by Lemma 9.1 and Claim 1,

v ekl= [ [ o ha(eres@ldoter, 2.0

> tp({(w1,72,a) : |[g * hy(x1,22,0)] > t})
>CNIL?.

This shows that || fx * k3;|[1/l| fx |l 1 (@) is not uniformly bounded, proving

the lemma. 0

THEOREM 9.4. — The operators RSy, for i = 0,1,2, are not bounded
from H' to L'.

Proof. — This is a direct consequence of Lemmata 9.1 and 9.3. O
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